
Abstract

We show that a sheaf for a quantaloid is an idempotent sup-

rema-preserving lax-semifunctor (a relational-sheaf). This im-

plies that for a Grothendieck topos E a sheaf is a relational-sheaf

on the category of relations of E and thus E is equivalent to the

category of relational-sheaves and functional-transformations.

The theory is developed in the context of enriched taxons, which

are enriched semicategories with an added structural require-

ment.

Nous montrons qu’un faisceau de quantaloides est un semi-

foncteur lax idempotent, qui préserve les supréma (un faisceau

relationnel). Ceci implique que pour un topos de Grothendieck

E , un faisceau est un faisceau relationnel sur la catégorie des re-

lations de E et donc E est équivalent à la catégorie des faisceaux

relationnels et transformations fonctionnelles. Cette théorie est

développée dans le cadre de “taxons” enrichis, c’est à dire des

semicatégories enrichies avec une condition structurelle addi-

tionelle.

1

1 Introduction

The main result of this paper is that a sheaf for an involutive quan-
taloid(Q), is an involution and infima preserving lax-semifunctor F :
Qco ! Rel that is also an idempotent. We call such a lax-semifunctor
a relational-sheaf. It follows from this that if E is a Grothedieck topos,
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then the category of relational-sheaves and transformations for the in-
volutive quantaloid of relations on E is equivalent to E itself.

From H a complete Heyting algebra, Higgs[14] constructed the cat-
egory of H-valued sets and showed that this category is equivalent to
the category of sheaves on H. Using this as a template others, includ-
ing Canani, Borceux and Cruciani[3], Mulvey[21], Van den Bossche[28],
Gylys[12], Garraway[9] et al, have explored Q-valued sets for Q a quan-
tale and more generally for supremum-enriched categories (quantaloids).
The term quantale was derived from physics in the context of quan-
tum logic and was introduced by Mulvey[20] to represent the lattice of
open sets for a non-commutative topology. Boolean and Heyting al-
gebras are commutative quantales, leading us to interpret a quantale
as a model for non-commutive logic. A classic example is the lattice
of closed right-ideals of a C⇤-algebra which is a quantale that uses the
(�)⇤ operation as an involution on the ideals. This particular quantale
has been studied in detail by Mulvey and Pelletier[22] in their work gen-
eralizing the Gelfand-Naimark theorem. Quantaloids arise naturally in
many settings, for example both the category of sets and relations, and
in general the category of relations for a Grothedieck topos are quan-
taloids. Pitts[24], bringing together the ideas of Carboni/Walters[6] and
Freyd[8], looked in detail at the category of bounded complete distribu-
tive categories of relations (bcDCR) noting that it is equivalent to the
category of Grothendieck toposes. Essentially a distributive category of
relations is a quantaloid with added structure that among other things
endows the quantaloid with an involution. The completion (with re-
spect to copruducts and the splitting of symmetric idempotents) of a
distributive category of relations results in the usual definition of Q-
valued sets. Building on this we will construct categories of Q-taxons
and Q-categories for a quantaloid. A good source for the background of
these notions can be found in a series of papers by Stubbe[26, 27, 13].

The main building blocks for this paper are involutive supremum-
enriched semicategories and it is to these that we will apply the term
quantaloid. Enriched category theory grew out of the work of Benabou[4],
Kelly[15] and others. This is generalized to enriched taxons which are
enriched semicategories with additional structure. The concept orig-
inates from an idea of Koslowski in [16]. A taxon to him is a sem-
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icategorical structure with the added condition that the composition
morphism is a particular coequalizer. Both Garraway[9] and Moens et
al.[19] expanded on this with a notion of enriched taxons (which Moens
referred to as regular categories). The focus of the first work was to
use taxons as a tool towards understanding Q-valued sets while the sec-
ond is a more in-depth study of enriched taxons (regular categories) in
general. The major di↵erence in the two approaches is that the for-
mer defines a transformation to be a family of morphisms indexed by
the arrows in the base taxon while the latter defines them in the tradi-
tional way using an objects-indexed family of morphisms. This is the
setting Stubbe[26][13] used when he worked with taxons enriched in a
supremum-enriched category and more generally a supremum-enriched
semicategory. In the present work we will use both forms to define
morphisms of relational-presheaves and relational-sheaves.

Rosenthal[25] defined a relational-presheaf on a supremum-enriched
category, Q, to be a lax-functor F : Qco! Rel, and a morphism of
relational-presheaves is a lax-natural transformation in which each mor-
phism is a function. A relational-presheaf is then said to be continuous
if it preserves infima. Rosenthal then showed that this category of Q-
categories is equivalent to the category of continuous relational-sheaves.
In the present work we will work with involutive supremum-enriched
taxons and define a relational-presheaf to be an involution and infima-
preserving lax-semifunctor F :Qco! Rel.

The purpose of this paper is to relate the ideas of Q-valued sets
and relational-presheaves using as a guide the enriched taxon struc-
ture and thus creating an equivalence of categories that shows that all
Grothedieck toposes can be thought of as categories of a particular type
of relational-presheaf. In particular we will show that a sheaf is a sym-
metric idempotent relational-presheaf.

We begin with an exploration of enriched taxons and natural trans-
formations with a focus on the implications these have in the supremum
and infimum-enriched settings. We follow this with a short exploration
of quantaloids and of the main structure and properties of distributive
categories of relations (DCR). Using this as our template to build from
we define the categories of relational-presheaves and relational-sheaves.
Next is an examination of Q-taxons (which Stubbe[27] calls Q-regular
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categories) focusing on the category of Q-valued sets. In particular we
will construct an equivalence between subcategories of the categories of
Q-taxons and Q-profunctors that are maps (Q-Set) and Q-taxons and
Q-semifunctors (Q-Tax). The former is usually referred to as the cate-
gory of Q-valued sets. We finish by constructing an equivalence between
the category Q-Set and the category of relational-sheaves from which
it will follow that if Q is a bounded distributive category of relations,
then the category of relational-sheaves on Q is a Grothendieck topos.

2 Enriched Taxons

There is an exercise early in MacLane[17] that asks the student to show
that the traditional definition of a natural transformation as a family of
object indexed morphisms has an equivalent formulation in terms of an
arrows indexed family of morphisms. The equivalence is obtained by fo-
cusing on the identity morphisms in the base category. This equivalence
fails if some of the identity arrows are missing as maybe the case in a
semicategory. In this more general setting the arrows based definition
is problematical since there is no canonical way to define the compo-
sition of two transformations. This problem is circumvented when we
require that the composition morphism of a semicategory be a particular
coequalizer.

Definition 2.1 Let V be a monoidal category with all coproducts. A
V-enriched semicategory C consists of the following

• A set |C| called the objects of C.
• For each pair of objects A,B 2 |C| an object in V denoted C(A,B).

• For each triple of objects A,B,C 2 |C| a V-morphism, called
composition,

C
ABC

: C(B,C)⌦ C(A,B) ! C(A,C),

which is required to satisfy the usual associativity diagram.
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A V-enriched semicategory is a V-enriched taxon if,

m :
a

X

C(X,C)⌦ C(A,X) ! C(A,C),

the canonical morphism obtained from the composition morphisms and
the universal property of coproducts, is the coequalizer of

a

U,V

C(U,C) ⌦ C(V, U) ⌦ C(A, V )

a

X

C(X,C) ⌦ C(A,X)

1�m //a

U,V

C(U,C) ⌦ C(V, U) ⌦ C(A, V )

a

X

C(X,C) ⌦ C(A,X)
m�1

//
a

X

C(X,C) ⌦ C(A,X) C(A,C)
m //

where 1 �m and m � 1 are obtained from 1⌦m and m⌦ 1 respectively
using the universal property of coproducts. }
We will denote the composite C

ABC
(f, g) as fg or in certain instances for

supremum-enriched semicategories by f&g. The term taxon originated
with unpublished work of Wood and Paré while they were exploring
semicategories and Koslowski[16] used the term in this more specific
setting. The enriched setting was studied in detail by Garraway[9] and
Moens[19]. The latter refers to these as enriched regular-categories and
defines them in terms of a coend instead of a coequalizer.

Example 2.2 When V is the monoidal category of sets and functions a
Set-taxon can be thought of as a ‘semicategory’ with additional struc-
ture. When the composition arrow is a coequalizer of the appropriate
type, then we have that composition is associative (so we need not ac-
tually require associativity for taxons). In addition we also have that
if g1f1 = g

n

f
n

are equal composable arrows, then there is a zig-zag of
arrows h

i

and composable arrows g
i

, f
i

so that the following diagram
(or with the h

i
arrows reversed) commutes.

A C

B1

A

??

f1

��
��
��
��
��
��
��

B1

C

g1

��?
??

??
??

??
??

??
?

A C

B2

A

77

f2ooo
ooo

ooo
oo

B2

C

g2 ''OO
OOO

OOO
OOO

A C

Bn

A

""
fn

EEEEEEEEEEEEE
Bn

C

gn

<<yyyyyyyyyyyyy

A C
B3

A --
f2

\\\\\\\\\\
B3

C
g2

11bbbbbbbbbb

B1

B2

✏✏
B2

B3

OO
h2

h3 ✏✏

h1
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Definition 2.3 If C and D are V-semicategories, then a semifunctor,
F : C ! D consists of

• A function F : |C|!|D|
• For each pair of objects A,B2 |C| a morphism

F
AB

: C(A,B) ! D(FA, FB)

such that the following square commutes

C(A,C) D(FA, FC)
FAC

//

C(B,C) ⌦ C(A,B)

C(A,C)

C
ABC

✏✏
=

}

We will now use the arrows based definition of natural transforma-
tion as a template to define transformations of semifunctors between
enriched taxons.

