# TRIJUNCTIONS AND TRIADIC GALOIS CONNECTIONS 

by René GUITART


#### Abstract

Résumé. Dans cet article sont introduites les trijonctions, qui sont aux connexions galoisiennes triadiques ce que les adjonctions sont aux connexions galoisiennes. Nous décrivons le tripode trifibré associé à une trijonction, la trijonction entre topos de préfaisceaux associée a une trifibration discrète, et l'engendrement de toute trijonction par un bi-adjoint. À côté des exemples associés aux connexions galoisiennes triadiques, aux relations ternaires, d'autres le sont à des tenseurs symétriques, aux topos et univers algébriques.


#### Abstract

In this paper we introduce the notion of a trijunction, which is related to a triadic Galois connection just as an adjunction is to a Galois connection. We construct the trifibered tripod associated to a trijunction, the trijunction between toposes of presheaves associated to a discrete trifibration, and the generation of any trijunction by a bi-adjoint functor. While some examples are related to triadic Galois connections, to ternary relations, others are associated to some symmetric tensors, to toposes and algebraic universes.


Keywords. Galois connection, adjunction, bi-adjunction, trijunction, trifibration, topos, algebraic universes.
Mathematics Subject Classification (2010). 06A15, 18A40, 18B10, 18D30.

## 1. Introduction

A trijunction (definition 2.1) was introduced in [7] as a categorification of a triadic Galois connection [1], just as an adjunction [9] could be understood as a categorification of a Galois connection [13]: triadic Galois connections and Galois connections are trijunctions and adjunctions reduced to the case of posets (section 3). Any trijunction is generated by a bi-adjoint and determines a trifibration (section 2.1), and conversely a discrete trifibration determines a trijunction between toposes of presheaves. We give examples of
trijunctions associated to adjunctions with parameters related to a symmetric tensor, and the constitutive auto-trijunctions of toposes or algebraic universes (section 4), which allow to reproduce internally triadic Galois connections.

## 2. Trijunctions, bi-adjunctions, discrete trifibrations

### 2.1 Trijunctions

Definition 2.1. A trijunction between 3 categories $\mathcal{A}, \mathcal{B}, \mathcal{C}$, is the datum $(\gamma, \beta, \alpha)$ of 3 contravariant functors between any product of two of these categories and the third, i.e. 3 covariant functors as:

$$
\gamma: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}^{\mathrm{op}}, \beta: \mathcal{C} \times \mathcal{A} \rightarrow \mathcal{B}^{\mathrm{op}}, \alpha: \mathcal{B} \times \mathcal{C} \rightarrow \mathcal{A}^{\mathrm{op}}
$$

and 3 natural equivalences with a circular condition

$$
(-)^{\alpha, \gamma}(-)^{\gamma, \beta}=(-)^{\alpha, \beta}:
$$

$$
\begin{aligned}
& (-)^{\alpha, \gamma}: \operatorname{Hom}_{\mathcal{C}}(C, \gamma(A, B)) \simeq \operatorname{Hom}_{\mathcal{A}}(A, \alpha(B, C)):(-)^{\gamma, \alpha}=\left((-)^{\alpha, \gamma}\right)^{-1}, \\
& (-)^{\gamma, \beta}: \operatorname{Hom}_{\mathcal{B}}(B, \beta(C, A)) \simeq \operatorname{Hom}_{\mathcal{C}}(C, \gamma(A, B)):(-)^{\beta, \gamma}=\left((-)^{\gamma, \alpha}\right)^{-1}, \\
& \left.(-)^{\beta, \alpha}: \operatorname{Hom}_{\mathcal{A}}(A, \alpha(B, C)) \simeq \operatorname{Hom}_{\mathcal{B}} B, \beta(C, A)\right):(-)^{\alpha, \beta}=\left((-)^{\beta, \alpha}\right)^{-1} .
\end{aligned}
$$

Proposition 2.2. Given a trijunction $(\gamma, \beta, \alpha)$ as in definition 2.1 and an object $(A, B, C)$ of $\mathcal{A} \times \mathcal{B} \times \mathcal{C}$ we get 12 functors of one variable, in the bi-hexagon $<A, B, C>$, in which an exterior dotted line indicates a right adjoint to the corresponding internal unbroken line:


Proof. Using known facts on adjunctions (recalled in section 2.5) the equivalences in definition 2.1 provide equivalences of adjunction when one argument is fixed, hence the adjunctions in the hexagon.

Proposition 2.3. Associated to adjunctions in the hexagon of proposition 2.2, there are 6 unit transformations which are natural in lower arguments and dinatural in upper arguments:

1. $\beta(C,-) \dashv \alpha^{\mathrm{op}}(-C)$ and $\gamma(-, B) \dashv \alpha^{\mathrm{op}}(B,-)$ give on $\mathcal{A}$ :

$$
\alpha \beta C A C \stackrel{\alpha_{A}^{C}}{\stackrel{ }{A}} A \xrightarrow[A]{\alpha_{A}^{B}} \alpha B \gamma A B
$$

2. $\left(\alpha(-, C) \dashv \beta^{\text {op }}(C,-)\right.$ and $\gamma(A,-) \dashv \beta^{\text {op }}(-, A)$ give on $\mathcal{B}$ :

3. $\beta(-, A) \dashv \gamma^{\mathrm{op}}(A,-)$ and $\alpha(B,-) \dashv \gamma^{\mathrm{op}}(-, B)$ give on $\mathcal{C}$ :

$$
\gamma A \beta C A \stackrel{\gamma_{C}^{A}}{\leftrightarrows} C \xrightarrow{\gamma_{C}^{B}} \gamma \alpha B C B
$$

