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Résumé. L’article propose une construction alternative de la monade utilisée
par Penon pour définir les n-catégories faibles. La monade de Penon ajoute
deux éléments de structure supplémentaires à une structure d’ensemble n-
globulaire : une structure de magma donnant une composition, et une struc-
ture de contraction donnant une cohérence. Ces deux structures sont ajoutées
à l’aide d’une approche d’entrelacement, suivant la méthode utilisée par Cheng
pour construire l’opérade de Leinster pour les ω-catégories faibles. Nous con-
cluons en utilisant notre construction pour donner une description explicite de
l’opérade n-globulaire pour les n-catégories faibles de Penon.
Abstract. We give an alternative construction of the monad used by Penon
to define weak n-categories. Penon’s monad adds two pieces of extra struc-
ture to an n-globular set: a magma structure, giving composition, and a con-
traction structure, giving coherence. We add these two structures using an
interleaving approach, following the method used by Cheng to construct Le-
inster’s operad for weak ω-categories. We conclude by using our construc-
tion to give an explicit description of the n-globular operad for Penon weak
n-categories.
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1. Introduction

The main purpose of this paper is to give a new construction of the monad
used by Penon to define weak n-categories. Penon weak n-categories, intro-
duced in [15], are defined as the algebras for the monad induced by a certain
non-monadic adjunction. The left adjoint of this adjunction, which Penon
originally constructed using computads, freely adds two pieces of structure:
a “magma structure”, which gives composition in a weak n-category, and
a “contraction structure”, which gives coherence. In our construction we
add these two structures by a process of monad interleaving. The use of
this method to construct Penon’s left adjoint was suggested by Cheng in
[7], who used monad interleaving to construct Leinster’s globular operad for
weak ω-categories; thus we hope that this new construction should facilitate
a comparison between the two definitions.

In Section 2 we recall the definition of Penon weak n-categories, along
with the necessary preliminaries. In Section 3 we give the interleaving con-
struction of the left adjoint in the definition of Penon weak n-categories.
Finally, in Section 4 we show that our construction gives an explicit descrip-
tion of the n-globular operad whose algebras are Penon weak n-categories;
the existence of this operad was proved by Batanin [3].

Throughout the paper we use a variant of Penon’s definition of weak n-
categories, given in [3, 9]. Penon defined weak n-categories as the algebras
for a monad on the category of reflexive globular sets (globular sets in which
each cell has a putative identity cell at the dimension above). In [9] Cheng
and Makkai observed that, in the finite dimensional case, Penon’s definition
did not encompass certain well-understood examples of weak n-categories,
such as braided monoidal categories, but that this could be remedied by us-
ing globular sets instead of reflexive globular sets. Note that Penon orig-
inally gave his definition in the case n = ω, whereas we take n to be fi-
nite (this modification of the definition for finite n is standard, see [12, 9]).
Throughout the paper, the letter n always denotes a fixed natural number. It
is straightforward to adapt our construction to the case n = ω; we explain
how to do this at the end of Section 3.
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2. Definition of Penon weak n-categories

In this section we recall the non-reflexive variant of Penon’s definition of
weak n-category [15, 3, 9]. The idea of Penon’s definition is to weaken the
well-understood notion of strict n-category by means of a “contraction”. To
do this Penon considers “n-magmas”: n-globular sets equipped with binary
composition operations that are not required to satisfy any axioms (apart
from the usual source and target conditions). He then asks when an n-magma
is “coherent enough” to be considered a weak n-category. To answer this
question he uses the fact that every strict n-category has an underlying n-
magma to compare n-magmas with strict n-categories by considering maps

X S,
f
//

whereX is an n-magma, S is the underlying n-magma of a strict n-category,
and f preserves the n-magma structure. Penon defines a notion of a contrac-
tion on such a map, which lifts identities in S to equivalences in X , ensuring
that the axioms that hold in S hold up to equivalence in X; by analogy with
contractions in the topological sense, we can think of the axioms as holding
“up to homotopy” in X .

Penon then defines a category whose objects are maps f : X → S as
above equipped with contractions; we denote this category by Q, following
the notation of Leinster [12]. An object ofQ can be thought of as consisting
of an n-magma X and a way of contracting it down to a strict n-category
S. There is a forgetful functor Q → n-GSet sending an object of Q to the
underlying n-globular set of its magma part. This functor has a left adjoint,
which induces a monad on n-GSet, and a Penon weak n-category is defined
to be an algebra for this monad.
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We begin by recalling the definition of an n-globular set, the underlying
data for a Penon weak n-category.

Definition 2.1. The n-globe category G is defined as the category with

• objects: natural numbers 0, 1, . . . , n− 1, n;

• morphisms generated by, for each 1 ≤ m ≤ n, morphisms

σm, τm : (m− 1)→ m

such that σm+1σm = τm+1σm and σm+1τm = τm+1τm for m ≥ 2
(called the “globularity conditions”).

An n-globular set is a presheaf on G. We write n-GSet for the category of
n-globular sets [Gop,Set].

For an n-globular set X : Gop → Set, we write s for X(σm), and t for
X(τm), regardless of the value of m, and refer to them as the source and
target maps respectively. We denote the set X(m) by Xm. We say that two
m-cells x, y ∈ Xm are parallel if s(x) = s(y) and t(x) = t(y); note that all
0-cells are considered to be parallel.

We now recall the definition of an n-magma, an n-globular set equipped
with composition operations.

Definition 2.2. An n-magma (or simply magma, when n is fixed) consists
of an n-globular set X equipped with, for each m, p, with 0 ≤ p < m ≤ n,
a binary composition function

◦mp : Xm ×Xp Xm → Xm,

where Xm ×Xp Xm denotes the pullback

Xm ×Xp Xm Xm

Xm Xp

//

��

t
//

s

��

in Set; these composition functions must satisfy the following source and
target conditions:
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• if p = m− 1, given (a, b) ∈ Xm ×Xp Xm,

s(b ◦mp a) = s(a), t(b ◦mp a) = t(b);

• if p < m− 1, given (a, b) ∈ Xm ×Xp Xm,

s(b ◦mp a) = s(b) ◦m−1p s(a), t(b ◦mp a) = t(b) ◦m−1p t(a).