Definition 2.4 Let F,G : C ! D be two V-semifunctors. A V-natural
transformation � : F ) G consists of a |C|⇥|C| indexed family of V-
morphisms

h�
AB

: C(A,B) ! D(FA,GB)i
with the property that for every triple of objects A,B,C 2 |C| the
following diagrams commute

C(A,C) D(FA,GC)�
AC

//

C(B,C) ⌦ C(A,B)

C(A,C)

C
ABC

✏✏

C(B,C) ⌦ C(A,B) D(GB,GC) ⌦ D(FA,GB)

G
BC

⌦�
AB // D(GB,GC) ⌦ D(FA,GB)

D(FA,GC)

D
FAGBGC

✏✏

C(B,C) ⌦ C(A,B) D(FB, FC) ⌦ D(FA, FB)
FBC⌦FAB // D(FB, FC) ⌦ D(FA, FB)

D(FA, FC)

D
FAFBFC

✏✏

=

C(A,C) D(FA,GC)�
AC

//

C(B,C) ⌦ C(A,B)

C(A,C)

C
ABC

✏✏

D(FB,GC) ⌦ D(FA, FB)

D(FA,GC)

D
FAFBGC

✏✏

C(B,C) ⌦ C(A,B) D(FB,GC) ⌦ D(FA, FB)

�
BC

⌦F
AB //

=

}
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The composite of two V-natural transformations F
⌧

=) G
�

=) H is
defined to be the family of unique V-morphisms,

h(�⌧)
AB

: C(A,B) ! D(FA,HB)i,
determined by the following diagram.

`

X
C(X,B) ⌦ C(A,X) C(A,B)

m //`

X
C(X,B) ⌦ C(A,X)

D(FA,HB)

(��⌧)
AB

,,YYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY
YYYYYY

C(A,B)

D(FA,HB)

(�⌧)
AB

✏✏
C(Y,B) ⌦ C(A, Y ) D(FA,HB)

`

X
C(X,B) ⌦ C(A,X)

C(Y,B) ⌦ C(A, Y )

OO

◆

OO

`

X
C(X,B) ⌦ C(A,X) C(A,B)C(A,B)

D(FA,HB)C(Y,B) ⌦ C(A, Y ) D(GY,HB) ⌦ D(FA,GY )
�⌦⌧

// D(GY,HB) ⌦ D(FA,GY ) D(FA,HB)D
FAGY HB

//

Here (� � ⌧)
AB

, which is derived from the universal property of co-
products, coequalizes the morphisms 1 � m and m � 1. Since m is a
coequalizer this determines the unique morphism (�⌧)

AB

We can interpret a V-semifunctor F as a transformation ⌧
F
which also

happens to be the identify transformation for F since ⌧⌧
F
= ⌧ = ⌧

G
⌧ .

It is easy to see that this gives us a 2-category for which the interchange
law holds[1]. We will denote this 2-category by V-Tax and denote the
associated hom categories by TaxV (C,D). In the instance when V is
the monoidal category of sets and functions then we simply call the
2-category Tax and the associated hom categories Tax(C,D).

Example 2.5 In Tax the definition of a transformation F
⌧

=) G
between two semifunctors C and D, implies that for every morphism
f : A ! C in C there is an associated morphism ⌧

f
: FA ! GC in D

such that if f = gh, then the following diagrams commute.

FB GC
⌧

h

//

FA

FB

F (g)

✏✏

FA

GC

⌧

f

??
??

?

��?
??

??

FA GB
⌧g //FA

GC

⌧

f

??
??

?

��?
??

??

GB

GC

G(h)

✏✏
=

=

If � : G ! H is a second transformation then the definition of the
compostion of transformations implies that (�⌧)

f
= �g⌧h for some (and

hence for all) composites gh = f .

GARRAWAY - Q-VALUED SETS AND RELATIONAL-SHEAVES

- 168 -



Extending this example to the monoidal category of Sup-lattices
(and by duality Inf -lattices) we find that the composition of trans-
formations ⌧ and � is defined by setting (�⌧)

q
equal to

W

i

{�gi
⌧
hi
}

for some, and hence for all, families of morphisms hg
i

h
i

i such that
W

i

g
i

h
i

= f . Note for later that if Q is a supremum-enriched taxon and
Q1 is infimum-enriched then for F,G,H : Qco ! Q1 infima-preserving
semifunctors and ⌧ : F )G, and � :G)H transformations, we have
that (�⌧)

f
=

V

i

�gi
⌧
hi

for some family of morphisms hg
i

h
i

i such that
W

i

g
i

h
i

= f . Later we will use these ideas as a template to define the
category of relational-presheaves.

Henceforth assume that V is the monoidal category of supremum-
enriched lattices (Sup). In this context we utilize the theory of lax-
semifunctors and lax-transformations (bicategory morphisms in the sense
of Benabou[4]) to generalize our notions leading to our definition of
relational-presheaves and relational-sheaves.

Definition 2.6 Let C and D be two Sup-taxons. A lax-semifunctor
consists of

• A function F : |C|!|D|
• For each pair of objects A,B 2 |C| a morphism

F
AB

: C(A,B) ! D(FA, FB)

such that for every triple of objects A,B,C 2 |C| we have the following
inequality

C(A,C) D(FA, FC)
FAB

//

C(B,C) ⌦ C(A,B)

C(A,C)

C
ABC

✏✏

C(B,C) ⌦ C(A,B) D(FB, FC) ⌦ D(FA, FB)
FBC⌦FAB // D(FB, FC) ⌦ D(FA, FB)

D(FA, FC)

D
FAFBFC

✏✏
�

}
Definition 2.7 Let F,G : C ! D be two lax-semifunctors between
Sup-taxons. A pretransformation F

⌧

=) G consists of an |C|⇥|C|
indexed family of suprema-preserving morphisms

D

�
AB

: C(A,B) ! D(FA,GB)
E

}
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We will define the composite of two pretransformations ⌧ and � to
be the pretransformation obtained using the composition of transfor-
mations. That is (�⌧)

f

equals
W

i

{�
gi
⌧
hi
} for some family of morphisms

hg
i

, h
i

i such that
W

i

g
i

h
i

= f . It is easy to see that this is a quan-
taloid with the operations defined pointwise. Observe now that a lax-

semifunctor F can be interpreted as a pretransformation F
⌧

F=) F and
by laxity that ⌧

F
⌧
F
 ⌧

F
.

Definition 2.8 If a pretransformation F
⌧

=) G satisfies the inequali-
ties ⌧⌧

F
 ⌧ and ⌧

G
⌧  ⌧ , then we will call it a modular-transformation.

Denote the semicategory of lax-semifunctors between Sup-taxons C and
D and modular-transformations by Lax(C,D) }

2.1 Modules and the Karoubian envelope

Definition 2.9 A quantaloid Q is a supremum-enriched semicategory
together with an involution ()⇤ : Qop ! Q. The involution is a suprema-
preserving semifunctor that is the identity function on objects and for
which ()⇤ � ()⇤ = 1Q.

}

Example 2.10 The following are examples of quantaloids

• Boolean and Heyting algebras with involution the identity func-
tion.

• The power set of a group with the involution determined by the
inverse operation. If A and B are subsets, then the composition
is given by

AB = {ab | a 2 A and b 2 B}
• The category of sets and relations is a quantaloid with involution
given by the inverse relation.

• The category of relations of a Grothendieck topos is a quantaloid.

• The lattice of closed right-ideals of a C⇤-algebra with the invo-
lution determined by the inherent (�)⇤ operation. If A and B
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are closed right-ideals the composition is the closure of the set
AB = {ab | a 2 A and b 2 B}. For complex numbers the involu-
tion is conjugation.

• The two object category constructed from a C⇤-algebra with ob-
jects 0 and 1 where the hom sets are respectively; closed two-sided
ideals Hom(0, 0), closed right-ideals Hom(1, 0), closed left-ideals
Hom(0, 1) and closed linear subspaces respectively Hom(1, 1).
The composition of morphisms A and B is the closure of the set
AB = {ab | a 2 A and b 2 B}

A

B

p

??
??

��?
??

?

A

B

q2

✏✏

At this point we will take a step back from our work and introduce
the semicategory of modules for a quantaloid Q. Recall that we require
a quantaloid to come equipped with an involution and so any construct
involving quantaloids that we make will incorporate some symmetry
condition defined in terms of the involution

Definition 2.11 Let Q be a quantaloid. The semicategory of modules
on Q has as its objects morphisms q : A ! A in Q, such that qq  q (a
module) and q = q⇤ (symmetric).

An arrow q1
p�! q2 between modules q1 : A ! A and q2 : B ! B is

a morphism p : A ! B in Q that satisfies the inequalities q2p  p and
pq1  p. Pictorially we have

A B
p

//

A

A

q1

✏✏

A

B

p

??
??

��?
??

?