We recover the equivalences $(-)^{\alpha, \beta}$ etc., by:

$$
\begin{gathered}
a: A \rightarrow \alpha(B, C)=b^{\alpha, \beta}=\alpha(b, C) \alpha_{A}^{C}=c^{\alpha, \gamma}=\alpha(B, c) \alpha_{A}^{B}, \\
b: B \rightarrow \beta(C, A)=c^{\beta, \gamma}=\beta(c, A) \beta_{B}^{A}=a^{\beta, \alpha}=\beta(C, a) \beta_{B}^{C}, \\
c: C \rightarrow \gamma(A, B)=a^{\gamma, \alpha}=\gamma(a, B) \gamma_{C}^{B}=b^{\gamma, \beta}=\gamma(A, b) \gamma_{C}^{A} .
\end{gathered}
$$

Proof. For $\beta(C,-) \dashv \alpha^{\mathrm{op}}(-C)$ the unit is

$$
\alpha_{A}^{C}=\left(1_{\beta(C, A)}\right)^{\alpha, \beta}: A \rightarrow \alpha \beta C A C:=\alpha(\beta(C, A), C)
$$

This $\alpha_{A}^{C}$ is natural in $A$, i.e. such that, for any $u: A \rightarrow A^{\prime}$,

$$
\alpha_{A^{\prime}}^{C} u=\alpha(\beta(C, u), C) \alpha_{A}^{C},
$$

and is dinatural in $C$, i.e. such that, for any $w: C \rightarrow C^{\prime}$, we have:

$$
\alpha(\beta(w, A), C) \alpha_{A}^{C}=\alpha\left(\beta\left(C^{\prime}, A\right), w\right) \alpha_{A}^{C^{\prime}} .
$$

The situation here is an "adjunction with a parameter" (see [11, p. 100]) in $\mathcal{C}$ between $\alpha$ and $\beta$, and the naturality and dinaturality are proved in [11, p. 216]; in fact the converse holds: if $\alpha_{A}^{C}$ is natural in $A$ and dinatural in $C$, then $(-)^{\beta, \alpha}$ (or its inverse $(-)^{\alpha, \beta}$ ) is natural in its three arguments. This is indicated in [11] (exercise 2 p .100 and exercise 1 p . 218): the unit $\eta_{A}^{B}: A \rightarrow R(B, L(A, B))$ of an adjunction with parameter is dinatural in $B$, and this is equivalent to the naturality of the adjunction $\tau$ itself in $B$.

Proposition 2.4. With the hypothesis and notations of propositions 2.2 and 2.3 we have 6 equations of adjunction:

$$
\begin{aligned}
\alpha\left(B, \gamma_{C}^{B}\right) \alpha_{\alpha(B, C)}^{B} & =1_{\alpha(B, C)}=\alpha\left(\beta_{B}^{C}, C\right) \alpha_{\alpha(B, C)}^{C}, \\
\beta\left(C, \alpha_{A}^{C}\right) \beta_{\beta(C, A)}^{C} & =1_{\beta(C, A)}=\beta\left(\gamma_{C}^{A}, A\right) \beta_{\beta(C, A)}^{A}, \\
\gamma\left(A, \beta_{B}^{A}\right) \gamma_{\gamma(A, B)}^{A} & =1_{\gamma(A, B)}=\gamma\left(\alpha_{A}^{B}, B\right) \gamma_{\gamma(A, B)}^{B} ;
\end{aligned}
$$

and we have the condition of circularity, expressible in 6 equivalent ways:

$$
\begin{array}{ll}
\alpha_{A}^{B}=\alpha\left(\beta_{B}^{A}, \gamma(A, B)\right) \alpha_{A}^{\gamma(A, B)}, & \alpha_{A}^{C}=\alpha\left(\beta(C, A), \gamma_{C}^{A}\right) \alpha_{A}^{\beta(C, A)}, \\
\beta_{B}^{C}=\beta\left(\gamma_{C}^{B}, \alpha(B, C)\right) \beta_{B}^{\alpha(B, C)}, & \beta_{B}^{A}=\beta\left(\gamma(A, B), \alpha_{A}^{B}\right) \beta_{B}^{\gamma(A, B)}, \\
\gamma_{C}^{A}=\gamma\left(\alpha_{A}^{C}, \beta(C, A)\right) \gamma_{C}^{\beta(C, A)}, & \gamma_{C}^{B}=\gamma\left(\alpha(B, C), \beta_{B}^{C}\right) \gamma_{C}^{\alpha(B, C)} .
\end{array}
$$

Proof. For example, between the unit $\alpha_{A}^{C}$ and the corresponding co-unit $\beta_{B}^{C}$ we have the known equations of adjunctions recalled in proposition 2.11.
For example, as $\beta(C, A)$ is a functor in each variable, and as $\beta_{B}^{C}$ is dinatural in $C$ (proposition 2.3), the fourth circularity condition, expressing $\beta_{B}^{A}$, allows to deduce for any $c: C \rightarrow \gamma(A, B)$ that

$$
\beta(c, A) \beta_{B}^{A}=\beta\left(C, \alpha(B, c) \alpha_{A}^{B}\right) \beta_{B}^{C},
$$

which (cf. proposition 2.3) is equivalent to $(-)^{\beta, \gamma}=(-)^{\beta, \alpha}(-)^{\alpha, \gamma}$. This implies conversely the fourth condition.
By the equations of adjunction, the six natural transformations $(-)^{\alpha, \beta}$ etc. are invertible (equivalence), and from the last equation we get the five analogs, and then any equation of circularity.

### 2.2 Bi-adjunction

Definition 2.5. A bi-functor $\gamma: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}^{\text {op }}$ is a left bi-adjunction if for every $A$ in $\mathcal{A}$ the functor $\gamma(A,-): \mathcal{B} \rightarrow \mathcal{C}^{\mathrm{op}}$ is a left adjoint, and for every $B$ in $\mathcal{B}$ the functor $\gamma(-, B): \mathcal{A} \rightarrow \mathcal{C}^{\text {op }}$ is a left adjoint.

