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Résumé. Les auteurs proposent une nouvelle version non-pointée de 
structure d’exactitude combinatoire pour la théorie abstraite des radicaux 
de type Kurosh–Amitsur introduite par les deuxième et troisième auteurs 
en 2003, appelée ci-dessous structure 2-dimensionnelle.  Elle est motivée 
par la notion de catégorie semi-exacte introduite par le premier auteur en 
1992 et, brièvement, elle permet de définir un triplet radical-semisimple tel 
que, si (R,r,S) est un tel triplet, alors (R,S) est un couple radical-semisimple 
par rapport à la structure d’exactitude 1-dimensionnelle sous-jacente défi-
nie dans ce qui suit.  
 

Abstract. We propose a new, non-pointed, version of combinatorial ex-
actness structure for the abstract theory of Kurosh–Amitsur radicals  
introduced by the second and third author in 2003. We call it now  
2-dimensional. It is motivated by the notion of semiexact category intro-
duced by the first author in 1992, and, briefly, it allows us to define a radi-
cal-semisimple triple in such a way that if (R,r,S) is a radical-semisimple 
triple, then (R,S) is a radical-semisimple pair with respect to its underlying 
1-dimensional exactness structure as defined below.  
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0. Introduction 
  
 Each of the papers [GrJM2013], [JM2003], and [JM2009] proposes a 
special combinatorial exactness structure as a framework for an abstract 
Kurosh–Amitsur type radical theory. We will call these three structures 1-, 
2-, and 3-dimensional, respectively (although the 1-dimensional approach 
was, in a sense, known before: see Remark 1.3 in [GrJM2013]), and study 
the relationship between the resulting radical theories in a series of papers.  
 The structures introduced in [JM2003] and [JM2009] will be ex-
tended, in order to make them non-pointed. This is motivated by the follo-
wing observation made in [GrJM2013]:  
 Surprisingly, the non-pointed context allows us to present the theory 

of closure operators as a special case of the theory of radicals by using 

semiexact categories in the sense of the first author.  

 In particular, in the present paper: 

 In Section 1 we introduce our non-pointed counterpart of the  
2-dimensional exactness structure (Definition 1.1), and its under-
lying 1-dimensional exactness structure (Definition 1.3). Example 
1.6 explains how to associate such a structure to a semiexact ca-
tegory satisfying a mild additional condition. 

 Section 2 briefly explains an obvious duality principle, in order to 
avoid various calculations that become dual to others. 

 Section 3 introduces what we call radical-semisimple triples (Defi-
nition 3.1), that is, triples (R,r,S) consisting of a radical class R, its 
corresponding radical function r and semisimple class S; a list of 
counterparts of the first standard properties well known in Kurosh–
Amitsur radical theory is then given. 

 Section 4 is devoted to the First Comparison Theorem (Theorem 
4.3), which says that if (R,r,S) is a radical-semisimple triple with 
respect to a given 2-dimensional exactness structure (satisfying a 
natural additional condition), then (R,S) is a radical-semisimple pair 
in the sense of [GrJM2013] with respect to the underlying 1-di-
mensional exactness structure. 
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 Section 5 briefly recalls the classical case of rings, and says a few 
words about the intermediate levels of generality. More about the 
pointed case can be found in [JM2003]. 

 Section 6 presents topological closure as a radical function. Unlike 
in [GrJM2013], we do not go to abstract-categorical closure opera-
tors here, because that would involve too much of additional mate-
rial, e.g. from [DikT1995], and we are going to present this in a se-
parate paper. 

 Section 7 is devoted to a very simple example, not involving any 
kind of categorical exactness, showing that a ‘Naive Second Com-
parison Theorem’, converse to Theorem 4.3, would be obviously 
false. In fact, a Second Comparison Theorem should cover the clas-
sical result of Amitsur and Kurosh saying that the so-called Condi-
tions (R1) and (R2) on a class R of rings characterize radical classes 
(see Theorem 2.15 in [GaW2004]). This will require, if not a ring-
theoretic, at least a semi-abelian algebraic context. 

 

1. 1- and 2-dimensional combinatorial exactness structures 
 
 The purpose of this section is to 

 introduce (Definition 1.1) a non-pointed counterpart of pointed 
combinatorial exactness structure in the sense of [JM2003], which 
we shall call a 2-dimensional (combinatorial) exactness structure; 

 define (Definition 1.3), for each such structure, its underlying  
1-dimensional exactness structure in the sense of [GrJM2013]; 

 introduce (Definition 1.4) a new notion of a proper short exact se-
quence in a semiexact category in the sense of [Gr1992a], 
[Gr1992b], and [Gr2013], and use it to associate a 2-dimensional 
exactness structure to every semiexact category satisfying a certain 
completeness condition (Example 1.6). 

