
Résumé. Nous étudions une notion générale de dérivation dans le con-
texte des catégories codifférentielles de Blute-Cockett-Seely, généralisant
la notion de dérivation K-linéaire de l’algèbre commutative. Pour une
catégorie codifferentielle (C, T, d), une T -dérivation ∂ : A → M sur une
algèbre A de la monade T est definie comme un morphisme de C dans un
A-module M vérifiant une forme du théorème de dérivation des fonctions
composées par rapport à la transformation dérivateur d. Nous montrons que
ces T -dérivations correspondent aux T -homomorphismes A → W (A,M)

au-dessus de A dans une T -algèbre associée W (A,M). Nous établissons
l’existence de T -dérivations universelles A → ΩT

A dans un A-module
associé ΩT

A, le module de différentiels de type Kähler. Tandis que l’article
précédent de Blute-Cockett-Porter-Seely sur les catégories Kähleriennes a
utilisé une notion de dérivation exprimable sans référence à la monade T ,
nous montrons que l’usage de la notion de T -dérivation ci-dessus résout
un problème ouvert concernant les catégories Kähleriennes, montrant que
la Propriété K pour catégories codifférentielles n’est pas nécessaire. Le
long du chemin, nous établissons une définition succincte et equivalente
de la notion de catégorie codifférentielle en termes d’un morphisme
de monades S → T sur la monade S de l’algèbre symétrique et d’une
transformation d vérifiant le théorème de dérivation des fonctions composées.
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Abstract. We define and study a novel, general notion of derivation in the
setting of the codifferential categories of Blute-Cockett-Seely, generalizing
the notion of K-linear derivation from commutative algebra. Given a
codifferential category (C, T, d), a T -derivation ∂ : A→M on an algebra A
of the monad T is defined as a morphism in C into an A-module M satisfying
a form of the chain rule expressed in terms of the deriving transformation
d. We show that such T -derivations correspond to T -homomorphisms
A → W (A,M) over A valued in an associated T -algebra. We establish
the existence of universal T -derivations A → ΩT

A valued in an associated
A-module of Kähler-type differentials ΩT

A. Whereas previous work of
Blute-Cockett-Porter-Seely on Kähler categories employed a notion of
derivation expressible without reference to the monad T , we show that the
use of the above T -based notion of derivation resolves an open problem
concerning Kähler categories, showing that Property K for codifferential
categories is unnecessary. Along the way, we establish a succinct equivalent
definition of codifferential categories in terms of a given monad morphism
S → T on the symmetric algebra monad S and a compatible transformation
d satisfying the chain rule.
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1. Synopsis

Derivations provide a way of transporting ideas from the calculus of mani-
folds to algebraic settings where there is no sensible notion of limit. In this
paper, we consider derivations in certain monoidal categories, called codif-
ferential categories. Differential categories were introduced as the categori-
cal framework for modelling differential linear logic. The deriving transform
of a differential category, which models the differentiation inference rule, is
a derivation in the dual category. We here explore that derivation’s univer-
sality.
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One of the key structures associated to a codifferential category is an
algebra modality. This is a monad T such that each object of the form TC
is canonically an associative, commutative algebra. Consequently, every T -
algebra has a canonical commutative algebra structure, and we show that
universal derivations for these algebras can be constructed quite generally.

It is a standard result that there is a bijection between derivations from
an associative algebra A to an A-module M and algebra homomorphisms
over A from A to A⊕M , with A⊕M being considered as an infinitesimal
extension of A. We lift this correspondence to our setting by showing that in
a codifferential category there is a canonical T -algebra structure on A⊕M .
We call T -algebra morphisms from TA to this T -algebra structure Beck T -
derivations. This yields a novel, generalized notion of derivation.

The remainder of the paper is devoted to exploring consequences of that
definition. Along the way, we prove that the symmetric algebra construc-
tion in any suitable symmetric monoidal category provides an example of
codifferential structure, and using this, we give an alternative definition for
differential and codifferential categories.

2. Introduction

The theory of Kähler differentials [15, 20] provides an analogue of the theory
of differential forms and all of its various uses in settings other than the usual
setting of smooth manifolds. They were originally introduced by Kähler as
an abstract algebraic notion of differential form. One of their advantages is
that they can be applied to varieties which are not also smooth manifolds,
such as singular varieties in characteristic 0 or arbitrary varieties over a field
of characteristic p. In a setting where one does not have access to limits, one
can still talk about derivations. That is to say one passes from the variety to
its coordinate ring, and then considers a module over that ring. A derivation
is then a linear map from the algebra to the module satisfying the Leibniz
rule. The module of Kähler differentials or Kähler module is then a module
equipped with a universal derivation. As usual, such a module is unique up
to isomorphism.

Since this initial work, the idea of extending differential forms to more
and more abstract settings has advanced in a number of different directions.
As one important example, we mention the noncommutative differential
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forms that arise in noncommutative geometry [18].
Differential linear logic [11, 12] arose originally from semantic con-

cerns. Ehrhard [9, 10] had constructed several models of linear logic [14]
in which the hom-sets had a natural differentiation operator. Ehrhard and
Regnier then described this operation as a sequent rule and represented it as
a construction and a rewrite rule for both interaction nets and for λ-calculus.
The corresponding categorical structures were introduced in [3, 4] and called
differential categories and cartesian differential categories. Cartesian differ-
ential categories are an axiomatization of the coKleisli category of a differ-
ential category.

The notion of Kähler category [2] began with the observation that the
deriving transform, the key feature of differential categories, is a derivation
and, under certain assumptions, has a universal property discussed below.
(Actually, we must work with the dual notion of codifferential category. If
we worked with coalgebras and coderivations, we could work in differential
categories and all of the following work, suitably op-ed, would still hold.)
It thus seemed likely that an abstract monoidal setting in which Kähler dif-
ferential modules could be defined would apply to differential categories. In
fact, the original paper only partially resolved this issue. In the present pa-
per, we provide a much more satisfying answer by generalizing the notion
of derivation to take into account all of the codifferential structure, thereby
establishing a suitable universal property in full generality.

A Kähler category is an additive, symmetric monoidal category with an
algebra modality, i.e. a monad T for which each object of the form TC
is equipped with a commutative, associative algebra structure and several
coherence equations hold, such that each of these algebras has a universal
derivation. In essence, we are requiring a Kähler module for each free T -
algebra.

The present paper extends the work of [2] in several ways. It is not sur-
prising that, given all the structure at hand, one can endow every T -algebra
with the structure of a commutative, associative algebra. We show that in
a Kähler category, one can use the existence of Kähler objects for free T -
algebras to derive Kähler objects for all algebras1 that arise as underlying

1We realize that the unavoidable use of the word algebra in two different ways is confus-
ing. The word algebra without a T− in front of it will always mean commutative, associative
algebra.
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algebras of T -algebras. Thus if the algebra category is monadic over the
base, we can derive Kähler modules for all algebras by a single uniform
procedure. These results follow from the M.Sc. thesis of the third author
[21].

We also tackle the idea of what it means to be a derivation. It is well-
known [6] that if A is a commutative algebra and M is an A-module, then
there is a canonical algebra structure on A ⊕M such that derivations from
A to M are in bijective correspondence to algebra maps over A from A
to A ⊕ M . Essentially the algebra A ⊕ M is the extension of A by M -
infinitesimals. This idea was used in a much more general setting by Beck
[1].

