
Résumé. Suite au premier article de cette série, on étudie ici les limites
multiples dans les catégories multiples chirales (de dimension infinie) - une
forme faible partiellement laxe ayant des interchangeurs dirigés.
Après avoir défini les limites multiples, nous prouvons qu’elles sont en-
gendrées par les produits, égalisateurs et tabulateurs multiples - tous étant
supposés être respectés par les oprations de faces et dégénérescence. Les
tabulateurs sont donc les limites supérieures de base, comme dans le cas des
catégories doubles.
On considère aussi les intercatégories, une forme plus laxe de catégorie
multiple étudiée dans deux articles précédents. Dans ce cadre plus général
les limites de base ci-dessus peuvent encore être définies, mais une théorie
générale des limites multiples n’est pas développée ici.
Abstract. Continuing our first paper in this series, we study multiple limits
in infinite-dimensional chiral multiple categories - a weak, partially lax form
with directed interchangers.
After defining multiple limits, we prove that all of them can be constructed
from (multiple) products, equalisers and tabulators - all of them assumed to
be respected by faces and degeneracies. Tabulators appear thus to be the basic
higher limits, as was already the case for double categories.
Intercategories, a laxer form of multiple category already studied in two pre-
vious papers, are also considered. In this more general setting the basic limits
mentioned above can still be defined, but a general theory of multiple limits
is not developed here.
Keywords. multiple category, double category, cubical set, limit.
Mathematics Subject Classification (2010). 18D05, 55U10, 18A30.

0. Introduction

Strict double and multiple categories were introduced and studied by C.
Ehresmann and A.C. Ehresmann [Eh, BE, EE1, EE2, EE3]. Strict cubical
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categories can be seen as a particular case of multiple categories; their links
with strict ω-categories are made clear in the article [ABS].

The present series studies various ‘forms’ of weak or lax multiple cate-
gories, of finite or infinite dimension. They extend weak double categories
[GP1 - GP4] and weak cubical categories [G1, G2, GP5]. More informa-
tion on literature on higher dimensional category theory can be found in the
Introduction of the first paper [GP8], here referred to as Part I.

Our main framework, a chiral multiple category, is briefly reviewed here,
in Section 1; it is a partially lax multiple category with a strict composition
gf = f +0 g in direction 0 (the transversal direction), weak compositions
x+i y in all positive (or geometric) directions i and directed interchanges for
the i- and j-compositions (for 0 < i < j)

χij : (x+i y)+j (z+i u)→0 (x+j z)+i (y+j u) (ij-interchanger). (1)

Part I also considers a laxer form already studied in two previous papers
[GP6, GP7] for the 3-dimensional case, under the name of ‘intercategory’,
that is particularly powerful: it covers duoidal categories, Gray categories,
Verity double bicategories, monoidal double categories, etc. In this frame-
work, extended in Part I to infinite dimension and recalled here in 1.9, there
are also lower interchangers (τij, µij, δij) where positive degeneracies (i.e.
weak identities) intervene; in particular degeneracies are no longer assumed
to commute, but have a directed interchange for 0 < i < j

τij : ejei(x)→0 eiej(x) (ij-interchanger for identities). (2)

Here we study multiple limits in the setting of chiral multiple categories.
Part of the theory is briefly extended to intercategories, with the problems
discussed below.

Our general definition of multiple limits (in 4.4) requires their preserva-
tion by faces and degeneracies (as in the cubical case [G2]). We prove that
all of them can be constructed from (multiple) products, equalisers and tab-
ulators. The latter appear thus to be the basic higher form of a limit, as was
already the case for double and cubical categories. In particular this holds in
a 2-category, where tabulators (of vertical identities) reduce to cotensors by
the ordinal 2; the previous result agrees thus with Theorem 10 of R. Street
[St1], according to which all weighted limits in a 2-category can be con-
structed from such cotensors and ordinary limits.
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More analytically, Section 1 contains a review of the basic notions of
strict, weak and chiral multiple categories. We also introduce the ‘lift func-
tors’ that will play a relevant role below.

Then, in Section 2, we begin our study of limits with the simple case of
i-level limits, for a positive multi-index i = {i1, ..., in}. In a chiral multi-
ple category A, i-level limits are ordinary limits in the transversal category
tvi(A). When all these exist, and are preserved by faces and degeneracies
between transversal categories, we say that A has level multiple limits. Of
course, multiple products and multiple equalisers generate all of them.

Non-level limits, where the diagram and the limit object are not confined
to a transversal category, are studied in the next two sections. The main
theorems on the construction and preservation of multiple limits are stated
in 3.6 and 4.5, and proved in Section 5.

The main example treated here is the chiral triple category SC(C) of
spans and cospans over a category C with pushouts and pullbacks (see 1.8,
2.1, 2.2, 3.7 and 4.6). One can similarly study multiple limits (and colimits)
in other weak or chiral multiple categories of finite or infinite dimension,
listed at the beginning of Section 2.

The relationship with the double limits of [GP1] are discussed in Sections
2 and 4. In the case of level limits (see 2.6) there are only some variations in
terminology; for non-level limits there is a difference (see 4.7).

The general theory of multiple colimits is dual to that of multiple limits
and is not written down explicitly. Showing this requires some technical ex-
pedient because - as we have seen in Part I - transversal duality turns a (right)
chiral multiple category into a left-hand version where all interchangers have
the opposite direction. Thus, a multiple colimit in the chiral multiple cate-
gory A is a multiple limit in a left chiral multiple category Atv; but it can
also be viewed as a multiple limit in a right chiral multiple category (Atv)−

indexed by the integers 6 0 (reversing indices).
An extension of the general theory of multiple limits from the chiral

case to intercategories presents serious problems, linked to the crucial fact
that degeneracies no longer commute. Yet, the basic limits can be easily
extended.

To begin with, level limits can be defined as here, in 2.2; one should nev-
ertheless be aware that they do not behave so well as in the chiral case: see
the end of Proposition 2.3. Tabulators can also be extended and even acquire
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richer forms: for instance, the total tabulator of a 12-cube gives now rise to
two distinct notions, the e1e2-tabulator and the e2e1-tabulator, as already
shown in Part I, Section 6. However it is not clear what a general definition
of limit should be: in a situation where degeneracies do not commute, even
defining the diagonal functor becomes complicated (see 3.1).

Notation. We follow the notation of Part I; the reference I.2.3 points to its
Subsection 2.3. The two-valued index α (or β) varies in the set 2 = {0, 1},
often written as {−,+}. The symbol ⊂ denotes weak inclusion. Categories
and 2- categories are generally denoted as A,B...; weak double categories
as A,B...; weak or lax multiple categories as A,B...

Acknowledgments. The authors would like to thank the anonymous referee
for a very careful reading of the paper and detailed comments. This work
was partially supported by a research grant of Università di Genova.

1. Multiple categories

After a review of the basic notions of strict multiple categories, taken from
Part I, we introduce the ‘lift functors’ that will play a relevant role in the
study of multiple limits. As it will be made clear later (in 4.8) they are a
surrogate for the path endofunctor of symmetric cubical categories. These
notions are then extended to chiral multiple categories, a weak and partially
lax version introduced in Part I.

1.1 Multiple sets

A multi-index i is a finite set of natural numbers, possibly empty. Writing
i ⊂ N it will be understood that i is finite; writing i = {i1, ..., in} we always
mean that i has n distinct elements, written in the natural order i1 < i2 <
... < in; the integer n is called the dimension of i.

We use the following symbols

ij = ji = i ∪ {j} (for j ∈ N \ i), i|j = i \{j} (for j ∈ i). (3)

A multiple set is a system of sets and mappings X = ((Xi), (∂
α
i ), (ei))

under the following two assumptions.
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(mls.1) For every multi-index i = {i1, ..., in}, Xi is a set whose elements are
called i-cells of X and said to be of dimension n. We write X∗, Xi, Xij ,...
instead of X∅, X{i}, X{i,j},...; thus X∗ is of dimension 0 while X0, X1,... are
of dimension 1.

(mls.2) For j ∈ i and α = ± we have mappings, called faces and degenera-
cies of Xi

∂αj : Xi → Xi|j, ej : Xi|j → Xi, (4)

satisfying the multiple relations

∂αi .∂
β
j = ∂βj .∂

α
i (i 6= j), ei.ej = ej.ei (i 6= j),

∂αi .ej = ej.∂
α
i (i 6= j), ∂αi .ei = id.