Proposition 2.6. $1-A$ bi-functor $\gamma: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}^{\circ \mathrm{p}}$ is a left bi-adjunction if and only if there is a trijunction $(\gamma, \beta, \alpha)$, in the sense of definition 2.1. In this case, $\beta$ and $\gamma$ are unique up to natural isomorphisms.
$2-A$ trijunction is completely determined up to isomorphisms by a functor $\gamma: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}^{\mathrm{op}}$ with the datum for each object $C$ of two objects $\alpha B C$ and $\beta C A$, with two morphisms

$$
\gamma A \beta C A \stackrel{\gamma_{C}^{A}}{\hookleftarrow} C \xrightarrow{\gamma_{B}^{B}} \gamma \alpha B C B,
$$

such that for any $c: C \rightarrow \gamma A B$ there are two unique maps $a: A \rightarrow \alpha B C$ and $b: B \rightarrow \beta C A$ such that

$$
c=\gamma(a, B) \gamma_{C}^{B}, \quad c=\gamma(A, b) \gamma_{C}^{A} .
$$

Proof. 1 - The proposition is an application of known results (recalled in proposition 2.13 later . So we introduce $\beta$ and $\alpha$ by $\gamma(A,-) \dashv \beta^{\circ \mathrm{p}}(-, A)$ and $\gamma(-, B) \dashv \alpha^{\mathrm{op}}(B,-)$. With the formula $(\star)$ in the proof of proposition 2.13 we get bi-functors $\beta$ and $\gamma$, with natural equivalences $(-)^{\gamma, \beta}$ and $(-)^{\alpha, \gamma}$, and we define $(-)^{\alpha, \beta}$ as the composition $(-)^{\alpha, \gamma}(-)^{\gamma, \beta}$.
2 - This results from the determination of adjoints by free objects.
So, all the data and equations in a trijunction (cf. propositions 2.2, 2.3 and 2.4) are consequences of these two "free object" properties.

### 2.3 Discrete trifibration associated to a trijunction

A triadic Galois connection is known to be a generalization of a ternary relation (recalled in proposition 3.5 later); a similar understanding for a trijunction is in terms of trifibrations.
Definition 2.7. Given a trijunction $(\gamma, \beta, \alpha)$ we construct its "trigraph", the category $\mathcal{G}=\mathcal{G}(\gamma, \beta, \alpha)$ with objects $G=(a, b, c)$ as in

with

$$
b=a^{\beta, \alpha}, c=b^{\gamma, \beta}, a=c^{\alpha, \gamma}
$$

as in proposition 2.3; a morphism from ( $a, b, c$ ) to $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ is a $g=(u, v, w)$ : $(A, B, C) \rightarrow\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ with one of the equivalent conditions:

$$
\alpha(v, w) a^{\prime} u=a, \quad \beta(w, u) b^{\prime} v=b, \quad \gamma(u, v) c^{\prime} w=c .
$$

Proposition 2.8. We have a discrete fibration given by:

$$
\pi=\pi_{\gamma, \beta, \alpha}: \mathcal{G}(\gamma, \beta, \alpha) \rightarrow \mathcal{A} \times \mathcal{B} \times \mathcal{C}:(a, b, c) \mapsto(A, B, C)
$$



Proof. In fact $\mathcal{G}(\gamma, \beta, \alpha)=\mathcal{G}$ is isomorphic to the discrete fibration $\int \alpha$ associated to $\operatorname{Hom}_{\mathcal{A}}\left(\operatorname{Id}_{\mathcal{A}}\right.$ op $\left.\times \alpha^{\text {op }}\right):(\mathcal{A} \times \mathcal{B} \times \mathcal{C})^{\text {op }} \rightarrow$ Ens, as well as the one $\int \beta$ associated to $\operatorname{Hom}_{\mathcal{B}}\left(\operatorname{Id}_{\mathcal{B} \text { op }} \times \beta^{\mathrm{op}}\right):(\mathcal{B} \times \mathcal{C} \times \mathcal{A})^{\mathrm{op}} \rightarrow$ Ens or the one $\int \gamma$ associated to $\operatorname{Hom}_{\mathcal{C}}\left(\operatorname{Id}_{\mathcal{C}^{\mathrm{op}}} \times \gamma^{\mathrm{op}}\right):(\mathcal{C} \times \mathcal{A} \times \mathcal{B})^{\mathrm{op}} \rightarrow$ Ens. So in the category of fibrations over $\mathcal{A} \times \mathcal{B} \times \mathcal{C}$ we have three isomorphisms

$$
\int \gamma^{\substack{\int \alpha \\ \widetilde{\sim}_{\lambda} \downarrow \sim \\ \pi_{\gamma, \beta, \alpha}}} \xlongequal{\kappa} \int \beta
$$

In fact the isomorphisms between these fibrations exactly correspond to equivalences in the definition (2.1) of the trijunction.