A A
p //


�

Denote this semicategory by Mod(Q). }

Mod(Q) is a quantaloid where the appropriate structure is defined
pointwise. It is interesting to note that the semicategoryMod(Q) (tem-
porarily suppressing the symmetry condition) is equivalent to the sem-
icategory Lax(1,Q). Also the semicategory of lax-semifunctors and
modular-transformations is the semicategory of modules on the quan-
taloid of lax-semifunctors and pretransformations.
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Definition 2.12 Let Q be a quantaloid. The Karoubian envelope is
the category whose objects are symmetric idempotent arrows in Q. if
q1 : A ! A and q2 : B ! B are objects, then an arrow p : q1 ! q2 is a
morphism p : A ! B in Q that satisfies the following diagrams

A B
p

//

A

A

q1

✏✏

A

B

p

??
??

��?
??

?

A B
p //A

B

p

??
??

��?
??

?

B

B

q2

✏✏
=

=

Denote that Karoubian envelope of Q by Kar(Q). }
The Karoubian envelope construction will be of particular use to

us later. We draw attention to the similarities in the definition of
the Karoubian envelope and the arrows based definition of transfor-
mations. Building from this we will use the Karoubian envelope to
define relational-sheaves and the transformations between them. In ad-
dition we will use the Karoubian envelope to motivate a definition of
Q-categories leading to an equivalence between the two structures.

Suppressing the symmetry condition one can argue that the Karoubian
envelope is the preferable way to create a category out of a Set-taxon
since it is a 2-semifunctor, is right-adjoint to the inclusion of Cat in
Tax, and the functor Kar(�) : Tax ! Cat is the representable 2-
semifunctor Tax(1,�) : Tax ! Cat, where 1 is the initial category
(Garraway [9]).

It is easy to see that if Q is a quantaloid, then the category Kar(Q)
is equivalent to the category Kar(Mod(Q)). Thus, when Q is a Sup-
taxon, Kar(Lax(1,Q)) is the category Tax

Sup

(1,D) and in general:

Theorem 2.13 Let C and D be Sup-taxons, then the Karoubian en-
velope Kar(Lax(C,D)) is equivalent to the category Tax

Sup

(C,D).

3 Distributive Categories of Relations

In this section we will do a quick review of distributive categories of
relations (DCR), which are unital-quantaloids (supremum-enriched cat-
egories) with extra structure. Their study grew in particular out of the
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work of Carboni & Walters[6], Freyd[8] and others. First we begin by
recalling some well know ideas.

Let Q be a unital-quantaloid. An arrow A
q�! B in Q is a map, if

there is a second arrow B
q#�!A, also in Q, satisfying

1
A
 q#q and qq#  1

B
.

If q is a map then we represent its relationship to q# by q a q#. Denote
the subcategory of Q whose arrows are maps by Map(Q). If Q is
a unital-quantaloid and A

q�! B is a map in Q, then the following
properties are well known.

• q = qq#q

• q is monomorphic if and only if 1
A
= q#q

• q is epimorphic if and only if 1
B
= qq#

• q is isomorphic if and only if it is both monomorphic and epimor-
phic.

A quantaloid Q satisfies Freyd’s law of modularity if for every triple
of arrows A

q�!B, B
p�!C and A

r�!C in Q, then

pq ^ r  p(q ^ p⇤r)

A particular consequence of Freyd’s modularity law is that every map
is defined in terms of its involute.

Theorem 3.1 If Q is a unital-quantaloid that satisfies Freyd’s law of
modularity and if q a q# (ie: q is a map), then q# = q⇤.

Proof: First observe that

qq# = qq#q#
⇤
q#  q#

⇤
q# and q#

⇤
q⇤ = q#

⇤
q⇤qq⇤  qq⇤

We now apply Freyd’s law twice.
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First we show that q#  q⇤

q# = q⇤q#
⇤
q# ^ q#

 q⇤(q#
⇤
q# ^ qq#)

= q⇤qq#

 q⇤

And now we show that q⇤  q#

from which equality follows.

q⇤ = q#qq⇤ ^ q⇤

 q#(qq⇤ ^ q#
⇤
q⇤)

= q#q#
⇤
q⇤

 q#

We now turn to a quick review of distributive categories of relations.

Definition 3.2 A unital-quantaloid is cartesian if there is a sup-functor
⇥ : Q⌦Q!Q and a object I of Q,

together with isomorphisms

• a
ABC

: A⇥(B⇥C) ⇠ (A⇥B)⇥C

• s
AB

: A⇥ B ⇠ B ⇥ A

• r
A
: A ⇠ A⇥ I

and morphisms

• �
A
: A ! A⇥ A

• t
A
: A ! I

such that

i: The isomorphisms a, s, r are natural in A,B,C 2 |Q| and satisfy
the usual symmetric monoidal coherence conditions.

ii: The morphisms�and t are maps and lax-natural in A 2 |Q|.
iii: The maps make (Q, A, I) into a commutative comonoid.

}
If Q is a cartesian unital-quataloid, then an object A 2 Q is discrete

if the following square commutes.

A ⇥ A ⇥ A A

A ⇥ A

A ⇥ A ⇥ A

1⇥�

����
��
��
A ⇥ A

A

�#

��?
??

??
?

A ⇥ A ⇥ A

A ⇥ A

�#⇥1 ��?
??

??
?A ⇥ A ⇥ A AA

A ⇥ A

�����
��
��

A cartesian unital-quantaloid is called a Distributive Category of re-
lations if every object is discrete. Denote the category of distributive
categories of relations and suprema-preserving functors by DCR.
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All distributive categories of relations are involutive, for if A
q�! B

is a morphism, then we define q⇤ to be the morphism

B ⇠ B ⇥ I
1⇥�t#�! B ⇥ A⇥ A

1⇥q⇥1�!B ⇥ B ⇥ A
t�#⇥1�! I ⇥ A ⇠ A.

This gives an involution on Q which satisfies Freyd’s modular laws.
Let Q be a unital-quantaloid, then a collection X of objects of Q is

a generating set for Q if

1
A
=

_ {pq | cod(q) = dom(p) 2 X and pq  1
A
}.

Say that Q is bounded, if it has a small set of generators. Of course,
for any unital-quantaloid Q, the set of objects automatically forms a
generating set, so if it has a small set of objects it is bounded.

A Heyting algebra is a one object quantaloid where the composition
is the meet operation and the involution is simply the identity functor.
With this structure it is a distributive category of relations. More gen-
erally the category of relations for a Grothendieck topos is a bounded
distributive category of relations. In addition this is complete in the
sense that it has all coproducts and all symmetric idempotents split.
This now leads us to the main result that the category of bounded com-
plete distributive categories of relations (bcDCR) is equivalent to the
category of Grothedieck toposes with arrows reversed(see for example
Pitts[24]).

bcDCR GTOP
op

Map //
bcDCR GTOP

op
oo

Rel

⇠

The equivalence is given by sending a Grothendieck topos to its category
of relations and in reverse a bounded complete distributive category of
relations is sent to its subcategory of maps.

4 Relational-presheaves and Sheaves

One traditional way to define a presheaf on a site is as a covariant
functor into the category of sets and functions. It is then a sheaf if it
satisfies certain patching conditions. In this section we begin to develop
an alternative formulation where a relational-presheaf on a quantaloid
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Q is a particular lax-semifunctor with codomain the category of sets
and relations. We then define a relational-sheaf to be an idempotent
relational-presheaf. But first we need to define the semicategory of
pretransformations from which we will construct the semicategories of
relational-presheaves and relational-sheaves.

Recall that the category of relations and functions is supremum-
enriched but not infimum-enriched. Unfortunately this tells us that
we can not automatically apply the enriched taxon ideas directly. So
we need to build the transformations from scratch using enriched taxon
theory as a guide to the appropriate definitions.

Definition 4.1 Let Q be a quantaloid. The semicategory of pretrans-
formations consist of

• Objects • A function X : |Q|!| Rel|.
• Arrows • If X and Y are objects a pretransformation X

⌧

=) Y
consists of a |Q|⇥|Q| indexed family of infima-preserving arrows

D

⌧
AB

: Qco(A,B) ! Rel(X(A), Y (B))
E

}

For simplicity sake, given a morphism A
f�!B, we will represent the

relation ⌧
AB

(f) by ⌧
f
. If a 2 X(A) and b 2 Y (B), we say that a is ⌧

f

related to b when ⌧
f
(b, a) = 1.

We now use the template of enriched taxons to define the composition
of pretransformations. In this case though there is no guarantee that
every arrow can be written as the supremum of the composition of some
family of arrows, thus we must slightly relax things.

The composition of pretransformations X
⌧

=) Y
!

=) Z is defined by
setting (�⌧)

f

(b, a) = 1 if and only if there exists a family of composable
morphisms hg

i

h
i

i such that

• _

g
i

h
i

� f

• \

�
gi
⌧
hi
(b, a) = 1.
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The semicategory of pretransformations is a quantaloid with the ap-
propriate structure defined pointwise. In particular if there is a family
of pretranformations ⌧

i

:X ) Y , then
⇣

W

⌧
i

⌘

q

(b, a) = 1 provided there

exist an i such that (⌧
i

)q(b, a) = 1. Also define the involute of ⌧ to be the
pretransformation ⌧ � : Y ! X where, for each morphism q, ⌧ �

q
= ⌧�1

q

(the relation ⌧�1
q

is the inverse relation of ⌧q). Denote the quantaloid of
pretransformations by PT (Q).

