CAHIERS DE TOPOLOGIE ET Vol LV-4 (2014)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

ON MONADS AND WARPINGS
by Stephen LACK and Ross STREET

Résumé. Nous expliquons comment une pseudomonade sur une bicatégorie
réduite a un objet revient a la méme chose qu’un voilement (anglais: warping)
sur la catégorie monoidale correspondante. Nous dégageons également une
version de cette équivalence pour les catégories monoidales obliques. Les
catégories monoidales obliques (anglais: skew monoidal categories) sont une
généralisation des catégories monoidales ot les morphismes d’associativité et
de I’unité ne sont pas forcément inversibles. Notre analyse nous mene a intro-
duire un processus de normalisation pour les catégories monoidales obliques,
qui produit, d’une maniere universelle, une catégorie monoidale oblique pour
laquelle le morphisme d’unité & droite est inversible.

Abstract. We explain the sense in which a warping on a monoidal category is
the same as a pseudomonad on the corresponding one-object bicategory, and
we describe extensions of this to the setting of skew monoidal categories:
these are a generalization of monoidal categories in which the associativity
and unit maps are not required to be invertible. Our analysis leads us to de-
scribe a normalization process for skew monoidal categories, which produces
a universal skew monoidal category for which the right unit map is invertible.
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1. Introduction

If C is a monoidal category with tensor product ®, and 7: C — C is a
functor, then one can define a new product X on C via the formula

AXB=TA®B.

In order for this to define a new monoidal structure on C, further structure
on C is required. The notion of warping, introduced in [3], is designed to do
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just that: if T"is a warping then C becomes monoidal via the “warped” tensor
product X defined above.

While the notion of warping is quite restrictive, the skew warpings of
[6] are far more common: for example, if 7" has a monad structure, and this
monad is opmonoidal [12, 11], in the sense that there are suitably coherent
maps T(A® B) - TA® TB and T'I — I, then T is a skew warping. In
particular, if H is a bialgebra, then the functor H ® —: Vect — Vect has a
skew warping structure.

The price of this extra generality is that the warped tensor product no
long gives a monoidal structure, but only a skew monoidal one, in the sense
of [6] (called left skew monoidal in [15]). These skew monoidal categories
are similar to monoidal categories, except that the associativity and unit
structure morphisms are not required to be invertible. The key insight of
[15] is that these skew monoidal categories can be used to provide a valu-
able new characterization of bialgebroids; this was extended in [6] to the
case of quantum categories.

We have been studying skew monoidal categories in a series of papers
[6, 14, 5, 7], but have so far only scratched the surface of this remarkable
theory, which seems to stem from the fact that skew monoidal categories are
at the same time a generalization of monoidal categories and of categories.

While skew warpings and skew monoidal structures are quite recent,
monads have of course been a central topic in category theory for decades,
and have been generalized in many directions. For example, monads can be
defined in any bicategory [2], and while monads in Cat are just ordinary
monads, monads in Span are categories. Generalizing in a different direc-
tion, one can consider monads not just on categories but on 2-categories or
bicategories, and in this context one often has weaker structures called pseu-
domonads; still more generally, there are various lax notions of monad.

Most of these generalizations rely, directly or indirectly, on the fact that
(ordinary) monads are the same as monoids in a monoidal category of endo-
functors. But there is also another approach, which has largely been de-
veloped and promoted by Manes, for example in [9]; but see also Walters’
thesis [16]. In this approach, one does not specify a functor at all; rather,
for each object A of the category C one gives an object DA and a morphism
K4: A — DA, and for each morphism f: A — DB one gives a morphism
Tf: DA— DB.
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One feature of this approach is that, whereas the usual definition of
monad involves an associative multiplication D o D — D and so requires
the formation of Do D and D o D o D, in Manes’ approach, these iterates of
D are not needed. Thus Marmolejo and Wood use the epithet “no iteration”
to refer to this approach to monads, when in [10] they modify the theory to
deal with pseudomonads. Since this is a little unwieldy, we shall replace “no
iteration” by “mw-". We leave to the reader the question of whether these
letters denote Manes and Walters, Marmolejo and Wood, or something else
entirely.