### 2.4 From discrete trifibrations to trijunctions between presheaves

Proposition 2.9. Given a functor $R:(\mathcal{A} \times \mathcal{B} \times \mathcal{C})^{\mathrm{op}} \rightarrow$ Ens with $\mathcal{A}, \mathcal{B}, \mathcal{C}$ any small categories, or the associated discrete fibration $\pi_{R}: \mathcal{G} \rightarrow \mathcal{A} \times \mathcal{B} \times \mathcal{C}$ (called a discrete trifibration), there is an associated trijunction $\left(\gamma_{R}, \beta_{R}, \alpha_{R}\right)$ between toposes of presheaves $\hat{\mathcal{A}}:=\mathrm{Ens}^{\mathcal{A}^{\mathrm{op}}}, \hat{\mathcal{B}}:=\mathrm{Ens}^{\mathcal{B}^{\mathrm{OP}}}$, and $\hat{\mathcal{C}}:=\mathrm{Ens}^{\mathrm{C}^{\text {op }}}$. Especially any bi-functor $\mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}^{\mathrm{op}}$ determines such a trijunction.
Proof. With $R_{\mathcal{C}}(C)(A, B)=R_{\mathcal{B}}(B)(C, A)=R_{\mathcal{A}}(A)(B, C)=R(A, B, C)$, $R_{\mathcal{C}}: \mathcal{C}^{\mathrm{op}} \rightarrow \operatorname{Ens}^{(\mathcal{A} \times \mathcal{B})^{\mathrm{op}}}, R_{\mathcal{B}}: \mathcal{B}^{\mathrm{op}} \rightarrow \operatorname{Ens}^{(\mathcal{C} \times \mathcal{A})^{\mathrm{op}}}, R_{\mathcal{A}}: \mathcal{A}^{\mathrm{op}} \rightarrow \operatorname{Ens}^{(\mathcal{B} \times \mathcal{C})^{\mathrm{op}}}$. For $F, G$ and $H$ in $\hat{\mathcal{A}}, \hat{\mathcal{B}}$, and $\hat{\mathcal{C}}$ we define $F \boxtimes G(A, B)=F(A) \times G(B)$, $H \boxtimes F(C, A)=H(C) \times F(A)$ and $G \boxtimes H(B, C)=G(B) \times H(C)$. Then

$$
\begin{aligned}
& \beta_{R}(H, F)(B)=\operatorname{Hom}_{\text {Ens }^{c o p} \times \mathcal{A}^{\text {op }}}\left(H \boxtimes F, R_{\mathcal{B}}(B)\right) \text {, } \\
& \alpha_{R}(G, H)(A)=\operatorname{Hom}_{\text {Ens }}{ }^{\text {gop } \times \operatorname{cop}}\left(G \boxtimes H, R_{\mathcal{A}}(A)\right) \text {. }
\end{aligned}
$$

Then for example we associate to $\theta: F \boxtimes G \boxtimes H \rightarrow R$ a $\nu: H \rightarrow \gamma(F, G)$ by $\left(\nu_{C}(z)\right)_{(A, B)}(x, y)=\theta_{(A, B, C)}(x, y, z)$.

### 2.5 Annex 1: Classical facts on adjunctions

In 1958, Daniel Kan [9] introduced the notion of adjoint functors; then Peter Freyd (Princeton thesis, 1960) and William Lawvere (Columbia thesis, 1963) "emphasized the dominant position of adjunctions" [11, p. 103]:

Definition 2.10. Let $\mathcal{A}$ and $\mathcal{C}$ be categories. Then a covariant functor $L$ : $\mathcal{A} \rightarrow \mathcal{C}$ is called left adjoint to a covariant functor $R: \mathcal{C} \rightarrow \mathcal{A}$ (notation $\tau: L \dashv R$ ) if there exists a natural equivalence

$$
\tau: \operatorname{Hom}_{\mathcal{C}}(L(A), C) \simeq \operatorname{Hom}_{\mathcal{A}}(A, R(C))
$$

Proposition 2.11. $\tau: L \dashv R$ is equivalent to $L \dashv R(\epsilon, \eta)$, with 2 natural transformations $\epsilon:=\tau^{-1}\left(1_{R}\right): L R \rightarrow \operatorname{Id}_{\mathcal{C}}$ and $\eta:=\tau\left(1_{L}\right): \operatorname{Id}_{\mathcal{A}} \rightarrow R L$ with the equations:

$$
(\epsilon L)(L \eta)=\operatorname{Id}_{L}, \quad(R \epsilon)(\eta R)=\operatorname{Id}_{R} . \text { Furthermore we get } \tau
$$ and $\tau^{-1}$ by:

$$
\tau(c: L A \rightarrow C)=R(c) \eta_{A}, \quad \tau^{-1}(a: A \rightarrow R C)=\epsilon_{C} L(a) .
$$

Proof. This is coming from lemmas 6.2 p. 306 and $6.2^{*}$ p. 307 in [9]. See also [11, chap. IV, p. 80-81].

Definition 2.12. Let $\mathcal{A}, \mathcal{B}$ and $\mathcal{C}$ be categories. Then a covariant functor $L: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$ is called left adjoint - with a parameter in $\mathcal{B}$ - to a functor $R: \mathcal{B}^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{A}$ contravariant in $\mathcal{B}$ and covariant in $\mathcal{C}$ if there exists a natural equivalence

$$
\tau: \operatorname{Hom}_{\mathcal{C}}(L(A, B), C) \simeq \operatorname{Hom}_{\mathcal{A}}(A, R(B, C))
$$

Proposition 2.13. Given $L: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$ and for each object $B$ in $\mathcal{B}$ a right adjoint $R_{B}$ to $L(-, B)$, with $\tau_{B}: L(-, B) \dashv R_{B}$, then these functors determine a unique functor $R: \mathcal{B}^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{A}$ with an equivalence $\tau$ as in definition 2.12, with for every $c: C \rightarrow C^{\prime}, R(B, c)=R_{B}(c)$, and with $\tau(A, B, C)=\tau_{B}(A, C)$.
Proof. This is proved as theorem 4.1 p. 300 in [9]. See also [11, p. 100]. With $\epsilon_{B}=\tau_{B}^{-1}\left(1_{R_{B}}\right)$ and $\eta_{B^{\prime}}=\tau_{B^{\prime}}\left(1_{L\left(-, B^{\prime}\right)}\right)$, an explicit formula for $R(b, c)$ with $b: B^{\prime} \rightarrow B$ and $c: C \rightarrow C^{\prime}$ is

$$
R(b, c)=R_{B^{\prime}}(c) R_{B^{\prime}}\left(\epsilon_{B}(C)\right) R_{B^{\prime}}\left(L\left(R_{B}(C), b\right)\right) \eta_{B^{\prime}}\left(R_{B}(C)\right)
$$

Kan was especially motivated by the case of $\otimes$ :
Proposition 2.14. The functor $\otimes: \mathrm{Ab} \times \mathrm{Ab} \rightarrow \mathrm{Ab}$ is left adjoint to Hom : $\mathrm{Ab}^{\mathrm{op}} \times \mathrm{Ab} \rightarrow \mathrm{Ab}$, in the sense of definition 2.12.