Definition 4.2 Let Q be a quantaloid, then

• The semicategory of relational-presheaves andmodular-transforma-
tions on Q is the semicategory

RP (Q) = Mod
⇣

PT (Q)
⌘

• The category of relational-sheaves and transformations is the cat-
egory

RS(Q) = Kar
⇣

PT (Q)
⌘

}

Equivalently a relational-presheaf is a lax-semifunctor F :Qco! Rel
that preserves infima and the involution. This is because a pretrans-
formation that is a symmetric module can be thought of as a function
F : |Q|!| Rel| (the associated object) together with the appropriate
family of infima-preserving functions

D

F
AB

: Qco(A,B) ! Rel(X(A), Y (B))
E

with laxity a result of its being a module. Explicitly we have

F (q)F (p)(c, a)  F (qp)(c, a) and F (q⇤)(c, a) = F (q)(a, c).

We will use this notation henceforth for relational-presheaves and denote
the associated modular-transformation by ⌧

F
.

It follows that a relational-sheaf is a symmetric idempotent lax-
semifunctor. Observe that a relational-presheaf F is an idempotent
if and only if

_

n

qp
�

�

� F (q)F (p)(c, a) = 1
o

=
_

n

r
�

�

� F (r)(c, a) = 1
o

.
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There is a second type of transformation of relational-sheaves that
we now wish to introduce, the functional-transformation. The defi-
nition is based on Rosenthal’s[25] definition of a morphism as a lax-
transformation in the traditional sense.

Definition 4.3 If F and G are relational-sheaves then a functional-
transformation F

⌧

=)G\ consists of a family of infima-preserving func-
tions

h⌧
X
: FX ! GXi

X2|Q|

indexed by |Q|, such that, for every morphism q : X ! Y in Q, the
following square is an inequality

FY GY⌧
Y

//

FX

FY

F (q)

✏✏

FX GX

⌧
X //

GX

GY

G(q)

✏✏


}
Denote the category of relational-sheaves and functional-transformations
by RS

fct

(Q). Later we will show that, under the right conditions, the
category of maps in RS(Q) is equivalent to the category RS

fct

(Q).

5 Q-Taxons and Q-Valued sets

In this section we will use the template of enriched taxon theory to
explore what a taxon enriched in a quantaloid might look like. Ob-
serve that the composition morphism of a category can be thought
of as a set-valued matrix. From this point of view we will build Q-
semicategories by starting with Q-valued matrices. Then we construct
Q-semicategories, Q-taxons and Q-categories in an analogous way to
our constructions of relational-presheaves and sheaves. The morphisms
between these will come in essentially two flavours; the semifunctor and
the profunctor/module.

Definition 5.1 Let Q be a quantaloid. The semicategory of matrices
enriched in Q (Q-matrices) consists of
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• Objects: Pairs (X,⇢
X
), where X is a set and ⇢

X
: X ! |Q| is a

function with codomain the objects of Q.

• Arrows: A Q-matrix, (X,⇢
X
)

M�! (Y,⇢
Y
), is a binary function

M : Y⇥X ! Q, such thatM(y, x) : ⇢
Y
(y) ! ⇢

X
(x) is a morphism

in Q.

The composite of two matricesX
M!Y

N!Z is defined to be the matrix
⇣

N �M
⌘

(z, x) =
_

y

n

M(z, y) & N(y, x)
o

}

If (X,⇢ )
M�! (Y,⇢ ) is a matrix, then there is a matrix (Y,⇢ )

M��! (X,⇢ ),
called the involute of M , defined by setting for every a 2 X and b 2 Y ,
M�(a, b) = M(b, a)⇤.

Denote the semicategory of matrices on Q by Q-Mat. Notice that
Q-Mat is a quantaloid where the appropriate structure is defined point-
wise. If Q is a unital-quantaloid, then Q-Mat is the completion of Q,
as a unital-quantaloid, with respect to coproducts.

5.1 Q-semicategories, Q-Taxons and Q-Categories

IfM : (X,⇢
X
) ! (X,⇢

X
) is an endomorphism, then we can interpret the

value of M on a pair a, b 2 X, M(a, b), as a generalized notion of hom
set. This now implies that we should require that for any triple a, b, c 2
X we have M(a, b) & M(b, c)  M(a, c) Where & is the composition of
arrows in Q. Since Q is involutive it is natural (and helpful) to impose
the symmetry condition that M = M�.

Definition 5.2 Let Q be a quantaloid.

A Q-semicategory is a matrix (X,⇢ )
�
X�! (X,⇢ ) such that

• �
X
�
X
 �

X

• �
X
= ��

X
. }

It is immediately clear that a Q-semicategory is a Q-matrix that is
a symmetric module. We will denote a Q-semicategory by (X,⇢

X
, �

X
)

and frequently, when the context is clear by (X,⇢,� ).
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In aQ-semicategory, the arrows �(x, y) are elements ofMod(Q) since
by construction

�(x, x) & �(x, x)  �(x, x)

�(x, y) & �(y, y)  �(x, y)

�(x, x) & �(x, y)  �(x, y)

Now we ask the question of when is a Q-semicategory a Q-taxon.

Notice that in Q-Mat the diagram, ��� ��
�1 //

��� ��
1�

// �� �
 // , is a co-

equalizer if and only if �� = �. Interpreting  as a composition mor-
phism leads naturally to our referring to such a Q-semicategory as a
Q-taxon. Thus a Q-taxon is a symmetric idempotent Q-matrix.

When Q is a supremum-enriched category it is traditional to de-
fine a Q-category as a Q-semicategory together with 2-cell morphisms
1  �(x, x) that satisfy the appropriate identity axioms. For Q a
supremum-enriched semicategory we may lack the ability to construct
such morphisms. Recall that we briefly argued that the Karoubian en-
velope was the preferable way to construct a category out of a taxon(see
pg 10). So here we will use the Karoubian envelope as a guide to defin-
ing Q-categories. With that in mind we require that each �(x, x) behave
like an identity morphism. In other words each arrow �(x, x) is an object
in Kar(Q) and each arrow �(x, y) is a morphism between the objects
in Kar(Q).

To recap we have

Definition 5.3 Let (X,⇢,� ) be a triple where (X,⇢
X
) is a Q-matrix

object and � : (X,⇢
X
) ! (X,⇢

X
) is an endomorphic Q-matrix. Then

1. (X,⇢,� ) is a Q-semicategory, if �
X

is a symmetric module Q-
matrix..

2. (X,⇢,� ) is a Q-Taxon, if �
X
is a symmetric idempotent Q-matrix.

3. (X,⇢,� ) is a Q-Category if � satisfies the following conditions.

• For every x 2 X, �(x, x) & �(x, x) = �(x, x)

• For every pair x, y 2 X

�(x, x) & �(x, y) = �(x, y)

�(x, y) & �(y, y) = �(x, y) }
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For any Q-category we can interpret it as some construct utilizing
the Karoubian envelope of Q in some way. We may use multiple copies
of objects and arrows from Kar(Q) while not using others at all.

5.2 Q-Morphisms

The morphisms of Q-semicategories, taxons and categories come in two
types. The Q-enriched generalizations of profunctors (modules, dis-
tributors) and the generalizations of semifunctors. Those morphisms
meant to represent profunctors we divide into two types, Q-modules
(morphisms from the semicategory Mod(Q-Mat)) and Q-profunctors
(morphisms from the category Kar(Q-Mat)).

Definition 5.4 Let (X,⇢,� ) and (Y,⇢,� ) be Q-semicategories, then

1. A Q-Module (X,⇢,� )
R�! (Y,⇢,� ) is a matrix (X,⇢

X
)

R�! (Y,⇢
Y
)

such that

• �
Y

�R  R

• R � �
X

 R.

2. A Q-Profunctor (X,⇢,� )
R�! (Y,⇢,� ) is a matrix (X,⇢

X
)

R�!
(Y,⇢

Y
) such that

• �
Y

�R = R

• R � �
X

= R

The composition of Q-modules and Q-profunctors is the composition of
Q-Matrices. }

Q-semicategories together withQ-Modules form a supremum-enriched
semicategory (denoted Q-Mod) where the supremum is taken point-
wise. This semicategory is the semicategory of modules of matrices
Mod(Q-Mat). Q-taxons together with Q-profunctors for morphisms
form a supremum-enriched category (denoted Q-Prof). In this case
Q-Prof is the Karoubian envelope of Q-Mat (Kar(Q-Mat)). Note
that every Q-taxon is a Q-semicategory and that every Q-profunctor
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is a Q-module, thus Q-Mod is a sub-semicategory of Q-Prof . When
Q is a unital-quantaloid, Kar(Q-Mat) is the completion of Q in the
sense that it is a quantaloid with all coproducts and all symmetric idem-
potents split. So if Q is a bounded distributive category of relations,
Q-Prof is a bounded complete distributive category of relations.

Definition 5.5 Let (X,⇢,� )
R�! (Y,⇢,� ) be a Q-module between Q-

semicategories. Then R is a symmetric-map (left-adjoint) if

• �
X

 R⇤ �R.

• R �R⇤  �
Y

. }

The category of Q-taxons and Q-profunctors that are symmetric-
maps is traditionally referred to as the category of Q-valued sets and is
denoted by Q-Set.