 
Definition 1.1. A 2-dimensional (combinatorial) exactness structure is a 
diagram 
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in the category of sets, satisfying the simplicial identities 
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and equipped with a complete lattice structure on each fibre (d
1
1)
1(a), for a 

 X1, such that s
1
1(a) and s

1
0(a) are, respectively, the smallest and the largest 

element in (d
1
1)
1(a).  

 
Example 1.2. A pointed combinatorial exactness structure in the sense of 
Definition 2.1 of [JM2003] is nothing but a 2-dimensional exactness struc-
ture of Definition 1.1 in the case when X0 is a one-element set. The nota-
tion we use here is, however, not the same; specifically: 

 while X1 and X2 in the two definitions play the same role, X0 being a 
one-element set is not mentioned in [JM2003], and so are the maps 
d

0
0, d

0
1, and s

0
0: instead, the element of X1 corresponding to the 

unique element of X0 under s
0
0 is denoted by 0 in [JM2003]; 

 the maps d
1
0, d

1
1, d

1
2, s

1
0, and s

1
1 of Definition 1.1 correspond, respec-

tively, to the maps d0, d1, d2, e1, and e0 of [JM2003].  
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Recall from [GJM2013] (slightly changing the notation) that a  
1-dimensional exactness structure is a system (A,Z,⨞,-⊳) in which A is a 
set, Z is a subset of A, and ⨞ and -⊳ are binary relations on A such that, for 
every a in A, there exist z and z' in Z with z ⨞ a and a -⊳ z'.  
 
Definition 1.3. Given a 2-dimensional exactness structure, we define its 
underlying 1-dimensional exactness structure as the system (X1,s

0
0(X0),⨞,-⊳) 

in which u ⨞ v when there exists x  X2 with d
1
0(x) = u and d

1
1(x) = v, and  

v -⊳ w when there exists x  X2 with d
1
1(x) = v and d

1
2(x) = w.  

 
Note that (X1, s

0
0(X0),⨞,-⊳) constructed as in Definition 1.3 is indeed a 

1-dimensional exactness structure, since, for every v  X1, we have  

          s
0
0d

0
0(v) ⨞ v,                                                                                     (1.8) 

          v -⊳ s
0
0d

0
1(v).                                                                                    (1.9) 

Here (1.8) follows from d
1
0s

1
1(v) = s

0
0d

0
0(v) and d

1
1s

1
1(v) = v, while (1.9) fol-

lows from d
1
1s

1
0(v) = v and d

1
2s

1
0(v) = s

0
0d

0
1(v). 

  
Now, let us recall from [GrJM2013]: 

A semiexact (=ex1-exact) category C in the sense of [Gr1992a] can be 
described as the data 

                          D 
 

                                                                                                

          C1            
E

             C0,   C – E – D,                                           (1.10)           
                         
   
                          C 

in which: 

 C1 is a category, C0 a full replete subcategory of C1, and E is the 
inclusion functor; 

 D and C are a right adjoint left inverse and a left adjoint left inverse 
of E, respectively; 

 all the counit components A : D(A)  A are monomorphisms that 
admit pullbacks along arbitrary morphisms into A, and all the unit 
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components A : A  C(A) are epimorphisms that admit pushouts 
along arbitrary morphisms from A. 

Next, we need some discussion that will lead us to introducing the no-
tion of proper short exact sequence which we are going to use: 

One usually says that a diagram  

          U  V  W                                                                                (1.11) 

in a category with a zero object is a short exact sequence if U  V is a 
kernel of  V  W and V  W is a cokernel of U  V, or, equivalently, if 
the diagram  

          U  V 
                                                                                                           (1.12) 
          0  W 

is a pullback and a pushout at the same time. We shall refer to these equiv-
alent conditions as the kernel-cokernel condition and the pullback-pushout 

condition. 
 In the semiexact context (with U  V  W being a diagram in C1, 
where C1 is as in (1.10)), although the kernel-cokernel condition can be 
copied word for word using kernels and cokernels in the sense of 
[Gr1992a], there is a problem with the pullback-pushout condition, since:  
 

 while U  V is a kernel of V  W if and only if U  V is a pull-
back of D(W)  W along V  W, 

 V  W is a cokernel of U  V if and only if V  W is a pushout of 
U  C(U) along U  V. 

 

That is, in order to copy the pullback-pushout condition we need D(W) and 
C(U), both of which will replace the zero object, to be canonically isomor-
phic. 