While this is a straightforward calculation, it has far-reaching general-
izations. First we show that in a codifferential category, given a T -algebra
(A, a) and a module M over the algebra associated to A, there is a canonical
T -algebra structure on A⊕M which under the passage from T - algebras to
algebras yields the traditional associative algebra structure on A ⊕M from
[1]. We call this T -algebra W (A,M). We then define a Beck T -derivation
on A valued in M to be a map of T -algebras from (A, a) to W (A,M) in
the slice category over A. Beck T -derivations can be equivalently given by
morphisms ∂ : A→M satisfying a chain rule condition with respect to T .

We show that the symmetric algebra monad yields a codifferential cat-
egory in a very general setting and in this case, our notion of Beck T -
derivation is equivalent to the usual notion of derivation.

We define a module of Kähler T -differentials to be an A-module with a
universal Beck T -derivation. We then show that the deriving transform in
a codifferential category is always universal in this sense. In fact, every T -
algebra has a universal T -derivation. Our analysis also yields an equivalent
definition of differential category we believe will be valuable in generaliza-
tions of this abstract notion of differentiation. For example, it generalizes in
a straightforward way to noncommutative settings.

We note that in [8], Dubuc and Kock define a notion of derivation on
an algebra of a Fermat theory, the latter being a finitary set-based algebraic
theory extending the theory of commutative rings and satisfying a certain
axiom. It would be interesting to compare their notion with the notion of T -
derivation defined here in the monoidal context of codifferential categories.

The extension of Kähler categories and codifferential categories to non-
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commutative settings is an important project, and work of this sort has been
initiated by R. Cockett [7]. In that paper, the author has also explored the
relationship between T -algebras and derivations. In particular, he considers
the implications of demanding for each T -algebra A and each A-bimodule
M a given T -algebra structure on A⊕M satisfying certain axioms, whereas
here we have shown that in the setting of a codifferential category, a T -
algebra structure onA⊕M can be defined in terms of the given codifferential
structure.

3. Derivations and categorical frameworks

This section covers the theory of derivations, both in its classical formula-
tion with respect to algebras over a field and several of its more abstract
categorical formulations.

3.1 Classical case

Derivations were originally considered for commutative algebras over a field
and are employed in algebraic geometry and commutative algebra [13, 15].

Definition 3.1. Let k be a commutative ring, A a commutative k-algebra,
and M an A-module. (All modules throughout the paper will be left mod-
ules.)

A k-derivation from A to M is a k-linear map ∂ : A //M such that
∂(aa′) = a∂(a′) + a′∂(a).

One can readily verify under this definition that ∂(1) = 0 and hence
∂(r) = 0 for any r ∈ k.

Definition 3.2. Let A be a k-algebra. A module of A-differential forms is an
A-module ΩA together with a k-derivation ∂ : A // ΩA which is universal
in the following sense: For any A-module M , and for any k-derivation ∂′ :
A //M , there exists a unique A-module homomorphism f : ΩA

//M
such that ∂′ = ∂; f .

Lemma 3.3. For any commutative k-algebra A, a module of A-differential
forms exists.
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There are several well-known constructions. The most straightforward,
although the resulting description is not that useful, is obtained by construct-
ing the free A-module generated by the symbols {∂a | a ∈ A} divided out
by the evident relations, most significantly ∂(aa′) = a∂(a′) + a′∂(a).

3.2 Derivations as algebra maps

We suppose we are working in the category of vector spaces over a field k,
that A is a commutative k-algebra and M an A-module. Define a commuta-
tive algebra structure on A⊕M by

(a,m) · (a′,m′) = (aa′, am′ + a′m)

It is evident that this is associative, commutative and unital. We will
refer to this algebra structure as the infinitesimal extension of A by M . But
its interest comes from the following observation.

Lemma 3.4. There is a bijective correspondence between k-derivations from
A to M and k-algebra homomorphisms from A to A ⊕ M which are the
identity in the first component. Or more succinctly:

Derk(A,M) ∼= Alg/A(A,A⊕M)

Here, Alg/A is the slice category of objects over A in the category Alg
of k-algebras.

We also note that it is straightforward to lift this result to the level of
additive symmetric monoidal categories, see Section 3.3. The notions of
commutative algebra and module are expressible in any symmetric monoidal
category. Once one has additive structure then the notion of derivation is
definable as well. The correspondence of Lemma 3.4 then extends to this
more general setting. Lemma 3.4 also provided Jon Beck [1] a starting point
for a far-reaching generalization of the notion of derivation for the purposes
of cohomology theory. One of the primary contributions of this paper is to
lift the correspondence of Lemma 3.4 to the level of codifferential categories.
The fact that these ideas continue to hold at this level is testament to the
importance of Beck’s ideas about cohomology.
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3.3 Categorical structure

It is a standard observation [19, 17] that the notions of algebra (monoid) and
module over an algebra make sense in any monoidal category and the notion
of commutative algebra makes sense in any symmetric monoidal category.
But to discuss derivations for an algebra we also need additive structure.

Definition 3.5. 1. A symmetric monoidal category C is additive if it is
enriched over commutative monoids and the tensor functor is additive
in both variables2.

2. Let (A,mA, eA) be an algebra in an additive symmetric monoidal cat-
egory3, and M = 〈M, •M : A ⊗ M // M〉 an A-module. Then a
derivation to M is an arrow ∂ : A //M such that (with m being the
multiplication)

m; ∂ = c; 1⊗ ∂; •M + 1⊗ ∂; •M and ∂(1) = 0

Remark 3.6. We note that Lemma 3.4 holds at this level of generality
as well. Indeed, given a commutative algebra A in an additive symmetric
monoidal category C with finite coproducts (equivalently, finite biproducts)
and an A-module M , we can equip A⊕M with the structure of a commuta-
tive algebra [2]. Derivations A→M then correspond to maps A→ A⊕M
in the slice category Alg/A over A in the category Alg of commutative al-
gebras in C [2]. As noted in [2, §4.2], every map of A-modules h : M → N
determines an algebra map 1⊕ h : A⊕M → A⊕N , whence each deriva-
tion ∂ : A→ M determines a composite derivation A ∂−→ M

h−→ N . Further,
given a map of commutative algebras g : A → B, each B-module N deter-
mines an A-module NA, the restriction of scalars of N along g, consisting
of the object N of C equipped with the composite A-action

A⊗N g⊗1−−→ B ⊗N •N−→ B .

Moreover, given an algebra map g : A → B and a derivation ∂ : B → N ,
the composite A

g−→ B
∂−→ N is a derivation A→ NA.

2In particular, we only need addition and unit on Hom-sets, rather than abelian group
structure.

3We will use the notation mA and eA for the multiplication and unit for A.
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As for most algebraic structures, when one adds in an appropriate notion
of universality, the result is a very powerful mathematical object. For deriva-
tions, we obtain the module of Kähler differentials or Kähler module. We
cite [15, 20] for calculations and examples.

Definition 3.7. Let C be an additive symmetric monoidal category and let
A be a commutative algebra in C. A module of Kähler differentials is an
A-module ΩA together with a derivation ∂ : A // ΩA, such that for every
A-module M, and for every derivation ∂′ : A //M , there exists a unique
A-module map h : ΩA

//M such that ∂;h = ∂′.