(5)

Faces commute and degeneracies commute, but ∂αi and ei do not. These
relations look similar to the cubical ones but much simpler, because here an
index i stands for a particular sort, instead of a mere position, and is never
‘renamed’. Note also that ∂αi acts on Xi if i belongs to the multi-index i
(and cancels it), while ei acts on Xi if i does not belong to i (and inserts it);
therefore ∂αi .∂

β
i and ei.ei make no sense, here: one cannot cancel or insert

twice the same index.
If i = j ∪ k is a disjoint union and α = (α1, ..., αr) is a mapping

k = {k1, ..., kr} → 2, we have an iterated face and an iterated degener-
acy (independent of the order of composition)

∂αk = ∂α1
k1
... ∂αrkr : Xi → Xj, ek = ek1 ... ekr : Xj → Xi. (6)

In particular, the total i-degeneracy is the mapping

ei = ei1 ... ein : X∗ → Xi. (7)

1.2 Multiple categories

We recall the definition, from Part I.

(mlc.1) A multiple category A is, first of all, a multiple set of components
Ai, whose elements are called i-cells. As above, i is any multi-index, i.e. any
finite subset of N, and we write A∗, Ai, Aij ... for A∅, A{i}, A{i,j},...
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(mlc.2) Given two i-cells x, y which are i-consecutive (i.e. ∂+
i (x) = ∂−i (y),

with i ∈ i), the i-composition x +i y is defined and satisfies the following
interactions with faces and degeneracies, for j 6= i

∂−i (x+i y) = ∂−i (x), ∂+
i (x+i y) = ∂+

i (y),

∂αj (x+i y) = ∂αj (x) +i ∂
α
j (y), ej(x+i y) = ej(x) +i ej(y).

(8)

(mlc.3) For every multi-index i containing j we have a category cati,j(A)
with objects in Ai, arrows in Aij , faces ∂αj , identities ej and composition +j .

(mlc.4) For i < j we have

(x+i y) +j (z+i u) = (x+j z) +i (y+j u) (binary ij-interchange), (9)

whenever these composites make sense. (Note that the lower interchanges
are already expressed above.)

More generally, for an ordered pointed set N = (N, 0), an N -indexed
multiple category A has components Ai indexed by (finite) multi-indices i ⊂
N . If N is the ordinal set n = {0, ..., n − 1} we obtain the n-dimensional
version of a multiple category, called an n-tuple category. The 0-, 1- and 2-
dimensional versions amount - respectively - to a set, a category or a double
category.

1.3 Transversal categories

The transversal direction, corresponding to the index i = 0, is treated dif-
ferently in the theory: we think of it as the ‘dynamic’ direction, along which
‘transformation occurs’, while the positive directions i > 0 are viewed as
the ‘static’ or ‘geometric’ ones.

A positive multi-index i = {i1, ..., in} (with n > 0 positive elements) has
an ‘augmented’ multi-index 0i = {0, i1, ..., in}. The transversal category of
i-cubes of A

tvi(A) = cati,0(A), (10)

- has objects in Ai, called i-cubes and viewed as n-dimensional objects,

- has arrows f : x− →0 x
+ in A0i, called i-maps, with domain and codomain

∂α0 (f) = xα,
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- has identities 1x = id(x) = e0(x) : x→0 x and composition gf = f +0 g.

All these items are said to be of degree n (though their dimension may
be n or n + 1): the degree always refers to the number of positive indices.
In all of our examples, 0-composition is realised by the usual composition
of mappings, while the ‘positive’ compositions (also called concatenations)
are often obtained by operations (products, sums, tensor products, pullbacks,
pushouts...) where reversing the order of the operands would only be con-
fusing.

Faces and degeneracies give (ordinary) functors

∂αj : tvij(A)→ tvi(A), ej : tvi(A)→ tvij(A) (j /∈ i, α = ±). (11)

In particular, the unique positive multi-index of degree 0, namely ∅,
gives the category tv∗(A) of objects of A (i.e. ?-cells) and their transversal
maps (i.e. 0-cells).

An i-map f : x→0 y is said to be i-special, or special in direction i ∈ i,
if its i-faces are transversal identities (of i|i-cubes)

∂αi f = e0∂
α
i x = e0∂

α
i y. (12)

This, of course, implies that the i-cubes x, y have the same i-faces. We
say that f is ij-special if it is special in both directions i, j.

1.4 Multiple functors and transversal transformations

A multiple functor F : A→ B between multiple categories is a morphism of
multiple sets F = (Fi) that preserves all the composition laws. For an i-map
f : x→0 y, we use one of the following forms

F (f) : F (x)→0 F (y), F0i(f) : Fi(x)→0 Fi(y),

as may be convenient.
A transversal transformation h : F → G : A → B between multiple

functors consists of a face-consistent family of i-maps in B (its components),
for every positive multi-index i and every i-cube x in A

hx : F (x)→0 G(x) (hix : Fi(x)→0 Gi(x)),

h(∂αj x) = ∂αj (hx) (j ∈ i).
(13)
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The following axioms of naturality and coherence are required:

(trt.1) Gf.hx = hy.Ff (for f : x→0 y in A),

(trt.2) h commutes with positive degeneracies and compositions:

h(ejz) = ej(hz), h(x+j y) = hx+j hy.

where i is a positive multi-index, j ∈ i, x and y are j-consecutive i-cubes, z
is an i|j-cube.

Given two multiple categories A,B we have thus the category Mlc(A,B)
of their multiple functors and transversal transformations. All these form the
2-category Mlc, in an obvious way.

More generally for any ordered pointed set N = (N, 0) we have the
2-category MlcN of N -indexed multiple categories, formed of ordinary cat-
egories MlcN(A,B).

1.5 Lift functors

For a positive integer j there is a j-directed lift functor with values in the
2-category of multiple categories indexed by the pointed set N|j = N \{j}

Qj : Mlc→MlcN|j. (14)

For a multiple category A, the multiple category QjA is - loosely speak-
ing - that part of A that contains the index j, reindexed without it:

(QjA)i = Aij,

(∂αi : (QjA)i → (QjA)i|i) = (∂αi : Aij → Aij|i),

(ei : (QjA)i|i → (QjA)i) = (ei : Aij|i → Aij) (i ∈ i ⊂ N|j),
(15)

and similarly for compositions. In the same way for multiple functors F,G :
A→ B and a transversal transformation h : F → G : A→ B we let

(QjF )i = Fij, (Qjh)i = hij (i ⊂ N|j). (16)

There is also an obvious restriction 2-functorRj : Mlc→MlcN|j , where
the multiple category RjA is that part of A that does not contain the index
j. The j-directed faces and degeneracies of A are not used in QjA, but yield
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three natural transformations, also called faces and degeneracy, with the fol-
lowing components for i ⊂ N|j

Dα
j : Qj → Rj : Mlc→MlcN|j, (Dα

j )i = ∂αj : Aij → Ai,

Ej : Rj → Qj : Mlc→MlcN|j, (Ej)i = ej : Ai → Aij,

Dα
j Ej = id.

(17)

In particular, the objects and ?-maps ofQj(A) are the j-cubes and j-maps
of A, so that

tv∗(Qj(A)) = tvjA, tv∗(Rj(A)) = tv∗A,

tv∗(D
α
j ) = ∂αj : tvjA→ tv∗A, tv∗(Ej) = ej : tv∗A→ tvjA.

(18)

Plainly all the functors Qj commute. By composing n of them in any
order we get an iterated lift functor of degree n, in a positive direction i =
{i1, ..., in}

Qi : Mlc→MlcN|i, Qi(A) = Qin ...Qi1(A),

tv∗(Qi(A)) = tvi(A).
(19)

Again, there are faces and degeneracies (where j /∈ i, h ⊂ N|ij and
hi = h ∪ i)

Dα
j : Qij → RjQi : Mlc→MlcN|ij, (Dα

j )h = ∂αj : Ahij → Ahi,

Ej : RjQi → Qij : Mlc→MlcN|ij, (Ej)h = ej : Ahi → Ahij,
(20)

tv∗(D
α
j ) = ∂αj : tvijA→ tviA, tv∗(Ej) = ej : tviA→ tvijA. (21)

1.6 Transversal invariance

We now extend the notion of ‘horizontal invariance’ of double categories
[GP1], obtaining a property that will be of use for multiple limits and should
be expected of every ‘well formed’ multiple category.

We say that the multiple category A is transversally invariant if its cubes
are ‘transportable’ along transversally invertible maps. Precisely:
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(i) given an i-cube x of degree n and a family of 2n invertible transversal
maps fαi : yαi →0 ∂

α
i x (i ∈ i, α = ±) with consistent positive faces (and

otherwise arbitrary domains yαi )

∂αi (fβj ) = ∂βj (fαi ) (for i 6= j in i), (22)

•
y−j //

y−i

��

  
f−j

f−i

•
h
  

• //

0
��j ��

i

• //

��

x

•

��

•

��

(h = ∂+
i (f−j ) = ∂−j (f+

i )),

• // •

there exists an invertible i-map f : y →0 x (a ‘filler’, as in the Kan extension
property) with positive faces ∂αi f = fαi (and therefore ∂αi y = yαi ).

