
Résumé. Nous prouvons que la notion géométrique de points voisins, de-

rivée du “premier voisinage de la diagonale” en géométrie algébrique, a la

propriété que toute combinaison affine d’un n-tuple quelconque de points

mutuellement voisins a un sens invariant, dans tout schema affine. La preuve

est obtenue par des considérations d’algèbre commutative élémentaire.

Abstract. The geometric notion of neighbour points, as derived from the

“first neighbourhood of the diagonal” in algebraic geometry, is shown to

have the property that affine combinations of any n-tuple of mutual neigh-

bour points make invariant sense, in any affine scheme. The proof is a piece

of elementary commutative algebra.
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Introduction

The notion of “neighbour points” in algebraic geometry is a geometric ren-

dering of the notion of nilpotent elements in commutative rings, and was

developed since the time of Study, Hjelmslev, later by Kähler, and notably,

since the 1950s, by French algebraic geometry (Grothendieck, Weil et al.).

The latter school introduced it via what they call the first neighbourhood of

the diagonal.

In [4], [5] and [8] the neighbour notion was considered on an axiomatic

basis, essentially for finite dimensional manifolds; one of the aims was to

describe a combinatorial theory of differential forms.

In the specific context of algebraic geometry, such theory of differential

forms was also developed in [2], where it applies not only to manifolds, but

to arbitrary schemes.
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One aspect, present in [5] and [8], but not in [2], is the possibility of

forming affine combinations of finite sets of mutual (1st order) neighbour

points. The present note completes this aspect, by giving the construction

of such affine combinations, at least in the category of affine schemes1 (the

dual of the category of commutative rings or k-algebras).

The interest in having the possibility of such affine combinations is docu-

mented in several places in [8], and is in [5] the basis for constructing, for

any manifold, a simplicial object, whose cochain complex is the deRham

complex of the manifold.

One may say that the possibility of having affine combinations, for sets

of mutual neighbour points, expresses in a concrete way the idea that spaces

are “infinitesimally like affine spaces”.

1. Neighbour maps between algebras

Let k be a commutative ring. Consider commutative k-algebras B and C
and two algebra maps f and g : B → C.2 We say that they are neighbours,

or more completely, (first order) infinitesimal neighbours, if

(f(a)− g(a)) · (f(b)− g(b)) = 0 for all a, b ∈ B, (1)

or equivalently, if

f(a) · g(b) + g(a) · f(b) = f(a · b) + g(a · b) for all a, b ∈ B. (2)

(Note that this latter formulation makes no use of “minus”.) When this holds,

we write f ∼ g (or more completely, f ∼1 g). The relation ∼ is a reflexive

and symmetric relation (but not transitive). If the element 2 ∈ k is invertible,

a third equivalent formulation of f ∼ g goes

(f(a)− g(a))2 = 0 for all a ∈ B. (3)

1Added in proof: Since the construction is local in nature, it is not surprising that it may

be extended to more general schemes, and also to the C∞-context. These issues are dealt

with in [1].
2Henceforth, “algebra” means throughout “commutative k-algebra”, and “algebra map”

(or just “map”) means k-algebra homomorphism; and “linear” means k-linear. By ⊗, we

mean ⊗k.
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For, it is clear that (1) implies (3). Conversely, assume (3), and let a, b ∈ B
be arbitrary, and apply (3) to the element a + b. Then by assumption, and

using that f and g are algebra maps,

0 = (f(a+ b)− g(a+ b))2 = [(f(a)− g(a)) + (f(b)− g(b))]2

= (f(a)− g(a))2 + (f(b)− g(b))2 − 2(f(a)− g(a)) · (f(b)− g(b)).

The two first terms are 0 by assumption, hence so is the third. Now divide

by 2.

Note that if C has no zero-divisors, then f ∼ g is equivalent to f = g.

It is clear that the relation ∼ is stable under precomposition:

if h : B′ → B and f ∼ g : B → C, then f ◦ h ∼ g ◦ h : B′ → C, (4)

and (by a small calculation), it is also stable under postcomposition:

if k : C → C ′ and f ∼ g : B → C, then k ◦ f ∼ k ◦ g : B → C ′. (5)

Also, if h : B′ → B is a surjective algebra map, precomposition by h not

only preserves the neighbour relation, it also reflects it, in the following sense

if f ◦ h ∼ g ◦ h then f ∼ g. (6)

This is immediate from (1); the a and b occurring there is of the form h(a′)
and h(b′) for suitable a′ and b′ in B′, by surjectivity of h.