A
∂ //

∂′   AAAAAAAA ΩA

h
��
M

An axiomatization of a very different sort which attempted to capture
the process of differentiation axiomatically is the theory of differential cate-
gories [3]. Since in this paper we wish to work with algebras and derivations
as opposed to coalgebras and coderivations, we work in the dual theory of
codifferential categories.

Definition 3.8. An algebra modality on a symmetric monoidal category C
consists of a monad (T, µ, η) on C, and for each object C in C, a pair of
morphisms (note we are denoting the tensor unit by k)

m : T (C)⊗ T (C) // T (C), e : k // T (C)

making T (C) a commutative algebra such that this family of associative
algebra structures satisfies evident naturality conditions [2].

Definition 3.9. An additive symmetric monoidal category with an algebra
modality is a codifferential category if it is also equipped with a deriving
transform4, i.e. a transformation natural in C

dT (C) : T (C) // T (C)⊗ C

satisfying the following four equations5:
4We use the terminology of a deriving transform in both differential and codifferential

categories.
5For simplicity, we write as if the monoidal structure is strict.
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(d1) e; d = 0 (Derivative of a constant is 0.)

(d2) m; d = (1⊗d); (m⊗1)+(d⊗1); c; (m⊗1) (where c is the appropriate
symmetry) (Leibniz Rule)

(d3) η; d = e⊗ 1 (Derivative of a linear function is constant.)

(d4) µ; d = d;µ⊗ d;m⊗ 1 (Chain Rule)

We make the following evident observation, noting that the morphism
uTCC := e ⊗ 1: C = k ⊗ C → T (C) ⊗ C exhibits T (C) ⊗ C as the free
T (C)-module on C.

Lemma 3.10. When T (C)⊗ C is considered as the free T (C)-module gen-
erated by C, then the above deriving transform is a derivation.

This leaves the question of its universality. We know there is a universal
property for the object T (C) ⊗ C as the free T (C)-module generated by
C. Is this sufficient to guarantee the universality necessary to be a Kähler
module? With this question in mind, the paper [2] introduced the notion of
a Kähler category but only partially answered this question.

Definition 3.11. A Kähler category is an additive symmetric monoidal cat-
egory with

• a monad T ,

• a (commutative) algebra modality for T ,

• for all objects C, a T (C)-module of Kähler differential forms, satisfy-
ing the universal property of a Kähler module.

Thus the previous question can be formulated as whether every codif-
ferential category is a Kähler category. The original paper [2] had a partial
answer to this question. In the present paper, we give a much more satisfying
answer to this question. The key is to generalize even further the notion of
derivation. We use ideas from Jon Beck’s remarkable thesis [1]. This will be
covered in Section 5. In particular, see Definition 5.7 and Theorem 5.11.
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3.4 Universal derivations for T -algebras

In a category with an algebra modality we may endow each T -algebra with
the structure of a commutative algebra, in such a way that the structure map
of the T -algebra is a morphism of associative algebras. Since universal
derivations are a priori only defined for the algebras arising by virtue of the
algebra modality in a Kähler category, it is natural to ask if universal deriva-
tions from these new algebras exist and, if so, how they are constructed. We
examine this issue now and demonstrate that there is a very pleasing an-
swer. The construction of such Kähler modules is from the third author’s
M.Sc. thesis [21]. We first note the following procedure for assigning alge-
bra structure to T -algebras.

Theorem 3.12. Let C be a symmetric monoidal category equipped with an
algebra modality T . The following construction determines a functor from
the category of T -algebras to the category of commutative algebras in C. Let
(A, a) be a T -algebra in such a category. Define the multiplication for an
algebra structure on A by the formula

A⊗ A
η⊗η
−−−−→ TA⊗ TA

m
−−−−→ TA

a
−−−−→ A

with unit given by

k
e

−−−−→ TA
a

−−−−→ A

In particular, every map of T -algebras becomes an associative algebra map.
Also note that if we apply this construction to the free T -algebra (TA, µ),

we get back the original associative algebra (TA,m, e).

Definition 3.13. Let C be an additive symmetric monoidal category. Let A
and B be algebras with universal derivations as in the diagram below. Let
f : A→ B be an algebra homomorphism. Define Ωf : ΩA

// ΩB to be the
unique morphism of A-modules making
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A B
f

//A

ΩA

dA

OO

B

ΩB

dB

OOΩA ΩB

Ωf //

commute, which exists by universality of dA. One can verify that Ω(−) is
functorial.

The existence of Kähler modules for free T -algebras entails that Kähler
modules for arbitrary T -algebras can be obtained by taking a quotient, as is
seen in the following theorem.

Theorem 3.14. Defining ΩA,a as the following coequalizer

ΩT 2A ΩTA

Ωµ //ΩT 2A ΩTA
ΩTa

// ΩTA ΩA,a
Ωa // ΩA,a

gives us the module of Kähler differentials for T -algebra (A, a).

This result was in the M.Sc. thesis of the third author [21]. We do not
give a proof of this result here as it can be obtained in a method similar to
Theorem 5.23. We also note that, under suitable hypotheses, the existence of
Kähler modules for arbitrary commutative algebras follows from Theorem
5.23.

4. The symmetric algebra monad

The most canonical example of an algebra modality is the symmetric algebra
construction. This construction as applied to the category of vector spaces
gives one of the most basic examples of a codifferential category. In this
case, elements of the symmetric algebra are essentially polynomials, which
are differentiated in the evident way. A similar construction works on the
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category of sets and relations [23]. What we observe here is that the sym-
metric algebra construction provides examples of codifferential categories in
a much more general setting.

First, we need to explore a theme which will be the centrepiece of the
last sections of the paper. This is the idea of viewing derivations as algebra
homomorphisms.

Remark 4.1. For the remainder of this section, we assume C is an additive
symmetric monoidal category with finite coproducts and reflexive coequaliz-
ers, the latter of which are preserved by the tensor product in each variable.
Let Alg be the category of commutative algebras in C, and suppose that the
forgetful functor Alg // C has a left adjoint. The resulting adjunction is
then monadic; denote its induced monad by S, so that Alg ∼= CS , and we
henceforth identify these categories. See [19] for details.

4.1 Structure related to the symmetric algebra

We will also need the following straightforward observation:

Proposition 4.2. The (commutative) algebra modalities on C are in bijec-
tive correspondence to pairs (T, ψ), where T is a monad and ψ is a monad
morphism ψ : S → T . Such a morphism induces a functor

Fψ : T -Alg→ S-Alg

Furthermore, the map ψC : SC → TC is a map of algebras.

4.2 Codifferential structure

Definition 4.3. Given an object C in C, recall that SC ⊗ C is the free SC-
module on C. Hence by Remark 3.6, the direct sum SC ⊕ (SC ⊗C) carries
the structure of an algebra, and derivations SC → (SC ⊗ C) correspond to
algebra homomorphisms SC → SC ⊕ (SC ⊗ C) whose first coordinate is
the identity. But since SC is the free algebra on C, the latter correspond to
morphisms C → SC ⊕ (SC ⊗ C) whose first coordinate is η : C → SC.

So let dSC : SC // SC ⊗ C be the derivation corresponding to the
algebra homomorphism SC // SC ⊕ (SC ⊗ C) given on generators as
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(
ηC
uC

)
: C //SC⊕ (SC⊗C), where uC is the map uC : C ∼= k⊗C

e⊗1
−−−−→

SC ⊗ C.

Theorem 4.4. (C, S, d) is a codifferential category.