A map of n-magmas f : X → Y is a map of the underlying n-globular sets
such that, for allm, p, with 0 ≤ p < m ≤ n, and for all (a, b) ∈ Xm×XpXm,

f(b ◦mp a) = f(b) ◦mp f(a).

We write n-Mag for the category whose objects are n-magmas and whose
morphisms are maps of n-magmas.

Observe that every strict n-category has an underlying n-magma, and we
have a forgetful functor

n-Cat −→ n-Mag.

We now recall the definition of a contraction on a map of n-globular sets
f : X → S, where S is the underlying n-globular set of a strict n-category.
Note that this definition does not require a magma structure on X . We must
treat dimension n slightly differently, since there is no dimension n+1; to do
so, we define a notion of a “tame” map of n-globular sets (the terminology is
due to Leinster [13, Definition 9.3.1]), which ensures that we have equalities
between n-cells where we would normally expect contraction (n+ 1)-cells.

It is common to express the definition of contraction in terms of lifting
conditions [3, 4, 10]; however, we express the definition using pullbacks
of sets since this approach allows for a straightforward construction of free
contractions, which we describe in the next section.

In the following definition, Xc
m+1 is the set of all pairs of m-cells re-

quiring a contraction (m + 1)-cell, i.e. the set of all pairs of parallel m-
cells on Xm which are mapped by f to the same m-cell in Sm. For any
(a, a) ∈ Xc

m+1, we write γm(a, a) = 1a, since it is these contraction cells
that give us the identities in a Penon weak n-category.
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Definition 2.3. Let f : X → S be a map of n-globular sets, where S is the
underlying n-globular set of a strict n-category. The map f is said to be tame
if, given a, b ∈ Xn, if s(a) = s(b), t(a) = t(b), and fn(a) = fn(b), then
a = b.

For each 0 ≤ m < n, define a set Xc
m+1 by the following pullback:

Xc
m+1 Xm

Xm Xm−1 ×Xm−1 × Sm.

//

��

(s,t,fm)
//

(s,t,fm)

��

Note that when m = 0, we take Xm−1 to be the terminal set.
A contraction γ on a tame map f : X → S consists of, for each 0 ≤

m < n, a map
γm+1 : X

c
m+1 → Xm+1

such that, for all (a, b) ∈ Xc
m+1,

• s(γm+1(a, b)) = a;

• t(γm+1(a, b)) = b;

• fm+1(γm+1(a, b)) = 1fm(a) = 1fm(b).

Note that we only ever speak of a contraction on a tame map; thus, when-
ever we state that a map is equipped with a contraction, the map is automat-
ically assumed to be tame. One way to think about this is to say that we do
require a contraction (n+1)-cell for each pair of n-cells in Xc

n, and the only
(n+ 1)-cells in X are equalities.

Penon does not use the term “contraction”; instead, he uses the word
“stretching” (“étirement”). This may appear somewhat counterintuitive, as
the two words seem antonymous. However, Penon’s terminology comes
from viewing the same situation from a different point of view; rather than
seeing S as a contracted version of X , Penon sees X as a stretched-out ver-
sion of S. In the case in which X has a magma structure, Penon refers to a
such a map as a “categorical stretching” (“étirement catégorique”). Categor-
ical stretchings form a category Q, which we now define.
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Definition 2.4. The category of n-categorical stretchings Q is the category
with

• objects: an object of Q consists of an n-magma X , a strict n-category
S, and a map of n-magmas

X

S

f

��

equipped with a contraction γ;

• morphisms: a morphism in Q is a commuting square

X Y

S R

u //

f

��

g

��

v
//

in n-Mag such that

– v is a map of strict n-categories;

– writing γ for the contraction on the map f and δ for the contrac-
tion on the map g, for all 0 ≤ m < n, and (a, b) ∈ Xc

m+1, we
have

u(γm(a, b)) = δm(u(a), u(b)).

We denote such a morphism by (u, v).

For an object
X

S

f

��
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of Q, we refer to X as its magma part and S as its strict n-category part.
There is a forgetful functor

U : Q n-GSet

X

X

S

//

f

� �

� //

and this functor has a left adjoint F : n-GSet→ Q. Penon gives a construc-
tion of this left adjoint in the second part of [15].

Definition 2.5. Let P be the monad on n-GSet induced by the adjunction
F a U . A Penon weak n-category is defined to be an algebra for the monad
P , and P -Alg is the category of Penon weak n-categories.

3. Construction of Penon’s left adjoint

In [15] Penon gave a construction of the left adjoint F , mentioned above,
using computads (which he called “polygraphs”, terminology due to Burroni
[6]). In this section we give a new, alternative construction of the functor
F , using a monad interleaving construction similar to that used by Cheng to
construct the operad for Leinster weak ω-categories [7] (see also [11], which
describes a more general interleaving argument).

The first step of our construction is the same as that of Penon. There is
a forgetful functor UT : n-Cat→ n-GSet (the notation UT is used because
n-Cat = T -Alg, where T is the free strict n-category monad on n-GSet),
and we writeR for the comma category

n-GSet ↓ UT .

Thus an object of R is a map of n-globular sets f : X → S, where S is the
underlying n-globular set of a strict n-category. Since an object ofQ consists
of an object f : X → S of R equipped with a magma structure on X and a
contraction on f , we can factorise the forgetful functor U : Q → n-GSet as

Q n-GSet

R

U //

W "" V

<<
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where W forgets the magma and contraction structures, and V sends an ob-
ject f : X → S of R to its n-globular set part X . To construct a left adjoint
to U we construct left adjoints to V andW separately. Constructing a left ad-
joint to V is straightforward: it sends an n-globular setX to ηTX : X → TX .