An alternative “element-free” formulation of the neighbour relation (Pro-

position 1.2 below) comes from a standard piece of commutative algebra.

Recall that for commutative k-algebras A and B, the tensor product A ⊗ B
carries structure of commutative k-algebra (A ⊗ B is in fact a coproduct of

A and B); the multiplication map m : B⊗B → B is a k-algebra homomor-

phism; so the kernel is an ideal J ⊆ B ⊗ B.

The following is a classical description of the ideal J ⊆ B ⊗ B; we

include it for completeness.

Proposition 1.1. The kernel J of m : B ⊗ B → B is generated by the

expressions 1⊗ b− b⊗ 1, for b ∈ B. Hence the ideal J2 is generated by the

expressions (1⊗ a− a⊗ 1) · (1⊗ b− b⊗ 1). Equivalently, J2 is generated

by the expressions

1⊗ ab + ab⊗ 1 − a⊗ b − b⊗ a.

KOCK - AFFINE COMBINATIONS IN AFFINE SCHEMES

- 117 -



Proof. It is clear that 1⊗b−b⊗1 is in J . Conversely, assume that
∑

i ai⊗bi
is in J , i.e. that

∑

i ai · bi = 0. Rewrite the ith term ai ⊗ bi as follows:

ai ⊗ bi = aibi ⊗ 1 + (ai ⊗ 1) · (1⊗ bi − bi ⊗ 1)

and sum over i; since
∑

i aibi = 0, we are left with
∑

i(ai⊗1)·(1⊗bi−bi⊗1),
which belongs to the B ⊗ B-module generated by elements of the form

1⊗b−b⊗1. – The second assertion follows, since ab⊗1+1⊗ab−a⊗b−b⊗a
is the product of the two generators 1⊗ a− a⊗ 1 and 1⊗ b− b⊗ 1, except

for sign. (Note that the proof gave a slightly stronger result, namely that J
is generated already as a B-module, by the elements 1 ⊗ b − b ⊗ 1, via the

algebra map i0 : B → B ⊗ B, where i0(a) = a⊗ 1).

From the second assertion in this Proposition immediately follows that

f ∼ g iff
(

f

g

)

: B ⊗ B → C factors across the quotient map B ⊗ B →

(B ⊗ B)/J2 (where
(

f

g

)

: B ⊗ B → C denotes the map given by a ⊗ b 7→

f(a) · g(b)); equivalently:

Proposition 1.2. For f, g : B → C, we have f ∼ g if and only if
(

f

g

)

:

B ⊗ B → C annihilates J2.

The two natural inclusion maps i0 and i1 : B → B ⊗ B (given by

b 7→ b ⊗ 1 and b 7→ 1 ⊗ b, respectively) are not in general neighbours, but

when postcomposed with the quotient map π : B ⊗B → (B ⊗B)/J2, they

are:

π ◦ i0 ∼ π ◦ i1,

and this is in fact the universal pair of neighbour algebra maps with domain

B.

2. Neighbours for polynomial algebras

We consider the polynomial algebra B := k[X1, . . . , Xn]. Identifying B⊗B
with k[Y1, . . . , Yn, Z1, . . . , Zn], the multiplication map m is the algebra map

given by Yi 7→ Xi and Zi 7→ Xi, so it is clear that the kernel J of m contains

the n elements Zi − Yi. The following Proposition should be classical:

Proposition 2.1. The ideal J ⊆ B⊗B, for B = k[X1, . . . , Xn], is generated

(as a B ⊗ B-module) by the n elements Zi − Yi.
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Proof. From Proposition 1.1, we know that J is generated by elements P (Z)−
P (Y ), for P ∈ k[X] (where X denotes X1, . . . , Xn, and similarly for Y and

Z). So it suffices to prove that P (Z)− P (Y ) is of the form

n
∑

i=1

(Zi − Yi)Qi(Y , Z).

This is done by induction in n. For n = 1, it suffices, by linearity, to prove

this fact for each monomial Xs. And this follows from the identity

Zs − Y s = (Z − Y ) · (Zs−1 + Zs−2Y + . . .+ ZY s−2 + Y s−1) (7)

(for s ≥ 1; for s = 0, we get 0). For the induction step: Write P (X) as a

sum of increasing powers of X1,

P (X1, X2, . . .) = P0(X2, . . .) +X1P1(X2, . . .) +X2
1P2(X2, . . .) + . . . .