Proof. S is a commutative algebra modality on C. Since each dSC is by
definition a derivation, the Leibniz rule holds and precomposing dSC by eSC
is the zero map. By the definition of dSC ,

ηC ;

(
1SC
dSC

)
=

(
ηC
uC

)
: C // SC ⊕ (SC ⊗ C)

so that

ηC ; dSC = ηC ;

(
1SC
dSC

)
; π2 =

(
ηC
uC

)
; π2 = uC

and consequently (d3) holds.
It remains only to demonstrate naturality of d and adherence to the chain

rule condition. For naturality, consider a map f : C //D in C; naturality of
d is equivalent to the commutativity of the following square:

SC SC ⊕ (SC ⊗ C)

 1
dSC


//SC

SD

Sf

��

SC ⊕ (SC ⊗ C)

SD ⊕ (SD ⊗D)

Sf⊕(Sf⊗f)

��
SD SD ⊕ (SD ⊗D) 1

dSD


//

Since each morphism in the square is an algebra morphism, commutativity of
this square may be demonstrated by showing that the square is commutative
when preceded by ηC : C // SC. By naturality of η and definition of dD
we have on the left:

ηC ;Sf ;

(
1
dSD

)
= f ; ηD;

(
1
dSD

)
= f ;

(
ηD
uD

)
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By naturality of η and u and by definition of d we have on the right:

ηC ;

(
1
dSC

)
;Sf ⊕ (Sf ⊗ f) =

(
ηC
uSC

)
;Sf ⊕ (Sf ⊗ f)

=

(
ηC ;Sf

uSC ;Sf ⊗ f

)
= f ;

(
ηD
uD

)
and so naturality of d is established.

To show that d adheres to the chain rule, it is necessary and sufficient to
show that the following square commutes

S2C SC
µC //S2C

S2C ⊗ SC

dS2C

��

SC

SC ⊗ C

dSC

��
S2C ⊗ SC SC ⊗ SC ⊗ C

µC⊗dSC
// SC ⊗ SC ⊗ C SC ⊗ C

mSC⊗1
//

When preceded by ηSC , commutativity of the resultant diagram is es-
tablished by a routine verification. In order to show that this verification
suffices, it must be shown that both paths in the above diagram yield deriva-
tions when preceded by ηSC ; the correspondence between derivations and
morphisms of algebras then enables the utilization of the universal property
of η to deduce that the associated morphisms of algebras are equal.

Since µC is an associative algebra homomorphism, µC ; dSC is a deriva-
tion with respect to the S2C-module structure that SC ⊗ C acquires by re-
striction of scalars along µC . As for the counterclockwise composite, the
following computation demonstrates that it adheres to the Leibniz rule

mS2C ; dS2C ;µC ⊗ dSC ;mSC ⊗ 1

= (1⊗ dS2C + c; 1⊗ dS2C);mS2C ⊗ 1;µC ⊗ dSC ;mSC ⊗ 1

= (1⊗ dS2C + c; 1⊗ dS2C);µC ⊗ µC ⊗ 1;mSC ⊗ 1; 1⊗ dSC ;mSC ⊗ 1

= (1⊗ (dS2C ;µC ⊗ dSC) + c; 1⊗ (dS2C ;µC ⊗ dSC));µC ⊗ 1⊗ 1⊗ 1;

mSC ⊗ 1⊗ 1;mSC ⊗ 1

= (1⊗ (dS2C ;µC ⊗ dSC ;mSC ⊗ 1) + c; 1⊗ (dS2C ;µC ⊗ dSC ;mSC ⊗ 1));

µC ⊗ 1⊗ 1;mSC ⊗ 1
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That the counterclockwise composite is 0 when preceded by eS2C is imme-
diate, and the proof is complete.

5. Beck T -derivations

We now explore what we consider to be the main contribution of this pa-
per. The first step in this project is the following theorem, due to the second
author. It lifts the correspondence between derivations and algebra homo-
morphisms to the level of T -algebras. Throughout this section, we assume
that C has finite coproducts.

Theorem 5.1. Let C be a codifferential category with finite coproducts. Let
(A, a) be a T -algebra and M a module over its associated algebra. Then
(A ⊕M,β) is a T -algebra with β : T (A ⊕M) → A ⊕M induced by the
following maps.

β1 : T (A⊕M)
Tπ1
−−−−→ TA

a
−−−−→ A

β2 : T (A⊕M)
d
−−−→ T (A⊕M)⊗ (A⊕M)

T (π1)⊗π2
−−−−→ T (A)⊗M

a⊗1
−−−→ A⊗M

•
−−−→M

Proof. The following four diagrams capture all of the necessary equations.

T 2A TA
Ta

//T 2A

TA

µ

� �

TA

A

a

��
TA Aa

//T (A⊕M) TA
Tπ1

//

T 2(A⊕M)

T (A⊕M)

µ

��

T 2(A⊕M)

T 2A

T 2π1
" "DDDDDDDDDDDDD

T 2(A⊕M)

TA

Tβ1

( (RRRRRRRRRRRRRRRRRRRRRRRR
T 2(A⊕M) T (A⊕M)

Tβ // T (A⊕M)

TA

Tπ1

� �

T (A⊕M)

A

β1

||
T (A⊕M) A

β1

9 9

A⊕M

A

π1

��

A⊕M T (A⊕M)
η //

A TA
η //

T (A⊕M)

TA

Tπ1

��
A

A

1

��2
2222222222 TA

A

a

�������������

A⊕M

A

π1

* *

T (A⊕M)

A

β1

tt

(nat µ)
(T alg)

(nat η)
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(T (A⊕M))⊗2 ⊗ (A⊕M) (TA)⊗2 ⊗MTπ1⊗Tπ1⊗π2// (TA)⊗2 ⊗M A⊗2 ⊗Ma⊗a⊗1// A⊗2 ⊗M A⊗M1⊗• //(T (A⊕M))⊗2 ⊗ (A⊕M)

T (A⊕M)⊗ (A⊕M)

mT (A⊕M)⊗1

� �

(TA)⊗2 ⊗M

TA⊗M

mTA⊗1

��

A⊗2 ⊗M

A⊗M

mA⊗1

��

A⊗M

M

•

��
T (A⊕M)⊗ (A⊕M) TA⊗M

Tπ1⊗π2
/ / TA⊗M A⊗M

a⊗1
/ / A⊗M M•

/ /T (A⊕M) T (A⊕M)⊗ (A⊕M)d / /

T 2(A⊕M)⊗ T (A⊕M)

(T (A⊕M))⊗2 ⊗ (A⊕M)

µ⊗d

� �

T 2A⊗ T (A⊕M)⊗ (A⊕M)

(TA)⊗2 ⊗M

µ⊗Tπ1⊗π2

� �

T 2(A⊕M)⊗ T (A⊕M)

T 2A⊗ T (A⊕M)⊗ (A⊕M)

T 2π1⊗d **UUUUUUUUUUUUUUUUUUUU

(TA)⊗2 ⊗M

A⊗2 ⊗M

a⊗a⊗1

��

T 2A⊗ T (A⊕M)⊗ (A⊕M)

(TA)⊗2 ⊗M

Ta⊗Tπ1⊗π2

& &NNNNNNNNNNNNN

T 2(A⊕M)⊗ T (A⊕M)

TA⊗M
Tβ1⊗β2 - -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\T 2(A⊕M)⊗ T (A⊕M) T (A⊕M)⊗ (A⊕M)

Tβ⊗β / / T (A⊕M)⊗ (A⊕M)

TA⊗M
Tπ1⊗π2

��
TA⊗M

A⊗M

a⊗1

� �

T (A⊕M)

d

��

T (A⊕M)

M

β2

��

T 2(A⊕M) T (A⊕M)
Tβ / /T 2(A⊕M)

T (A⊕M)

µ

��

T 2(A⊕M)

T 2(A⊕M)⊗ T (A⊕M)

d

&&LLLLLLLLLLLLLLLL

T (A⊕M) M

β2

44

(nat d)

(chain rule)

(alg hom) (alg hom) (act)

(nat µ) (T alg)

†

In the third diagram, the cell marked † commutes by the definitions of β1 and
β2.