In order to explain what “canonical” means, consider the commutative 
diagrams 
                                        f 
          Ker(f)  U    W  Coker(f) 
                                                                                                          (1.13) 
                 Coker(ker(f))  Ker(coker(f)) 
                                      f 
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                                        f 
                          U    W  
                                                                                                          (1.14) 
                        C(U)      D(W)  
                                      f 

 
where f is the composite U  V  W andf  is induced by f. The existence 
and uniqueness of suchf  in (1.13) follows from: 
 

 the universal property of a kernel and the fact that f is a null 
morphism in the semiexact context of [Gr1992a], 

 or, equivalently, from the universal property of a cokernel and the 
fact that f is a null morphism in the semiexact context of [Gr1992a], 

   

while the existence and uniqueness of suchf  in (1.14) follows from: 
 

 the universal property of D(W)  W and the fact that f factors as 
U  C(U)  W, 

 the universal property of U  C(U) and the fact that f factors as 
U  D(W)  W. 

 

Moreover, the square part of diagram (1.13) is in fact the same as dia-
gram (1.14). Indeed, since f is a null morphism in the sense of [Gr1992a], 
we can take Ker(f) = U and Coker(f) = W, and assume that Ker(f)  U and 
W  Coker(f) are the identity morphisms of U and W, respectively; this 
makes U  C(U) the cokernel of  Ker(f)  U and makes D(W)  W the 
kernel of W  Coker(f). 

It follows that there is a clear notion of the canonical morphism  
C(U)  D(W) for each short exact sequence U  V  W, namely, it is the 
morphismf  above; and we introduce:  

Definition 1.4. (a) A short exact sequence U  V  W in a semiexact 
category (1.10) will be called proper if the canonical morphism  
C(U)  D(W) is an isomorphism.  
 

(b) For two proper short exact sequences U  V  W and U '  V '  W ', 
we shall write (U  V  W)  (U '  V '  W ') if V = V ' and there exist 
morphisms U  U ' and W  W ' making the diagram 
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          U   V   W 
                                                                                                        (1.15) 
          U '  V '  W ' 
 
commute. 
 

(c) If (U  V  W)  (U '  V '  W ') and (U '  V '  W ')  (U  V  
W), then we will say that U  V  W and U '  V '  W ' are equivalent, 
and the equivalence class of U  V  W will be denoted by [U  V  
W].  
 
Remark 1.5. (a) Since a short exact sequence U  V  W is determined, 
up to isomorphism, by each of the morphisms U  V and V  W, Defini-
tion 1.4 also suggests us to define proper normal monomorphisms and 
proper normal epimorphisms as those normal monomorphisms and normal 
epimorphisms that appear as such U  V and V  W, respectively, in 
proper short exact sequences. 
 

(b) There are many situations where every short exact sequence is proper. 
For example, this is obviously the case if the ground semiexact category is 
pointed or satisfies axiom (ex3) of [Gr1992a], [Gr1992b], and [Gr2013].  
 

Now we are ready to present our main example of a 2-dimensional ex-
actness structure: 
 
Example 1.6. Given a semiexact category (1.10) in which we assume C1 
and C0 to be small skeletons, we would like to construct the associated 2-
dimensional exactness structure (1.1) by saying that: 
 

(a) X0 and X1 are the sets of objects of C0 and C1, respectively; 
 

(b) X2 is the set of equivalence classes of proper short exact sequences in 
the sense of Definition 1.4;  
 

(b) the maps d
0
0, d

0
1, and s

0
0 are the object functions of the functors D, C, and 

E, respectively; 
 

(c) the other maps involved in (1.1) are defined as follows: 
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 d
1
0[U  V  W] = U, d

1
1[U  V  W] = V, d

1
2[U  V  W] = W,     

                                                                                                              (1.16) 
          s

1
0(U) = [U = U  C(U)], s

1
1(U) = [D(U)  U = U]; 

(d) the order on (d
1
1)
1(V) is defined according to Definition 1.4. 

 

However, to do this we need an additional assumption on the data (1.10), 
namely that each (d

1
1)
1(V) be a complete lattice. We could briefly refer to 

this assumption by saying that our semiexact category admits proper inter-

sections. Note also that the only reason of our restriction to proper short 
exact sequences in (b) is that the second equality of (1.3) should be satis-
fied.  
 

2. Duality 
 

Any 2-dimensional exactness structure (1.1) has its opposite, or dual, 
2-dimensional exactness structure, in which: 
 

 the sets Xi (i = 1, 2, 3) and the maps d
1
1 and s

0
0 are the same as in the 

original structure; 
 the maps d

0
0, d

1
0, and s

1
0 of the original structure play the roles of the 

maps d
0
1, d

1
2, and s

1
1 of the opposite structure, and vice versa; 

 for each a  X1, the order on (d
1
1)
1(a) in the opposite structure is 

opposite to the order in the original structure. 
 

This gives the obvious duality principle, saying that every property that 
holds in all 2-dimensional exactness structures has an obvious dual, which 
also holds in all 2-dimensional exactness structures. For example, so are 
properties (1.8) and (1.9), and after proving (1.8) we could simply say: 
“dually, we obtain (1.9)”. 