Apply the induction hypothesis to the first term. The remaining terms are of

the form Xs
1Ps(X2, . . .) with s ≥ 1; then for this term, the difference to be

considered is

Y s
1 Ps(Y2, . . .)− Zs

1Ps(Z2, . . .)

which we may write as

Y s
1 (Ps(Y2, . . .)− Ps(Z2, . . .)) + Ps(Z2, . . .)(Y

s
1 − Zs

1).

The first term in this sum is taken care of by the induction hypothesis, the

second term uses the identity (7) which shows that this term is in the ideal

generated by (Z1 − Y1).

From this follows immediately

Proposition 2.2. The ideal J2 ⊆ B ⊗ B, for B = k[X1, . . . , Xn], is ge-

nerated (as a B ⊗B-module) by the elements (Zi − Yi)(Zj − Yj) (for i, j =
1, . . . , n) (identifying B ⊗ B with k[Y1, . . . , Yn, Z1, . . . , Zn]).

(The algebra (B ⊗ B)/J2 is the algebra representing the affine scheme

“first neighbourhood of the diagonal” for the affine scheme represented by

B, alluded to in the introduction.)
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An algebra map a : k[X1, . . . , Xn] → C is completely given by an n-

tuple of elements ai := a(Xi) ∈ C (i = 1, . . . , n). Let b : k[X1, . . . , Xn] →
C be similarly given by the n-tuple bi ∈ C. The decision when a ∼ b can be

expressed equationally in terms of these two n-tuples of elements in C, i.e. as

a purely equationally described condition on elements (a1, . . . , an, b1, . . . , bn)
∈ C2n:

Proposition 2.3. Consider two algebra maps a and b : k[X1, . . . , Xn] → C.

Let ai := a(Xi) and bi := b(Xi). Then we have a ∼ b if and only if

(bi − ai) · (bj − aj) = 0 (8)

for all i, j = 1, . . . , n.

Proof. We have that a ∼ b iff the algebra map
(

a

b

)

annihilates the ideal

J2 for the algebra k[X1, . . . , Xn]; and this in turn is equivalent to that it

annihilates the set of generators for J2 described in Proposition 2.2. But
(

a

b

)

((Zi − Yi) · (Zj − Yj)) = (bi − ai) · (bj − aj), and then the result is

immediate.

We therefore also say that the pair of n-tuples of elements in C
[

a1 . . . an
b1 . . . bn

]

are neighbours if (8) holds.

For brevity, we call an n-tuple (c1, . . . , cn) of elements in Cn a vector,

and denote it c . Thus a vector (c1, . . . , cn) is neighbour of the “zero” vector

0 = (0, . . . , 0) iff ci · cj = 0 for all i and j.

Remark. Even when 2 ∈ k is invertible, one cannot conclude that (bi −
ai)

2 = 0 for all i = 1, . . . , n implies a ∼ b. For, consider C := k[ǫ1, ǫ2] =
k[ǫ]⊗k[ǫ] (where k[ǫ] is the “ring of dual numbers over k”, so ǫ2 = 0). Then

the pair of n-tuples (n = 2 here) given by (a1, a2) = (ǫ1, ǫ2) and (b1, b2) :=
(0, 0) has (ai − bi)

2 = ǫ2i = 0 for i = 1, 2, but (a1 − b1) · (a2 − b2) = ǫ1 · ǫ2,
which is not 0 in C.

We already have the notion of when two algebra maps f and g : B → C
are neighbours. We also say that the pair (f, g) form an infinitesimal 1-

simplex (with f and g as vertices). Also, we have with (8) the derived notion
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of when two vectors a and b in Cn are neighbours, or form an infinitesimal

1-simplex. This terminology is suited for being generalized to defining the

notion of infinitesimal p-simplex of algebra maps B → C, or of infinitesimal

p-simplex of vectors in Cn (for p = 1, 2, . . .), namely a (p + 1)-tuple of

mutual neighbouring algebra maps, resp. neighbouring vectors.