We now explain the interleaving argument, which is used to construct
the left adjoint to W ; this is where our construction differs from that of
Penon. In an object of Q the magma structure and contraction structure
exist independently of one another, and there are no axioms governing their
interaction. Thus, we can define categories

• Magn, whose objects are objects f : X → S of R, together with a
magma structure on X , which is respected by f ;

• Contrn+1, whose objects are objects f : X → S of R, together with
a contraction. (Note that n+1 in the superscript here indicates that we
have contraction equality (n+ 1)-cells ensuring tameness.)

The maps in these categories are required to respect the magma and contrac-
tion structures respectively. We can write the category Q as the pullback

Q Magn

Contrn+1 R,

//

� �

N

� �

D
//

whereN andD are the forgetful functors that forget the magma and contrac-
tion structures respectively. The functorN has a left adjointM , which freely
adds binary composites, and the functor D has a left adjoint C, which freely
adds contraction cells. We wish to combine these left adjoints to obtain a
left adjoint to W : Q → R, which adds both the magma and contraction
structures freely. However, we can’t just add all of one structure, then all of
the other, since with this approach we do not end up with enough cells. If
we add a contraction structure first, followed by a magma structure, we do
not get any contraction cells whose sources or targets are composites, such
as unitors and associators. If we add a magma structure first, followed by
a contraction structure, we do not get any composites involving contraction
cells.
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We therefore “interleave” the structures, one dimension at a time. To do
so, we make the following observations:

• when we add contraction cells freely, the contraction m-cells depend
only on cells at dimension m− 1;

• when we add composites freely, the composites of m-cells depend
only on cells at dimensions m and below.

This means that we can add the contraction cells and composites one di-
mension at a time; starting with dimension 1, we first add contraction cells
freely, then add composites freely; we then move up to the next dimension
and repeat the process.

To formalise this, we give separate dimension-by-dimension construc-
tions of both the free contraction structure and the free magma structure,
then interleave these constructions by lifting them to the case in which we
have both a magma structure and a contraction structure. Thus we obtain a
left adjoint to the forgetful functor W : Q → R; by composing this with the
left adjoint to the functor V : R → n-GSet we obtain the left adjoint F to
U : Q → n-GSet.

Owing to the length of this construction, this section is divided into four
subsections. In Subsection 3.1 we construct the left adjoint to V . In Subsec-
tions 3.2 and 3.3 we give dimension-by-dimension constructions of the left
adjoints to D and N respectively; these describe the free contraction struc-
ture and free magma structure. Finally, in Subsection 3.4 we then interleave
these constructions to give a left adjoint to W .

3.1 Left adjoint to V

We begin by describingR explicitly, in order to establish some terminology,
and to make clear its connection with Q.

Definition 3.1. Write R to denote the comma category n-GSet ↓ UT ; ex-
plicitly,R is the category with

• objects: an object of R consists of an n-globular set X , a strict n-
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category S, and a map of n-globular sets

X

S

f

��

• morphisms: a morphism inR is a commuting square

X Y

S R

u //

f

��

g

��

v
//

in n-GSet such that v is a map of strict n-categories. We denote such
a morphism by (u, v).

As in the case of Q, for an object

X

S

f

��

we refer to X as its n-globular set part and S as its strict n-category part.
We have a forgetful functor W : Q → R, which forgets the contraction

and n-magma structures but leaves the underlying map of n-globular sets
unchanged, and a forgetful functor V : R → n-GSet, defined by

V ( X
f
// S ) = X;

these compose to give V ◦W = U . We construct left adjoints to V and W
separately, then compose these to obtain the left adjoint to U . We begin with
the construction of the left adjoint to V ; we do this in more generality than
we require, since this construction is valid for any monad T .

Definition 3.2. Let T be a monad on a category C, and write UT : T -Alg→
C for the forgetful functor that sends a T -algebra to its underlying object in
C. Define a functor H : C → C/UT as follows:
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• on objects: for X ∈ n-GSet,

H(X) = ( X
ηTX // TX ),

where TX has the structure of the free T -algebra on X;

• on morphisms: for f : X → Y in C, Hf = (f, Tf).

Proposition 3.3. Write V : C/UT → C for the forgetful functor defined by,
for an object f : X → S of C/UT , where S has a T -algebra structure
θ : TS → S,

V ( X
f
// S ) = X.

Then there is an adjunction H a V .

Proof. First, we define the unit α : 1 ⇒ V H and the counit β : HV ⇒ 1.
We have V H = 1, and we define α := id. To define β, let f : X → S in
C/UT , where S has a T -algebra denoted by θ : TS → S. Observe that θ is a
map of T -algebras since, by the algebra axioms, the diagram

T 2S TS

TS S

Tθ //

µTS

��

θ

� �

θ
//

commutes. The component of β at f : X → S, denoted βf , is given by the
commuting diagram

X X

S

TX TS S,

idX //

ηTX

��

f

��
f

� �
ηTS
��

idS

��

Tf
//

θ
//

as a map in C/UT . This diagram commutes since the left-hand square is a
naturality square for η and the bottom-right triangle is the unit axiom for the
algebra θ; the remaining square commutes trivially.
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We now show that α and β satisfy the triangle identities. First, consider

V
αV //

1V
''

V HV

V β
��

V.

For f : X → S inR,

V ( X
f
// S ) = X = V HV ( X

f
// S ),

αX = 1X , and Uβf = 1X , so this diagram commutes.
Now consider

H Hα //

1H
' '

HVH

βH
��

H.