The goal of this paper is to describe a close relationship between warp-
ings and skew warpings on the one hand, and mw-monads and pseudo-mw-
monads on the other.

Perhaps the simplest result to state is this:

Let C be a monoidal category, and >.C the corresponding one-
object bicategory. A warping on C is the same as a pseudomonad
on >C.

We prove this in Corollary 5.3 below. We could equally have put pseudo-
mw-monad rather than pseudomonad since, as proved in [10], these amount
to the same thing.

This correspondence between pseudo-mw-monads and pseudomonads
depends heavily on the invertibility of certain structure maps. If one weak-
ens this requirement, the resulting notion of skew mw-monad is no longer
equivalent to any lax version of ordinary pseudomonads. Nonetheless these
skew mw-monads seem to be an interesting structure:

Let C be a monoidal category, and >C the corresponding one-
object bicategory. A skew warping on C is the same as a skew
mw-monad on XC.

These connections between (possibly skew) warpings and (higher) mw-
monads shed light on both. In one direction, it shows that the “warped”
monoidal structure involving X is really a sort of Kleisli construction, it
suggests that one should consider “algebras” for skew warpings, and it sug-
gests that warpings should be considered on bicategories as well as monoidal
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categories. In the other, it makes clear that some of the axioms for mw-
pseudomonads are redundant, and suggests considering lax/skew variants as
well.

In the final section of the paper, we describe a universal process whereby
a skew monoidal category can be replaced by one which is right normal,
in the sense that the right unit constraint is invertible. We call this process
(right) normalization, and we use it to give a formal account of the relation-
ship between monads and mw-monads.

2. Review of mw-monads

In this section, we recall the definition of mw-monad, and its relationship to
ordinary monads.

The usual notion of monad on a category C consists of a functor D: C —
C equipped with natural transformations m: D? — D and K : 1 — D satis-
fying associativity and unit laws.

Definition 2.1. An mw-monad on C, consists of the following structure:
e afunction D: obC — ob(C

e functions 7': C(X, DY) — C(DX, DY) assigning to each morphism
f: X = DY amorphism Tf: DX — DY

e amorphism K = Kx: X — DX foreach X

e subject to the following equations:

TgoTf=T(Tgo f)
TfoK=f
TKX:1D)(.

This determines a monad on C as follows. The endofunctor is defined
on objects using D, and sends a morphism f: X — Y to T(Ky o f). The
components of the unit are given by the Ky. The component at X of the
multiplication is 7'(1px ). Conversely, for any monad D on C with multipli-
cation M and unit K, we get an mw-monad by defining T'f: DX — DY
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tobe Df: DX — D?Y composed with the multiplication D?Y — DY
These constructions are mutually inverse: see [9].

These mw-monads are in some sense more closely related to their Kleisli
categories than in the usual approach. Given an mw-monad as above, the
Kleisli category Cr has the same objects as C, with Cr(X,Y) = C(X, DY);
the identity on X is K x, while the composite of f: X — DY and g: Y —
DZisTgo f.

It is also possible to reformulate the usual notion of algebra for a monad
in terms of the mw-monad. This is done in the following definition.

Definition 2.2. Given an mw-monad as above, an algebra consists of an
object A, together with functions E: C(X, A) — C(DX, A) such that, for
allg: Y — Aand f: X — DY, wehave Ego Ky = gand FEgoTf =
E(Ego f).

3. Skew bicategories

There is an evident common generalization of the notions of bicategory and
skew monoidal category, which we shall tentatively call a skew bicategory,
although there are also richer structures which may deserve this name. At
this stage, the only motivation for the definition is to have a common setting
in which to discuss bicategories and skew monoidal categories. In any case,
for this paper, a skew bicategory consists of:

e objects X, Y, Z, ...

hom-categories B(X,Y") for all objects X and Y

functors M : B(Y,Z) x B(X,Y) — B(X, Z)

functors j: 1 — B(X, X)

(not necessarily invertible) natural transformations

Mx1

B(Y,Z) x B(X,Y) x B(W, X) 2L B(X, Z) x B(W, X)

o

B(Y,Z) x B(W,Y) B(W, Z)

M
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LB, Y) x B(X,Y)