T (A⊕M)⊗ (A⊕M) TA⊗MTπ1⊗π2 //

k ⊗ (A⊕M)

T (A⊕M)⊗ (A⊕M)

e⊗1

OO

k ⊗ (A⊕M) k ⊗ (A⊕M)
1

// k ⊗ (A⊕M)

TA⊗M

e⊗π2

OOT (A⊕M) T (A⊕M)⊗ (A⊕M)
d //

A⊕M

T (A⊕M)

η

OO

A⊕M k ⊗ (A⊕M)
∼= //

TA⊗M A⊗Ma⊗1 //

k ⊗ (A⊕M) k ⊗ (A⊕M)
1
// k ⊗ (A⊕M)

A⊗M

e⊗π2

OOA⊗M M
• //

k ⊗ (A⊕M) A⊕M
∼= // A⊕M

M

π2

OOT (A⊕M) M

β2

( (

A⊕M A⊕M

1

66

(Tπ1 alg hom) (a alg hom)

Definition 5.2. We denote this T -algebra by W (A,M) = 〈A⊕M,βAM〉.

The following result is straightforward.
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Lemma 5.3. Let (A, a) be a T -algebra, and let M be an A-module. Then
π1 : A⊕M → A is a map of T -algebras, whereA⊕M is given the T -algebra
structure just defined.

We also note that the algebra associated to this T -algebra under the
process of Theorem 3.12 coincides with the algebra structure associated to
A⊕M in Remark 3.6.

Proposition 5.4. Let (A, a) be a T -algebra in C and let M be an A-module.
Then the commutative algebra structure carried by the T -algebra A ⊕M
coincides with the commutative algebra structure on A ⊕ M described in
Remark 3.6.

Proof. Since βAM is an algebra homomorphism the multiplication associ-
ated to W (A,M) is

mW (A,M) = ηA⊕M ⊗ ηA⊕M ;mT (A⊕M); β
AM

Since π1 : W (A,M) // A is a T -homomorphism and hence an algebra
homomorphism, mW (A,M); π1 = π1 ⊗ π1;mA and so the first component of
mW (A,M) is given as in Remark 3.6.

The second component is the composite

η ⊗ η;mT (A⊕M); dT (A⊕M);Tπ1 ⊗ π2; a⊗ 1; •

Calculate as follows:

ηA⊕M ⊗ ηA⊕M ;mT (A⊕M); dT (A⊕M);Tπ1 ⊗ π2; a⊗ 1; •
= ηA⊕M ⊗ ηA⊕M ; (1⊗ dT (A⊕M) + c; 1⊗ dT (A⊕M));

mT (A⊕M) ⊗ 1;Sπ1 ⊗ π2; a⊗ 1; •
= (ηA⊕M ⊗ (ηA⊕M ; dT (A⊕M)) + c; ηA⊕M ⊗ (ηA⊕M ; dA⊕M));

(Tπ1; a)⊗ (Tπ1; a)⊗ π2;mA ⊗ 1; •
= (1⊗ (ηA⊕M ; dA⊕M) + c; 1⊗ (ηA⊕M ; dA⊕M));

(π1; ηA; a)⊗ (Tπ1; a)⊗ π2;mA ⊗ 1; •
= (1 + c); 1⊗ eA⊕M ⊗ 1;π1 ⊗ (Tπ1; a)⊗ π2;mA ⊗ 1; •
= (1 + c);π1 ⊗ π2; 1⊗ eA ⊗ 1;mA ⊗ 1; •
= (1 + c);π1 ⊗ π2; •
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We will need the following technical lemmas concerning the T -algebra
W (A,M).

Lemma 5.5. Let (A, a) be a T -algebra, and let M and N be A-modules.
Suppose h : M → N is an A-module map. Then A⊕ h : A⊕M → A⊕N
is a T -algebra map W (A,M)→ W (A,N).

Proof. The result follows from the commutativity of the following two dia-
grams.

T (A⊕M) T (A⊕N)
T (1A⊕h) //

TA

Tπ1

��
TA

1TA
//

Tπ1

��

A

a

��
A

a

��

1A
//

βAM1

##

βAN1

{{

T (A⊕M) T (A⊕N)
T (1A⊕h) //

T (A⊕M)⊗ (A⊕M)

d

� �
T (A⊕N)⊗ (A⊕N)

d

� �
T (1A⊕h)⊗(1A⊕h) //

TA⊗M
Tπ1⊗π2

� �
TA⊗N

Tπ1⊗π2
� �1TA⊗h //

A⊗M
a⊗1M

� �
A⊗N

a⊗1N
��1A⊗h //

M

•M
��

N

•N
��

h
//

βAM2

& &

βAN2

xx

The above calculations allow us to conclude:
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Proposition 5.6. Given a T -algebra A, the above construction defines a
functor:

W (A,−) : A-Mod −→ CT/A

Here, CT is the category of T -algebras and CT/A is the slice category over
A.

It is the above series of observations that allows us to define a generalized
notion of derivation depending on the given codifferential structure of C.

Definition 5.7.

• Let (A, a) be a T -algebra. LetM be anA-module. A Beck T -derivation
for A valued in M is a T -algebra map

A−−−−→W (A,M) in CT/A

in the slice category CT/A.

• A T -derivation is a morphism ∂ : A→M such that

〈1, ∂〉 : A−−−−→ A⊕M

is a T -algebra homomorphism A→ W (A,M).

Remark 5.8. Under the assumptions of Remark 3.1, suppose we are given
A ∈ CS where S is the symmetric algebra monad andM ∈ A−Mod. Then a
morphism ∂ : A //M in C is an S-derivation if and only if ∂ is a derivation.

Remark 5.9. Evidently, the two notions of Beck T -derivation and T -deriva-
tion are in bijective correspondence and we will use the two interchangeably.

We now give several equations for a map ∂ : A → M which are equiva-
lent to ∂ being a T -derivation.

Proposition 5.10. Let (A, a) be a T -algebra, and let M be an A-module. A
morphism ∂ : A→M is a T -derivation if and only if the following diagram
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commutes.