The semifunctors between Q-semicategories is defined as one would
expect in terms of a function on the objects and the appropriate mor-
phism of hom sets.

Definition 5.6 Let (X,⇢,� ) and (Y,⇢,� ) be Q-semicategories. A Q-

semifunctor (X,⇢,� )
f�! (Y,⇢,� ) is a function f : X ! Y , such that

�
X

(x1, x2)  �
Y

(f(x1), f(x2)).

The composition of Q-semifunctors is simply the composition of func-
tions.

}

Observe that the identity function is a Q-semifunctor and is thus
an identity morphism for the categories of Q-semicategories, Q-taxons
or Q-categories together with Q-semifunctors. These are respectively
denoted by Q-Scat, Q-Tax and Q-Cat.

Example 5.7 Let (X,⇢,� ) be aQ-semicategory and define aQ-category

Kar(X,⇢,� ) = (X
Kar

, ⇢
Kar

, �
Kar

)

as follows.
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• X
Kar

= X.

• ⇢
Kar

= ⇢
X

• If x, y 2 X
Kar

, then

�
Kar

(x, y)=
_

n

⇢(y)
p�! ⇢(x)

�

�

�p  �(x, y) and p�(x, x) = p = �(y, y)p
o

To verify that this is a Q-category we observe first that clearly

�
Kar

(x, z) & �
Kar

(z, y)  �
Kar

(x, y)

and so ��  �. On the other hand

�
Kar

�
Kar

(x, y) =
_

z

{�
Kar

(x, z) & �
Kar

(z, y)
o

=
_

z

n

_ {p1} & _ {p2}
o

� _

n

p1 & �(y, y)
o

when z = y

=
_

n

p1
o

= �
Kar

(x, y)

If (X,⇢,� )
f�! (Y,⇢,� ) is a Q-semifunctor between Q-semicategories,

then we let Kar(f) = f . Clearly Kar : Q-Tax ! Q-Cat is a semifunc-
tor. We claim that the inclusion of Q-Cat into Q-Tax is left-adjoint to
Kar. The following two observations explicitly give us the unit and the
counit of the adjunction.

• If (X,⇢,� ) is a Q-category, then Kar((X,⇢,� )) = (X,⇢,� ) and
⌘
(X,⇢,�)

is the identity Q-semifunctor.

• Since �
Kar

 �
X
the identity morphism on X is a Q-semifunctor

from (X
Kar

, ⇢
Kar

, �
Kar

) to (X,⇢,� ). Thus setting "
(X,⇢,�)

equal to
the identity defines the counit " : inc �Kar ) 1

Q-Tax

.

We will now proceed to construct functors between Q-Tax and Q-
Set which will allow us to show that the category of Q-valued sets
is equivalent to the category of complete Q-categories and regular Q-
semifunctors
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5.3 The Functor � : Q-Tax�!Q -Set

Let (X,⇢,� ) and (Y,⇢,� ) be Q-taxons and define a functor

� : Q-Tax �!Q -Set

to be the identity on objects and if (X,⇢,� )
f�! (Y,⇢,� ) is aQ-semifunctor,

then�( f) = R
f

⇣

(X,⇢,� )
R

f�! (Y,⇢,� )
⌘

is the Q-module defined by set-
ting.

R
f
(y, x) = �

Y
(y, f(x)).

Unfortunately at this point R
f
need not be a Q-profunctor since we

only have R
f
�
X
 R

f
as seen below.

�
Y
R

f
(y, x) =

_

y

0

⇢

�
Y
(y, y0) & R

f
(y0, x)

�

=
_

y

0

⇢

�
Y

⇣

y, y0
⌘

& �
Y

⇣

y0, f(x)
⌘

�

= �
Y

⇣

y, f(x)
⌘

= R
f

⇣

y, x
⌘

R
f
�
X
(y, x) =

_

x

0

⇢

R
f

⇣

y, x0
⌘

& �
X

⇣

x0, x
⌘

�

=
_

x

0

⇢

�
Y

⇣

y, f(x0)
⌘

& �
X

⇣

x0, x
⌘

�

 _

x

0

⇢

�
Y

⇣

y, f(x0)
⌘

& �
Y

⇣

f(x0), f(x)
⌘

�

 _

y

0

⇢

�
Y

⇣

y, y0
⌘

& �
Y

⇣

y0, f(x)
⌘

�

 �
Y

⇣

y, f(x)
⌘

= R
f

⇣

y, x
⌘

So for R
f

to be a Q-profunctor we need to require that R
f
�
X
= R

f
.

Definition 5.8 A Q-semifunctor (X,⇢,� )
f�! (Y,⇢,� ) is regular if

R
f
�
X
= R

f
.

}
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Let (Y,⇢,� )
g�! (Z,⇢,� ) be second Q-semifunctor, then RgRf

 R
gf
.

RgRf

⇣

z, x
⌘

=
_

y

n

Rg

⇣

z, y
⌘

& R
f

⇣

y, x
⌘o

=
_

y

n

�
Z

⇣

z, g(y)
⌘

& �
Y

⇣

y, f(x)
⌘o

This row is Rg�Y
⇣

z, f(x)
⌘

 _

y

n

�
Z

⇣

z, g(y)
⌘

& �
Z

⇣

g(y), gf(x)
⌘o

 �
Z

⇣

z, gf(x)
⌘

= R
gf

⇣

z, x
⌘

When g is a regular Q-semifunctor RgRf
= R

gf
. We have equality since

the second step above can be replaced by Rg�Y (z, f(x)
⌘

= Rg

⇣

z, f(x)
⌘

,

which is equal to R
gf

⇣

z, x
⌘

.

R
f
is a symmetric-map.

R
f
R�

f

⇣

y, y00
⌘

=
_

x

n

R
f

⇣

y, x
⌘

& R�
f

⇣

x, y00
⌘o

=
_

x

⇢

n

�
Y

⇣

y, f(x)
⌘

& �
Y

⇣

f(x), y00
⌘

�

 _

y

0

(

�
Y

⇣

y, y0
⌘

& �
Y

⇣

y0, y00
⌘

)

 �
Y

⇣

y, y00
⌘

R�
f
R

f
(x, x00) =

_

y

⇢

R�
f

⇣

x, y
⌘

& R
f

⇣

y, x00
⌘

�

=
_

y

⇢

��
Y

⇣

f(x), y
⌘

& �
Y

⇣

y, f(x00)
⌘

�

= �
Y

⇣

f(x), f(x00)
⌘

� �
X

⇣

x, x00
⌘

and thus R
f
a R�

f
, and hence when we restrict to regularQ-semifunctors

the image of�is contained in the category of Q-valued sets. Henceforth
we will assume that all Q-semifunctors are regular.
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5.4 The Functor  : Q-Set�!Q -Tax

Let q :A!A be an endomorphism in Q where qq  q and q= q⇤, then
there is a Q-semicategory [q] = ({⇤}, ⇢

q

, �
q

), where ⇢
q

(⇤) = domain(q)
and �

q

(⇤, ⇤) = q. Observe that the full subcategory of Q-Mod deter-
mined by the objects [q] is equivalent to the semicategory Mod(Q). If
we restrict to objects [q] which are symmetric idempotents, then the full
subcategory of Q-Prof determined by the objects [q] is now equivalent
to the category Kar(Q).

When (X,⇢,� ) is a Q-semicategory the Q-morphisms

↵x : [�(x, x)] ! (X,⇢,� )

defined by setting ↵x(x
0, ⇤) = �(x, x0) are Q-modules. We say that any

morphism of this type is representable. For ease of notation we call the
object [�(x, x)] = [x] and the associated matrix �x . When (X,⇢,� ) is a
Q-taxon we have

�
X
↵x(x

00, ⇤) =
_

x0

n

�
X
(x00, x0) & �

X
(x0, x)

o

= �
X
(x00, x)

= ↵x(x
00, ⇤),

So �
X
↵x = ↵x (a left-module). Finally when (X,⇢,� ) is a Q-category it

is easy to show that we also have the equality ↵x�x = ↵x , which tells us
that ↵x is a Q-profunctor.

For the remainder of this section we will be using Q-taxons exclu-
sively and thus we will define singletons to be the appropriate left-
module

Definition 5.9 Let Q be a quantaloid. If a Q-module of the form

[q]
↵�! (X,⇢,� )

is a symmetric monomorphic map, and if �
X
↵ = ↵ (↵ is a left-module),

then ↵ is called a singleton on (X,⇢,� ). }
The main tool in the construction of the functor : Q-Set! Q-Tax

is the use of singleton morphisms. When (X,⇢,� ) is a Q-taxon then
every representable morphism ↵x is a singleton and our interest will be
drawn towards the instance when all singletons are representable.
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Example 5.10 Let (X,⇢,� ) be a Q-taxon, then every representable
morphism ↵x is a singleton since

↵�
x
↵x(⇤, ⇤) =

_

x

0

n

↵�
x
(⇤, x0) & ↵x(x

0, ⇤)
o

=
_

x

0

n

�
X
(x, x0) & �

X
(x0, x)

o

= �
X
(x, x).

So ↵ is a monomorphism.

↵x↵
�
x
(x1, x2) = ↵x(x1, ⇤) & ↵�

x
(⇤, x2)

= �
X
(x1, x) & �

X
(x, x2)

 �(x1, x2)

Which shows that ↵ is a map and thus a singleton.