Of course this property can be equivalently stated for a family of invert-
ible maps gαi : ∂αi x→0 y

α
i .

1.7 Weak multiple categories

Weak multiple categories have been introduced in Part I, Section 3.
Extending weak double categories [GP1 - GP4] and weak triple cate-

gories [GP6, GP7], the basic structure of a weak multiple category A is a
multiple set with compositions in all directions. The composition laws in
direction 0 are categorical and have a strict interchange with the other com-
positions.

On the other hand, the ‘positive’ compositions have transversally in-
vertible comparisons called left i-unitor, right i-unitor, i-associator and ij-
interchanger, for 0 < i < j

λix : (ei∂
−
i x) +i x→0 x,

ρix : x+i (ei∂
+
i x)→0 x,

κi(x, y, z) : x+i (y +i z)→0 (x+i y) +i z,

χij(x, y, z, u) : (x+i y) +j (z +i u)→0 (x+j z) +i (y +j u),

(23)

under coherence conditions listed in I.3.3 and I.3.4.
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Our main infinite-dimensional examples are of cubical type (see I.3.5).
Essentially, this means that components, faces and degeneracies are invari-
ant under renaming positive indices, in the same order. An i-cube can thus
be indexed by [n] = {1, ..., n} and called an n-cube; an i-map can be in-
dexed by 0[n] = {0, 1, ..., n} and called an n-map; again, such items are of
order n and dimension n or n + 1, respectively. (The examples below are
also symmetric, by a natural action of each symmetric group Sn on the sets
of n-cubes and n-maps, permuting the positive directions; see Part I.)

(a) The strict symmetric cubical category ωCub(C) of commutative cubes
over a category C. An n-cube is a functor x : 2n → C (n > 0), where
2 is the ordinal category • → • ; an n-map is a natural transformation of
such functors. Applications of this multiple category (and its truncations) to
algebraic K-theory can be found in [Sh].

(b) The weak symmetric cubical category ωCosp(C) of cubical cospans over
a category C with (a fixed choice) of pushouts has been constructed in [G1],
to deal with higher-dimensional cobordism. An n-cube is a functor x : ∧n →
C, where ∧ is the formal-cospan category •→ • ← • ; again, an n-map is a
natural transformation of such functors.

(c) The weak symmetric cubical category ωSpan(C) of cubical span, over
a category C with pullbacks, is similarly constructed over ∨ = ∧op, the
formal-span category • ← • → • (see [G1]). It is transversally dual to
ωCosp(Cop).

(d) The weak symmetric cubical category of cubical bispans, or cubical di-
amonds ωBisp(C), over a category C with pullbacks and pushouts, is simi-
larly constructed over a formal diamond category [G1].

1.8 Chiral multiple categories

Our main framework here is more general and partially lax.
A chiral, or χ-lax, multiple category A (see I.3.7) has the same data and

axioms of a weak multiple category, except for the fact that the interchange
comparisons χij (0 < i < j) recalled above (in 1.7) are not supposed to be
invertible.

Various examples are given in [GP7] and Part I, Section 4. For in-
stance, if the category C has pullbacks and pushouts, the weak double cat-
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egory Span(C), of arrows and spans of C, can be ‘amalgamated’ with the
weak double category Cosp(C), of arrows and cospans of C, to form a 3-
dimensional structure: the chiral triple category SC(C) whose 0-, 1- and
2-directed arrows are the arrows, spans and cospans of C, in this order
(as required by the 12-interchanger). For higher dimensional examples,
like SpCq(C), SpC∞(C) and S−∞C∞(C) (and the corresponding left-chiral
cases) see I.4.4; the latter structure is indexed by all integers, with spans in
each negative direction, ordinary arrows in direction 0 and cospans in posi-
tive directions.

Chiral multiple categories, with their strict multiple functors and trans-
versal transformations, form the 2-category StCmc.

As defined in I.3.9, a lax multiple functor F : A→ B between chiral mul-
tiple categories, or lax functor for short, has components Fi : Ai → Bi for all
multi-indices i (often written as F ) that agree with all faces, 0-degeneracies
and 0-composition. Moreover, for every positive multi-index i and i ∈ i, F
is equipped with i-special comparison i-maps F i that agree with faces

F i(x) : eiF (x)→0 F (eix) (x in Ai|i),

F i(x, y) : F (x) +i F (y)→0 F (z) (z = x+i y in Ai),

∂αj F i(x) = F i(∂
α
j x) (j 6= i),

∂αj F i(x, y) = F i(∂
α
j x, ∂

α
j y) (j 6= i).

(24)

These comparisons have to satisfy some axioms. We write down the
naturality conditions (lmf.1-2), frequently used below, while the coherence
conditions (lmf.3-5) can be found in I.3.9

(lmf.1) (Naturality of unit comparisons) For an i|i-map f : x →0 y in A we
have:

F (eif).F i(x) = F i(y).ei(Ff) : eiF (x)→0 F (eiy).

(lmf.2) (Naturality of composition comparisons) For two i-consecutive i-
maps f : x→0 x

′ and g : y →0 y
′ in A we have:

F (f +i g).F i(x, y) = F i(x
′, y′).(Ff +i Fg) : Fx+i Fy →0 F (x′ +i y

′).

A transversal transformation h : F → G : A → B between lax functors
consists of a face-consistent family of i-maps in B (its components), one for
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every positive multi-index i and every i-cube x in A

hx : F (x)→0 G(x), h(∂αi x) = ∂αi (hx), (25)

under the axioms (trt.1) and (trt.2L) of I.3.9

(trt.1) Gf.hx = hy.Ff (for f : x→0 y in A),

(trt.2L) for every positive multi-index i and i ∈ i:

h(eix)F i(x) = Gi(x).ei(hx) : eiF (x)→0 G(eix),

h(x+i y).F i(x, y) = Gi(x, y).(hx+i hy) : F (x) +i F (y)→0 G(z).

We have thus the 2-category LxCmc of chiral multiple categories, lax
functors and their transversal transformations. The lax multiple functor F is
said to be unitary if all its unit comparisons F i(x) are transversal identities,
so that F (eix) = eiF (x) and F is a morphism of multiple sets.

The lift functor and restriction functor in direction j (see 1.5) are ex-
tended in the same form, for j > 0, j /∈ i:

Qj : LxCmc→ LxCmcN|j, (QjA)i = Aij,

Rj : LxCmc→ LxCmcN|j, (RjA)i = Ai.
(26)

Similarly one defines the 2-category CxCmc for the colax case, where
the comparisons of colax (multiple) functors have the opposite direction. A
pseudo (multiple) functor is a lax functor whose comparisons are invertible
(and is made colax by inverting its comparisons); such functors are the ar-
rows of the 2-category PsCmc.

1.9 Intercategories

The more general case of intercategories, studied in [GP6, GP7] and Part I
(Sections 5 and 6), will only be considered here in a marginal way.

Let us recall that an intercategory A has, besides χij , other three kinds of
directed ij-interchangers (for 0 < i < j), where identities intervene:

(a) τij(x) : ejei(x)→0 eiej(x),

(b) µij(x, y) : ei(x) +j ei(y)→0 ei(x+j y),

(c) δij(x, y) : ej(x+i y)→0 ej(x) +i ej(y).
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As proved in [GP7], three-dimensional intercategories comprise under a
common form various structures previously studied, like duoidal categories,
Gray categories, Verity double bicategories and monoidal double categories.
Literature on the these structures can be found in [GP7]; the inspiring case
of duoidal (or 2-monoidal) categories can be found in [AM, BS, St2].

As already noted in Part I, various ‘anomalies’ appear with respect to the
chiral case, that make problems for a theory of multiple limits in this setting.
These will be briefly considered below (see 2.3 and 3.1), without further
investigating a situation for which we do not yet have examples sufficiently
rich to have good limits.

Some anomalies can already be remarked here. First, an intercategory A
is no longer a multiple set (unless each τij is the identity). Second, a degen-
eracy ei (i > 0) is now lax with respect to every higher j-composition (for
j > i, via τij and µij) but colax with respect to every lower j-composition
(for 0 < j < i, via τji and δji). Therefore, in the truncated n-dimensional
case e1 is lax with respect to all other compositions and en is colax, but the
other positive degeneracies (if any, i.e. for n > 3) are neither lax nor colax.

2. Multiple level limits

We begin our study of limits with the simple case of i-level limits, for a
positive multi-index i.