## 3. Triadic Galois Connections and ternary relations

### 3.1 Triadic Galois connections and residuations

In relation with the calculus of ternary relations between sets and the "triadic concept analysis" as introduced in [10] and [14], and the notion of "trilattice", the notion of a triadic Galois connection has been introduced in 1997 by Klaus Biedermann [1], [2], [3]. We adapt his definition, without references to trilattices, and with a slightly different system of notations, in order to show that this notion is a particular case of a trijunction.
NB: In this section 3.1 we use and extend the classical properties of Galois connections (see 3.3) to triadic Galois connections. So we get a mini-model of the theory of trijunctions, namely its reduction to the case of posets.

Definition 3.1. $A$ triadic Galois connection between 3 posets $\mathcal{A}=(A, \leq)$, $\mathcal{B}=(B, \leq)$ and $\mathcal{C}=(C, \leq)$ is the datum $(\gamma, \beta, \alpha)$ of 3 decreasing functions $\gamma: A \times B \rightarrow C, \beta: C \times A \rightarrow B, \alpha: B \times C \rightarrow A$, such that for all $a \in A$, $b \in B, c \in C$.

$$
\begin{array}{ll}
c \leq \gamma(\alpha(b, c), b), & c \leq \gamma(a, \beta(c, a)), \\
b \leq \beta(\gamma(a, b), a), & b \leq \beta(c, \alpha(b, c)), \\
a \leq \alpha(\beta(c, a), c), & a \leq \alpha(b, \gamma(a, b)) .
\end{array}
$$

Proposition 3.2. A triadic Galois connection is equivalent to the datum $(\gamma, \beta, \alpha)$ of 3 decreasing functions $\gamma: A \times B \rightarrow C, \beta: C \times A \rightarrow B$, $\alpha: B \times C \rightarrow A$, such that

$$
\forall a \in A \forall b \in B \forall c \in C[c \leq \gamma(a, b) \Leftrightarrow b \leq \beta(c, a) \Leftrightarrow a \leq \alpha(b, c)] .
$$

Proposition 3.3. $A$ triadic Galois connection is exactly the special case of a trijunction according to definition 2.1 in which $\mathcal{A}, \mathcal{B}$ and $\mathcal{C}$ are posets.

Proposition 3.4. $1-\operatorname{Let}(M, \leq)$ be a sup-lattice and let $\otimes: M \times M \rightarrow M$ a binary law compatible with sup. Then with $\mathcal{A}=(M, \leq), \mathcal{B}=(M, \leq)$, $\mathcal{C}=(M, \geq)$, and with $\gamma(a, b)=a \otimes b$, we get a triadic Galois connection $(\gamma, \beta, \alpha)$ in the sense of (def. 3.1).
$2-$ Let $(M, \leq)$ a sup-lattice and a triadic Galois connection $(\gamma, \beta, \alpha)$ between $\mathcal{A}=(M, \leq), \mathcal{B}=(M, \leq), \mathcal{C}=(M, \geq)$. Then $\gamma$ is a binary law compatible with sup.

Proof. 1 - We take $\beta(c, a)={ }^{a} c:=\sup _{a \otimes b \leq c} b, \alpha(b, c)=c^{b}:=\sup _{a \otimes b \leq c} a$, i.e. (see [4, p. 325]) the right and left residuals $c / a$ of $c$ by $a, c \backslash b$ of $c$ by $b$. $2-\gamma(a,-)$ is a left adjoint, and $\gamma(-, b)$ is a left adjoint too.

### 3.2 Functional counterpart of a ternary relation

Proposition 3.5. A triadic Galois connection $(\gamma, \beta, \alpha)$ between the posets ( $\mathcal{P}(A), \subseteq),(\mathcal{P}(B), \subseteq)$ and $(\mathcal{P}(C), \subseteq)$ is equivalent to the datum of a ternary relation $R \subset A \times B \times C$, according to the association:

$$
\begin{aligned}
& R=R_{\gamma}:=\{(a, b, c) ; c \in \gamma(\{a\},\{b\})\}, \\
& R=R_{\beta}:=\{(a, b, c) ; b \in \beta(\{c\},\{a\})\}, \\
& R=R_{\alpha}:=\{(a, b, c) ; a \in \alpha(\{b\},\{c\})\}, \\
\gamma\left(A^{\prime}, B^{\prime}\right)= & \gamma_{R}\left(A^{\prime}, B^{\prime}\right):=\left\{c ; \forall a^{\prime} \in A^{\prime} \forall b^{\prime} \in B^{\prime}\left(a^{\prime}, b^{\prime}, c\right) \in R\right\}, \\
\beta\left(C^{\prime}, A^{\prime}\right)= & \beta_{R}\left(C^{\prime}, A^{\prime}\right):=\left\{b ; \forall c^{\prime} \in C^{\prime} \forall a^{\prime} \in A^{\prime}\left(a^{\prime}, b, c^{\prime}\right) \in R\right\}, \\
\alpha\left(B^{\prime}, C^{\prime}\right)= & \alpha_{R}\left(B^{\prime}, C^{\prime}\right):=\left\{a ; \forall b^{\prime} \in B^{\prime} \forall c^{\prime} \in C^{\prime}\left(a, b^{\prime}, c^{\prime}\right) \in R\right\} .
\end{aligned}
$$