Singletons were the main tool used by Higgs[14] to show that his
construction of H-valued sets for a Heyting algebra H results in a cat-
egory isomorphic to the category of sheaves for H. His ideas were gen-
eralized in Garraway[10] to show that the category of Q-valued sets
can be thought of as sheaves on Q. Stubbe[26][13], has explored in
the non-involutive and involutive settings respectively showing how the
construction can be interpreted as the Cauchy completion of (X,⇢,� ).

Let (X,⇢,� ) be a Q-taxon and define (X, ⇢, �) to be the Q-semicate-
gory where

• X is the set of all singletons on (X,⇢,� ).

• If [q]
↵�! (X,⇢,� ) is an element of X, then ⇢(↵) is the domain of

q.

• If [q]
↵�! (X,⇢,� ) and [p]

��! (Y,⇢,� ) are elements of X, then
define � by setting �(↵,� ) = ↵��(⇤, ⇤). Unless needed, we will
denote ↵��(⇤, ⇤) by ↵��.

It is easy to see that

�
�
(↵,� ) = �(�,↵ )⇤ =

⇣

��↵
⌘⇤

= ↵�� =

� is always symmetric since

�(↵,� )
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To show that (X, ⇢,

� �(↵,� )

And thus � is a Q-taxon.
We can take this one step further and show that (X,

⇢,

⇢, �) is a Q-
category. To this end we first need to observe that since singletons are
maps the following equalities must hold.

↵�� = ↵���q
 ↵����� � a map

 ↵��
X
� � a map

= ↵��

↵�� = �q↵
��

 ↵�↵↵�� ↵ a map

 ↵��
X
� ↵ a map

= ↵��

From these we immediately obtain the desired equalities that illus-
trate that (X,

�
⇣

↵,�
⌘

�) is a Q-taxon we need to show that
W

�
↵�����

will equal ↵��. In other words that � equals

�
⇣

�,�
⌘

= ↵����� = ↵�� = �
⇣

↵,�
⌘

� �.

�
X

⇣

x1, x2

⌘

� _

�

���
⇣

x1, x2

⌘

each � is a map

� _

x

↵x↵
�
x

⇣

x1, x2

⌘

the representables

=
_

x

�
⇣

x1, x
⌘

& ��
⇣

x, x2

⌘

Which is ��(x1, x2)

= �
X

⇣

x1, x2

⌘

since � is a Q-taxon

So now
�(↵,� ) =

_

�

↵����� = ↵��
X
� = ↵�� =

�) is a Q-category.

�
⇣

↵,↵
⌘

�
⇣

↵,�
⌘

Now we are set to define the functor : Q-Set�!Q -Tax.

• On objects: 
⇣

(X,⇢,� )
⌘

= (

�
⇣

↵,�
⌘

= ↵�↵↵�� = ↵�� =

X, ⇢, �).

• On arrows: ( R)=f
R
where

f
R
(↵)=[q]

↵!(X,⇢,� )
R!(Y,⇢,� )=R↵
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To see that f
R
is in fact a Q-semifunctor observe that

�
X
(↵,� ) = ↵��

= ↵��� � is a singleton

 ↵�R�R�R a map

= (R↵)�(R�)

= �
Y
(f

R
(↵), f

R
(�))

If (Y,⇢,� )
S�! (Z,⇢,� ) is a second map, then

f
SR
(↵) = SR↵ = Sf

R
(↵) = f

S

⇣

f
R
(↵)

⌘

Thus ( SR) =  (S)� (R)

In addition, since (X,⇢,� ) is a Q-taxon and (X,⇢,� )
R�! (Y,⇢,� ) is a

Q-profunctor, f
R
is regular since

_

�

n

�
X

(�,� )
o

=
_

�

↵�R����

= ↵�R�
X
�

= ↵�R� � a singleton

= �

Y

(↵, R�) & �

Y

(↵, R�)

So is a semifunctor whose image is contained in the category Q-Cat
and each Q-semifunctor f

R
is regular.

5.5 Transformations

Having constructed the needed functors we will now show that the func-
tor Q-Tax

��!Q -Set is left-adjoint to Q-Set
 �!Q -Tax and under a

completeness condition the adjunction becomes an equivalence giving
the following commuting square.

Qc-Set Qc-Cat
 

11Qc-Set Qc-Cat
rr �

⇠

Q-Set Q-Tax
 

22Q-Set Q-Tax
rr �

Q-Tax

Qc-Cat

OO

◆

� ?

Q-Set

Qc-Cat
$$

?Q-Set

Qc-Set

OO

=

zz

Q-Tax

Qc-Set

�
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We start with the counit of the adjunction and show that it is a
natural-isomorphism.

For eachQ-taxon (X,⇢,� ) define aQ-profunctor (X, ⇢, �)
"
X�! (X,⇢,� )

where "
X
(x,↵ ) = ↵(x, ⇤). These morphisms constitute the counit of the

adjunction (" : � 
⇠) 1).

To see that "
X
is a Q-profunctor we have the two equalities,

"
X
�
⇣

x,↵
⌘

=
_

�

(

"
X

⇣

x,�
⌘

& �
⇣

�,↵
⌘

)

=
_

�

(

���↵
⇣

x, ⇤
⌘

)

= �
X
↵(x, ⇤)

= ↵(x, ⇤)
= "

X
(x,↵ )

�
X
"
X

⇣

x,↵
⌘

= �
X
↵
⇣

x, ⇤
⌘

= ↵
⇣

x, ⇤
⌘

= "
X

⇣

x,↵
⌘

.

That "
X

is an isomorphism follows directly from the knowledge that
each (X,⇢,� ) is Q-taxon.

"
X
"�
X
(x, x0) =

_

↵

n

"
X
(x,↵ ) & "�

X
(↵, x0)

o

=
_

↵

↵↵�(x, x0)

= �(x, x0)

"�
X
"
X
(↵,� ) =

_

x

n

"�
X
(↵, x) & "(x,� )

o

=
_

x

n

↵�(⇤, x) & �(x, ⇤)
o

= ↵��

= �(↵,� )
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To finish o↵we need to show that " is a natural, which means we wish
to show that for any Q-profunctor R that is a map the following square
commutes.

(Y , ⇢,

(

�) (Y,⇢,� )
"

Y

//

X, ⇢, �)

(Y , ⇢, �)

f

R ✏✏

(X, ⇢, �) (X,⇢,� )
"

X //

=

where� ( R) equals

f
R

⇣

�,↵
⌘

�

=
_

�

⇢

�
⇣

y, ⇤
⌘

& �
Y

⇣

�, R↵
⌘

�

=
_

�

⇢

���R↵
⇣

y, ⇤
⌘

�

= R↵
⇣

y, ⇤
⌘

Moving onto the unit of the adjunction, let (X,⇢,� ) be aQ-taxon and
define for each object (X,⇢,� ), a Q-semifunctor (X,⇢,� )

⌘
X�! (

(X,⇢,� )

(Y,⇢,� )

R

✏✏

f
R
.

R"
X

⇣

y,↵
⌘

=
_

x

⇢

R
⇣

y, x
⌘

& "
X

⇣

x,↵
⌘

�

=
_

x

⇢

R
⇣

y, x
⌘

& ↵
⇣

x, ⇤
⌘

�

= R↵
⇣

y, ⇤
⌘

"
Y

⇢,

f
R

=
_

�

⇢

"
Y

⇣

y,�
⌘

&

X, �)
by ⌘

X
(x) = ↵

x

. This is a natural-transformation ⌘ :1) �.
First we show that ⌘

X
is a Q-semifunctor. For this we need to show

that the inequality �
X
(x, x00)  �

X
(↵

x

,↵
x

00) holds (in fact we obtain an
equality).

�(x, x00) =
_

x

0

n

�
X
(x, x0) & �

X
(x0, x00)

o

=
_

x

0

n

↵�
x

(⇤, x0) & ↵
x

00(x0, ⇤)
o
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= ↵�
x

↵
x

00(⇤, ⇤)
=

R
f

(↵
x

) = R
f

↵
x

: [x] ! (X,⇢,� ) ! (Y,⇢,� ).

R
f
↵x

⇣

y, ⇤
⌘

= R
f
�
X

⇣

y, x
⌘

= R
f

⇣

y, x
⌘

= �
Y

⇣

y, f(x)
⌘

= ↵
f(x)

(y, ⇤)
the second equality uses the fact that f is regular.

⌘
Y
f(x) = ⌘

Y

⇣

f(x)
⌘

= ↵
f(x)

Thus the following is a commuting square

(Y,⇢,� ) (

R

f ✏✏
Y ,

( ⇢,

�)

f

✏✏=

and hence ⌘ is a natural transformation. With similar computations
we can see that the appropriate triangles commute telling us that�is
left-adjoint to .

Q-Set Q-Tax
 

22

�
X
(↵

x

,↵
x

00)

To see that ⌘ is a transformation observe that if (X,⇢,� )
f�! (Y,⇢,� )

is a regular Q-semifunctor, then

R
f

⌘
X
(x) =

⇢,

⇢,

�)
⌘

Y

//

(X,⇢,� )

(Y,⇢,� )

(X,⇢,� ) (X, �)
⌘

X // X, �)

(Y , ⇢,

Q-Set Q-Tax
rr �

?