Proposition 2.3 generalizes immediately to infinitesimal p-simplices

(where the Proposition is the special case of p = 1):

Proposition 2.4. Consider p+1 algebra maps ai : k[X1, . . . , Xn] → C (for

i = 0, . . . , p), and let aij ∈ C be ai(Xj), for j = 1, . . . n. Then the ai form

an infinitesimal p-simplex iff for all i, i′ = 0, . . . p and j, j′ = 1, . . . , n

(aij − ai′j) · (aij′ − ai′j′) = 0. (9)

3. Affine combinations of mutual neighbours

Let C be a k-algebra. An affine combination in a C-module means here a lin-

ear combination in the module, with coefficients from C, and where the sum

of the coefficients is 1. We consider in particular the C-module Link(B,C)
of k-linear maps B → C, where B is another k-algebra. Linear combina-

tions of algebra maps are linear, but may fail to preserve the multiplicative

structure (including 1). However

Theorem 3.1. Let f0, . . . , fp be a p + 1-tuple of mutual neighbour algebra

maps B → C, and let t0, . . . , tp be elements of C with t0 + . . . + tp = 1.

Then the affine combination

p
∑

i=0

ti · fi : B → C

is an algebra map. The construction is natural in B and in C.

Proof. Since the sum is a k-linear map, it suffices to prove that it preserves

the multiplicative structure. It clearly preserves 1. To prove that it preserves

products a · b, we should compare
∑

tifi(a · b). with

(
∑

i

tifi(a)) · (
∑

j

tjfj(b)) =
∑

i,j

titjfi(a) · fj(b).
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Now use that
∑

j tj = 1; then
∑

tifi(a · b) may be rewritten as

∑

ij

titjfi(a · b).

Compare the two displayed double sums: the terms with i = j match since

each fi preserves multiplication. Consider a pair of indices i 6= j; the terms

with index ij and ji from the first sum contribute titj times

fi(a) · fj(b) + fj(a) · fi(b), (10)

and the terms terms with index ij and ji from the second sum contribute titj
times

fi(a · b) + fj(a · b), (11)

and the two displayed contributions are equal, since fi ∼ fj (use the formu-

lation (2)). The naturality assertion is clear.

Theorem 3.2. Let Let f0, . . . , fp be a p+ 1-tuple of mutual neighbour alge-

bra maps B → C. Then any two affine combinations (with coefficients from

C) of these maps are neighbours.

Proof. Let
∑

i tifi and
∑

j sjfj be two such affine combinations. To prove

that they are neighbours means (using (2)) to prove that for all a and b in B,

(
∑

i

tifi(a)) · (
∑

j

sjfj(b)) + (
∑

j

sjfj(a)) · (
∑

i

tifi(b)) (12)

equals
∑

i

tifi(a · b) +
∑

j

sjfj(a · b). (13)

Now (12) equals
∑

ij

tisjfi(a)·fj(b)+
∑

ij

tisjfj(a)·fi(b) =
∑

ij

tisj[fi(a)·fj(b)+fj(a)·fi(b)]

For (13), we use
∑

j sj = 1 and
∑

i ti = 1, to rewrite it as the left hand

expression in
∑

ij

tisjfi(a · b) +
∑

ij

tisjfj(a · b) =
∑

ij

tisj[fi(a · b) + fj(a · b)].

For each ij, the two square bracket expression match by (2), since fi ∼
fj .
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Combining these two results, we have

Theorem 3.3. Let f0, . . . , fp be a p + 1-tuple of mutual neighbour algebra

maps B → C. Then in the C-module of k-linear maps B → C, the affine

subspace AffC(f0, . . . , fp) of affine combinations (with coefficients from C)

of the fis consists of algebra maps, and they are mutual neighbours.

Note that these two Theorems are also vaild for commutative rigs, i.e. no

negatives are needed for the notions or the theorems.

In [2], the authors describe an ideal J
(2)
0p . It is the sum of ideals J2

rs in the

p + 1-fold tensor product B ⊗ . . . ⊗ B, where Jrs is the ideal generated by

is(b) − ir(b) for b ∈ B and r < s (with ik the kth inclusion map). We shall

here denote J
(2)
0p just by J

(2)
for brevity; it has the property that the p + 1

inclusions B → B ⊗ . . . ⊗ B become mutual neighbours, when composed

with the quotient map π : B ⊗ . . .⊗B → (B ⊗ . . .⊗B)/J
(2)

, and this is in

fact the universal p+ 1 tuple of mutual neighbour maps with domain B.