For X ∈ C,

H(X) = ( X
ηTX // TX ) = HVH(X),

HαX = HidX = (idX , idTX), and βHX = (id, µX ◦ TηX) = (idX , idTX),
so this diagram commutes.

This gives us the left adjoint to the functor V : R → n-GSet.

3.2 Free contraction structure

We now construct the free contraction on an object of R. In order to be
able to use the construction in the interleaving argument in Section 3.4, we
give the construction one dimension at a time. To do so, we define, for each
0 ≤ k ≤ n + 1, a category Contrk, an object of which consists of an
object of R equipped with a contraction up to dimension k. (Observe that
Contr0 = R, and note that a “contraction at dimension n+ 1” refers to the
tameness condition at dimension n.) We then have, for each 0 < k ≤ n+ 1,
a forgetful functor

Dk : Contrk → Contrk−1.

We construct a left adjoint to each Dk, which freely adds a contraction struc-
ture at dimension k, leaving all other dimensions unchanged.
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Definition 3.4. Let f : X → S be a map of n-globular sets, where S is the
underlying n-globular set of a strict n-category, and let 0 ≤ k ≤ n. Recall
from Definition 2.3 that, for each 0 ≤ m < n, the set Xc

m+1 is defined by the
pullback

Xc
m+1 Xm

Xm Xm−1 ×Xm−1 × Sm.

//

��

(s,t,fm)
//

(s,t,fm)

��

where, when m = 0, we take Xm−1 to be the terminal set.
A k-contraction γ on the map f consists of, for each 0 ≤ m < k, a map

γm+1 : X
c
m+1 → Xm+1

such that, for (a, b) ∈ Xc
m,

s(γm+1(a, b)) = a,

t(γm+1(a, b)) = b,

fm+1(γm+1(a, b)) = idf(a).

Note that having an n-contraction on a map f is not the same as having
contraction on f ; for a contraction on f , we also require that f is tame (see
Definition 2.3).

Definition 3.5. For each 0 ≤ k ≤ n, define a category Contrk, with

• objects: an object of Contrk consists of an n-globular set X , a strict
n-category S, and a map of n-globular sets

X

S

f

��

equipped with a k-contraction γ;
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• morphisms: a morphism in Contrk is a commuting square

X Y

S R

u //

f

��

g

��

v
//

in n-GSet such that

– v is a map of strict n-categories;

– writing γ for the contraction on the map f and δ for the contrac-
tion on the map g, for all 0 < m ≤ k, and (a, b) ∈ Xc

m, we
have

u(γm(a, b)) = δm(u(a), u(b)).

Define a category Contrn+1, with

• objects: an object of Contrn+1 consists of an n-magma X , a strict
n-category S, and a map of n-magmas

X

S

f

��

equipped with a contraction γ;

• morphisms: a morphism in Contrn+1 is a commuting square

X Y

S R

u //

f

��

g

��

v
//

in n-GSet such that

– v is a map of strict n-categories;
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– writing γ for the contraction on the map f and δ for the contrac-
tion on the map g, for all 0 < m ≤ n, and (a, b) ∈ Xc

m, we
have

u(γm(a, b)) = δm(u(a), u(b)).

For all 0 < k ≤ n+ 1, we have a forgetful functor

Dk : Contrk → Contrk−1;

for 0 < k ≤ n, this functor forgets the contraction at dimension k, and
for k = n+ 1 it is the inclusion functor of the subcategory Contrn+1 into
Contrn.

We now define a putative left adjoint Ck to the functor Dk; we will then
prove that this functor is left adjoint to Dk in Proposition 3.7.

Definition 3.6. For each k, 0 < k ≤ n, we define a functor

Ck : Contrk−1 → Contrk.

We begin by giving the action of Ck on objects. Let

X

S

f

��

be an object of Contrk−1, and write γ for its (k− 1)-contraction (assuming
k > 1; if k = 1, we have Contrk−1 = Contr0 = R, so there is no
contraction on f ). We define an object

X̃

S

f̃

��

of Contrk, with k-contraction γ̃. The n-globular set X̃ is defined by:

• X̃j = Xj for all j 6= k;
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• X̃k = Xk qXc
k,

• for (x, y) ∈ Xc
k ⊆ X̃k, s(x, y) = x, t(x, y) = y,

• for all other cells, sources and targets are inherited from X .

The map f̃ : X̃ → S is defined by

• f̃j = fj for all j 6= k;

• f̃k : X̃k → Sk is defined by

– f̃k(α) = fk(α) for α ∈ Xk ⊆ X̃k;

– f̃k(x, y) = 1fk−1(x) for (x, y) ∈ Xc
k ⊆ X̃k.

The k-contraction γ̃ on f̃ is defined by

• γ̃m = γk−1m for all m < k − 1;

• γ̃k−1 : Xc
k → X̃k is the inclusion into the coproduct X̃k = Xk qXc

k.

This defines the action of Ck on objects.
We now give the action of Ck on morphisms. Let

X Y

S R

u //

f

��

g

��

v
//

be a morphism in Contrk−1. Define a morphism

X̃ Ỹ

S R

ũ //

f̃

��

g̃

��

v
//

in Contrk, where ũ is defined by

• ũj = uj for all j 6= k;
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• ũk : X̃k → Ỹk is given by

– ũk(α) = uk(α) for α ∈ Xk ⊆ X̃k;

– ũk(x, y) = (uk−1(x), uk−1(y)) for (x, y) ∈ Xc
k ⊆ X̃k.

This defines the action of Ck on morphisms.

Proposition 3.7. For all 0 < k ≤ n, there is an adjunction Ck a Dk.