In a chiral multiple category A, i-level limits are ordinary limits in the
transversal category tvi(A) (as in the cubical case, see [G2]). When all these
exist, and are preserved by faces and degeneracies, we say that A has level
multiple limits; of course they are ‘generated’ by multiple products and mul-
tiple equalisers.

Examples are given in the chiral triple category SC(C) recalled in 1.8;
they can be easily adapted to the weak multiple categories

ωCub(C), ωCosp(C), ωSpan(C), ωBisp(C)

of 1.7, and to the chiral multiple categories

SpCq(C), SpC∞(C), S−∞C∞(C)

recalled in 1.8.
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Note that all of these are transversally invariant, a property of interest for
limits as we show below, in 2.3 and 2.4.

Level limits can be extended to intercategories with the same definitions
(see 1.9). But Proposition 2.3 and its consequences in 2.4 would partially
fail.

Non-level limits, where the diagram and the limit cube are not confined
to a transversal category, will be studied in the next two sections.

2.1 Products

Let us begin by examining various kinds of products in the chiral triple cat-
egory A = SC(C).

Supposing that C has products, the same is true of its categories of di-
agrams, and (using the formal-span category ∨ and the formal cospan ∧
recalled in 1.7) we have four types of products in A (indexed by a small set
Λ):

- of objects (in C), with projections in A0:

C =
∏
λCλ, pλ : C →0 Cλ,

- of 1-arrows (in C∨), with projections in A01:

f =
∏
λ fλ, pλ : f →0 fλ,

- of 2-arrows (in C∧), with projections in A02:

u =
∏
λ uλ, pλ : u→0 uλ,

- of 12-cells (in C∨×∧), with projections in A012:

π =
∏
λ πλ, pλ : π →0 πλ,

Faces and degeneracies preserve these products. Saying that the triple
category SC(C) has triple products we mean all this. It is important to note
that this is a global condition: we shall not define when, in a chiral triple cat-
egory, a single product of objects

∏
λCλ should be called ‘a triple product’.

It is now simpler and clearer to work in a chiral multiple category A,
rather than in a truncated case, as above.

Let n > 0 and let i be a positive multi-index (possibly empty). An
i-product a =

∏
λ∈Λ aλ will be an ordinary product in the transversal cate-

gory tvi(A) of i-cubes of A (recalled in Section 1). It comes with a family
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pλ : a →0 aλ of i-maps (i.e. cells of A0i) that satisfies the obvious universal
property.

We say that A:

(i) has i-products, or products of type i, if all these products (indexed by an
arbitrary small set Λ) exist,

(ii) has products if it has i-products for all positive multi-indices i,

(iii) has multiple products if it has all products, and these are preserved by
faces and degeneracies, viewed as (ordinary) functors (see (11))

∂αj : tvi(A)→ tvi|j(A), ej : tvi|j(A)→ tvi(A) (j ∈ i, α = ±). (27)

Of course this preservation is meant in the usual sense, up to isomor-
phism (i.e. invertible transversal maps); however, if this holds and A is
transversally invariant (see 1.6), one can construct a choice of products that
is strictly preserved by faces and degeneracies, starting from ?-products and
going up. This will be proved, more generally, in Proposition 2.3.

A ?-product is also called a product of degree 0.

2.2 Level limits

We now let Λ be a small category.
There is an obvious chiral multiple category AΛ whose i-cubes are the

functors F : Λ→ tvi(A) and whose i-maps are their natural transformations,
composed as such. The positive faces, degeneracies and compositions are
pointwise (as well as their comparisons):

(∂αi F )(λ) = ∂αi (F (λ)), (eiF )(λ) = ei(F (λ)),

(F +i G)(λ) = F (λ) +i G(λ).

The diagonal functor D : A → AΛ takes each i-cube a to the constant a-
valued functor Da : Λ → tvi(A), and each i-map h : a →0 b to the constant
h-valued natural transformation Dh : Da→ Db : Λ→ tvi(A).

The limit of the functor F , called an i-level limit in A, is an i-cube L ∈ Ai

equipped with a universal natural transformation t : DL→ F : Λ→ tvi(A),
where DL : Λ → tvi(A) is the constant functor at L. It is an i-product if Λ
is discrete and an i-equaliser if Λ is the category 0 −→−→ 1.

GRANDIS & PARE - LIMITS IN MULTIPLE CATEGORIES...

- 178 -



We say that A:

(i) has i-level limits on Λ if all the functors Λ→ tvi(A) have a limit,

(ii) has level limits on Λ if it has such limits for all positive multi-indices i,

(iii) has level multiple limits on Λ if it has such level limits, and these are
preserved by faces and degeneracies (as specified in (27)),

(iv) has level multiple limits if the previous property holds for every small
category Λ.

Obviously, the multiple category A has level multiple limits if and only
if it has multiple products and multiple equalisers. Finite level limits work
in the same way, with finite multiple products.

In particular, a ?-level limit is a limit in the transversal category tv∗(A),
associated to the multi-index ∅, of degree 0; it will also be called a level
limit of degree 0.

Extending the case of multiple products considered in 2.1, if the category
C is complete (or finitely complete) so are its categories of diagrams, and
the chiral triple category SC(C) has level triple limits (or the finite ones).

2.3 Proposition (Level limits and invariance)

Let Λ be a category and A a transversally invariant chiral multiple category
(see 1.6). If A has level multiple limits on Λ, one can find a consistent choice
of such limits. More precisely, one can fix for every positive multi-index i
and every functor F : Λ→ tvi(A) a limit of F

L(F ) ∈ Ai, t(F ) : DL(F )→ F : Λ→ tvi(A), (28)

so that these choices are strictly preserved by faces and degeneracies:

∂αi (L(F )) = L(∂αi F ), ∂αi (t(F )) = t(∂αi F ) (i ∈ i),

ei(L(F )) = L(eiF ), ei(t(F )) = t(eiF ) (i /∈ i).
(29)

Proof. We proceed by induction on the degree n of positive multi-indices.
For n = 0 we just fix a choice (L(F ), t(F )) of ?-level limits on Λ, for all
F : Λ → tv∗(A). Then, for n > 1, we suppose to have a consistent choice
for all positive multi-indices of degree up to n− 1 and extend this choice to
degree n, as follows.
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For a functor F : Λ → tvi(A) of degree n, we already have a choice
(L(∂αi F ), t(∂αi F )) of the limit of each of its faces. Let (L, t) be an arbitrary
limit of F ; since faces preserve limits (in the usual, non-strict sense), there
is a unique family of transversal isomorphisms hαi coherent with the limit
cones (of degree n− 1)

hαi : L(∂αi F )→0 ∂
α
i L, t(∂αi F ) = (∂αi t).h

α
i (i ∈ i, α = ±), (30)

and this family has consistent faces (see (22)), as follows easily from their
coherence with the limit cones of a lower degree (when n > 2, otherwise the
consistency condition is void).

Now, because of the hypothesis of transversal invariance, this family can
be filled with a transversal isomorphism h, yielding a choice for L(F ) and
t(F )

h : L(F )→0 L, t(F ) = t.Dh : DL(F )→ F. (31)

By construction this extension of L is strictly preserved by all faces.
To make it also consistent with degeneracies, we assume that - in the pre-
vious construction - the following constraint has been followed: for an i-
degenerate functor F = eiG : Λ → tvi(A) we always choose the pair
(eiL(G), eit(G)) as its limit (L, t). This allows us to take hαi = id(L(G))
(for all i ∈ i and α = ±), and finally h = id(L), that is

L(F ) = eiL(G), t(F ) = eit(G) : DL(F )→ F. (32)

If F is also j-degenerate, then F = eiejH = ejeiH; therefore, by
the inductive assumption, both procedures give the same result: eiL(G) =
eiejL(H) = ejeiL(H) = ejL(eiH).

Note that this point would fail in an intercategory with eiej 6= ejei.

2.4 Level limits as unitary lax functors

The previous proposition shows that, if the chiral multiple category A is
transversally invariant and has level multiple limits on the small category Λ,
we can form a unitary lax functor L and a transversal transformation t

L : AΛ → A, t : DL→ 1: AΛ → AΛ, (33)

such that, on every i-cube F , the pair (L(F ), t(F )) is the level limit of the
functor F , as in (28).
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Indeed, after defining L and t on all i-cubes F , by a consistent choice
(which is possible by the proposition itself), we define L(h) for every natural
transformation h : F → G : Λ→ tvi(A). By the universal property of limits,
there is precisely one i-map L(h) such that

L(h) : L(F )→0 L(G), h.t(F ) = t(G).DL(h), (34)

and this extension on i-maps is obviously the only one that makes the family
t(F ) : DL(F ) → F into a transversal transformation DL → 1. The lax
comparison for i-composition (with i ∈ i)

Li(F,G) : L(F ) +i L(G)→0 L(F +i G),

t(F +i G).DLi(F,G) = t(F ) +i t(G),
(35)

comes from the universal property of L(F +i G) as a limit.
In the hypotheses above we say that A has lax functorial limits on Λ. We

say that A has pseudo (resp. strict) functorial limits on Λ if L is a pseudo
functor (resp. can be chosen as a strict functor).