Furthermore
$C^{\prime} \leq \gamma\left(A^{\prime}, B^{\prime}\right) \Leftrightarrow B^{\prime} \leq \beta\left(C^{\prime}, A^{\prime}\right) \Leftrightarrow A^{\prime} \leq \alpha\left(B^{\prime}, C^{\prime}\right) \Leftrightarrow A^{\prime} \times B^{\prime} \times C^{\prime} \subseteq R$.
Proof. It is an immediate reformulation of Biedermann [1], [2], [3].
Proposition 3.6. Given a ternary relation $R \subseteq A \times B \times C$, and subsets $A^{\prime} \subseteq A, B^{\prime} \subseteq B, C^{\prime} \subseteq C$, we get, with the notations of 3.1 and with

$$
\begin{aligned}
& R_{C}^{*}\left(C^{\prime}\right)=\left\{(a, b) ; \forall c^{\prime} \in C^{\prime}\left(a, b, c^{\prime}\right) \in R\right\}, \\
& R_{B}^{*}\left(B^{\prime}\right)=\left\{(c, a) ; \forall b^{\prime} \in B^{\prime}\left(a, b^{\prime}, c\right) \in R\right\},
\end{aligned}
$$

$$
R_{A}^{*}\left(A^{\prime}\right)=\left\{(b, c) ; \forall a^{\prime} \in A^{\prime}\left(a^{\prime}, b, c\right) \in R\right\},
$$

an hexagonal picture of seven equivalent conditions:

Furthermore each of the six operators $\alpha_{R}, R_{A}^{*}, \beta_{R}, R_{B}^{*}, \gamma_{R}, R_{C}^{*}$, determines the five others, and the relation $R$ itself.

Proof. It is a direct complement to proposition 3.5, in the style of [8]. For the last point starting for example from the datum of $\alpha_{R}$, we get $R_{A}^{*}$ by $R_{A}^{*}\left(A^{\prime}\right)=\cup_{A^{\prime} \subseteq \alpha_{R}\left(B^{\prime}, C^{\prime}\right)} B^{\prime} \times C^{\prime}$, etc.

Proposition 3.7. A triadic Galois connection between $\mathcal{A}=(\mathcal{P}(E), \subseteq), \mathcal{B}=$ ( $\mathcal{P}(E), \subseteq), \mathcal{C}=(\mathcal{P}(E), \supseteq)$ is equivalent to the datum of a ternary relation $R \subset E^{3}$.

Proof. A sup-compatible binary law $\gamma: \mathcal{P}(E)^{2} \rightarrow \mathcal{P}(E)$ is equivalent to a map $r: E^{2} \rightarrow \mathcal{P}(E)$, i.e. a ternary relation $R \subset E^{3}$.

### 3.3 Annex 2: Classical facts on Galois connections

Clearly a posteriori an adjunction could be understood as a categorification of a Galois connection in the following sense of definition 3.8.

In his talk at the Summer Meeting of AMS at Chicago in 1941, Oystein Ore introduced - as a tool for the calculus of binary relations - the notion of a Galois connexion [13] (see also Garrett Birkhoff [4, p.124]) - or equivalently Galois connection (also named Galois correspondence) -, as follows.

Definition 3.8. $A$ [dyadic] Galois connection between 2 posets $\mathcal{A}=(A, \leq)$ and $\mathcal{B}=(B, \leq)$ is the datum $(\beta, \alpha)$ of two decreasing functions $\beta: A \rightarrow B$ and $\alpha: B \rightarrow A$ such that

$$
\forall a \in A[a \leq \alpha(\beta(a))], \quad \forall b \in B[b \leq \beta(\alpha(b))] .
$$

Proposition 3.9. It is equivalent for a Galois connection to assume that $\alpha$ and $\beta$ are ordinary functions such that

$$
\forall a \in A \forall b \in B[b \leq \beta(a) \Leftrightarrow a \leq \alpha(b)] .
$$

Proposition 3.10. A decreasing function $\beta: A \rightarrow B$ between two posets $\mathcal{A}$ and $\mathcal{B}$ determines two increasing functions $\beta^{l}: \mathcal{A} \rightarrow \mathcal{B}^{\mathrm{op}}$ and $\beta^{r}: \mathcal{A}^{\mathrm{op}} \rightarrow \mathcal{B}$, with $\beta^{l}=\beta^{r \mathrm{op}}$ and $\beta^{r}=\beta^{l^{\mathrm{op}}} ; a$ Galois connection as $(\beta, \alpha)$ in 3.8 is exactly an adjunction in the sense of 2.10, namely $\alpha^{l} \dashv \beta^{r}$, or, equivalently, $\beta^{l} \dashv \alpha^{r}$.

Proposition 3.11. A Galois connection $(\beta, \alpha)$ between the posets $(\mathcal{P}(A), \subseteq)$ and $(\mathcal{P}(B), \subseteq)$ is equivalent to the datum of a binary relation $R \subset A \times B$, according to the association:

$$
\begin{gathered}
R=\{(a, b) ; b \in \beta(\{a\})\}=\{(a, b) ; a \in \alpha(\{b\}) \\
\beta\left(A^{\prime}\right)=\left\{b ; \forall a^{\prime} \in A^{\prime}\left(a^{\prime}, b\right) \in R\right\}, \alpha\left(B^{\prime}\right)=\left\{a ; \forall b^{\prime} \in B^{\prime}\left(a, b^{\prime}\right) \in R\right\} .
\end{gathered}
$$

Furthermore

$$
A^{\prime} \subseteq \alpha\left(B^{\prime}\right) \Leftrightarrow B^{\prime} \subseteq \beta\left(A^{\prime}\right) \Leftrightarrow A^{\prime} \times B^{\prime} \subseteq R .
$$

Proof. See Ore [13, thm.10, p.503].