Definition 5.11 (X,⇢,� ) is complete if ⌘
X
is an isomorphism. }

Clearly (X,⇢,� ) is complete if and only if every singleton is repre-
sentable. We will denote the full subcategories that consist of complete
Q-categories by Qc-Set and Qc-Cat respectively. An important result
for us is that (X, ⇢, �) is complete and thus the image of  will be
contained in Qc-Cat.

Lemma 5.12 If (X,⇢,� ) is a Q-taxon, then (X, ⇢, �) is complete.
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Proof: Let q : C ! C be a symmetric idempotent arrow and let
[q]

A�! (X, ⇢, �) be a singleton. We want to show that A is equal to A↵

for some singleton ↵ : [q] ! (X,⇢,� ). To this end define [q]
↵�! (X,⇢,� )

to be the needed singleton by setting

↵(x, ⇤) = _

�

n

�(x, ⇤) & A(�, ⇤)
o

↵�(⇤, x) = _

�

n

A�(⇤, �) & ��(⇤, x)
o

,

where the supremum is taken over all singletons � : [q] ! (X,⇢,� ).
This is well defined since we are taking the supremum of morphisms

of the form C
A(�, ⇤)�! C

�(x, ⇤)�! ⇢(x), which has the appropriate domain and
codomain for ↵(x, ⇤). First we show that ↵ is a singleton.

�
X
↵(x, ⇤) =

_

x

0

n

�
X
(x, x0) & ↵(x0, ⇤)

o

=
_

x

0

(

�
X
(x, x0) &

_

�

n

�(x0, ⇤) & A(�, ⇤)
o

)

=
_

�

(

_

x

0

n

�
X
(x, x0) & �(x0, ⇤)

o

& A(�, ⇤)
)

=
_

�

{�(x, ⇤) & A(x, ⇤)} = ↵(x, ⇤)

It is simpler to show that ↵�q = ↵, and simillarly that ↵� is a morphism.
We still need to show that ↵ is monomorphic and that ↵ a ↵�.

↵↵�(x, x0) = ↵(x, ⇤) & ↵�(⇤, x0)

=
_

⇠

n

⇠(x, ⇤) & A(⇠, ⇤)
o

&
_

�

n

A�(⇤, �) & ��(⇤, x0)
o

=
_

⇠,�

n

⇠(x, ⇤) & AA�(⇠,� ) & ��(⇤, x0)
o

 _

⇠,�

n

⇠(x, ⇤) & �(⇠,� ) & ��(⇤, x0)
o

A is a map

=
_

⇠,�

n

⇠⇠����(x, x0)
o

= �
X
(x, x0)
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and

↵�↵(⇤, ⇤) =
_

x

n

↵�(⇤, x) & ↵(x, ⇤)
o

=
_

x,⇠.�

n

A�(⇤, ⇠) & ⇠�(⇤, x) & �(x, ⇤) & A(�, ⇤)
o

=
_

⇠,�

n

A�(⇤, ⇠) & ⇠�� & A(�, ⇤)}

=
_

⇠,�

n

A�(⇤, ⇠) & �(⇠,� ) & A(�,⇠ )
o

= A�A(⇤, ⇤) = q

Thus ↵ is a singleton with domain the domain of A and codomain
(X,⇢,� ). Observe that this implies that �(↵,↵ ) = q. Finally we need
to show that A(�, ⇤) = �(�,↵ ).

�(�,↵ ) =
_

x

n

��(⇤, x) & ↵(x, ⇤)
o

=
_

x

(

��(⇤, x) & _

�

n

�(x, ⇤) & A(�, ⇤)
o

)

=
_

x,�

n

��(⇤, x) & �(x, ⇤) & A(�, ⇤)
o

=
_

�

n

���(⇤, ⇤) & A(�, ⇤)
o

=
_

�

n

�) is complete.

We now have an equivalence of the categories of Q-valued sets and Q-
categories with the restriction to the case that every object is complete,
and every Q-semifunctor is regular.

Qc-Set Qc-Cat
 

11

�(�,� ) & A(�, ⇤)
o

= A(�, ⇤)

Thus (X, ⇢,

Qc-Set Qc-Cat
rr �

⇠

Q-Set Q-Tax
 

22Q-Set Q-Tax
rr �

Q-Tax

Qc-Cat

OO

◆

� ?

?Q-Set

Qc-Set

OO

=

Q-Tax

Qc-Set

Q-Set

Qc-Cat
$$zz

�
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Definition 5.13 A quantaloid is strictly-Gelfand if for all morphisms
q, qq⇤q  q implies that qq⇤q = q. }

IfQ is strictly-Gelfand, then everyQ-semicategory is aQ-category, since
the strictly-Gelfand condition forces equality in the last row below.

�(x, y)�(x, y)⇤�(x, y) = �(x, y)��(y, x)�(x, y)

= �(x, y)�(y, x)�(x, y)

 �(x, x)�(x, y)  �(x, y)

Similarly we have �(x, y)�(y, y) = �(x, y). Thus Q-Scat, Q-Cat and Q-
Tax are the same category whenQ is strictly-Gelfand. It is easy to show
that any quantaloid that satisfies Freyd’s modular law is strictly-Gelfand
and so every distributive category of relations is strictly-Gelfand. We
can thus extrapolate these ideas to show that given a Grothendieck
topos E

Rel(E)c-Set Rel(E)c-Tax
 ..

Rel(E)c-Set Rel(E)c-Taxmm
�

⇠

6 Relational-sheaves and Q-Valued Sets

In this section we begin by constructing, for any quantaloid, an equiva-
lence between the semicategory of Q-semicategories and Q-matrices (Q-
Mat) and the semicategory of relational-pretransformations (PT(Q)).
Recall that when Q is a bounded distributive category of relations the
category of Q-valued sets is a Grothendieck topos, thus it will follow
that the category of relational-sheaves on Q and the transformations
that are maps is a Grothendieck topos. We start with a needed lemma
that forms the essence of the equivalence.

Lemma 6.1 Let Q be a quantaloid and let F,G : Qco ! Rel be
relational-presheaves. For each pair of objects A and B, a function
f : Qco(A,B) ! Rel(FA,GB) is infima-preserving if and only if for
every b 2 GB and a 2 FA the set {q | f(q)(b, a) = 1 } is a principal
down-closed set.
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Proof: If f preserves infima then we must have

f
⇣

_{q | f(q)(b, a) = 1 }
⌘

(b, a) = 1,

thus {q | f(q)(b, a) = 1 } is a principal down closed set. Now assume
that for every b 2 GB and a 2 FA the set {q | f(q)(b, a) = 1 } is a
principal down closed set. Automatically we have f(_q

i

)  ^f(q
i

). Let
hq

j

i be a family of morphisms and let f(q
j

)(b, a) = 1 for each j. Since
q
j

 _q
j

and since {q | f(q)(b, a) = 1 } is a principal down closed set,

f
⇣

_ q
j

⌘

(b, a) = 1 =
^

n

f(q
j

)(b, a)
o

.

The immediate implication of this lemma is that we can associate
to each pair a 2 F (A), b 2 F (B) a particular Q-morphism, which
then enables us to construct the appropriate Q-semicategory (X,⇢,� ).
Similarly, we can apply this to transformations.

Recall that if K,L : |Q|!| Rel| are functions between the objects,
then a pretransformation K

⌧

=) L consists of a |Q|⇥|Q| indexed family
of infima-preserving arrows

D

⌧
AB

: Qco(A,B) ! Rel
⇣

K(A), L(B)
⌘E

.

These form a semicategory which is denoted PT (Q). From this we
defined the semicategory of relational-presheaves to be Mod(PT (Q))
and the category of relational-sheaves to be Kar(PT (Q)). These are
denoted by RP (Q) and RS(Q) respectively.

Theorem 6.2 Let Q be a quantaloid, then the semicategory of Q-
matrices is equivalent to the semicategory of relational-pretransformations.

Proof: We first define�: PT (Q) ! Q-Mat. Let K,L : |Q|!| Rel|
be functions. In other words objects in the semicategory of pretransfor-
mations and let K

⌧

=) L be a relational-pretransformation, then

1.�( K) = (X,⇢
X
) where X =

a

A2|Q|
K(A), and ⇢

X
(x)=A if x2K(A).

2.�( ⌧) = M⌧ where M⌧ (y, x) =
_

n

q | ⌧q(y, x) = 1
o
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To see that�preserves composition let � be a second relational-pre-
transformation

By definition M�⌧ (c, a) =
_

n

q | (�⌧)q(c, a) = 1
o

. But observe that

(�⌧)q(c, a) = 1 if and only if there is a family of morphisms hg
i

, h
i

i in
Q, where

W

(g
i

h
i

) � q and �
gi
⌧
hi
(c, a) = 1 for all i. So it is evident that

q  _

n

g
i

h
i

| �
gi
⌧
hi
(c, a) = 1

o

.

This is in turn less than or equal M�M⌧ (c, a). Thus M�⌧ ls less than or
equal M�M⌧ .