Proof. We first define the unit η : 1⇒ DkCk, and counit ε : CkDk ⇒ 1.
Let

X

S

f

��

be an object of Contrk−1, with (k − 1)-contraction γ (assuming k > 1; if
k = 1, we have Contrk−1 = Contr0 = R, so there is no contraction on f ).
Applying DkCk gives

X̃

S

f̃

��

in Contrk−1 with the same (k− 1)-contraction. The corresponding compo-
nent of the unit η is given by the map

X X̃

S S

ηX //

f

��

f̃

��

idS
//

where ηX is defined by

(ηX)j =

{
1Xj

if j 6= k,
the inclusion Xj ↪→ Xj qXc

j if j = k.
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Now let
X

S

f

��

be an object of Contrk, with k-contraction γ. Applying CkDk gives

X̃

S

f̃

��

in Contrk with k-contraction γ̃, which is equal to γ at all dimensions except
k. The corresponding component of the counit ε is given by the map

X̃ X

S S

εX //

f̃

��

f

��

idS
//

where εX is defined by

• (εX)j = 1Xj
for all j 6= k;

• (εX)k : X̃k → Xk is given by

– (εX)k(α) = α for α ∈ Xk ⊆ X̃k;

– (εX)k(x, y) = γ̃k(x, y) for (x, y) ∈ Xc
k ⊆ X̃k.

We now check that the triangle identities hold; consider the diagrams

Dk
ηDk //

1
((

DkCkDk

Dkε
��

Ck
Ckη //

1
((

CkDkCk

εCk

��

Dk, Ck.

In all of the natural transformations in these diagrams, the components on
the strict n-category parts are all identities, so to show that the diagrams
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commute we need only consider the components on the n-globular set parts.
Since the components of the maps of n-globular sets are identities at every
dimension except dimension k, we need only check that the corresponding
diagrams of maps of sets of k-cells commute.

First, we must show that, given

X

S

f

��

in Contrk, the diagram

Xk
(ηX)k //

1Xk
))

X̃k = Xk qXc
k−1

(εX)k
��

Xk

commutes; this is true, since given α ∈ Xk, we have

(εX)k ◦ (ηX)k(α) = (εX)k(α) = α.

Secondly, we must show that, given

X

S

f

��

in Contrk−1 with (k − 1)-contraction γ, the diagram

X̃k
(η̃X)k //

1X̃k ''

X̃k q X̃c
k

(εX̃)k
��

X̃k

commutes. We have two kinds of freely added contraction cells in X̃k q X̃c
k;

we write (x, y) for the contraction cells in Xc
k, and [x, y] for those in X̃c

k (the
latter being the specified contraction cells in this case). Given α ∈ Xk ⊆ X̃k,

(εX̃)k ◦ (η̃X)k(α) = (εX̃)k(α) = α;
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given (x, y) ∈ Xc
k ⊆ X̃k,

(εX̃)k ◦ (η̃X)k(x, y) = (εX̃)k[x, y] = (x, y);

hence the diagram commutes.
Thus the triangle identities hold, and we have an adjunction Ck a Dk,

with unit η and counit ε.

We must also define Cn+1 separately, since “adding contraction (n+ 1)-
cells” consists of identifying certain n-cells rather than actually adding cells;
we can think of this as adding equality (n+1)-cells between pairs of n-cells
that would usually require a contraction cell between them.

Definition 3.8. We define a functor

Cn+1 : Contrn → Contrn+1.

We begin by giving the effect of Cn+1 on objects. Let

X

S

f

��

be an object of Contrn, with n-contraction γ. Define a set Xc
n+1 and maps

π1, π2 : Xc
n+1 → Xn by the following pullback:

Xc
n+1 Xn

Xn Xn−1 ×Xn−1 × Sn.

π1 //

π2

��

(s,t,fn)
//

(s,t,fn)

��

The set Xc
n+1 can be thought of as the set of pairs of n-cells to be identified,

but note that there is some redundancy: for all a ∈ Xn, (a, a) ∈ Xc
n+1, and

if we have (a, b) ∈ Xc
n+1 we also have (b, a) ∈ Xc

n+1.
We now define an object

X̃

S

f̃

��
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of Contrn+1 with contraction γ̃. For 0 ≤ m < n, define

X̃m = Xm,

and define X̃n to be the coequaliser of the diagram

Xc
n+1

π1 //

π2
// Xn.

For 0 ≤ m < n, define
f̃m = fm,

and define f̃n : X̃n → Sn to be the unique map such that

Xc
n+1

π1 //

π2
// Xn

q
//

fn   

X̃n

f̃n
��

Sn

commutes, where q : Xn → X̃n is the coequaliser map. Finally, define γ̃ to
be the n-contraction defined by

γ̃m =

{
γm if m < n,
q ◦ γn if m = n.

This defines the action of Cn+1 on objects.
We now give the action of Cn+1 on morphisms. Let

X Y

S R

u //

f

��

g

��

v
//

be a morphism in Contrn. Define a morphism

X̃ Ỹ

S R

ũ //

f̃

��

g̃

��

v
//
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in Contrn+1, where, for 0 ≤ m < n,

ũm = um,

and ũn : X̃n → Ỹn is defined to be the unique map such that the diagram

Xc
n+1

π1 //

π2
// Xn

q
//

un

��

X̃n

ũn
� �

Yn p
// Ỹn

commutes, where p is the coequaliser map for Ỹn. This defines the action of
Cn+1 on morphisms.

Proposition 3.9. There is an adjunction Cn+1 a Dn+1.

Proof. We first define the unit η : 1⇒ Dn+1Cn+1. Let

X

S

f

��

be an object of Contrn. Applying Dn+1Cn+1 gives

X̃

S

f̃

��

in Contrn+1. The corresponding component of the unit η is given by the
map

X X̃

S S

ηX //

f

��

f̃

��

idS
//
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where ηX is defined by

(ηX)j =

{
1Xj

if j < n,

the coequaliser map q : Xn → X̃n if j = n.