## 4. The auto-trijunction on a topos or an algebraic universe

### 4.1 Algebraic universe

We recall the definition of an algebraic universe, a notion we have developed in the 70's (see [5], [6]).
An algebraic universe is a category $\mathcal{X}$ with finite limits and colimits equipped with a contravariant functor $P: \mathcal{X} \rightarrow \mathcal{X}^{\mathrm{op}}$ such that $P \dashv P^{\mathrm{op}}$, this adjunction being monadic (analogous to Stone duality); we assume also that for any $X$ in $\mathcal{X}$, the map $\eta_{X}: X \rightarrow P P X$ is factorized as $\psi_{X} a_{X}$ with $\psi_{X}: P X \rightarrow P P X$ (meeting map) and $a_{X}: X \rightarrow P X$ (atom map), and there are also $\pi_{X}: P X \rightarrow P P X$ (inclusion map), $\nu_{X}: P X \rightarrow P X$ (negation map) and $c_{X}: X^{2} \rightarrow P X$ (pairing map); among these data a precise system of equations is assumed.

In any algebraic universe the construction $P$ on objects is extended in two ways in a covariant functor: for $f: X \rightarrow Y$ we take:

$$
\begin{gathered}
\exists f=P\left(P f \cdot a_{Y}\right) \psi_{X}, \quad \forall f=P\left(P f \cdot a_{Y}\right) \pi_{X}, \\
\bigcup_{X}=P \eta_{X} \psi_{P X}, \quad \bigcap_{X}=P \eta_{X} P \pi_{P X} \psi_{P X} .
\end{gathered}
$$

Given a relation $\rho=(p, e): R \rightarrow A \times B$ we introduce its "characteristic map":

$$
r=p \star e=(\exists e)(P p) a_{A}: A \rightarrow P B
$$

Proposition 4.1. (See [5]) Given a complete lattice equipped with a supcompatible abelian monoid law $\mathbb{L}=(L \leq, \otimes)$ there is a structure of algebraic universe on Ens in which $P X=L^{X}$, and this generates the calculus of $\mathbb{L}$-fuzzy relations.

### 4.2 Topos as an algebraic universe

An elementary topos (in the sense of Lawvere-Tierney, see [12]) is a category $\mathcal{E}$ with finite limits and colimits, with exponentials and subobject classifier. This is reducible to the conditions that $\mathcal{E}$ is with finite limits and colimits, and is such that for all object $Y$ in $\mathcal{E}$ there is $\left(P Y \stackrel{p_{Y}}{\stackrel{p_{Y}}{\sim}} A Y \xrightarrow{e_{Y}} Y\right)$ such that for every $(X \stackrel{p}{\longleftrightarrow} R \xrightarrow{e} Y)$ there is a unique $r=p \star e: X \longrightarrow P Y$ and a unique $r^{\prime}: R \longrightarrow A Y$ with a pullback $\left(p, r^{\prime} ; r, p_{Y}\right)$ with $e=e_{Y} \cdot r^{\prime}$ :


Proposition 4.2. In a topos $\mathcal{E}$ the construction $P$ is a contravariant functor which is its own adjoint:

$$
\left(P: \mathcal{E} \rightarrow \mathcal{E}^{\mathrm{op}}\right) \dashv\left(P^{\mathrm{op}}: \mathcal{E}^{\mathrm{op}} \rightarrow \mathcal{E}\right)
$$

and in fact with this $P$ we get a structure of an algebraic universe.

Proof. It is well known. Given a morphism $f: Y \rightarrow X$, we get $P(f)$ : $P X \rightarrow P Y$ by $a X:=1_{X} \star 1_{X}$ and $P f=\left(\left(a_{X} f\right) \star 1_{Y}\right.$. Starting with $r: X \rightarrow P Y, r=p \star e$, we get its "converse" $s: Y \rightarrow P X$ with $p=r^{*}\left(p_{Y}\right)$, $r^{\prime}=p^{*}(r), e=e_{Y} r^{\prime}$, and $s=e \star p$. Then a structure of an algebraic universe is given by this $P$, with $\psi$ and $\pi$ in the internal language:

$$
\psi_{X}(A)=\{B ; \exists x(x \in A \& x \in B)\}, \pi_{X}(A)=\{B ; \forall x(x \in B \Rightarrow x \in A)\}
$$

### 4.3 Symmetric tensors with right adjoints

Proposition 4.3. With $\mathcal{A}=\mathrm{Ab}, \mathcal{B}=\mathrm{Ab}, \mathcal{C}=\mathrm{Ab}^{\mathrm{op}}$, we get a trijunction (def. 2.1) with $\gamma(A, B)=A \otimes B, \beta(C, A)=\operatorname{Hom}(A, C)$, and with $\alpha(B, C)=\operatorname{Hom}(B, C)$.

Proof. This proposition results of proposition 2.14 , by imitation of proposition 3.4. Details of the proof arise also from proposition 2.6.

Proposition 4.4. In a symmetric monoidal closed category $\mathcal{E}$, there is a trijunction between $\mathcal{E}$, $\mathcal{E}$ and $\mathcal{E}^{\mathrm{op}}$ with

$$
\gamma(A, B)=A \otimes B, \quad \beta(C, A)=C^{A}, \quad \alpha(B, C)=C^{B} .
$$

Proof. Analogous to the case in proposition 4.3. In a monoidal closed category, for any object $B$ the functor $(-) \otimes B$ has a right adjoint $(-)^{B}$, and for any $A$ the functor $A \otimes(-)$ has a right adjoint $(-)^{A}$. We conclude by proposition 2.6.