Similarly, the opposite category of any semiexact category is semi-
exact, and the data opposite to (1.10) is 
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                                Cop 

 

                                                                                                

          (C1)
op            

E
op

             (C0)
op,   Dop – Eop – Cop,                       (2.1)           

                         
                         
                                Dop 
 

Moreover, the duality principals for the two types of data obviously 
agree with each other in the sense that the associated 2-dimensional exact-
ness structure of the opposite semiexact category is opposite to the associ-
ated 2-dimensional exactness structure of the original semiexact category.  
 

3. Radicals in terms of 2-dimensional exactness structures 
 

The general approach to radicals developed in this section is almost a 
straightforward extension of the approach of Section 2 of [JM2003] from 
the context of a pointed combinatorial exactness structure recalled in Ex-
ample 1.2 to the general context of Definition 1.1. 

For a fixed 2-dimensional exactness structure (1.1) of Definition 1.3, 
consider the diagram 

 
                         f                        g 

          K                        L                         K                                              (3.1)                                           
                       f                        g 

 
in which: 
 

 L = {l : X1  X2  d
1
1l = 1X1} = aX1 (d

1
1)
1(a), considered as a com-

plete lattice;  
 K is the complete lattice of all subsets of X1 containing the image of 

s
0
0; 

 f and g are defined by f(l) = d
1
0l(X1) and g(l) = d

1
2l(X1); 

 f and g are defined by f(k) = {l  L  f(l)  k} and  
g(k) = {l  L  g(l)  k}. 

Note that, for each a  X1, since s
1
1(a) and s

1
0(a) are, respectively, the 

smallest and the largest element in (d
1
1)
1(a), we have:  
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 (1.4) implies that, for each z  X0, the lattice (d
1
1)
1(s

0
0(z)) has only 

one element, namely s
1
1s

0
0(z) = s

1
0s

0
0(z),  

 and, in particular, ls
0
0(z) = s

1
1s

0
0(z) = s

1
0s

0
0(z) for each l  L;  

 consequently, d
1
0ls

0
0(z) = s

0
0(z) = d

1
2ls

0
0(z), and so f(l) and g(l) indeed 

belong to K.  

Using this notation and extending Definition 2.5 of [JM2003], we in-
troduce: 

 
Definition 3.1. (a) A map r  L is said to be a radical function (with re-
spect to the given 2-dimensional exactness structure) if f f(r) = r = gg(r). 
 

(b) A subset R in X1 is said to be a radical class if it corresponds to a radi-
cal function via f, that is, there exists a radical function r with f(r) = R. 
 

(c) A subset S in X1 is said to be a semisimple class if it corresponds to a 
radical function via g, that is, there exists a radical function r with g(r) = S.  
 

(d) if (b) and (c) hold for the same radical function r, then we say that 
(R,r,S) is a radical-semisimple triple.  
 

According to this definition, there are canonical bijections: 

          Radical classes  Radical functions  Semisimple classes.          (3.2) 

There is a number of standard properties of a radical-semisimple triple to 
be listed, to which the rest of this section is devoted.  
 
Theorem 3.2. (R,r,S) is a radical-semisimple triple with respect to a given  

2-dimensional exactness structure if and only if (S,r,R) is a radical-

semisimple triple with respect to the opposite 2-dimensional exactness 

structure.  
 

In the rest of this section we are dealing with a given fixed 2-
dimensional exactness structure (1.1), without further notice. 
 
Theorem 3.3. Let R and S be subsets of X1, and r : X1  X2 be a map. 

Then the following conditions are equivalent: 
 

(a) (R,r,S) is a radical-semisimple triple; 
 

GRANDIS, JANELIDZE & MARKI - COMBINATORIAL EXACTNESS STRUCTURES ;;;  

- 175 -



 

(b) for each a in X1, r(a) is the largest element x in the lattice (d
1
1)
1(a) with 

d
1
0(x) in R, and, at the same time, is the smallest element y in the lattice 

(d
1
1)
1(a) with d

1
2(y) in S. 

 

Proof. (a)(b): Just note that, for each a in X1, we have 

   {x  (d
1
1)
1(a)  d1

0(x)  R} = r(a) = {x  (d
1
1)
1(a)  d1

2(x)  S},      (3.3) 

r(a) is in (d
1
1)
1(a), d

1
0r(a) is in R (by 3.1(b) and 3.1(d)), and d

1
2r(a) is in S 

(by 3.1(c) and 3.1(d)). 
 