For the counit, observe that Cn+1Dn+1 = id, and if

X

S

f

��

is in the image of Dn+1, X̃ = X and q = idX , so η = id. We define the
counit

ε : Cn+1Dn+1 ⇒ 1

to be the identity. Thus all maps appearing in the diagrams for the triangle
identities are identity maps, so both diagrams commute. Hence there is an
adjunction Cn+1 a Dn+1.

Thus Definitions 3.6 and 3.8 give us a dimension-by-dimension construc-
tion of the free contraction on an object ofR.

3.3 Free magma structure

We now construct the free n-magma on the source of an object of R. As
with the construction of the free contraction in the previous subsection, in
order to be able to use the construction in the interleaving argument in Sub-
section 3.4, we give the construction one dimension at a time. To do so we
define, for each 0 ≤ j ≤ n, a category Magj , an object of which consists of
an object ofR in which the source is equipped with a magma structure up to
dimension j. (Observe that Mag0 = R.) We then have, for each 0 < j ≤ n,
a forgetful functor

Nj : Magj →Magj−1.

We construct a left adjoint to each Nj , which freely adds a magma structure
at dimension j, leaving all other dimensions unchanged.
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In order to define what it means for an n-globular set to have a j-magma
structure, we use the j-truncation functor

Trj : n-GSet −→ j-GSet,

which forgets the sets of m-cells for all m > j, and, for m ≤ j, leaves the
sets of m-cells and their source and target maps unchanged; the action on
maps is defined similarly.

Definition 3.10. Define a category Magj , with

• objects: an object of Magj consists of an object

X

S

f

��

inR such that TrjX is a j-magma, and Trjf is a map of j-magmas.

• morphisms: a morphism in Magj is a morphism

X Y

S R

u //

f

��

g

��

v
//

inR such that Trju is a map of j-magmas.

We can express the category Magj as a pullback. For any j ∈ N we
have a commuting triangle of forgetful functors

j-Cat j-Mag

j-GSet

G //

UTj ## E{{

in CAT, where Tj is the free strict j-category monad (and thus j-Cat =
TJ -Alg). We can then write Magj as the pullback

Magj n-GSet ↓ UT

j-Mag ↓ G j-GSet ↓ UTj

//

��

Trj

��

E
//
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For all 0 < j ≤ n, we have a forgetful functor

Nj : Magj →Magj−1,

which forgets the composition maps for j-cells. We will define, for each
0 < j ≤ n, a functor

Mj : Magj−1 →Magj

which freely adds binary composites at dimension j, taking an n-globular
set equipped with a (j − 1)-magma structure and adding a magma structure
at dimension j to give an n-globular set equipped with a j-magma structure.
We will then show that the functor Mj is left adjoint to the forgetful functor
Nj .

Before defining Mj , we first fix some notation that will be used in the
construction of the free binary composites. Let X be an n-globular set
equipped with a (j − 1)-magma structure. For each 0 ≤ p < j, we can
form the set of pairs of j-cells that are composable along p-cells using the
following pullback:

Xj ×Xp Xj Xj

Xj Xp.

//

��

s

��

t
//

We view Xj ×Xp Xj as the set of freely generated binary composites of
j-cells along p-cells. We can form the set of freely generated binary com-
posites of j-cells along boundaries of all dimensions by taking the coproduct
of these sets over p. As the notation will become somewhat complicated in
the definition of the left adjoint to Nj , we use the following shorthand:

X2
j :=

∐
0≤p<j

Xj ×Xp Xj.

This set comes equipped with source and target maps into Xj−1, which are
defined in analogy with the sources and targets of composites in a magma
structure from Definition 2.2, as follows:

• if p = m− 1, given (a, b) ∈ Xm ×Xp Xm,

s(a, b) = s(a),

t(a, b) = t(b)
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• if p < m− 1, given (a, b) ∈ Xm ×Xp Xm,

s(a, b) = s(b) ◦m−1p s(a),

t(a, b) = t(b) ◦m−1p t(a).

The set X2
j contains only binary composites of “depth 1”; that is, it con-

tains binary composites of pairs of j-cells inX , but it does not contain binary
composites of binary composites, binary composites of binary composites
of binary composites, etc. In order to obtain these composites of greater
“depth”, which we require in the free magma structure, we must iterate this
process. To do so we define, for each k ≥ 0, a set X(k)

j of composites of
depth at most k. We have inclusion maps

X
(k)
j ↪→ X

(k+1)
j ,

so this gives a sequence of sets; we take the colimit of this sequence to obtain
the set of freely generated binary composites of all depths. We now describe
and illustrate this iterative process for low depths of composite (k ≤ 2).

When k = 0, we define
X

(0)
j = Xj,

with source and target maps s, t : X(0)
j → Xj−1 given by those in X .

When k = 1, we define

X
(1)
j := Xj +

(
X

(0)
j

)2
= Xj +X2

j ,

where the notation X2
j is shorthand, as described earlier. The set X2

j inherits
source and target maps from X

(0)
j , so we have source and target maps

s, t : X
(1)
j −→ Xj−1

inherited from those for Xj and X2
j . To see how this gives the set of com-

posites of depth at most 1, we consider the case j = 2. By “expanding out”
X2

2 , we see that X(1)
2 contains the following shapes of composites:

X
(1)
2 = X2 + X2 ×X0 X2 + X2 ×X1 X2

• ⇓ • • ⇓ • ⇓ • •
⇓
⇓
•

��

??

� �

??

��

??

��
//
FF
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When k = 2, we define

X
(2)
j := Xj +

(
X

(1)
j

)2
.

As in the case k = 1, this comes equipped with source and target maps. In

the case j = 2, “expanding out”
(
X

(1)
j

)2
gives

X
(2)
2 = X2 + X2

2 + X2 ×X0 X
2
2 + X2 ×X1 X

2
2 + X2

2 ×X0 X2

+ X2
2 ×X1 X2 + X2

2 ×X0 X
2
2 + X2

2 ×X1 X
2
2 .