Proposition 4.5. In a symmetric monoidal closed category $\mathcal{E}$, with any object $L$, there is an associated (auto-)trijunction between $\mathcal{E}, \mathcal{E}$ and $\mathcal{E}$ with

$$
\gamma(A, B)=L^{A \otimes B}, \quad \beta(C, A)=L^{C \otimes A}, \quad \alpha(B, C)=L^{B \otimes C} .
$$

Proof. $\operatorname{Hom}_{\mathcal{E}}\left(X, L^{Y}\right) \simeq \operatorname{hom}_{\mathcal{E}}(X \otimes Y, L) \simeq \operatorname{Hom}_{\mathcal{E}}\left(Y, L^{X}\right)$, so the functor $L^{(-)}: \mathcal{E} \rightarrow \mathcal{E}^{\mathrm{op}}$ is left adjoint to $L^{\mathrm{op}}$. One of the equivalences in a trijunction (definition 2.1) is given by: $\operatorname{Hom}_{\mathcal{E}}\left(A, L^{B \otimes C}\right) \simeq \operatorname{Hom}_{\mathcal{E}}(A \otimes(B \otimes C), L) \simeq$ $\operatorname{Hom}_{\mathcal{E}}(B \otimes(A \otimes C), L) \simeq \operatorname{Hom}_{\mathcal{E}}\left(B, L^{A \otimes C}\right)$.

### 4.4 Canonical auto-trijunction on an algebraic universe

Proposition 4.6. Given an algebraic universe $\mathcal{X}$ - for example a topos or a category of fuzzy sets (cf. propositions 4.1 and 4.2 ) - we get an autotrijunction $(\gamma, \beta, \alpha)$ between $\mathcal{A}=\mathcal{X}, \mathcal{B}=\mathcal{X}, \mathcal{C}=\mathcal{X}$, with

$$
\gamma(A, B)=P(A \times B), \quad \beta(C, A)=P(C \times A), \quad \alpha(B, C)=P(B \times C)
$$

Proof. An algebraic universe is a cartesian closed category, and we have $P X=P(1)^{X}$. So we have just to apply proposition 4.5.

### 4.5 Toward a calculus of triadic Galois connections in a topos

In fact the auto-trijunction in proposition 4.6 does not depend on $\psi, \pi$, etc., but only on the composition $\psi \cdot a=\eta$, the cartesian closed structure on the topos or the algebraic universe, and the object $P(1)$. Nevertheless:

Proposition 4.7. In a topos $\mathcal{E}$, using the canonical auto-trijunction (proposition 4.6) and the data $\psi, \pi$, etc., we can internally recover a theory of Galois connections and triadic Galois connections.

Proof. We indicate only the starting point. From a ternary relation $(p, q, r)$ : $R \rightarrow A \times B \times C$, we can construct the different terms in the hexagon pictured in proposition 3.6 in the case of the category Ens.
We consider $c=r \star(p, q): C \rightarrow P(A \times B)$, we know how to construct $\exists c: P C \rightarrow P P(A \times B), \bigcap_{A \times B}: P P(A \times B) \rightarrow P(A \times B)$, and the composition $R_{C}^{*}=\bigcap_{A \times B} \exists c: P C \rightarrow P(A \times B)$.
We consider also $a^{\prime}=(r, q) \star p: C \times B \rightarrow P A, \alpha_{R}=\bigcap_{A} \exists\left(a^{\prime}\right)$.
A calculus of ternary relations in terms of internal triadic Galois connections is available in any topos; this works also in any category of fuzzy sets.

## References

[1] K. Biedermann, Triadic Galois Connections, In: K. Denecke, O. Lüders (eds.), General Algebra and Applications in Discrete mathematics, Shaker Verlag, Aachen, 1997, 23-33.
[2] K. Biedermann, An Equational Theory for Trilattices. Algebra univers. 42 (1999), 253-268. [FB4-Preprint, TU Darmstadt, 1998].
[3] K. Biedermann, Powerset Trilattices, ICCS'98 Proceedings of the 6th International Conference on Conceptual Structures: Theory, Tools and Applications, Springer, 1998, 209-224.
[4] G. Birkhoff, Lattice Theory, AMS (1940), 3d ed. 1967.
[5] R. Guitart, "Algebraic Universes", Summer School on Universal Algebra and Ordered Sets, Jindrichuv Hradec, september 1979, 10 p.
[6] R. Guitart, Qu'est-ce que la logique dans une catégorie ?, CTGD, vol. XXIII, 2 (1982), 115-148.
[7] R. Guitart, Borromean Objects and Trijunctions, Conference Category theory, algebra and geometry, Louvain-la-Neuve, 26-27 May 2011.
[8] R. Guitart, An hexagonal Framework of the Field $\mathbb{F}_{4}$ and the Associated Borromean Logic, Log. Univers., june 2012, vol. 6, Issue 1-2, pp. 119-147 (published online 13 october 2011, DOI: 10.1007/s1187-011-0033-6).
[9] D.M. Kan, Adjoint functors, Trans. Am. Math. Soc. 89 (1958), 294-329.
[10] F. Lehmann and R. Wille, A triadic approach to formal concept analysis, FB4Preprint Nr. 1738, TRH Darmstadt, 1995.
[11] S. Mac Lane, Categories for the Working Mathematician, Springer, 1971.
[12] S. Mac Lane, I. Moerdijk, Sheaves in Geometry and Logic, Springer, 1992.
[13] O. Ore, Galois connexions, Trans. Amer. Math. Soc. 55 (1944), 493-513.
[14] R. Wille, The Basic Theorem of Triadic Concept Analysis. Order 12 (1995), 149-158.

René Guitart, Université Paris Diderot Paris 7. IMJ-PRG. UMR 7586 Bâtiment Sophie Germain. Case 7012, 75205 Paris Cedex 13
rene.guitart@orange.fr