We may, for any given k-algebra B, encode the construction of Theorem

3.1 into one single canonical map which does not mention any individual

B → C. This we do by using the universal p+1-tuple of neighbour elements,

and the generic p+ 1 tuple of elements (to be used as coefficients) with sum

1, meaning (X0, X1, . . . , Xp) ∈ k[X1, . . . , Xp] (where X0 denotes 1−(X1+
. . .+Xp)). We shall construct a k-algebra map

B → (B⊗p+1/J
(2)
)⊗ k[X1, . . . , Xp]. (14)

By the Yoneda Lemma, this is equivalent to giving a (set theoretical) map,

natural in C,

hom((B⊗p+1/J
(2)
)⊗ k[X1, . . . , Xp], C) → hom(B,C),

(where hom denotes the set of k-algebra maps). An element on the left

hand side is given by a p + 1-tuple of mutual neighbouring algebra maps

fi : B → C, together with a p-tuple (t1, . . . , tp) of elements in C. With

t0 := 1 −
∑p

1 ti, such data produce an element
∑p

0 ti · fi in hom(B,C), by

Theorem 3.1, and the construction is natural in C by the last assertion in the

Theorem.
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The affine scheme defined by the algebra B⊗p+1/J
(2)

is (essentially)

called ∆
(p)
B in [2], and, (in axiomatic context, for manifolds, in a suitable

sense), the corresponding object is called M[p] in [5] and M(1,1,...,1) in [4] I.

18 (for suitable M ).

4. Affine combinations in a k-algebra C

The constructions and results of the previous Section concerning infinitesi-

mal p-simplices of algebra maps B → C, specialize (by taking B =
k[X1, . . . , Xn], as in Section 2) to infinitesimal p-simplices of vectors in Cn;

such a p-simplex is conveniently exhibited in a (p+1)×n matrix with entries

aij from C:










a01 . . . a0n
a11 . . . a1n

...
...

ap1 . . . apn











in which the rows (the “vertices” of the simplex) are mutual neighbours.

We may of course form affine (or even linear) combinations, with coeffi-

cients from C, of the rows of this matrix, whether or not the rows are mutual

neighbours. But the same affine combination of the corresponding algebra

maps is in general only a k-linear map, not an algebra map. However, if

the rows are mutual neighbours in Cn, and hence the corresponding alge-

bra maps are mutual neighbours k[X1, . . . , Xn] → C, we have, by Theorem

3.1 that the affine combinations of the rows of the matrix corresponds to the

similar affine combination of the algebra maps. For, it suffices to check their

equality on the Xis, since the Xis generate k[X1, . . . , Xn] as an algebra.

Therefore, the Theorems 3.2 and 3.3 immediately translate into theorems

about p + 1-tuples of mutual neighbouring n-tuples of elements in the al-

gebra C; recall that such a p + 1-tuple may be identified with the rows of

a (p + 1) × n matrix with entries from C, satisfying the equations (9). We

therefore have (cf. also [6])

Theorem 4.1. Let the rows of a (p + 1) × n matrix with entries from C be

mutual neighbours. Then any two affine combinations (with coefficients from

C) of these rows are neighbours. The set of all such affine combinations form

an affine subspace of the C-module Cn.

KOCK - AFFINE COMBINATIONS IN AFFINE SCHEMES

- 124 -



Let us consider in particular the case where the 0th row of a (p+ 1)× n
matrix is the zero vector (0, . . . , 0). Then the following is an elementary

calculation:

Proposition 4.2. Consider a (p + 1) × n matrix {aij} as above, but with

a0j = 0 for j = 1, . . . n. Then the rows form an infinitesimal p-simplex iff

aij · ai′j′ + ai′j · aij′ = 0 for all i, i′ = 1, . . . p, j, j′ = 1, . . . n (15)

and

aij · aij′ = 0 for all i = 1, . . . , p, j = 1, . . . n (16)

hold. If 2 is invertible in C, the equations (16) follow from (15).

Proof. The last assertion follows by putting i = i′ in (15), and dividing by

2. Assume that the rows of the matrix form an infinitesimal p-simplex. Then

(16) follows from ai ∼ 0 by (8). The equation which asserts that ai ∼ ai′
(for i, i′ = 1, . . . , p) is

(aij − ai′j) · (aij′ − ai′j′) = 0 for all j, j′ = 1, . . . n.