(b)(a): According to Definition 3.1, (a) means: 

          R = f(r), S = g(r), f f(r) = r = gg(r).                                           (3.4) 

The first two equalities of (3.4) are  

          R = d
1
0r(X1), S = d

1
2r(X1),                                                                (3.5) 

respectively, while the last two are the same as (3.3) required for each a in 
X1. We observe: 
 

 The inclusions d
1
0r(X1)  R and d

1
2r(X1)  S follow from (b) trivial-

ly. 
 For each a  X1, the largest element in the lattice (d

1
1)
1(a) is s

1
0(a) 

(see Definition 1.1), and when a is in R we have d
1
0s

1
0(a) = a  R 

(see (1.6)). Therefore 
 

          a  R  r(a) = s
1
0(a)                                                          (3.6) 

 

by (b). This gives a = d
1
0r(a), showing that every element a of R be-

longs to d
1
0r(X1). That is, R  d

1
0r(X1). The inclusion S  d

1
2r(X1) is 

dual to this inclusion. 
 (3.3) immediately follows from (b).  

 
Corollary 3.4. Let (R,r,S) be a radical-semisimple triple and a an element 

in X1. Then r(a) is the unique element x in (d
1
1)
1(a) with d

1
0(x) in R and 

d
1
2(x) in S. 

 

Proof. We know that d
1
0r(a) is in R and d

1
2r(a) is in S. On the other hand, if 

x is in (d
1
1)
1(a) with d

1
0(x) in R and d

1
2(x) in S, then, by 3.3(b), we have:  
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 x  r(a) in (d
1
1)
1(a), since d

1
0(x) in R; 

 r(a)  x in (d
1
1)
1(a), since d

1
2(x) in S.  

 
Our next two propositions will partly use the following additional con-

dition, which is self-dual since its parts (a) and (b) are dual to each other:   
 

Condition 3.5. For x  X2, 
 

(a) d
1
0(x) = s

0
0d

0
0d

1
1(x)  x = s

1
1d

1
1(x); 

 

(b) d
1
2(x) = s

0
0d

0
1d

1
1(x)  x = s

1
0d

1
1(x).  

 
Remark 3.6. There are several convenient equivalent ways to reformulate 
Condition 3.5. One of them is to replace the implications in (a) and (b) 
with equivalences. Indeed, x = s

1
1d

1
1(x) implies d

1
0(x) = d

1
0s

1
1d

1
1(x) = s

0
0d

0
0d

1
1(x), 

where the second equality follows from (1.5); and dually, x = s
1
0d

1
1(x) im-

plies d
1
2(x) = s

0
0d

0
1d

1
1(x). Another equivalent way to express conditions 3.5(a) 

and 3.5(b), respectively, is to require: 
  

(a) d
1
0(x)  s

0
0(X0) if and only if x is the smallest element of the lattice 

(d
1
1)
1(d

1
1(x)); 

 

(b) d
1
2(x)  s

0
0(X0) if and only if x is the largest element of the lattice 

(d
1
1)
1(d

1
1(x)).  

 
Proposition 3.7. Let R be a radical class and r the corresponding radical 

function. Then, for a  X1, conditions (a), (b), (c) below are equivalent and 

imply (d), while (d) is equivalent to (e). Under Condition 3.5(b), condition 

(d) also implies the other conditions: 
 

(a) a  R; 
 

(b) r(a) = s
1
0(a); 

 

(c) d
1
0r(a) = a; 

 

(d) d
1
2r(a) = s

0
0d

0
1(a); 

 

(e) d
1
2r(a)  s

0
0(X0).  
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Proof. The arguments needed to prove (c)(a)(b)(c) are in fact con-
tained in the proof of Theorem 3.3. Nevertheless let us present them: 
 

Since s
1
0(a) is the largest in element in (d

1
1)
1(a), (a)(b) follows from 

Theorem 3.3 (cf. (3.6)).  
 

(b)(c): Assuming (b), we have: d
1
0r(a) = d

1
0s

1
0(a) = a, where the last 

equality follows from (1.6). 
 

(c)(a): Assuming (c) and using (1.6) again, we have: a = d
1
0r(a)  

d
1
0r(X1) = f(r) = R. 

 

(b)(d): Assuming (b), we have: d
1
2r(a) = d

1
2s

1
0(a) = s

0
0d

0
1(a), where the 

last equality follows from (1.7). 
 

(d)(e) is trivial. 
 

(e)(d): If d
1
2r(a) = s

0
0(z) for some z  X0, then 

          d
1
2r(a) = s

0
0d

0
1d

1
2r(a)   (by (1.2))  

          = s
0
0d

0
1d

1
1r(a)   (by the third equality in (1.3)) 

          = s
0
0d

0
1(a)   (since d

1
1r(a) = a), 

as desired. 
 

(d)(b) under Condition 3.5(b): Since r(a) belongs to (d
1
1)
1(a), (d) 

gives d
1
2r(a) = s

0
0d

0
1d

1
1r(a), and then Condition 3.5(b) gives r(a) = s

1
0d

1
1r(a). 

But d
1
1r(a) = a, and so we obtain (b).  