\ﬂA [
! B(X,Y)

1xj

B(X,Y) ﬂB(X, Y) x B(X, X)
\B(X, Y)

whose components take the form aygp: (hg)f — h(gf), A\j: 1f — f,
and ps: f — f1, except that usually we omit the subscripts and simply
write a, A, and p. These are required to satisfy five conditions, asserting the
commutativity of all diagrams of the form

Af hg,k

(kg K(hg)f) .
(J/ \,g,

m%

(kh)(gf)

(g1)f —L2—g(1f) (1g)f —22

1(gf)
pyf gAy AgngA
9f ——9f
qf l=——=x=1
SN NEA
N —= g9(f1) 11

Example 3.1. In the usual way, we identify one-object skew bicategories
with skew monoidal categories.
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Example 3.2. If the natural transformations «, A, and p are all invertible,
we recover the usual notion of bicategory, except that the usual definition
includes only the first two axioms; but by adapting the argument of [4] for
monoidal categories, or applying the coherence theorem of [8], one easily
deduces that the other three axioms are a consequence of the first two.

4. Skew warpings on skew bicategories

In this section we make the basic definition which is a common generaliza-
tion of skew warpings on skew monoidal categories, and pseudo mw-monads
on bicategories.

Definition 4.1. A skew warping on the skew bicategory B consists of:
e afunction D: obB — ob B
e functors 7: B(X, DY) — B(DX, DY)
e l-cells K: X — DX foreach X

e natural transformations

TXT

B(Y,DZ) x B(X, DY) B(DY,DZ) x B(DX, DY)

ra | [

B(DY,DZ) x B(X,DY)— B(X,DZ) ——— B(DX,DZ)

TxK

B(X,DY) 5 B(DX, DY) x B(X, DX) 1—5 . B(Y,DY)

\\\\\\\i@\\\\é ka \\\\§vo lT
! B(X,DY) 1" B(DY, DY)
or, in terms of components
T(Tg.f)—~—Tg.Tf
f—r sTrK

TKL)lpy
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forf: X = DY andg: Y — DZ.
These are required to satisfy the following five equations

T(T(Th.g).f) —>—T(Th.g).T{ —* (Th.Tg).T f

T(v.l)J/ \

T((Th.Tg).f) —— T(Th.(Tg.f)) —— Th.T(Tg.f) —— Th.(Tg.Tf)

vo.1

T(Tf.K) >~ TfTK T(TK.f) -~ TKTfX1.Tf

TkT ll.vo T(vo‘l)l J,\

Tf——Fs—Tf1 T(1.f) — Tf
T(Tg.f).K 25 (Tg.Tf).K TK.K 21K
S N
Tg.f———Tg.(Tf.K) K=K

forall f: X - DY,q: Y - DZ,and h: Z — DW.

Example 4.2. A skew warping on a skew monoidal category, in the sense of
[6], is literally the same as a skew warping on the corresponding one-object
skew bicategory.

Example 4.3. Any category can be seen as a skew bicategory with no non-
identity 2-cells. A skew warping on a category is the same thing as an
mw-monad on the category, and so amounts to an ordinary monad on the
category.

Definition 4.4. A warping on a bicategory is a skew warping for which v, k,
and vy are invertible.

Example 4.5. A warping on a 2-category B is the same as a pseudo mw-
monad (a no iteration pseudomonad in the language of [10]). In more detail,
T is the functor ()” of [10], while K is the 1-cell dX. The 2-cells D4, Dy,
and D, of [10] are the inverses of suitable components of our vy, k, and
v. Our five axioms are then conditions 8, 2, 3, 5, and 1 respectively of [10],

while the remaining axioms 4, 6, and 7 of [10] amount to naturality of v and
k.
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5. The Kleisli construction for skew warpings

We saw in Section 2 that the Kleisli category of a monad is easily constructed
in terms of the corresponding mw-monad. We now describe an analogous
construction for skew warpings; this is a straightforward generalization of
[6, Proposition 3.6].