TA T (A⊕M)

T

1A
∂


//

A

a
��

M

β2
��

∂
//

Proof. Since A ⊕M is a product, the requirement that 〈1A, ∂〉 : A → A ⊕
M be a T -algebra homomorphism amounts to two equations, the second of
which is expressed by the above diagram whereas the first commutes by the
following calculation

TA T (A⊕M)

T

1A
∂


//

A

a

��

TA

Tπ1
��

A

a
��

1TA ((QQQQQQQQQQQQQQQ

1A
//

Theorem 5.11. Let (A, a) be a T -algebra, and let M be an A-module. A
morphism ∂ : A→M is a T -derivation if and only if

TA⊗ A A⊗M
a⊗∂

// M•M
//

TA

d
��

A

∂
��

a //

commutes.
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Proof. Calculate as follows:

T (A⊕M) T (A⊕M)⊗ (A⊕M)
d
// T (A⊕M)⊗ (A⊕M) TA⊗M

Tπ1⊗π2
// TA⊗M A⊗M

a⊗1M
// A⊗M M

•M //

TA

T (A⊕M)

T

1A
∂


� �

TA TA⊗ Ad // TA⊗ A

T

1A
∂

⊗
1A
∂


� �

TA⊗ A

TA⊗M

1TA⊗∂

% %LLLLLLLLLLLLLLLLLLLLLLTA⊗ A

A⊗M

a⊗∂

) )SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

T (A⊕M) M

β2

44

Thus the result follows from the previous proposition.

Whereas we have defined the notion of T -derivation in the setting of a
given codifferential category, Theorem 5.11 furnishes an equivalent defini-
tion that is applicable more generally, as follows.

Definition 5.12. Let C be a symmetric monoidal category equipped with an
algebra modality T and arbitrary morphisms dTC : TC → TC⊗C (C ∈ C).
Given a T -algebra A and an A-module M , a T -derivation is a morphism
∂ : A→M such that the diagram of Theorem 5.11 commutes.

The new understanding of derivations captured by the above propositions
allows us, among other things, to reexamine the definition of (co)differential
categories, as seen by the following:

Theorem 5.13. Let C be a symmetric monoidal category equipped with an
algebra modality T and arbitrary morphisms dTC : TC → TC⊗C (C ∈ C).
The Chain Rule equation for d in the definition of codifferential category
is equivalent to the statement that each component dTC is a T -derivation,
where TC ⊗ C is viewed as the free TC-module generated by C.

Proof.

T 2C ⊗ TC TC ⊗ TC ⊗ C
µ⊗dTC

// TC ⊗ C
mTC⊗1C

//

T 2C

dT2C
� �

TC

dTC
� �

µ //
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This equation is both the chain rule and the statement that dTC is a deriva-
tion.

5.1 Universal Beck T -derivations

Definition 5.14. Given a T -algebra A, a module of Kähler T -differentials
is an A-module, denoted ΩT

A, equipped with a universal T -derivation on A.
This can be expressed in either of the following two equivalent ways:

• A T -derivation d : A→ ΩT
A such that for all T -derivations ∂ : A→M ,

there is a unique A-linear map ∂̂ : ΩT
A →M such that d; ∂̂ = ∂.

• A morphism g : A → W (A,ΩT
A) in CT/A such that for each map

∂ : A → W (A,M) in CT/A, there is a unique A-linear homomor-
phism ∂̂ : ΩT

A →M such that g;W (A, ∂̂) = ∂.

We now explore the existence of universal derivations from this new T -
perspective.

Theorem 5.15. Let C be a codifferential category, and let C be an object of
C. Then dTC : TC → T (C)⊗ C is a universal T -derivation.

Proof. Since dTC satisfies the chain rule, it is a T -derivation. Since T (C)⊗C
is the free T (C)-module on C, given any T -derivation ∂ : T (C) // M
there exists a unique T (C)-linear morphism ∂# : TC ⊗ C //M such that
u
T (C)
C ; ∂# = ηC ; ∂. Hence by axiom (d3), the two morphisms from C to M

in the following diagram are equal:

T (C) T (C)⊗ CdTC // T (C)⊗ C

M

∂#

��

T (C)

M

∂
$$JJJJJJJJJJJJ

C T (C)
ηC //C

Equivalently,
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TC W (TC, TC ⊗ C)

 1
dTC


//W (TC, TC ⊗ C)

W (TC,M)

W (TC,∂#)

��

TC

W (TC,M)

1
∂

 ''OOOOOOOOOOOOOOO

commutes when preceded by ηC . Since this is a diagram of T -algebra ho-
momorphisms, it commutes if and only if it commutes when preceded by
ηC

We now address the issue of extending the existence of universal T -
derivations to arbitrary T -algebras.

Proposition 5.16. Let (A, a) and (B, b) be T -algebras and M a B-module.
Let g : A → B be a T -algebra homomorphism. Then g ⊕M : A ⊕M →
B ⊕M is a map of T -algebras W (A,MA) → W (B,M), where MA is M
with evident induced action of A.

Proof. The result follows from the commutativity of the following two dia-
grams.

T (A⊕M) T (B ⊕M)
T (g⊕1M ) //

TA

Tπ1

��
TB

Tg
//

Tπ1

��

A

a

��
B

b

��

g
//

βAM1

##

βBM1

{{
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T (A⊕M) T (B ⊕M)
T (g⊕1M ) //

T (A⊕M)⊗ (A⊕M)

d

� �
T (B ⊕M)⊗ (B ⊕M)

d

� �
T (g⊕1M )⊗(g⊕1M ) //

TA⊗M
Tπ1⊗π2

��
TB ⊗M

Tπ1⊗π2
� �Tg⊗1M //

A⊗M
a⊗1M

� �
B ⊗M

b⊗1M
��g⊗1M //

M

•M
��

M

•M
� �

1M
//

βAM2

&&

βBM2

xx

Proposition 5.17. With assumptions as in previous proposition, let ∂ : A→
M be such that 〈g, ∂〉 : A → W (B,M) is a map of T -algebras. Then
∂ : A→MA is a T -derivation.

Proof. This follows from the following calculation, which uses that g ⊕ 1M
is a T -algebra homomorphism by the previous proposition.

TA T (A⊕M)

T

1A
∂


//TA

A

a

� �

T (A⊕M)

M

βAM2

� �
A M

∂
//

TA

T (B ⊕M)T

g
∂

 ) )SSSSSSSSSSSSS T (A⊕M)

T (B ⊕M)
T (g⊕1M )uukkkkkkkkkk

T (B ⊕M)

M

βBM2� �

A

M
∂

5 5kkkkkkkkkkkkkkkkk

M

M

1M

) )SSSSSSSSSSSSSSSSS
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Definition 5.18. Let Alg be the category of commutative algebras in a cod-
ifferential category C and let (−)−Mod : Algop → Cat be the usual functor
associating to an algebra its category of representations. The functor acts on
morphisms by the usual restriction of scalars.

Composing with the functor F op : (CT )op → Algop we obtain a functor
H : CT op → Cat. When we apply the usual Grothendieck construction to
this functor, we obtain a category fibred over CT which we call ModT . Ob-
jects are pairs (A,M) with A a T -algebra and M an A-module. Arrows
are pairs (g, h) : (A,M) → (B,N) with g : A → B a T -algebra map and
h : M → NA a map of A-modules. Here NA is the restriction of scalars of
N along g (Remark 3.6).

Theorem 5.19. There is a functor W : ModT → (CT )→ that makes the
following diagram commute:

ModT (CT )→W //ModT

CT
��???????? (CT )→

CT
cod����������

The functor is defined by:

On objects: (A,M) 7→ [W (A,M)
π1
−−−−→ A]

On arrows: (A,M)
(g,h)

−−−−→ (B,N) 7→ the following:

W (A,M) W (B,N)
W (h,g):=g⊕h //W (A,M)

A

π1

��

W (B,N)

B

π1

��
A Bg

//

This functor is fibred over the base category CT .