2.5 Level limits and liftings

Let us recall (from (19) and 1.8) that, for a positive multi-index i, the chiral
multiple category A has a lifting Qi(A) such that

tv∗(Qi(A)) = tvi(A). (36)

Therefore, an i-level limit in A is the same as a ?-level limit in Qi(A).
The chiral multiple category A

(i) has i-level limits on Λ if and only if its lifting Qi(A) has ?-level limits on
Λ,

(ii) has level limits on Λ if and only if all its liftingsQi(A) have ?-level limits,

(iii) has level multiple limits on Λ if and only if all its liftings Qi(A) have
?-level limits and these are preserved by faces and degeneracies, namely the
multiple functors Dα

j = Dα
j (A) and Ej = Ej(A) for j /∈ i and α = ± (see

1.5)

Dα
j : Qij(A)→ RjQi(A), Ej : RjQi(A)→ Qij(A),

tv∗(D
α
j ) = ∂αj : tvijA→ tviA, tv∗(Ej) = ej : tviA→ tvijA

(37)

GRANDIS & PARE - LIMITS IN MULTIPLE CATEGORIES...

- 181 -



(iv) has level multiple limits if the previous property holds for every small
category Λ.

2.6 Level limits in weak double categories

Let A be a weak double category, viewed as the weak multiple category
sk2(A), by adding degenerate items of all the missing types (cf. I.2.7).

The present ?-level limits in A, i.e. limits of ordinary functors Λ →
tv∗(A), correspond to the ‘limits of horizontal functors’ in [GP1]. There
are slight differences in terminology, essentially because the ‘2-dimensional
universal property’ of double limits (see [GP1], 4.2) here is not required
from the start but comes out of a condition of preservation by degeneracies.

As a particular case of the definitions in 2.2, we have the following cases.

(i) A has ?-level limits on a (small) category Λ if all the functors Λ→ tv∗(A)
have a limit. By the usual theorem on ordinary limits, all of them can be
constructed from:
- small products

∏
Aλ of objects,

- equalisers of pairs f, g : A→ B of parallel horizontal arrows.

(i′) A has 1-level limits on Λ if all the functors Λ→ tv1(A) have a limit. All
of them can be constructed from:
- small products

∏
uλ of vertical arrows,

- equalisers of pairs a, b : u → v of double cells (between the same vertical
arrows).

(ii) A has level limits on Λ if it has ?- and 1-level limits on Λ.

(iii) A has level double limits on Λ if it has such level limits, preserved by
faces and degeneracies.

(iv) A has level double limits if the previous property holds for every small
category Λ; this is equivalent to the existence of small double products and
double equalisers.

Let us note again, as in 2.1, that the existence of (say) double products
is now a global condition: it means the existence of products of objects and
vertical arrows, consistently with faces and degeneracies. Here we are not
defining when a single product

∏
Aλ should be called a ‘double product’
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(while in [GP1] this meant a product of objects preserved by vertical identi-
ties).

In [GP1] case (i) would be expressed saying that A has 1-dimensional
limits of horizontal functors on Λ. Case (iii) (resp. (iv)) would be expressed
saying that A can be given a lax choice of double limits for all horizontal
functors defined on Λ (resp. defined on some small category).

3. Multiple limits of degree zero

We now define ‘multiple limits’ of degree zero - namely those limits that
produce objects. They extend the previous level limits of degree zero (or
?-level limits), and are generated by the latter together with tabulators of
degree zero (Theorem 3.6). The general case - limits that produce cubes of
arbitrary dimension - will be treated in the next section.

3.1 The diagonal functor

Let X and A be chiral multiple categories, and let X be small. Consider the
diagonal functor (of ordinary categories)

D : tv∗A→ PsCmc(X,A). (38)

D takes each object A of A to a unitary pseudo functor, ‘constant’ at A,
via the family of the total i-degeneracies (see (7))

DA : X→ A,

DA(x) = ei(A) DA(f) = id(eiA) (for x and f in tviX),

DAi(x) = 1eiA : ei(DA(x))→ DA(eix) (for x in Xi|i),

DAi(x, y) = λi : eiA+i eiA→ eiA (for z = x+i y in Xi).

(39)

In fact, as required by axiom (lmf.3) of lax multiple functors (in I.3.9),
the comparison DAi(x, y) above must be the unitor λi(eiA) = ρi(eiA) of A,
equivalently left or right (see I.3.3), that will generally be written as λi for
short.

Similarly, a ?-map h : A → B in A is sent to the constant transversal
transformation

Dh : DA→ DB : X→ A, (Dh)(x) = eih : eiA→ eiB (x ∈ Xi). (40)
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DA is a strict multiple functor whenever A is pre-unitary (cf. I.3.2).
Note also that the definition of the diagonal functor D depends on the

commutativity of degeneracies in A, which holds in the present chiral case.
For a general 3-dimensional intercategory A one could define two functors

D12 : tv∗A→ LxCmc(X,A), D21 : tv∗A→ CxCmc(X,A), (41)

where Dij(A) sends a 12-cube x to Dij(A)(x) = eiej(A) (and any lower
i-cube to ei(A)). In higher dimension the situation is even more complex.

Still, in an intercategory we have level limits, defined as in Section 2,
and some simple non-level limits that can be defined ad hoc, like the e1e2-
tabulator and the e2e1-tabulator of a 12-cube considered in Part I, Section
6.

3.2 Cones

Let F : X → A be a lax functor. A (transversal) cone of F will be a pair
(A, h : DA → F ) comprising an object A of A (the vertex of the cone) and
a transversal transformation of lax functors h : DA → F : X → A; in other
words, it is an object of the ordinary comma category (D ↓ F ), where F is
viewed as an object of the category LxCmc(X,A).

By definition (see 1.8), the transversal transformation h amounts to as-
signing the following data:

- a transversal i-map hx : ei(A) → Fx, for every i-cube x in X, subject to
the following axioms of naturality and coherence:

(tc.1) Ff.hx = hy (for every i-map f : x→0 y in X),

(tc.2) h commutes with positive faces, and agrees with positive degeneracies
and compositions:

h(∂αi x) = ∂αi (hx), (for x in Xi),

h(eix) = F i(x).ei(hx) : eiA→0 F (eix) (for x in Xi|i),

h(z) = F i(x, y).(hx+i hy).λ−1
i : eiA→0 F (z) (for z = x+i y in Xi),

where λi : ei(A) +i ei(A)→ ei(A) is a unitor of A (see (39)).
It is easy to see that a unitary lax functor S : A → B preserves diag-

onalisation, in the sense that S.DA = D(SA). Therefore S takes a cone
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(A, h : DA → F ) of F : X → A to a cone (SA, Sh) of SF : X → B, and
one can consider whether S preserves a limit. For a ‘general’ lax functor S
one should transform cones using the comparison S(A), which will not be
done here, for the sake of simplicity.

3.3 Definition (Limits of degree zero)

Given a lax functor F : X → A between chiral multiple categories, the
(transversal) limit of degree zero lim(F ) = (L, t : DL → F ) is a univer-
sal cone.

In other words:

(tl.0) L is an object of A and t : DL → F is a transversal transformation of
lax functors,

(tl.1) for every cone (A, h : DA→ F ) there is precisely one ?-map f : A→
L in A such that t.Df = h.

We say that A has limits of degree zero on X if all these exist.
In particular, if X is the multiple category freely generated by a category

Λ, at ?-level, then A has 0-degree limits on X if and only if it has 0-degree
level limits on Λ (see 2.2). Here freely generated at ?-level refers to a uni-
versal arrow from Λ to the functor tv∗ : Mlc→ Cat.

3.4 Tabulators of degree zero

A is always a chiral multiple category. Let us recall that every positive multi-
index i gives a ‘total’ degeneracy

ei = ei1 ...ein : tv∗A→ tviA. (42)

An i-cube x of A can be viewed as a unitary pseudo functor x : ui → A
where ui is the strict multiple category freely generated by one i-cube ui.
The pseudo functor x sends ui to x, and has comparisons xi for i-composites
that derive from the unitors of A, as in the following cases

xi(ei∂
−
i ui, ui) = λi(x) : ei∂

−
i x+i x→ x,

xi(ui, ei∂
+
i ui) = ρi(x) : x+i ei∂

+
i x→ x.
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Again, it is easy to see that this unitary pseudo functor x : ui → A is
preserved by a unitary lax functor S : A→ B, in the sense that the composite
S.x coincides with S(x) : ui → B. All the pseudo functors x : ui → A are
strict precisely when A is unitary.