Given a skew warping, as in the previous section, there is a new skew
bicategory By with the same objects as B, and with hom-categories given by
Br(X,Y) = B(X, DY). The composition functors are given by

Tx1

B(Y,DZ) x B(X,DY)—=B(DY,DZ) x B(X,DY) 5 B(X,DZ)
so that the compositeof f: X — DY andg: Y — DZisTgof: X — DZ.
The identities are given by the K': X — DX. The associativity maps have

the form
T(Th.g).f 2 (Th.Tg).f =%~ Th.(Tq.f)

and the identity maps have the form

vg.1

TK.f21.f-2f f—STrK.

Remark 5.1. We have numbered the axioms for skew bicategories and for
skew warpings in such a way that to prove axiom n for By one needs only
axiom n for B and axiom n for the skew warping.

Proposition 5.2. In the definition of a (skew) warping, if B is a bicategory
and if v, vy, and k are invertible, then axioms 3, 4, and 5 follow from the first
two axioms.

Pr Suppose that the first two axioms hold. Then we can still form the
Kleisli construction By as above, and the associativity and identity 2-cells
will be invertible and satisfy axioms 1 and 2. Thus as explained in Exam-
ple 3.2 this defines a bicategory, and the remaining (skew) bicategory axioms
3,4, and 5 hold. Now axioms 4 and 5 for a skew warping are literally the
same as axioms 4 and 5 for the skew bicategory By, while axiom 3 for a skew
warping is a straightforward consequence of axiom 3 for the skew bicategory
Br. O
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Corollary 5.3. A warping on a monoidal category, in the sense of [3], is the
same as a warping on the corresponding one-object bicategory, and so as a
pseudomonad on the one-object bicategory.

Corollary 5.4. Conditions 1, 3, and 5 in [10, Definition 2.1] follow from the
other conditions.

6. Algebras

We now generalize the definition of algebra given in [10, Section 4] to our
setting.

Let B be a skew bicategory, and consider a skew warping on B, as in
Section 4.

Definition 6.1. An algebra for the skew warping consists of an object A € BB
equipped with

e afunctor £: B(X,A) — B(DX, A) for each X

e natural transformations

Ex1

B(Y, A) x B(X,DY) =5 B(DY, A) x B(X, DY) 25 B(X, A)

s, | I

B(DY, A) x B(DX, DY) — B(DX, A)

ExK

B(Y,A)—— B(DY,A) x B(Y, DY)
b
' B(Y, A)
or in terms of components
E(Ea.x)—— Ea.Tx
a—=5 Fa.K

wherea: Y — Aandz: X — DY
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subject to axioms asserting the commutativity of the following diagrams.

E(E(Ea.x).y) —— E(Ea.x). Ty —— (Ea.Tz).Ty

E((BaTz).y) —— E(Ea.(Tz.y)) —— EaT(Tz.y) | Ea.(Tz.Ty)

E(Ea.K)—<— Ea.TK E(Ea.x).K <% (Ea.Tz).K

Ea——;— Fa.l Eax ——> Ea.(T2.K)

Example 6.2. In the case of a warping on a 2-category, an algebra is the
same as an algebra, in the sense of [10, Section 4], for the corresponding
pseudo mw-monad. Explicitly, in the definition of [10] the functor ( ) is
our I, while the 2-cells A;, and A, are inverses of the components of our
eo and e. Our three axioms are the axioms 6, 2, and 3 of [10]; while the
remaining three axioms of [10] amount to naturality of e and ey.

Proposition 6.3. In the definition of algebra for a warping on a bicategory,
the third axiom is a consequence of the other two.

Proof. We write as if the bicategory were strict. Consider the following
diagram

Bax——= FE(Bax) K —“—— EaTz.K
eol €0 €0
Eeo.1 E(e.1).1
E(Fa.x). K — E(E(Fa.x).K). K — E(FaTz.K).K
‘ e.l
E(Ea.r).K +2° E(Ea.x).TK.K el
e.ll el.l

EaTr. K = EaTe TK.K EaT(Tz.K).K

in which the large region in the bottom right corner commutes by the first
equation (“the pentagon”) and the left central region commutes by the second
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equation (“the unit condition”), while all other regions commute by natural-
ity.