Proof. We evidently have that (1⊕h); (g⊕1) = g⊕h is a map of T -algebras
by Lemma 5.5 and Proposition 5.16, and so we have a functor making the
triangle commute.
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Now given a T -algebra homomorphism g : A → B and a B-module N ,
we get a cartesian arrow over g in ModT as (g, 1N) : (A,NA) → (B,N). It
suffices to show that

W (A,NA) W (B,N)
W (g,1N ) //W (A,NA)

A

π1

��

W (B,N)

B

π1

��
A Bg

//

is a pullback. Given f : Q → A and q : Q → W (B,N) in CT such that
f ; g = q; π1, we find that q = 〈f ; g, ∂〉 for some ∂ : Q → N . By Lemma
5.17, we conclude ∂ : Q → NQ is a T -derivation. So 〈1Q, ∂〉 is a T -algebra
map and thus 〈1Q, ∂〉; f ⊕ 1 = 〈f, ∂〉 : Q→ W (A,NA) is a T -algebra map.
The result now follows.

Definition 5.20. Let A be a T -algebra and (B,M) in ModT . Let
Der(A, (B,M)) be the set of all pairs (g, ∂) with g : A → B a T -algebra
map and ∂ : A→MA a T -derivation.

We now record two related results which are straightforward.

Proposition 5.21. The operation Der of the previous definition is functorial
in both variables and forms part of a natural isomorphism:

CT (A,W (B,M)) ∼= Der(A, (B,M))

This result extends to the slice category in a straightforward way.

Proposition 5.22. Given a T -algebra map g : A→ B, we have the following
natural isomorphism:

CT/B(A,W (B,M)) ∼= Der(A,MA)

We now present the main result of the section, demonstrating that the
construction of Kähler modules for T -algebras lifts to the setting of T -
derivations.
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Theorem 5.23. Suppose C has reflexive coequalizers, and that these are pre-
served by ⊗ in each variable. Then every T -algebra (A, a) has a universal
T -derivation.

Proof. Let g : A // B be a morphism of T -algebras, and suppose that
universal T -derivations dA : A //ΩT

A, dB : B //ΩT
B exist. Then there is a

unique A-linear morphism ΩT
g such that

A Bg
//A

ΩT
A

dA

OO

B

ΩT
B

dB

OO
ΩT
A ΩT

B

ΩTg //

commutes, where ΩT
B is considered as an A-module by restriction of scalars

along g. This follows from the observation that g; dB : A // ΩT
B is a T -

derivation.

Lemma 5.24. Suppose we are given morphisms in the category Alg as fol-
lows which constitute a reflexive coequalizer in C

A1 A2

f //A1 A2g
// A2 A3

k // A3

Let Mi be an Ai-module for i = 1, 2, and let φ : M1
// f ∗(M2) and

γ : M1
// g∗(M2) be A1-linear, where f ∗(M2) and g∗(M2) denote M2

equipped with the A1-module structures induced by f and g, respectively.
Suppose

M1 M2

φ //M1 M2γ
//M2 M3

κ //M3

is a reflexive coequalizer in C. Then there is a unique A3-module structure
on M3 such that κ : M2

// k∗(M3) is A2-linear.

Proof. Since ⊗ preserves reflexive coequalizers, the rows and columns of
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the following diagram are reflexive coequalizers:

A1 ⊗M1 A1 ⊗M2

1⊗φ //A1 ⊗M1 A1 ⊗M2
1⊗γ

// A1 ⊗M2 A1 ⊗M3
1⊗κ //A1 ⊗M1

A2 ⊗M1

g⊗1

��

A1 ⊗M1

A2 ⊗M1

f⊗1

��
A2 ⊗M1

A3 ⊗M1

k⊗1

��

A2 ⊗M1 A2 ⊗M2

1⊗φ //A2 ⊗M1 A2 ⊗M2
1⊗γ

// A2 ⊗M2 A2 ⊗M3
1⊗κ //

A1 ⊗M2

A2 ⊗M2

g⊗1

��

A1 ⊗M2

A2 ⊗M1

f⊗1

��
A2 ⊗M2

A3 ⊗M2

k⊗1

��
A3 ⊗M1 A3 ⊗M2

1⊗φ //A3 ⊗M1 A3 ⊗M2
1⊗γ

// A3 ⊗M2 A3 ⊗M3
1⊗κ //

A1 ⊗M3

A2 ⊗M3

g⊗1

��

A1 ⊗M3

A2 ⊗M3

f⊗1

��
A2 ⊗M3

A3 ⊗M3

k⊗1

��
A3 ⊗M3

By Johnstone’s lemma, Lemma 0.17, p. 4 [16], it follows that the top row of

A1 ⊗M1 A2 ⊗M2

f⊗φ //A1 ⊗M1 A2 ⊗M2
g⊗γ

// A2 ⊗M2 A3 ⊗M3
k⊗κ //

M1 M2

φ //M1 M2γ
//M2 M3

κ //

A1 ⊗M1

M1

•1

��

A2 ⊗M2

M2

•2

��

A3 ⊗M3

M3

•3

���
�
�
�
�A3 ⊗M3

M3

is also a reflexive coequalizer. We have that

f ⊗ φ; •2;κ = 1A1 ⊗ φ; f ⊗ 1M2 ; •2;κ

= •1;φ;κ

= •1; γ;κ

= 1A1 ⊗ γ; g ⊗ 1M2 ; •2;κ

= g ⊗ γ; •2;κ

It follows that •3 : A3⊗M3
//M3 is constructed as the unique map making

the right-hand square in the above diagram commute. Hence it suffices to
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show that •3 is anA3-module structure map onM3. Again using Johnstone’s
Lemma, the top row of the following diagram is a reflexive coequalizer

A1 ⊗ A1 ⊗M1 A2 ⊗ A2 ⊗M2

f⊗f⊗φ //A1 ⊗ A1 ⊗M1 A2 ⊗ A2 ⊗M2
g⊗g⊗γ

// A2 ⊗ A2 ⊗M2 A3 ⊗ A3 ⊗M3
k⊗k⊗κ //

M1 M2

φ //M1 M2γ
//M2 M3

κ //

A1 ⊗ A1 ⊗M1

M1

1⊗•1;•1=mA1
⊗1;•1

��

A2 ⊗ A2 ⊗M2

M2

1⊗•2;•2=mA2
⊗1;•2

��

A3 ⊗ A3 ⊗M3

M3

���
�
�
�
�A3 ⊗ A3 ⊗M3

M3

It follows that there is a unique map A3⊗A3⊗M3
//M3 making the right-

hand square commute. Since both 1A3 ⊗ •3; •3 and mA3 ⊗ 1M3 ; •3 satisfy
this, the result follows.

Continuing with the proof of our theorem, since µA and Ta are T -algebra
morphisms, they induce maps ΩT

µ and ΩT
Ta from ΩT

T 2A to ΩT
TA, which exist by

Theorem 4.14. Furthermore, there exists a map ΩT
Tη induced by Tη, which

splits both of these maps. Consider the following diagram. We define dA as
the unique morphism in C such that a; dA = dTA; ΩT

a , which exists since a
is the coequalizer of µ and Ta. Here we take ΩT

a : ΩT
TA

// ΩT
A to be the

coequalizer.