Thus X(2)
2 contains the same shapes of composites that appear in X(1)

2 , as
well as those composites of depth 2: in X2 ×X0 X

2
2 we have composites of

the following shapes:

• ⇓ •
(
⇓ • ⇓

)
• and • ⇓ •

(
⇓
⇓
)
•;

��

??

��

??

��

??

��

??

��
//
FF

in X2 ×X1 X
2
2 we have composites of the following shape:

• ⇓ •
◦

•
⇓
⇓
•;

��

??

��
//
FF

the shapes of composites in X2
2 ×X0 X2 and X2

2 ×X1 X2 are similar to those
above; in X2

2 ×X0 X
2
2 we have composites of the following shapes:

•
(
⇓ • ⇓

)
•
(
⇓ • ⇓

)
•

��

??

��

??

��

??

��

??

and also

•
(
⇓ • ⇓

)
•
⇓
⇓
• and •

⇓
⇓
•
(
⇓ • ⇓

)
•;

��

??

��

??

��
//
FF

��
//
FF

��

??

��

??
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and finally, in X2
2 ×X1 X

2
2 we have composites of the following shapes:

•
⇓
⇓
•

◦

•
⇓
⇓
•

and
•

•

⇓

⇓

•
◦
•

⇓

⇓

•

•.

��
//
FF

��
//
FF

��
//

FF
//

��
//

FF
//

Thus X(2)
2 contains all binary composites of 2-cells of depth at most 2.

Since the construction of the the free j-magma structure consists of tak-
ing pullbacks and filtered colimits of sets, in order to define the composition
maps at dimension j we require the following lemma due to Mac Lane [14,
Theorem IX.2.1], which states that finite limits commute with filtered colim-
its in Set. Note that this theorem still holds if Set is replaced by any locally
finitely presentable category; see [1, Proposition 1.59].

Lemma 3.11 (Mac Lane). Let I be a finite category, and let J be a small,
filtered category. Then for any bifunctor

F : I× J→ Set

the canonical arrow

colim
j∈J

lim
i∈I

F (i, j) −→ lim
i∈I

colim
j∈J

F (i, j)

is an isomorphism.

We now define a putative left adjoint Mj to the functor Nj; we will then
prove that this functor is left adjoint to Nj in Proposition 3.13.

Definition 3.12. For each 0 < j ≤ n, we define a functor

Mj : Magj−1 →Magj.

We begin by giving the action of Mj on objects. Let

X

S

f

��
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be an object of Magj−1. We will define an object

X̂

S

f̂

��

of Magj , where X̂ differs from X only at dimension j. The set X̂j of j-
cells of X̂ is the set of freely generated binary composites of j-cells of X .
We define this as the colimit of a sequence of sets X(k)

j , where X(k)
j is the

set of freely generated binary composites of j-cells of X of depth at most k.
We define X(k)

j by induction over k, as follows: when k = 0, define

X
(0)
j = Xj,

with source and target maps s, t : X(0)
j → Xj−1 given by those in X . Now

suppose that k > 0 and we have defined X(k−1)
j , equipped with source and

target maps
s, t : X

(k−1)
j −→ Xj−1.

We define X(k)
j by

X
(k)
j := Xj +

(
X

(k−1)
j

)2
.

Recall that the notation used above is shorthand, defined by(
X

(k−1)
j

)2
:=

∐
0≤p<j

X
(k−1)
j ×Xp X

(k−1)
j ,

and that this set inherits source and target maps from X
(k−1)
j . Thus we have

source and target maps

s, t : X
(k)
j −→ Xj−1

inherited from those for Xj and
(
X

(k−1)
j

)2
.

For each k ≥ 0, we define a map

i(k) : X
(k)
j → X

(k+1)
j ,

- 226 -



T. COTTRELL PENON WEAK n-CATEGORIES, PART 1

which includes the freely generated composites in X(k)
j (those of depth at

most k) into the set X(k+1)
j (which contains composites of depth at most

k+1), and leaves the generating cells unchanged. The maps i(k) are defined
by induction over k, as follows:

• for k = 0, i(0) is the coprojection map

i(0) : Xj → Xj +X2
j ;

• for k ≥ 1, suppose we have defined i(k−1) : X(k−1)
j → X

(k)
j . We define

i(k) to be the map

i(k) := 1Xj
+
∐

0≤p<j

(
i(k−1), i(k−1)

)
: Xj+

(
X

(k−1)
j

)2
→ Xj+

(
X

(k)
j

)2
.

These sets and maps give us a diagram

X
(0)
j

i(0) // X
(1)
j

i(1) // X
(2)
j

i(2) // X
(3)
j

i(3) // . . .

in Set; we then define
X̂j := colim

k≥0
X

(k)
j .

For m 6= j, we define
X̂m := Xm.

For m 6= j, j + 1, the source and target maps

s, t : X̂m → X̂m−1

are those inherited fromX . Now write c(k)j : X
(k)
j → X̂j for the coprojection

maps. The source and target maps form = j+1 are given by the composites

X̂j+1 = Xj+1 Xj X̂j
s //

c
(0)
j
//

and

X̂j+1 = Xj+1 Xj X̂j
t //

c
(0)
j
//
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respectively. To define the source and target maps for m = j, recall that,
for each k, we have source and target maps s, t : X(k)

j → Xj−1; we define
s, t : X̂j → Xj−1 to be the unique maps induced by the colimit defining X̂j

that make, for all k ≥ 1, the diagrams

X
(k)
j X̂j

Xj−1

X
(k)
j X̂j

Xj−1

c
(k)
j
//

s
��

s

��

c
(k)
j
//

t
��

t

��

commute respectively.
We now define the j-magma structure on X̂ . For all m < j, and for all

0 ≤ p < m, the composition map

◦mp : X̂m ×X̂p
X̂m = Xm ×Xp Xm → Xm

is the corresponding composition map from the (j − 1)-magma structure on
X . To define the composition map ◦jp for 0 ≤ p < j, we begin by observing
that, by Lemma 3.11, we have an isomorphism

colim
k,l≥0

(
X

(k)
j ×Xp X

(l)
j

)
∼=
(
colim
k≥0

X
(k)
j

)
×Xp

(
colim
l≥0

X
(l)
j

)
= X̂j ×Xp X̂j.