For M�M⌧  M�⌧ we have

M�M⌧ (c, a) =
_

b

n

M�(c, a) & M⌧ (b, a)
o

=
_

b

n

_ {q | �q(c, b) = 1} & _ {p | ⌧p(b, a) = 1}
o

=
_

n

qp | �q⌧p(c, a) = 1
o

 _

n

q |
⇣

�⌧
⌘

q

(c, a) = 1
o

= M�⌧ (c, a)

Let⇤: Q-Mat ! PT (Q) be defined on a matrix (X,⇢
X
)

M�! (Y,⇢
Y
)

by setting

1.⇤
⇣

(X,⇢
X
)
⌘

= X where X(A) =
n

x 2 X | ⇢(x) = A
o

2.⇤( M) = ⌧
M

where ⌧
M q

⇣

y, x
⌘

= 1 if and only if q  M
⇣

x, y
⌘

.

For two composible matrices M and N , (⌧
M
⌧
N
)q(c, a) = 1 if and

only if there exists a family of composible morphisms hg
i

, h
i

i such that
_g

i

h
i

� q and ⌧
Mgi

⌧
N

hi
(c, a) = 1 for all i. This is if and only if there is

a b
i

for each i such that

⌧
Mgi

(c, b
i

) = 1 = ⌧
N

hi
(b

i

, x)

If and only if

q  _

bi

n

M(c, b
i

) & N(b
i

, a)
o

 _

b

n

M(c, b) & N(b, a)
o
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This implies that q  MN(c, a), thus ⌧
M
⌧
N
 ⌧

MN
.

Assume that ⌧
MNq

(c, a) = 1, which implies that q  MN(c, a). By
definition MN(c, a) is equal to _

b

{M(c, b) & N(b, a)}. We pick as our
family of morphisms hM(c, b), N(b, a)i. This gives us the other needed
inequality ⌧

MN
 ⌧

M
⌧
N
and thus⇤is a semifunctor. Clearly we have an

isomorphism of semicategories.

� ⇤ = 1 and⇤ �= 1.

A consequence of this is that we can interpret the semicategory of
pretransformations as the completion of a quantaloid with respect to
coproducts. An immediate corollary is that the following categories are
equivalent.

Q-Mod=Mod(Q-Mat) ⇠ Mod(PT (Q))=RP (Q) (relational-presheaves)

Q-Prof = Kar(Q-Mat) ⇠ Kar(PT (Q)) = RS(Q) (relational-sheaves)

Explicitly�and⇤can be extended to relational-sheaves and Q-
taxons as follows. For F a relational-sheaf, set � (F ) = (X

F
, ⇢

F
, �

F
)

where (X
F
, ⇢

F
) is the matrix object and �

F
= � (⌧

F
) = M⌧ .

Let (X,⇢,� ) be a Q-semicategory, then⇤
⇣

(X,⇢,� )
⌘

= F
X
, where

F
X

= ⌧
�
. It is simple consequence of the constructions that F

X
is a

relational-presheaf. if F is a relational-sheaf then�( F ) = (X
F
, ⇢

F
, �

F
)

whereX
F
and ⇢

F
are determined as above for�

⇣

(X,⇢
X
)
⌘

and �
F
= M

⌧

F
.

It is easy to see that both�and⇤preserve the associated identity
morphisms when the functors are respectively restricted to Q-taxons
and relational-sheaves.

When Q is a bounded complete distributive category of relations the
category Map

⇣

RS(Q)
⌘

is a Grothendieck topos and a relational-sheaf

(symmetric idempotent pretransformation) can then be interpreted as
a sheaf.

Next we show that the categories of Q-taxons and Q-semifunctors
is equivalent to the category of relational-sheaves and functional-trans-
formations.

Theorem 6.3 For Q a quantaloid the category of Q-taxons and Q-
semifunctors is equivalent to the category of relational-sheaves and func-
tional-transformations.
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Proof: On the objects the functors are described as above.
Let (X,⇢,� )

f�! (Y,⇢,� ) be aQ-semifunctor and define ⌧ f : F
X
) F

Y

by ⌧ f
A
(x) = f(x). We need to show that for any morphism q : A ! B

the following square is an inequality.

F
X

(B) F
Y

(B)
⌧
f
B

//

F
X

(A)

F
X

(B)

F
X

(q)

✏✏

F
X

(A) F
Y

(A)

⌧
f
A //

F
Y

(A)

F
Y

(B)

F
Y

(q)

✏✏


To this end observe that F
Y
(q)⌧ f

A
(b, a) = 1 if and only if there exists a0

such that F
Y
(b, a0) = 1 = ⌧ f

A
(a0, a). Since ⌧ f

A
is a function this is true if

and only if f(a) = a0 and q  �
Y
(b, f(a)).

On the other hand ⌧ f
B
F

X
(q)(b, a) = 1 if and only if there is a b0 such

that f(b0) = b and q  �
X
(b0, a). Since f is a Q-semifunctor

q  �
X
(b0, a)  �

Y
(b, f(a)).

Thus ⌧
B
F

X
 F

Y
⌧
A
and we see that ⌧ is a functional-transformation.

Simply checking the details we have a functor ⇤ : Q-Tax ! RS
fct

(Q).

The construction of
�(⌧) to

be the Q-semifunctor (X
F
, ⇢

F
, �

F
)

f⌧�! (X
G
, ⇢

G
, �

G
) given by setting for

each x 2 F (A), f⌧ (x) = ⌧
A
(x).

This is a Q-semifunctor. Let q : A ! B, then q  �
F
(b, a) if and

only if F (q)(b, a) = 1. Since ⌧ is a Q-semifunctor, ⌧
B
(b) = f⌧ (b) which

means that ⌧
B
(f⌧ (b), a)=1. Since ⌧

B
F (q)  G(q)⌧

A
we must have that

G(q)⌧
A
(f⌧ (b), a

⌘

= 1. Because ⌧
A
is a function G(q)(f⌧ (b), f⌧ (a)) = 1

and ⌧
A
(f⌧ (a), a) = 1. Thus q  �

G
(f⌧ (b), f⌧ (a)) and we can conclude

that �
F
(b, a)  �

G
(f⌧ (b), f⌧ (a)). Hence f⌧ is a Q-semifunctor. That

� � = 1.

� : RS
fct

(Q) ! Q-Tax is identical to�on the
objects. If F

⌧

=)G\ is a functional-transformation then define

� is
a functor now follows easily. Again with simple computations we have
an isomorphism of categories

⇤ = 1 and ⇤

For completeness we describe for relational-sheaves the properties
that are equivalent to those needed to create the equivalence between
Qc-Set and Qc-Tax.
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Definition 6.4

• Let F be a relational-presheaf. A modular-transformation ⌧ is a
singleton on F if for some symmetric idempotent, q : A ! A, in
Q, there is a relational-sheaf Fq , where

Fq(X) =

( {⇤} if X = A
; otherwise

and Fq(p)(⇤, ⇤) = 1 IFF p  q

with ⌧ : Fq ! F is a monomorphic map.

• A functional-transformation F
⌧

=)G\ is regular if M⌧MF
= M⌧

• A singleton ⌧ is representable if there exists x such that for every
q we have ⌧q(y, ⇤) = F (q)(y, x).

• A relational-sheaf is complete if every singleton ⌧ : Fq ! F is
representable.

• A relational-presheaf is Karoubian if for every pair a2F (A) and
b2F (B); F (p)(b, a) = 1 implies

– there exists morphisms q1, q2 such that

F (q1)(b, b) = 1 = F (q2)(b, a) and q1q2 � p

– there exists morphisms q3 , q4 such that

F (q3)(b, a) = 1 = F (q4)(a, a) and q3q4 � p

(The relational-presheaf equivalent to being a Q-category) }

It is now easy to show that the category of relational-sheaves and reg-
ular functional-transformations is equivalent to the category ofQ-taxons
and regularQ-semifunctors and thus we have the following equivalences.
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Corollary 6.5 If Q is a bounded distributive category of relations,
then the following are equivalent categories.

1: Qc-Tax

2: Qc-Set

3: RS(Q)c
fct

4: Map
⇣

RS(Q)
⌘

c

In addition each is a Grothendieck topos.

Corollary 6.6 If E is a Grothendieck topos, then the following are
equivalent categories.

1: E
2: Rel(E)c-Tax
3: Rel(E)c-Set

4: RS
⇣

Rel(E)
⌘

c

fctn

5: Map
✓

RS
⇣

Rel(E)
⌘

c

◆

We thus have for E a Grothendieck topos that a sheaf on E in the
traditional sense is an idempotent infima and involution preserving lax-
semifunctor from the category Rel(E)co to the category of sets and
relations on E (ie: a relational-sheaf). In particular for H a Heyting al-
gebra, interpreted as a one object quantaloid, a sheaf F is an idempotent
symmetric lax-semifunctor F : Hco ! Rel. That is

⌧
F
⌧
F
= ⌧

F

⌧
F
(q)(y, x) = ⌧

F
(q)(x, y)
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The focus on this paper has been to relate enriched taxon theory,
Q-valued set theory and relational-presheaves. There are many aspects
that warrant further study, for example what can be said about the
structures when we focus on order enriched semicategories. This may
be of interest since a version of lemma 6.1 says that a function is order-
preserving if the associated hom set is down-closed. Other directions
include focusing on relational-presheaves and sheaves and develop in
more detail their theory along the lines of sheaf theory. One could
also expand on enriched-taxon theory with respect to enriched-category
theory with an emphasis on where the existence of identity morphisms
is indispensable.
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