The tabulator of degree zero of x in A will be the limit of this pseudo
functor x : ui → A; we also speak of the total tabulator, or i-tabulator, of x.

The tabulator is thus an object T = >x (= >ix) equipped with an i-map
tx : eiT →0 x such that the pair (T, tx : eiT →0 x) is a universal arrow from
the functor ei : tv∗A → tviA to the object x of tviA. Explicitly, this means
that, for every object A and every i-map h : eiA →0 x there is a unique
?-map f such that

ei(A)
ei(f) //

h ''

ei(T )

tx
��

f : A→0 T,

x tx.ei(f) = h.

(43)

We say that A has tabulators of degree zero if all these exist, for every
positive multi-index i. Obviously, the tabulator of an object always exists
and is the object itself.

When such tabulators exist, we can form for every positive multi-index i
a right adjoint functor

>i : tviA→ tv∗A, ei a >i, (44)

which is just the identity for i = ∅.
Assuming that the tabulators of x ∈ Ai and z = ∂αj x exist (for j ∈ i), the

projection pαj x of >x (= >ix) will be the following ?-map of A

ei|j>x
ei|j(p

α
j x)

//

∂αj (tx) ))

ei|j>(∂αj x)

tz
� �

pαj x : >x→0 >(∂αj x),

z = ∂αj x tz.ei|j(p
α
j x) = ∂αj (tx).

(45)

3.5 Tabulators and concatenation

We now examine the relationship between tabulators of i-cubes and (zero-
ary or binary) j-concatenation, for j ∈ i.
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(a) If the degenerate i-cube x = ejz and the i|j-cube z have total tabulators
in A, they are linked by a diagonal transversal ?-map djz, defined as follows

ei(>z)
ei(djz) //

ejtz ((

ei(>(ejz))

tx
��

djz : >z →0 >(ejz),

x = ejz tx.ei(djz) = ejtz.

(46)

This ?-map djz is a section of both projections pαj x (defined above) be-
cause

tz.ei|j(p
α
j x.djz) = ∂αj (tx).ei|j(djz) = ∂αj (tx.ei(djz)) = ∂αj (ejtz) = tz.

(b) For a concatenation z = x +j y of i-cubes, the three total tabulators of
x, y, z are also related. The link goes through the ordinary pullback>j(x, y)
of the objects>x and>y, over the tabulator>w of the i|j-cube w = ∂+

j x =
∂−j y (provided all these tabulators and such a pullback exist)

>x p+j x

((

tw.ei|j(p
+
j x) = ∂+

j (tx),

>j(x, y)

pj(x,y) 55

qj(x,y) ))

>w

>y p−j y

66

tw.ei|j(p
−
j y) = ∂−j (ty).

(47)

We now have a diagonal transversal ?-map dj(x, y) given by the univer-
sal property of >z

dj(x, y) : >j(x, y)→0 >z,
tz.ei(dj(x, y)) = tx.eipj(x, y) +j ty.eiqj(x, y).

(48)

The j-composition above is legitimate, by construction

∂+
j (tx.eipj(x, y)) = ∂+

j (tx).ei|j(pj(x, y))

= tw.ei|j(p
+
j x).ei|j(pj(x, y)) = tw.ei|j(p

−
j y).ei|j(qj(x, y))

= ∂−j (ty).ei|j(qj(x, y)) = ∂−j (ty.eiqj(x, y)).

It is easy to show (and it also follows from the proof of the theorem
below) that >j(x, y) is the transversal limit of the diagram ‘formed’ by z =
x+j y (based on the multiple category freely generated by two j-consecutive
i-cubes).
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3.6 Theorem (Construction and preservation of 0-degree limits)

Let A and B be chiral multiple categories.

(a) All limits of degree zero in A can be constructed from level limits of
degree zero and tabulators of degree zero, or also from products, equalisers
and tabulators - all of degree zero.

(b) If A has all limits of degree zero, a unitary lax multiple functor A → B
preserves them if and only if it preserves products, equalisers and tabulators
of degree zero.

Proof. See Section 5.

3.7 Examples

In the chiral triple category SC(C) (over a category C with pullbacks and
pushouts) we have the following three kinds of tabulators of degree zero
(apart from the trivial tabulator of an object), already described in I.4.3.

(a) The tabulator of a 1-arrow f (i.e. a span) is an object>1f with a universal
1-map e1(>1f)→0 f ; the solution is the (trivial) limit of the span f , i.e. its
middle object.

(b) The tabulator of a 2-arrow u (a cospan) is an object >2u with a universal
2-map e2(>2u)→0 u; the solution is the pullback of u.

(c) The total tabulator of a 12-cell π (a span of cospans) is an object >12π
with a universal 12-map e12(>12π) →0 π; the solution is the limit of the
diagram, i.e. the pullback of its middle cospan.

The two (non total) tabulators of degree 1 of the 12-cell π will be re-
viewed below, in 4.6.

4. Multiple limits of arbitrary degree

We now introduce general limits in a chiral multiple category A, taking ad-
vantage of the iterated lift functors Qi (see 1.5), where i is a positive multi-
index of degree n > 0. X is always a small chiral multiple category.

Let us recall that ui denotes the multiple category freely generated by
one i-cube ui (as in 3.4).
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4.1 A motivation

For a positive multi-index i of degree n > 0, the limits (of degree 0) of
multiple functors with values in the lifted chiral multiple category QiA will
be called limits of type i (and degree n) in A; their results are thus i-cubes of
A. They extend the limits of degree zero considered above, for i = ∅ and
Q∗A = A.

Let us begin with some simple examples, based on a 2-dimensional cube
x ∈ A12, introducing definitions that will be made precise below.

(a) The cube x ∈ A12 is the same as a unitary pseudo functor x : u12 → A.
We have already considered its tabulator of degree zero, namely an object
>x = >12x with a universal 12-map t : e12(>12x) →0 x (where e12 =
e1e2 = e2e1 : A∗ → A12 is the composed degeneracy).

(b) But x can also be viewed as a 1-arrow of Q2A, i.e. a unitary pseudo func-
tor x : u1 → Q2A. Its e1-tabulator (of degree 1) will be the total tabulator
of x as a 1-arrow of Q2A; this amounts to a 2-arrow >1x of A with a uni-
versal 12-map t : e1(>1x) →0 x (where e1 : A2 → A12 is the degeneracy
e1 : (Q2A)∗ → (Q2A)1).

(c) Symmetrically, x can be viewed as a 2-arrow ofQ1A, i.e. a unitary pseudo
functor x : u2 → Q1A. Its e2-tabulator (of degree 1, again) will be the total
tabulator of x as a 2-arrow ofQ1A; this amounts to a 1-arrow>2x of A with a
universal 12-map t : e2(>2x)→0 x (where e2 : A1 → A12 is the degeneracy
e2 : (Q1A)∗ → (Q1A)2).

(d) The 2-dimensional cube x is also an object of Q12A. Its tabulator of
degree two is x itself. This is a (trivial) level limit, while the previous limits
are not level, i.e. are not limits in some transversal category of A.

4.2 General tabulators

An i-cube x ∈ Ai is a unitary pseudo functor x : ui → A. For every k ⊂ i
we can also view x as a pseudo functor uj → QkA where j = i \k, so that x
can have an ej-tabulator, namely a k-cube T = >jx ∈ Ak with a universal
i-map tx : ej(>jx)→0 x. (Total tabulators correspond to j = i, while j = ∅
gives the trivial case >∅x = x.)
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The universal property says now that, for every k-cube A and every i-
map h : ej(A)→0 x there is a unique k-map u such that

ej(A)
ej(u)

//

h ''

ej(T )

tx
��

u : A→0 T,

x tx.ej(u) = h.

(49)

We say that the chiral multiple category A has tabulators of all degrees
if every i-cube x ∈ Ai has all j-tabulators >jx ∈ Ak (for i = j ∪ k, disjoint
union). We say that A has multiple tabulators if it has tabulators of all
degrees, preserved by faces and degeneracies.

In this case, if A is transversally invariant, one can always make a choice
of multiple tabulators such that this preservation is strict (as we have already
seen in various examples of Part I):

∂αi (>jx) = >j(∂
α
i x), >j(eiy) = ei(>jy) (j ⊂ i, i ∈ i \ j), (50)

for x ∈ Ai and y ∈ Ai|i.
Note that these conditions are trivial if j = ∅ or j = i, whence for all

weak double categories (where there is only one positive index). This remark
will be important when reconsidering double limits, in 4.7.