Since ¢ and e.1 are invertible we may cancel them, and conclude that
the upper path in the diagram

EaTz. K 2 E(Fa.Tz.K). K < Ea.T(Tx.K).K

— lm

1.Tk.1 1.1.v0.1

FaTx TK.K—>FaTx. K

is the identity. But the lower path is also the identity, by the unit condition
for the warping, so the two paths agree. Using invertibility of v and vy we
can cancel to obtain commutativity of the triangular region on the left. Thus
the central triangular region in the diagram

E(Fa.x).K
el
lT(l.k).l
< E(Ea.Tz.K).K EaTz.K
/ \ J/
L.Tk.1
Eax——= FaTz K T EaT(Tx.K).K

also commutes, while the other regions commute by naturality. Cancelling
1.Tk.1 gives the last equation. [

Corollary 6.4. The third axiom in the definition of [10, Section 4] is redun-
dant.

7. Formal mw-monads

Monads can be defined in any bicategory [2] or indeed any skew bicategory,
and the formal theory of monads in bicategories is well-understood [13]. If
B is an object of a bicategory K, there is a monoidal structure on (B, B)
with tensor product given by composition, and a monad in /C on the object
B is a monoid in (B, B).
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Here we sketch a setting for the formal theory of mw-monads. This has
similarities with [1], although it differs both in the motivation and in the
detail.

We write as if the bicategory K were strict. Let ¢ - ¢* be an adjunction
in IC, with i: A — B. Then there is a skew monoidal structure on the hom-
category K(A, B), with tensor product g ® f given by gi* f, and unit i. By
associativity of K we have (h ® g) ® f = hi*gi*f = h® (¢ ® f), while A
and p are defined by

iof=if-2af  F I fri= fei

using the unit and counit of the adjunction ¢ — ¢*.
A monoid in (A, B) consists of an arrow d: A — B equipped with
maps K: ¢ — dand T": di*d — d, satisfying the following three equations.

di*di*d 2 di*d  iird B dird diti S divd

SN

Composition with ¢ defines a functor u = K(4,1): (B, B) — K(A, B).
For f,g: B — B we have

u(g) @ u(f) gii* fi - g fi u(gf)

while u(1) = 4; this makes u into a (normal) monoidal functor. In particular,
it sends monoids to monoids; that is, monads on B to monoids in /C(A, B).

Example 7.1. Let K be the bicategory of profunctors. Recall that any functor
f: A — B defines a profunctor f,: A — B defined by f.(b,a) = B(b, fa),
and that f, has a right adjoint f* defined by f*(a,b) = B(fa,b); we often
write f for f,. Let A be the discrete category on the same set of objects
as B, and let 7 be the inclusion. Then to give a functor d: A — B and a
2-cell K: i — din K is to give, for each object x of B, an object dr and a
morphism K : © — dx. To give T': di*d — d is to give morphisms

yEA,a€B
/ B(b,dy) x Bliy,a) x B(a,dz) — B(b, dz)

- 256 -



LACK & STREET - ON MONADS AND WARPINGS

natural in b € B and x € A. Now naturality in z and y say nothing, since
A is discrete; while naturality in a and b reduce this, by Yoneda, to giving
maps

T: B(iy,dx) — B(dy,dx).

The three axioms for a monoid in KC(A, B) are exactly the three axioms for
an mw-monad. Thus a functor A — B is a monoid in K(A, B) precisely
when it is an mw-monad. Moreover, given this identification, the monoidal
functor u = (i, B) sends a monad on B to the corresponding mw-monad.

Motivated by this example, we consider monoids in KC( A, B) as our for-
mal notion of mw-monad; of course monoids in K(B, B) are our formal
notion of monad. (This notion of mw-monad depends on A and ¢, somewhat
as in the treatment of [1].)

In order to compare monads with mw-monads in this formal context, we
should therefore compare monoids in (B, B) with monoids in (A, B). In
the following section we propose a more general setting in which to perform
this comparison.

8. Normalization

In this section we show that, under mild conditions, a skew monoidal cate-
gory C can be replaced by a right normal skew monoidal category, meaning
one for which the right unit map p is invertible. Furthermore, the two skew
monoidal categories have equivalent categories of monoids. We use this to
complete the comparison between monads and mw-monads begun in the
previous section.