 
Dually, we have: 

Proposition 3.8. Let S be a semisimple class and r the corresponding radi-

cal function. Then, for a  X1, conditions (a), (b), (c) below are equivalent 

to each other and imply (d), while (d) is equivalent to (e). Under Condition 

3.5(a), condition (d) also implies the other conditions: 
 

(a) a  S; 
 

(b) r(a) = s
1
1(a); 

 

(c) d
1
2r(a) = a; 
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(d) d
1
0r(a) = s

0
0d

0
0(a).  

 

(e) d
1
0r(a)  s

0
0(X0).  

 
Proposition 3.9. Let (R,r,S) be a radical-semisimple triple. Then RS = 
s

0
0(X0). 

 

Proof. The inclusion s
0
0(X0)  RS follows from the definition of K in 

(3.1). If a is in RS, then a = d
1
0r(a) by 3.7(c) and d

1
0r(a)  s

0
0(X0) by 3.8(e), 

which implies that a is in s
0
0(X0).  

 

4. The First Comparison Theorem 
 

The purpose of this section is to formulate and prove Theorem 4.3, 
which describes a situation where every radical-semisimple triple deter-
mines a radical-semisimple pair in the sense of [GrJM2013]. 

Let us recall from [GrJM2013]: 
Given a 1-dimensional exactness structure (A,Z,⨞,-⊳,), and using the 

binary relations 

           = {(a,b)  AA  a ⨞ b  a  Z},                                             (4.1) 
           = {(a,b)  AA  a -⊳ b  b  Z}                                             (4.2)  

on A, we define maps * and * from the power set P(A) to itself by  

   *(U) = {b  A  a  U  ab}, *(U) = {a  A  b  U  ab}.    (4.3) 

Then a pair (R,S) of subsets of A is said to be a radical-semisimple pair 
(Definition 5.2(b) of [GrJM2013]), with respect to the given 1-dimensional 
exactness structure, if R = *(S) and S = *(R). Accordingly, a subset U of 
A is said to be a radical class (semisimple class) if it occurs as the first 
(second) component in some radical-semisimple pair; that is, U is a radical 
class (semisimple class) if and only if U = **(U) (U = **(U)). 

As mentioned in [GrJM2013], the following two propositions are noth-
ing but explicit reformulations of the definition above: 

Proposition 4.1. (Proposition 5.3 of [GrJM2013]) Let (A,Z,⨞, -⊳) be a  

1-dimensional exactness structure. A subset R in A is a radical class if and 

only if satisfies the following conditions: 
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(a) if a is in R, then, for every b  A \ Z with a -⊳ b, there exists c  R \ Z 
with c ⨞ b; 
 

(b) given a in A, if, for every b  A \ Z with a -⊳ b, there exists c  R \ Z 
with c ⨞ b, then a is in R.  
 
Proposition 4.2. (Proposition 5.4 of [GrJM2013]) Let (A,Z,⨞, -⊳) be a 1-

dimensional exactness structure. A subset S in A is a semisimple class if 

and only if satisfies the following conditions: 
 

(a) if a is in S, then, for every b  A \ Z with b ⨞ a, there exists c  S \ Z 
with b -⊳ c; 
 

(b) given a in A, if, for every b  A \ Z with b ⨞ a, there exists c  S \ Z 
with b -⊳ c, then a is in S.  
 

Our First Comparison Theorem, which compares radical-semisimple 
triples in the sense of Definition 3.1 with radical-semisimple pairs in the 
sense of [GrJM2013], is: 
 
Theorem 4.3. Let (R,r,S) be a radical-semisimple triple with respect to a 

given 2-dimensional exactness structure in the sense of Definition 1.1, sat-

isfying Condition 3.5. Then (R,S) is a radical-semisimple pair in the sense 

of [GrJM2013] with respect to the underlying 1-dimensional exactness 

structure in the sense of Definition 1.3. 

 

Proof. First of all note that, for every x  X2, we have 

          d
1
0(x) ⨞ d

1
1(x) -⊳ d

1
2(x),                                                                    (4.4) 

which trivially follows from the definitions of ⨞ and -⊳. In particular, for 
every a  X1 and every radical-semisimple triple (R,r,S), we have 

          d
1
0r(a) ⨞ a -⊳ d

1
2r(a) with d

1
0r(a) in R and d

1
2r(a) in S,                    (4.5) 

obtained from (4.4) by taking x = r(a). 
 

What we have to prove are the equalities R = *(S) and S = *(R).  

To prove the inclusion *(S)  R, we take a  *(S) and observe: 
 

 Since a is in *(S) and d
1
2r(a) in S, we have ad

1
2r(a) by the defini-

tion of *(S).   
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 Since ad
1
2r(a) and a -⊳ d

1
2r(a), we know that d

1
2r(a) is in s

0
0(X0) by 

the definition of . 
 Since d

1
2r(a) is in s

0
0(X0) and Condition 3.5(b) holds, a is in R by the 

implication (e)(a) in Proposition 3.7.  
 