4.3 Lemma (Basic properties of tabulators)

Let A be a chiral multiple category.

(a) For an i-cube x and a disjoint union i = j ∪ k we have

>ix = >k>jx, (51)

provided that >jx and >k(>jx) exist.

(b) A has tabulators of all degrees if and only it has all elementary tabulators
>jx (for every positive multi-index i, every j ∈ i and every i-cube x).

(c) If all ej-tabulators of i-cubes exist in A there is an ordinary adjunction

ej : tvi|j(A) −→←− tvi(A) :>j, ej a >j (j ∈ i), (52)
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and ej : tvi|jA→ tviA preserves colimits.

(d) If all ej-cotabulators of i-cubes exist in A, then ej : tvi|jA → tviA is a
right adjoint and preserves the existing limits (so that a condition on multiple
level limits in 2.2(iii) is automatically satisfied).

(e) In a weak double category A the existence of cotabulators of vertical
arrows implies that all ordinary limits in tv∗(A) are preserved by vertical
identities. (This has already been used in I.5.5.)

Proof. (a) Composing universal arrows for

ei = ejek : tv∗A→ tvkA→ tviA,

one gets (a choice of) >ix from (a choice of) >jx and >k(>jx). The rest is
obvious.

4.4 Definition (Multiple limits)

We are now ready for a general definition of multiple limits in a chiral mul-
tiple category A.

(a) For a positive multi-index i ⊂ N and a chiral multiple category X we say
that A has limits of type i on X if QiA has limits of degree zero on X.

(b) We say that A has limits of type i if this happens for all small chiral
multiple categories X.

(c) We say that A has limits of all degrees (or all types) if this happens for all
positive multi-indices i.

(d) We say that A has multiple limits of all degrees if all the previous limits
exist and are preserved by the multiple functors (see 1.5)

Dα
j : Qij(A)→ RjQi(A), Ej : RjQi(A)→ Qij(A) (j /∈ i). (53)

In this case, if A is transversally invariant, one can always operate a
choice of multiple limits such that this preservation is strict (working as in
Proposition 2.3).

We do not speak here of completeness: this notion should also involve the
existence of ‘companions’ and ‘adjoints’ for all transversal maps, as shown
by our study of Kan extensions in the domain of weak double categories
[GP3, GP4].
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4.5 Main Theorem (Construction and preservation of multiple limits)

Let A and B be chiral multiple categories.

(a) All multiple limits in A can be constructed from level multiple limits and
multiple tabulators, or also from multiple products, multiple equalisers and
multiple tabulators.

(b) If A has all multiple limits, a unitary lax multiple functor S : A→ B pre-
serves them if and only if it preserves multiple products, multiple equalisers
and multiple tabulators.

Similarly for finite limits and finite products.

Proof. Follows from Theorem 3.6, applied to the family of chiral multiple
categoriesQiA, together with the multiple functors of faces and degeneracies
(see (53)) and the lax multiple functors QiS : QiA→ QiB.

4.6 Examples

For a category C with pushouts and pullbacks we complete the discussion
of tabulators in the chiral triple category SC(C), after the three types of
tabulators of degree zero examined in 3.7. We start again from a 12-cube
π : ∨×∧→ C (a span of cospans in C).

(a) The e1-tabulator of π is a 2-arrow>1π (a cospan) with a universal 12-map
e1>1π →0 π; the solution is the middle cospan of π.

(b) The e2-tabulator of π is a 1-arrow >2π (a span) with a universal 12-
map e2>2π →0 π; the solution is the obvious span whose objects are the
pullbacks of the three cospans of π.

These limits are preserved by faces and degeneracies. For instance:

- ∂−1 (>2π) = >2(∂−1 π), which means that the domain of the span >2π (de-
scribed above) is the pullback of the cospan ∂−1 π,

- >2(e1u) = e1(>2u), i.e. the e2-tabulator of the 1-degenerate cell e1u (on
the cospan u) is the degenerate span on the pullback of u.

Finally, putting together the previous results (in 2.2 and 3.7): if C is a
complete (or finitely complete) category with pushouts, then the chiral triple
category SC(C) has multiple limits (or the finite ones).
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4.7 Limits in weak double categories

We now complete the discussion of limits in a weak double category A, after
the case of level limits examined in 2.6.

Here a consistent difference appears between the present analysis and
that of [GP1]. In that paper all limits, including tabulators, were assumed to
satisfy also a ‘two-dimensional universal property’ (namely condition (dl.2)
in Definition 4.2). On the other hand multiple tabulators are here subject to
preservation properties that only become non-trivial in dimension three or
higher (as already remarked at the end of 4.2); the examples above (in 4.6)
show that at least two positive indices are required to formulate non-trivial
conditions of this type.

In other words, tabulators in a weak double category A are here double
tabulators, and the only limits that must be preserved by faces and degen-
eracies are the level ones, generated by products and equalisers of objects or
vertical arrows of A.

The present terminology, a particular case of the definitions in 4.2 and
4.4, can thus be summarised as follows.

(a) A has tabulators if every vertical arrow u (a 1-cube) has an object >u =
>1u with a universal double cell e1(>1u)→ u.

(b) A has limits of degree zero (namely the limits that produce objects) if all
the functors X→ A (defined on a small weak double category) have a limit.
Theorem 3.6 says that this condition amounts to the existence of:
- all products

∏
Aλ of objects,

- all equalisers of pairs f, g : A→ B of parallel horizontal arrows,
- all tabulators >u of vertical arrows.

(c) A has limits of degree 1 (namely the limits that produce vertical arrows)
if all the functors Λ → tv1(A) = Q1A defined on a small category) have a
limit. By the usual theorem on ordinary limits, this condition amounts to the
existence of:
- products

∏
uλ of vertical arrows,

- equalisers of pairs a, b : u → v of double cells (between the same vertical
arrows).

(d) A has limits of all degrees if both conditions (b) and (c) are satisfied.
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(e) A has double limits if all the previous limits exist and are preserved by
the ordinary functors

Dα
1 : tv1A→ tv∗A, E1 : tv∗A→ tv1A, (54)

inasmuch as this makes sense (i.e. for ordinary limits in tv∗A and tv1A,
which amount to ?- and 1-level limits of A).

Theorem 4.5 says that A has double limits if and only if it has: double
products, double equalisers and tabulators. Concretely, this amounts to the
existence of the limits listed in (b) and (c), together with the conditions:
- products are preserved by domain, codomain and vertical identities,
- equalisers are preserved by domain, codomain and vertical identities.

If this holds and A is transversally invariant (‘horizontally invariant’ in
[GP1]), Proposition 2.3 says one can always choose double limits such that
this preservation is strict. For products this means that:
- for a family of vertical arrows uλ : Aλ → Bλ we have

∏
uλ :

∏
Aλ →

∏
Bλ,

- for a family of objects Aλ the product of their vertical identities is the
vertical identity of

∏
Aλ.

4.8 The symmetric cubical case

As analysed in [G1], weak symmetric cubical categories (with lax cubical
functors) have a path endofunctor

P : LxWsc→ LxWsc,

P ((tvnA), (∂αi ), (ei), (+i), (si), ...)

= ((tvn+1A), (∂αi+1), (ei+1), (+i+1), (si+1), ...),

(55)

which lifts all components of one degree and discards 1-indexed faces, de-
generacies, transpositions and comparisons (the latter are omitted above).
The discarded faces and degeneracy yield three natural transformations

∂α1 : P −→−→←− 1 : e1, ∂α1 .e1 = id, (56)

which make P into a path endofunctor, from a structural point of view.
The role of symmetries is crucial (without them we would have two non-
isomorphic path-functors, and a plethora of higher path functors, their com-
posites, see [G1]).
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This situation cannot be extended to chiral multiple categories: the path
endofunctor was replaced by the lift functors Qj : LxCmc → LxCmcN|j
and the restriction functors Rj : LxCmc → LxCmcN|j of 1.8, with faces
and degeneracy

Dα
j : Qj

−→−→←− Rj :Ej, Dα
j .Ej = id. (57)

The whole system is consistent, by means of commutative squares

LxWsc P //

U
��

LxWsc

Uj
��

LxWsc 1 //

U
��

LxWsc

Uj
��

LxCmc
Qj
// LxCmcN|j LxCmc

Rj
// LxCmcN|j

(58)

where U : LxWsc → LxCmc is the embedding described in I.2.8 (that
gives rise to weak multiple categories of a symmetric cubical type) and Uj =
RjU .

In this way, cubical limits in weak symmetric cubical categories, dealt
with in [G2], agree with multiple limits as presented here.