Multiplying out gives four terms, two of which vanish by virtue of (16), and

the two remaining add up to (minus) the sum on the left of (15). For the

converse implication, (16) give that the last p rows are ∼ 0; and (16) and

(15) jointly give that ai ∼ ai′ , by essentially the same calculation which we

have already made.

When 0 is one of the vectors in a p + 1-tuple, any linear combination of

the remaining p vectors has the same value as a certain affine combination of

all p + 1 vectors, since the coefficient for 0 may be chosen arbitrarily with-

out changing the value of the linear combination. Therefore the results on

affine combinations of the rows in the (p + 1) × n matrix with 0 as top row

immediately translate to results about linear combinations of the remaining

rows, i.e. they translate into results about p×n matrices, satisfying the equa-

tions (15) and (16); even the equations (15) suffice, if 2 is invertible. In this

form, the results were obtained in the preprint [6], and are stated here for

completeness. We assume that 2 ∈ k is invertible.

We use the notation from [4] I.16 and I. 18, where set of p × n matri-

ces {aij} satisfying (15) was denoted D̃(p, n) ⊆ Cp·n (we there consider
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algebras C over k = Q, so (16) follows). In particular D̃(2, 2) consists of

matrices of the form

[

a11 a12
a21 a22

]

with a11 · a22 + a12 · a21 = 0.

Note that the determinant of such a matrix is 2 times the product of the

diagonal entries. And also note that D̃(2, 2) is stable under transposition of

matrices.

The notation D̃(p, n) may be consistently augmented to the case where

p = 1; we say (a1, . . . , an) ∈ D̃(1, n) if it is neighbour of 0 ∈ Cn, i.e. if

aj · aj′ = 0 for all j, j′ = 1, . . . n. (In [4], D̃(1, n) is also denoted D(n), and

D(1) is denoted D.)

It is clear that a p×n matrix belongs to D̃(p, n) precisely when all its 2×2
sub-matrices do; this is just a reflection of the fact that the defining equations

(15) only involve two row indices and two column indices at a time. From

the transposition stability of D̃(2, 2) therefore follows that transposition p×n
matrices takes D̃(p, n) into D̃(n, p).

Note that each of the rows of a matrix in D̃(p, n) is a neighbour of 0 ∈
Cn.

The results about affine combinations now has the following corollary in

terms of linear combinations of the rows of matrices in D̃(p, n):

Theorem 4.3. Given a matrix X ∈ D̃(p, n). Let a (p+ 1)× n matrix X ′ be

obtained by adjoining to X a row which is a linear combination of the rows

of X . Then X ′ is in D̃(p+ 1, n).

5. Geometric meaning

Commutative rings often come about as rings O(M) of scalar valued func-

tions on some space M , and this gives some geometric aspects (arising from

the space M ) into the algebra O(M). Does every commutative ring (or k-

algebra) come about this way? This depends of course what “space” is sup-

posed to mean, and what the “scalars” and “functions” are. What could they

be?

Algebraic geometry has over time developed a radical, almost self-refe-

rential answer. The first thing is to define the category E of spaces, and
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among these, a commutative ring object R ∈ E of scalars. The radical

answer consists in taking the category E of spaces and functions to be the

dual of the category A of commutative rings, and any commutative ring B to

be the ring O(B) of scalar valued functions on the space B which it defines.

This will come about by letting the ring of scalars R ∈ E be the free ring in

one generator: the polynomial ring in one variable, cf. (17) below.

To fix terminology, we elaborate this viewpoint. For flexibility and gen-

erality, we consider a commutative base ring k, and consider the category

A of commutative k-algebras (the “absolute” case comes about by taking

k = Z).

So E is Aop; for B ∈ A, the corresponding object in E is denoted B
or Spec(B); for M ∈ E , the corresponding object in A is denoted O(M).
Thus, B = O(B) and M = O(M).

We have in particular k[X] ∈ A, the free k-algebra in one generator, and

we put R := k[X]. Then for any M ∈ E ,

homE(M,R) = homE(M, k[X]) = homA(k[X], O(M)) ∼= O(M), (17)

(the last isomorphism because k[X] is the free k-algebra in one generator

X), and since the right hand side is a k-algebra, (naturally in M ), we have

that R is a k-algebra object in E . And (17) documents that O(M) is indeed

canonically isomorphic as a k-algebra to the k-algebra of R-valued functions

on M .