To prove the inclusion R  *(S), we take a  R and b  S with a -⊳ b, and 
we need to show that b is in s

0
0(X0). Indeed, a -⊳ b means that d

1
1(x) = a and 

d
1
2(x) = b for some x  X2, and we observe: 

 

 By Theorem 3.3(b), r(a) is the smallest element y in the lattice 
(d

1
1)
1(a) with d

1
2(y) in S. By our assumptions on x, this gives r(a)  

x.  
 On the other hand, by the implication (a)(b) in Proposition 3.7, 

we have r(a) = s
1
0(a), which is the largest element in the lattice 

(d
1
1)
1(a). Together with the previous observation, this gives x = r(a) 

= s
1
0(a).  

 Since x = r(a) = s
1
0(a), we have b = d

1
2s

1
0(a) = s

0
0d

0
1(a)  s

0
0(X0), using 

(1.7). 
 

This proves the equality R = *(S), and the equality S = *(R) is dual to it. 
 

 

5. Classical contexts for KuroshAmitsur radicals 
 

Ignoring the problem of size and the difference between a category and 

its skeleton, we take the ground 2-dimensional exactness structure (1.1) to 
be constructed as in Example 1.6 out of the category Rings of rings. The 
rings here are required to be associative but not required to be unital; in 
particular, the category Rings is pointed. 

What are the radical-semisimple triples with respect to this structure 
and what are the radical-semisimple pairs with respect to its underlying  
1-dimensional exactness structure? 

The answers, as explained in [JM2003] and [GrJM2013], immediately 
come out of well-known results in the KuroshAmitsur radical theory, and 
they can be stated as: 
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Theorem 5.1. (a) (R,r,S) is a radical-semisimple triple if and only if R, r, 

and S are a radical class, a radical function, and a semisimple class corre-

sponding to each other in the classical sense. 
 

(b) (R,S) is a radical-semisimple pair if and only if R and S are a radical 

class and a semisimple class corresponding to each other in the classical 

sense.  
 

In particular:  
 

 The assertion “if (R,r,S) is a radical-semisimple triple, then (R,S) is 
a radical-semisimple pair” of our Theorem 4.3 should be consid-
ered as well known in the present case.  

 The converse assertion, namely “if (R,S) is a radical-semisimple 
pair, then (R,r,S) is a radical-semisimple triple for some r” should 
also be considered as well known in this case, although it is false in 
general, as a counter-example given in the next section will show. 

 

Of course, Theorem 5.1 can be stated more generally, depending on 
what we mean by “classical sense”. For instance, the category of rings can 
surely be replaced with any semi-abelian variety of universal algebras (in 
the sense of [JMT2002]; see also [BJ2003]), but even that would be far 
from the most general case. Various remarks on (more abstract) categorical 
contexts are made in [JM2003] and [GrJM2013], some referring to 
[MW1982]. However, full details can be found only in the case of rings: 
see [GaW2004] and [W1983], and references therein, especially [Div1973] 
and Section 2 in [FW1975]. 

Notice that a variant of Kurosh–Amitsur type radical theory, called 
connectednesses and disconnectednesses, has been developed for topologi-
cal spaces and graphs and then for abstract relational structures in 
[AW1975], [FW1975] and [FW1982], respectively, also in a non-pointed 
setting. What we do here, however, is very different from their setting: we 
still have kernels while they have inverse images of all points ('connect-
ed components'). 
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6. The topological closure operator 
 

In this section, ignoring the problem of size, we take the ground 2-di-  
mensional exactness structure (1.1) to be constructed as in Example 1.6 out 
of the semiexact category (1.10) in which: 
 

 C0 is the category of topological spaces and inclusion maps of sub-
spaces; 

 C1 is the category of morphisms of C0 whose objects will be written 
as pairs (A,A'), where A' is a subspace of A.  

 E is the inclusion functor and therefore C and D are defined by 
C(A,A') = A and D(A,A') = A', respectively. 

 

In this context every short exact sequence is proper and it is just a diagram 
of the form 

          (A',A")  (A,A")  (A,A'),                                                            (6.1) 

where A' is any subspace of A and A" is any subspace of A'. Using Defini-
tion 3.1 directly it is easy to prove: 
 
Theorem 6.1. Let r : X1  X2 be the map defined by 

          r(A,A') = ((Ā',A')  (A,A')  (A,Ā')),                                            (6.2)  

where Ā' denotes the closure of A' in A. Then r is a radical function in the 
radical-semisimple triple (R,r,S) where 

          R = {(A,A')  X1 | A' is dense in A},                                              (6.3) 
          S = {(A,A')  X1 | A' is closed in A}.                                           (6.4) 

This theorem obviously indicates the relationship between radicals and 
closure operators – a natural counterpart of what is done in [GJM2013] 
with radicals defined with respect to 1-dimensional exactness structures.    
 