Let C be a skew monoidal category with tensor ® and unit /; we shall
often write XY for X ® Y. Suppose that C has reflexive coequalizers, and
that these are preserved by tensoring on the right. The functor —®17: C — C
given by tensoring on the right with the unit / underlies a monad (see [15])
with the maps

XNl XI5 Xxel XXl

defining the components of the multiplication and unit. Write C! for the
category of algebras for the monad; we call its objects /-modules. This has
reflexive coequalizers, formed as in C.
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If (Y,y) is an I-module, and X an arbitrary object of C, then X ® YV’
becomes an /-module via the action

(XY)I -5 X(Y]) 2 XY,
with associativity and unit axioms proved using the following diagrams.

(XY -2 (x(vINTYS (X)) XY —25 (XY

R N

o X" x v X(YT)

(11)A 1(1))

(XY)(II) —2 X (Y (IT)) XHY XY

(XY)] —5— X (Y]) —— XY
Yy

Given [-modules (X, z) and (Y, y), we may form the reflexive coequal-
izer

pl
(XI)Y 2 XYy —5LXAY (8.1)
X(IY)

in C, and this lifts to a coequalizer in the category of /-modules, whose
object-part involves an action ¢: (X AY)I — X AY. This defines a functor
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A: Cl x CT — C!. By commutativity of the diagram

(XD)Y)Z —L— (X(IY))Z
(XY)Z o X((IYV)Z) (XY)Z
Lo 1(A1) _La
a (XD(YZ)—2X(I(YZ2) 2 X(Y2)
;ﬂL/ (11)q 1(1q) lm
X(YZ) (XI)(Y ANZ) == X(I(Y ANZ)) 2= X(Y AZ)
XWAZT/// d XAWAETf//

there is a unique induced a;: (X AY)Z — X A (Y A Z) whose composite
with¢l: (XY)Z — (XAY)Zis q.1q.a. The various regions of the diagram

(XAY)NZ L= (XAY)Z

/((XY)I)ZT(X(YI))Zw(XY)Z
(g1)1
(XAY))Z o X((YI)Z)WX(YZ)
o (XY)IZ)——=X(Y(IZ)) 1q
/ (A1)A 1(1))
(XAY)(IZ) (XY) Z—>X(YZ)—>X(Y/\Z)

(XAY)Z XANYNANZ)

\—/

a1

are easily seen to commute, thus the exterior does so. Cancel the epimor-
phism (¢1)1, and deduce the commutativity of the diagram which guarantees

- 259 -



LACK & STREET - ON MONADS AND WARPINGS

that «; factorizes uniquely through ¢: (X AY)Z — (X AY) A Z to give
a morphism o/: (X AY)AZ — X A (Y A Z) making the triangle in the
diagram

(XY)Z -5 (X AY)Z—5 (XAY)AZ

| T [

X(YZ)—> X(Y A Z)—p X A (Y A Z)

commute. The larger region on the left commutes by definition of a, and so
the exterior commutes.

The resulting o is clearly natural, and commutativity of the pentagon for
« implies commutativity of the pentagon for «’.

Commutativity of the diagrams

(INI 2111211 1511

AN

17

A

shows that A\: I/ — I makes [ into an /-module.
Commutativity of

(INX 2= T1Xx

| A

I(IX) A

.

shows that A\: /X — X factorizes uniquely through ¢: X — I A X to give
amap \: I AN X — X.
On the other hand, the diagram

P p
o L
(XI)I: — S XT—— X
x /
X(I1)
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is a split coequalizer in C, and the solid part is a fork in CZ, thus is a coequal-
izer in C’, and so exhibits X itself as X A I. Rather than identify X A I with
X, though, we let p’ be the composite

X2 XT— 4 X AT

and note that this is invertible.

We now show that o/, p/, and \’ make C’ into a skew monoidal category.
We have already observed that the pentagon commutes, so we turn to the
four remaining axioms.