5. Proof of the theorem on multiple limits

We now prove Theorem 3.6. The argument is similar to the proof of the
corresponding theorem for double limits [GP1], or its extension to cubical
limits [G2].

5.1 Comments

Of course we only have to prove the ‘sufficiency’ part of the statement.
We write down the argument for the construction of limits; the preservation
property is proved in the same way.

The chiral multiple category A is supposed to have all level limits of
degree zero and all tabulators of degree zero (or total tabulators). The proof
works by transforming a lax functor F : X→ A of chiral multiple categories
into a graph-morphism G : X→ tv∗A and taking the limit of the latter. The
(directed) graph X is a sort of ‘transversal subdivision’ of X, where every
i-cube of X is replaced with an object simulating its total tabulator.
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The procedure is similar to computing the end of a functor S : Cop×
C → D as the limit of the associated functor S§ : C§ → D based on Kan’s
subdivision category of C ([Ka], 1.10; [Ma], IX.5).

5.2 Transversal subdivision

The transversal subdivision X of X is a graph, formed by the following
objects and arrows, for an arbitrary positive multi-index i of degree n > 0,
with arbitrary j ∈ i and α = ±. (Note that this graph is finite whenever X
is.)

(a) For every i-cell x of X there is an object x in X. For every i-map f : x→
y of X there is an arrow f : x→ y in X.

(b) For every i-cell x of X, we also add 2n arrows pαj x : x → ∂αj x (that
simulate the projections (45) of the total tabulator of x, for j ∈ i and α = ±).

(c) If x = ejz is degenerate (in direction j) we also add an arrow djz : z →
ejz (that simulates the diagonal map (46)).

(d) For every j-concatenation of i-cells z = x +j y in X, we also add an
object (x, y)j in X and three arrows

pj = pj(x, y) : (x, y)j → x, qj = qj(x, y) : (x, y)j → y,

dj(x, y) : (x, y)j → z,
(59)

that simulate the pullback-object >j(x, y) of (47), with its projections and
the diagonal map (48).

5.3 The associated morphism of graphs

We now construct a graph-morphism G : X → tv∗A that naturally comes
from F and the existence of level limits and tabulators (of degree zero) in A.

(a) For every i-cell x of X, we define Gx as the following total tabulator (a
?-cube) of A

G(x) = >(Fx) (tFx : eiG(x)→0 F (x)). (60)
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For every i-map f : x →0 y of X, we define Gf as the transversal map of A
determined by the universal property of tFy, as follows

ei>(Fx)
ei(Gf) //

tFx
��

ei>(Fy)

tFy
��

Gf : >(Fx)→0 >(Fy),

Fx
Ff

// Fy tFy.ei(Gf) = Ff.tFx.

(61)

(b) For z = ∂αj x we define G(pαj x) : Gx→0 Gz as the following transversal
map of A

ei|j>(Fx)
ei|j(Gp

α
j x)
//

∂αj (tFx) ))

ei|j>(Fz)

tFz
��

G(pαj x) : >Fx→0 >Fz,

Fz tFz.ei|j(G(pαj x)) = ∂αj (tFx).

(62)

(c) For a degenerate i-cube x = ejz (where z is an i|j-cube) the map
G(djz) : Gz →0 G(ejz) is defined as follows

ei(>Fz)
ei(Gdjz) //

ejtFz
��

ei(>Fejz)

tFx
��

G(djz) : >Fz →0 >(Fejz),

ejFz F jz
// Fejz = Fx tFx.ei(G(djz)) = F jz.ej(tFz).

(63)

(d) For a concatenation z = x +j y of i-cubes, the object G(x, y)j =
>j(Fx, Fy) is the pullback of the objects >Fx and >Fy, over the tabu-
lator >Fw associated to the i|j-cube w = ∂+

j x = ∂−j y (see (47)).
The arrows pj(x, y) : (x, y)j → x and qj(x, y) : (x, y)j → y of X are

taken by G to the projections (47) of >j(Fx, Fy)

G(pj(x, y)) : G(x, y)j →0 Gx, G(qj(x, y)) : G(x, y)j →0 Gy, (64)

so that (G(x, y)j;Gpj(x, y), Gqj(x, y)) is the pullback of (p+
j (Fx), p−j (Fy))

in tv∗A.
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Finally, the arrow dj(x, y) : (x, y)j → z of X is sent byG to the diagonal
(48) of G(x, y)i = >j(Fx, Fy), determined as follows

G(dj(x, y)) : >j(Fx, Fy)→0 >F (z),

tFz.ei(G(dj(x, y))

= F j(x, y).(tFx.eiG(pj(x, y)) +j tFy.eiG(qj(x, y))).λ−1
j ,

(65)

ei(G(x, y)i)
ei(G(dj(x,y)) //

λ−1
j
��

ei(>(Fz))
tFz // Fz

ei(G(x, y)i +j ei(G(x, y)i) tFx.eiGpj +j tFy .eiGqj
// Fx+j Fy

F j(x,y)

OO

The limit of this diagram G : X→ tv∗A exists, by hypothesis.

5.4 From multiple cones to cones

In order to prove that the limit of G gives the limit of degree 0 of F we
construct an isomorphism

(D↓F )→ (D′ ↓G),

from the comma category of transversal cones of the lax functor F to the
comma category of ordinary cones of the graph-morphism G. We proceed
first in this direction, and then backwards.

Let (A, h : DA→ F ) be a cone of F . For every i-cube x of X, we define
k(x) : A →0 Gx = >(Fx) as the ?-map of A determined by the i-map hx,
via the tabulator property

tFx.ei(kx) = hx. (66)

Further, we define k(x, y)j : A →0 G(x, y)j by means of the pullback-
property of G(x, y)j

pj(x, y).k(x, y)j = kx : A→0 Gx,

qj(x, y).k(x, y)j = ky : A→0 Gy.
(67)

Let us verify that this family k is indeed a cone of G : X→ tv∗A.
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(a) Coherence with an i-map f : x →0 y (viewed as an arrow of X) means
that Gf.kx = ky, which follows from the cancellation property of tFy

tFy.ei(Gf.kx) = Ff.tFx.ei(kx) = Ff.hx = hy = tFy.ei(ky). (68)

(b), (c) Coherence with the X-arrows pαj (x) : x→ ∂αj x and djz : z → ejz =
x follows from (62) and (63)

G(pαj (x)).kx = k(∂αj x),

tFx.ei(G(djz).kz) = F jz.ej(tFz).ei(kz) = F jz.ej(tFz.ei|j(kz))

= F jz.ej(hz) = h(ejz) = h(x) = tFx.ei(kx).

(69)

(d) Coherence with the X-arrows pj = pj(x, y) and qj = qj(x, y) holds by
construction (see (64)). For dj(x, y) and z = x+j y we have

tFz.ei(G(dj(x, y).k(x, y)j)

= F j(x, y).(tFx.eipj +j tFy.eiqj).λ
−1
j .eik(x, y)j

= F j(x, y).(tFx.eipj +j tFy.eiqj).(eik(x, y)j +j eik(x, y)j).λ
−1
j

= F j(x, y).(hx+j hy).λ−1
j = hz = tFz.ei(kx).

(70)

Finally, a map of multiple cones

f : (A, h : DA→ F )→ (A′, h′ : DA′ → F )

determines a map of G-cones f : (A, k)→ (A′, k′), since

tFx.ei(k
′x.f) = h′x.ei(f) = hx = tFx.ei(kx). (71)

5.5 From cones to multiple cones

In the reverse direction (D′ ↓G)→ (D↓F ) we just specify the procedure on
cones. Given an ordinary cone (A, k : D′A→ G) ofG, one forms a multiple
cone (A, h : DA→ F ) by letting

hx = tFx.ei(kx) : ei(A)→ x (x ∈ Ai). (72)
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This satisfies (tc.1) (see 3.2) since, for f : x→0 y in X

Ff.hx = Ff.tFx.ei(kx) = tFy.ei(Gf.kx) = tFy.ei(ky) = hy. (73)

Finally, to verify the condition (tc.2) for j-units and j-composition in X
we operate much as above (with x = ejz in the first case and z = x +j y in
the second)

F j(z).ej(hz) = F j(z).ej(tFz.ei|j(kz)) = F j(z).ej(tFz).ei(kz)

= tFx.ei(G(djz).kz) = tFx.ei(kx) = hx.
(74)

hz = tFz.ei(kz) = tFz.ei(G(dj(x, y)).k(x, y)j) =

= F j(x, y).(tFx.eipj +j tFy.eiqj).λ
−1
j .eik(x, y)j

= F j(x, y).(tFx.eipj +j tFy.eiqj).(eik(x, y)j +j eik(x, y)j).λ
−1
j

= F j(x, y).(hx+j hy).λ−1
j .

(75)
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