7. A simplified framework 
 

Intuitively, the relations ⨞ and -⊳ are “almost order relations”: for ex-
ample, in the usual radical theory of rings, a ⨞ b means that a is (isomor-
phic to) an ideal in a, while a -⊳ b means that b is (isomorphic to) a quo-
tient ring of a. However, even in that example, both antisymmetry (of ⨞ 
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and -⊳) and transitivity (of ⨞) fail. This suggests us to consider a simplified 
version of a 1-dimensional exactness structure of the form (A,{0},,), in 
which (A,) is an ordered set with smallest element 0 (cf. Section 2 of 
[FW1975]). This will also give us a very simple counterexample (see Ex-
ample 7.4) to the assertion “if (R,S) is a radical-semisimple pair, then 
(R,r,S) is a radical-semisimple triple for some r”, as mentioned in Section 
5. 
 

The following two propositions should be considered obvious after 
reading Section 2 of [FW1975], but since our proofs are very short and 
easy anyway, we do not discuss this connection. 
 
Proposition 7.1. If (A,{0},,) is as above, then the following conditions 

on a subset U of A are equivalent: 
 

(a) U is a radical class with respect to (A,{0},,); 
 

(b) U is a semisimple class with respect to (A,{0},,); 
 

(c) an element a of A is in U if and only if, for every non-zero b  a, there 

exists a non-zero c  b which is in U; 
 

(d) U is a down-closed subset of A such that an element a of A is in U 

whenever for every non-zero b  a, there exists a non-zero c  b which is in 
U.  
 

Proof. The implications (a)(b)(c)(d) immediately follow from the 
definitions, while (c)(d) easily follows from the transitivity of .  
 
Proposition 7.2. If (A,{0},,) is as above, then a pair (R,S) of subsets of 
A is a radical-semisimple pair if and only if 

          R = {b  A  (a  S & a  b)  a = 0},                                        (7.1) 
          S = {b  A  (a  R & a  b)  a = 0}.                                        (7.2) 
 
Proof. Just note that (* = * and) the equalities above are nothing but R = 
*(S) and S = *(R), respectively, where  and  are as in (4.3) in the case 
of (A,{0},,).  
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Continuing to develop our simplified counterpart of usual radical theo-
ry, what would be a reasonable 2-dimensional exactness structure whose 
underlying 1-dimensional exactness structure is (A,{0},,)? We propose 
the following one, requiring an additional condition on A; then, its underly-
ing 1-dimensional exactness structure is indeed (A,{0},,) under a further 
additional condition mentioned in Example 7.4(b) below. 
 
Definition 7.3. Let A be an ordered set with smallest element 0 and such 
that, for every b  A, the set  

          {(a,c)  AA  ac = 0 & ac = b}                                               (7.3) 

forms a complete lattice under the order defined by (a,c)  (a',c')  (a  a' 
& c'  c). The 2-dimensional exactness structure associated to A is 
 
                          d

1
0 

 
                          s

1
0                           d

0
0
 

 

                                                                                                

          A'             
d

1
1            A            

s 
0
0            {0},                                   (7.4)           

                         
                         
                          s

1
1                           d

0
1
 

 
                          d

1
2 

 
where A' = {(a,b,c)  AAA  ac = 0 & ac = b}, s

0
0(0) = 0, s

1
0(a) = 

(a,a,0), s
1
1(a) = (0,a,a), d

1
0(a,b,c) = a, d

1
1(a,b,c) = b, d

1
2(a,b,c) = c, and the 

complete lattice structure on (d
1
1)
1(b) is defined via (a,b,c)  (a',b,c')  

 (a  a' & c'  c). 
 

Although a further analysis of this 2-dimensional exactness structure, 
which always satisfies Condition 3.5, would be interesting, we will use it 
only in  
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Example 7.4. Consider the 2-dimensional exactness structure of Definition 
7.3 where A is the lattice 
 
                             1  
 
 
 
          a1              a2                    a3                                                         (7.5) 
 
 
 

                            0  
 
and observe: 
 

(a) this non-distributive lattice indeed satisfies the conditions required in 
Definition 4.3; 
 

(b) the underlying 1-dimensional exactness structure is (A,{0},,); more 
generally, this is true in the situation of Definition 7.3 whenever, for all  
a  b in A, there exists c in A with (a,c) in the set (7.3); 
 

(c) as follows from (b) and Proposition 7.2, ({0,a1,a2,},{0,a3}) is a radical-
semisimple pair. 
 

Nevertheless there is no radical function r making ({0,a1},r,{0,a2,a3}) a 
radical-semisimple triple. Indeed, having such an r, consider r(1): by Theo-
rem 3.3, it should be the largest element x in the lattice (d

1
1)
1(1) with d

1
0(x) 

in {a1} – but such an element does not exist.  
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