Compatibility of o’ and p’ follows from the corresponding condition for
a and p, and commutativity of the diagrams

XYy — 2 o (XV)—2 5 X(Y]) XYy —" . x(YI)
T
XAY —25(XAY)I X(YANI) XAY X(Y AT)
x()(/\qL)AJLXA(gM) lApl)(/\(tM)

Compatibility of o' and A’ follows from the corresponding condition for
« and )\, and commutativity of the diagrams

(IX)Y —* 5 [(XY) (IX)Y
| e
(IAX)Y I(XAY) XY  (IAX)Y — XY

/ O T .

(I/\X)AYTI/\(X/\Y)X—U(AY (]/\X)/\YWX/\Y
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For the triple compatibility condition, observe that the diagram

(XD)Y —= (XA DY — (XA AY

al l“'

X(IV)—L X(IAY)—5 X A(IAY)

! !
x ll)\ ll/\)\

XY ————XAY

commutes and that g is epi; then the axiom for C’ follows from that for C.
Finally compatibility of \" and p’ follows from commutativity of

INT

I@I.

1

This now proves that C! is skew monoidal; indeed it is a right normal
skew monoidal category, in the sense that p is invertible. The forgetful
functor U: C! — C is a monoidal functor, with Uy: U(X,2) @ U(Y,y) —
U((X,z)A(Y,y)) given by the quotient map ¢: XY — XAY,andUy: I —
U(I, \) the identity.

This process is universal, in the sense that if D is any right normal skew
monoidal category and M : D — C a monoidal functor, then M factorizes
uniquely through U as a skew monoidal functor N: D — C!. For each
object X € D, we have an /-module structure on M X, given by

MMX

MX @I =200 MX @ MI—2 5 M(X®1)

and this is natural in X, so that M does lift to functor N: D — C! with
UN = M.
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Furthermore, by commutativity of

—1
(MX.1).MY 0 x ).y 225 vxn. My A Mx oy

al al lMg J/MQ
1(Mo1) M

MX.(I.MY) =% MX (MI.MY) MXDYT (X

ul ll.Mg JMa
M(1))

Y)
MX.MY «M2 M x M(IY) —2 M(X(IY)) —5 M(XY)

Mo

we see that M, passes to the quotient to give a map No: NX A NY —
N(XY); while M, underlies amap Ny: I — N1I.

Since monoids in a skew monoidal category are just monoidal functors
out of the terminal skew monoidal category, and this terminal skew monoidal
category is right normal (in fact monoidal), it follows that the monoids in C*
are the same as the monoids in C.

We summarize this as follows:

Theorem 8.1. Let C be a skew monoidal category, and suppose that C has
coequalizers of reflexive pairs of the form (8.1), and that these are preserved
by tensoring on the right. Then the category C' of right I-modules is a right
normal skew monoidal category, and the forgetful functor U: C! — Cis a
normal monoidal functor. Furthermore, it is universal, in the sense that for
any right normal skew monoidal category D, composition with U induces an
equivalence between the category of monoidal functors from D to C' and the
category of monoidal functors from D to C.

We call C! the right normalization of the skew monoidal category C.
The next result is our promised formal approach to the comparison of
monads and mw-monads.

Theorem 8.2. Let i: A — B be a morphism in a bicategory K, and sup-
pose that i has a right adjoint v 4 v* and is opmonadic (of Kleisli type).
Suppose further that for any h: B — B, the functor K(h, B): K(B, B) —
KC(B, B) preserves any existing coequalizers of reflexive pairs. Then the
skew monoidal category K(A, B) satisfies the conditions of the previous

- 263 -



LACK & STREET - ON MONADS AND WARPINGS

theorem, and the right normalization K (A, B)! is given by K(B, B). Thus
monoids in K(A, B) are equivalent to monoids in K(B, B).

Proof. The adjunction ¢ 4 ¢* induces an adjunction K(i*, B) - K(i, B),
which in turn induces a monad on K(A, B), and this monad is precisely that
given by tensoring on the right with the unit ¢ of IC(A, B). Since i is op-
monadic, K(i, B) is monadic, and so (B, B) is equivalent to the category
of /-modules.

Using again the fact that ¢ is opmonadic, the diagram

**% . GE
giitiit __ giit ——
gii*e

is a coequalizer in C(B, B), and now composing on the right with fi, we
see that the required coequalizers (8.1) exist, with gi A fi = (gf)i.