If E is a category with finite products, algebraic structure on an object R
in E may be described in diagrammatic terms, but it is equivalent to descrip-

tion of the same kind of structure on the sets homE(M,R) (naturally in M ),

thus is a description in terms of elements.

It is useful to think of, and speak of, such an element (map) a : M → R
as an “element of R, defined at stage M”, or just as a “generalized element

(or generalized point3) of R defined at stage M”. We may write a ∈ R, or

a ∈M R, if we need to remember the “stage” at which the element a of R is

defined; and we may drop the word “generalized”.

If f : R → S is a map in E , then for an a : M → R, we have the

composite f ◦ a : M → S; viewing a and f ◦ a as generalized elements of

3Grothendieck called a map M → R “an M -valued point of R”, extending the use in

classical algebraic geometry, where one could talk about e.g. a complex-valued point, or

point defined over C, for R an arbitrary algebraic variety.
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R and S, respectively, the latter is naturally written f(a):

f(a) := f ◦ a.

Subobjects of an arbitrary object R ∈ E may be characterized by which

of generalized elements of R they contain. Maps R → S may be described

by what they do to generalized elements of R (by post-composition of maps).

This is essentially Yoneda’s Lemma.

Consider in particular the theory of neighbour maps and their affine com-

binations, as developed in the previous sections. It deals with the category A
of commutative k-algebras. We shall translate some of the notions and con-

structions into the dual category E , i.e. into the category of affine schemes

over k, using the terminology of generalized elements, or generalized points.

Thus (assuming for simplicity that 2 is invertible in k), we can consider

the criterion (3) for the neighbour relation of algebra maps f, g : B → C; it

translates as follows. Let f and g be points of B (defined at stage C). Then

f ∼ g iff for all a : B → R, we have (a(f) − a(g))2 = 0, or, changing

the names of the objects and maps/elements in question, e.g. X = B, and

refraining from mentioning the common stage of definition of the elements

x and y:

Two points x and y in X are neighbours iff for any scalar valued function

α on X , (α(x) = α(y))2 = 0.

Thus, the basic (first order) neighbour relation ∼ on any object M is

determined by the set of scalar valued functions on it, and by which points

in the ring object R of scalars have square 0. This implies that the neighbour

relation is preserved by any map B → B′ between affine schemes. The

naturality of the construction of affine combinations of mutual neighbour

points in B implies that the construction is preserved by any map B → B′

between affine schemes.

The Proposition 2.3 gets the formulation:

Proposition 5.1. Given two points (a1, . . . , an) and (b1, . . . , bn) ∈ Rn. Then

they are neighbours iff

(bi − ai) · (bj − aj) = 0 (18)

for all i, j = 1, . . . , n.
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Here the (common) parameter space C of the ais and bis is not men-

tioned explicitly; it could be any affine scheme. Note that (18) is typograph-

ically the same as (8); in (18), the ais etc. are (parametrized) points of R
(parametrized by C), in (8), they are elements in the algebra C; but these

data correspond, by (17), and this correspondence preserves algebraic struc-

ture. – Similarly, Proposition 2.4 gets the reformulation:

Proposition 5.2. A p + 1-tuple {aij} of points in Rn form an infinitesimal

p-simplex iff the equations (9) hold.

This formulation, as the other formulations in “synthetic” terms, are the

ones that are suited to axiomatic treatment, as in Synthetic Differential Ge-

ometry, which almost exclusively4 assumes a given commutative ring object

R in a category E , preferably a topos, as a basic ingredient in the axiomat-

ics. (The category E of affine schemes is not a topos, but the category of

presheaves on E is, and it, and some of its subtoposes, are the basic cate-

gories considered in modern algebraic geometry, like in [3].)

Proposition 5.3. Given an affine scheme B, with the k-algebra B finitely

presentable. Then for any finite presentation (with n generators, say) of the

algebra, the corresponding embedding e : B → Rn preserves and reflects

the relation ∼, and it preserves affine combinations of neighbour points.

For, any map between affine schemes preserves the neighbour relation,

and affine combinations of mutual neighbours. The argument for reflection

is as for (6) since the presentation amounts to a surjective map of k-algebras

k[X1, . . . , Xn] → B.
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