ΩT
T 2A ΩT

TA

ΩTµ //ΩT
T 2A ΩT

TA
ΩTTa

// ΩT
TA ΩT

A

ΩTa //

T 2A TA
µ //T 2A TA
Ta

// TA A
a //T 2A

ΩT
T 2A

dT2A

OO

TA

ΩT
TA

dTA

OO

A

ΩT
A

dA

OO�
�
�
�
�

A

ΩT
A

One readily verifies that the preceding lemma applies so that ΩT
A is equip-

ped with an A-module structure, which makes ΩT
a TA-linear. We find that

dA = ηA; dTA; ΩT
a since a; ηA; dTA; ΩT

a = dTA; ΩT
a = a; dA, where the

first equation is established through a short computation using the fact that
a; ηA = ηTA;Ta.
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Since
TA A

a //TA

W (TA,ΩT
TA)

1TA
dTA


��

W (TA,ΩT
TA) W (A,ΩT

A)
W (a,ΩTa )

//

A

W (A,ΩT
A)

1A
dA


��

commutes, it follows that the right-hand map is a T -algebra homomorphism
and therefore that dA is a T -derivation. Indeed, the counterclockwise com-
posite is evidently a T -algebra homomorphism, and since a is a T -algebra
homomorphism that is split epi in C, the fact that the right-hand map is a
T -algebra homomorphism follows readily.

Now suppose that ∂ : A // M is a T -derivation. Then a; ∂ is a T -
derivation, which must factor through dTA via a morphism of TA-modules
∂′. Since

dT 2A; ΩT
Ta; ∂

′ = Ta; dTA; ∂′

= Ta; a; ∂

= µ; a; ∂

= µ; dTA; ∂′

= dT 2A; ΩT
µ ; ∂′

it follows from the universal property of dT 2A that ΩT
Ta; ∂

′ = ΩT
µ ; ∂′, so that

∂′ factors uniquely through ΩT
a via a map ∂# : ΩT

A
//M . Since a ⊗ ΩT

a is
a coequalizer, the following computation shows that this map is A-linear:

a⊗ ΩT
a ; •A; ∂# = •TA; ΩT

a ; ∂#

= •TA; ∂′

= 1TA ⊗ ∂′; a⊗ 1A; •A
= a⊗ ΩT

a ; 1A ⊗ ∂#; •A
Finally, we show that ∂# is the unique A-linear morphism, which makes

A ΩA
dA //A

M

∂

��??????????? ΩA

M

∂#

��

BLUTE, LUCYSHYN-WRIGHT & O'NEILL - DERIVATIONS IN CODIFFERENTIAL CATEGORIES

- 273 -



commute. First, observe that a; dA; ∂# = dTA; ΩT
a ; ∂# = dTA; ∂′ = a; ∂

so that this does indeed commute after cancellation of a. Now suppose that
there exists another A-linear map k : ΩT

A
//M such that dA; k = ∂. Then

dTA; ΩT
a ; k = a; dA; k

= a; ∂

= dTA; ∂′

= dTA; ΩT
a ; ∂#

The universal property of dTA dictates that ΩT
a ; k = ΩT

a ; ∂# and therefore
k = ∂# and the proof is complete.

6. An alternative definition of (co)differential category

Realization of the importance of the symmetric algebra in the analysis of
Kähler categories also has the benefit that it leads to a succinct alternative
definition of codifferential category as follows.

Theorem 6.1. Let C be an additive symmetric monoidal category for which
the symmetric algebra monad S on C exists. Assume that C has reflexive
coequalizers and that these are preserved by the tensor product in each vari-
able. Then to equip C with the structure of a codifferential category is, equiv-
alently, to equip C with

1. a monad T ,

2. a monad morphism λ : S → T , and

3. a transformation dTC : TC → TC ⊗ C natural in C ∈ C

such that

(a) the diagram

SC

dSC
��

λC // TC

dTC
��

SC ⊗ C λC⊗1C// TC ⊗ C
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commutes for each C ∈ C, where dSC is the deriving transformation
carried by S, and

(b) the Chain Rule axiom of Definition 3.9 holds, i.e. each dTC is a T -
derivation.

Proof. By Remark 4.1, the category of commutative algebras in C is monadic
over C and so can be identified with the category of S-algebras. By Theorem
4.2, we know that algebra modalities on C are in bijective correspondence
with pairs (T, λ) consisting of a monad T on C and a monad morphism
λ : S → T . Suppose we are given such a pair (T, λ), together with a natural
tranformation dT (−) satisfying (a) and (b).

Claim: Any T -derivation ∂ : A → M is, in particular, an S-
derivation, equivalently by Remark 5.8, a derivation in the ordi-
nary sense (Definition 3.5).

To prove this claim, observe that the following diagram commutes, by
(a) and Definition 5.12, where a is the given T -algebra structure on A.

SA

dSA
��

λA // TA

dTA
� �

a // A

∂
��

SA⊗ A
λA⊗1

// TA⊗ A
a⊗∂

// A⊗M •
//M

But the upper row is the S-algebra structure acquired by A via Theorem 4.2,
so by Definition 5.12 the Claim is proved.

We have assumed that d satisfies the Chain Rule axiom, equivalently that
each component dTC : TC → TC ⊗C is a T -derivation (Theorem 5.13), so
by the Claim, dTC is an S-derivation, equivalently, an ordinary derivation.
Hence the axioms (d1) and (d2) of Definition 3.9 hold, since together they
assert exactly that each component dTC is an ordinary derivation. We also
know that axiom (d4) (the Chain Rule) holds, by assumption (b), so it suf-
fices to prove that (d3) holds. Indeed, (d3) asserts that the periphery of the
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following diagram commutes

C
o
��

ηTC

))

ηSC

// SC

dSC
��

λC
// TC

dTC
��

k ⊗ C e⊗1 //

e⊗1

55SC ⊗ C λC⊗1 // TC ⊗ C

(1)

where ηT and ηS are the units of T and S, respectively. The upper cell
commutes since λ is a monad morphism, and the lower cell commutes since
λC is an S-homomorphism, i.e a homomorphism of algebras. The leftmost
cell commutes since C is a codifferential category when equipped with S
(4.4), and the rightmost cell commutes by (a).

Conversely, let us instead assume that (C, T, d) is a codifferential cate-
gory. Then since axiom (d3) holds, the periphery of the diagram (1) com-
mutes, but we also know that the upper, lower, and leftmost cells in (1)
commute. Hence, whereas our aim is to show that (a) holds, i.e., that the
rightmost square in (1) commutes, we know that this square ‘commutes
when preceded by ηSC’. But by axioms (d1) and (d2), dTC is an ordinary
derivation, equivalently, an S-derivation (3.5), so the composite λC ; dTC is
an S-derivation since λC is an algebra map. Also, dSC is an S-derivation,
and one readily checks that λC ⊗ 1 : SC ⊗ C → TC ⊗ C is a morphism
of SC-modules (where TC ⊗ C carries the SC-module structure that it ac-
quires by restriction of scalars along the algebra homomorphism λC). Hence
the composite dSC ;λC ⊗ 1 is an S-derivation. Therefore both composites in
the square in question are S-derivations and so are uniquely determined by
their composites with ηSC : C → SC, which are equal.

An advantage of this definition is that it immediately paves the way for
variations of the theory of differential categories and differential linear logic.
For example, to obtain noncommutative variants, one can replace the sym-
metric algebra in the above construction with a different endofunctor.
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