Thus the normalization does exist, and since u: (B, B) — K(A, B) is
a monoidal functor with right normal domain (in fact monoidal domain), we
have the comparison v: K(B, B) — K(A, B)!. From the construction of v
it is clear that this is a monoidal equivalence. [

Example 8.3. Consider the case of Example 7.1, where K is the bicategory
of profunctors, and i: A — B is the inclusion of the discrete category A on
the same set of objects as B. Since 7 is the identity on objects it is indeed
opmonadic, while IC(A, B) is cocomplete with colimits preserved by tensor-
ing on either side, thus the conditions of the theorem hold. We recover the
correspondence between monads and mw-monads by observing that a pro-
functor g: B — B is a functor if and only if the composite gi: A — B is
one.

Acknowledgements

Both authors gratefully acknowledge the support of the Australian Research
Council Discovery Grant DP130101969; Lack acknowledges with equal grat-
itude the support of an Australian Research Council Future Fellowship.

- 264 -



LACK & STREET - ON MONADS AND WARPINGS

References

(1]

(2]

(3]

(4]

(5]

[6]

(71

(8]

[9]

[10]

Thorsten Altenkirch, James Chapman, and Tarmo Uustalu, Monads
need not be endofunctors, Foundations of software science and compu-
tation structures, Lecture Notes in Comput. Sci., vol. 6014, Springer,
2010, pp. 297-311.

Jean Bénabou, Introduction to bicategories, Reports of the Midwest
Category Seminar, Springer, Berlin, 1967, pp. 1-77. MR 0220789 (36
#3841)

Thomas Booker and Ross Street, Tannaka duality and convolution for
duoidal categories, Theory Appl. Categ. 28 (2013), No. 6, 166-205.
MR 3040601

G. M. Kelly, On MacLane’s conditions for coherence of natural as-
sociativities, commutativities, etc, J. Algebra 1 (1964), 397-402. MR
0182649 (32 #132)

Stephen Lack and Ross Street, A skew-duoidal Eckmann-Hilton ar-
gument and quantum categories, Appl. Categ. Structures, to appear.

(2012), Preprint available as arXiv:1210.8192.

, Skew monoidales, skew warpings and quantum categories,

Theory Appl. Categ. 26 (2012), 385-402. MR 2972969

, Triangulations, orientals, and skew monoidal categories,

Adyv. Math. 258 (2014), 351-396. MR 3190430

Saunders Mac Lane and Robert Paré, Coherence for bicategories and
indexed categories, J. Pure Appl. Algebra 37 (1985), no. 1, 59-80. MR
794793 (86k:18003)

Ernest G. Manes, Algebraic theories, Springer-Verlag, New York-
Heidelberg, 1976, Graduate Texts in Mathematics, No. 26.

F. Marmolejo and R.J. Wood, No-iteration pseudomonads, Theory
Appl. Categ. 28 (2013), No. 14, 371-402.

- 265 -



LACK & STREET - ON MONADS AND WARPINGS

[11] Paddy McCrudden, Opmonoidal monads, Theory Appl. Categ. 10
(2002), No. 19, 469-485 (electronic). MR 1942328 (2003m:18012)

[12] 1. Moerdijk, Monads on tensor categories, J. Pure Appl. Algebra
168 (2002), no. 2-3, 189-208, Category theory 1999 (Coimbra). MR
1887157 (2003e:18012)

[13] Ross Street, The formal theory of monads, J. Pure Appl. Algebra 2
(1972), no. 2, 149-168. MR 0299653 (45 #8701)

[14] , Skew-closed categories, J. Pure Appl. Algebra 217 (2013),

no. 6, 973-988. MR 3010098

[15] Kornél Szlachanyi, Skew-monoidal categories and bialgebroids, Adv.
Math. 231 (2012), no. 3-4, 1694-1730. MR 2964621

[16] R.F.C. Walters, A categorical approach to universal algebra, Ph.D. the-
sis, Australian National University, 1970.

Stephen Lack and Ross Street
Department of Mathematics
Macquarie University NSW 2109
Australia

steve.lack@mgq.edu.au
ross.street@mgq.edu.au

- 266 -