Thus, to define the composition maps at dimension j, we define, for each
k, l > 0, 0 ≤ p < j, a map

◦jp : X
(k)
j ×Xp X

(l)
j → X̂j.

To do so, observe that, in the case k = l, the source of the composition map
above includes in X(k+1)

j , which in turn includes in X̂j; thus in this case we
define the composition map to be the composite:

X
(k)
j ×Xp X

(k)
j
� � // X

(k+1)
j

c
(k+1)
j
// X̂j.

Now suppose that k < l; in this case we first include the source of the
composition map in

X
(l)
j ×Xp X

(l)
j ,
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and we can then follow the same method as for k = l. Write

i(k,l) := i(l) ◦ i(l−1) ◦ · · · ◦ i(k) : X(k)
j −→ X

(l)
j ,

and define ◦jp to be the composite

X
(k)
j ×Xp X

(l)
j X

(l)
j ×Xp X

(l)
j X

(l+1)
j X̂j,

(i(k,l),id)
// � � //

c
(l+1)
j
//

where the second map is the coprojection into the coproduct definingX(l+1)
j .

Similarly, for l > k, we define ◦jp to be the composite

X
(k)
j ×Xp X

(l)
j X

(k)
j ×Xp X

(k)
j X

(k+1)
j X̂j,

(id,i(k,l))
// � � //

c
(k+1)
j
//

Then ◦jp : X̂j ×Xp X̂j → X̂j is defined to be the unique map induced by
universal property of

X̂j ×Xp X̂j

as a colimit (using Lemma 3.11) such that, for all k, l > 0, the diagram

X
(k)
j ×Xp X

(l)
j X̂j ×Xp X̂j

X̂j

(
c
(k)
j ,c

(l)
j

)
//

◦jp ((

◦jp
��

commutes. This defines a j-magma structure on X̂ .
We now define the map f̂ : X̂ → S. At dimension j, f̂ acts on a freely

generated composite in X̂j by first applying f to each individual generat-
ing j-cell in the composite, then evaluating this composite via the magma
structure on S; at all other dimensions it is the same as the map f .

For m 6= j, define

f̂m = fm : X̂m = Xm → Sm.

To define f̂m for m = j, we first define, for each k ≥ 0, a map

f
(k)
j : X

(k)
j → Sj.
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When k = 0, define
f
(k)
j = fj : X

(0)
j → Sj.

Now let k ≥ 1 and suppose we have defined the map

f
(k−1)
j : X

(k−1)
j → Sj;

we define the map
f
(k)
j : X

(k)
j → Sj

as follows: for each 0 ≤ p < j there is a map(
f
(k−1)
j , f

(k−1)
j

)
: X

(k−1)
j ×Xp X

(k−1)
j → Sj ×Sp Sj

induced by the universal property of Sj ×Sp Sj . We compose each of these
with the composition map ◦jp, and define f (k)

j : X
(k)
j → Sj to be a coproduct

of these composites, as follows:

f
(k)
j :=f

(0)
j +

∐
0≤p<j

(
(◦jp) ◦

(
f
(k−1)
j , f

(k−1)
j

))
:

X
(k)
j = Xj +

∐
0≤p<j

X
(k−1)
j ×Xp X

(k−1)
j → Sj.

We then define f̂j to be the unique map such that, for all k ≥ 1, the diagram

X
(k)
j X̂j

Sj

c
(k)
j
//

f
(k)
j ��

f̂j

��

commutes.
Thus we have defined an object

X̂

S

f̂

��

- 230 -



T. COTTRELL PENON WEAK n-CATEGORIES, PART 1

of Magj; this gives the action of Mj on objects.
We now give the action of Mj on morphisms. Let

X Y

S R

u //

f

��

g

��

v
//

be a morphism in Magj−1. We define a morphism

X̂ Ŷ

S R

û //

f̂

��

ĝ

��

v
//

in Magj . At dimension j, the map û acts on a freely generated composite in
X̂ by applying u to each individual generating j-cell in the composite, thus
giving a freely generated composite of j-cells in Ŷj; at all other dimensions
it is the same as the map u. The construction of û is very similar to that of f̂ .

For m 6= j, we define ûm = um. To define ûm for m = j, first we define,
for each k ≥ 1, a map

u
(k)
j : X

(k)
j → Y

(k)
j .

When k = 0, define
u
(1)
j := uj : X

(1)
j → Y

(1)
j .

Now let k ≥ 1 and suppose we have defined

u
(k−1)
j := uj : X

(k−1)
j → Y

(k−1)
j ;

we define u(k)j as follows:

u
(k)
j := u

(k−1)
j +

∐
0≤p<j

(
u
(k−1)
j , u

(k−1)
j

)
: X

(k)
j → Y

(k)
j .
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We then define ûj to be the unique map such that, for all k ≥ 1, the diagram

X
(k)
j X̂j

Y
(k)
j Ŷj

c
(k)
j
//

u
(k)
j
��

ûj
��

c
(k)
j

//

commutes. This gives the action of the functor Mj on morphisms.

Proposition 3.13. For all 0 < j ≤ n, there is an adjunction Mj a Nj .

Proof. We first define the unit η : 1⇒ NjMj and counit ε : MjNj ⇒ 1.
Let

X

S

f

��

be an object in Magj−1. Then the corresponding component of the unit map
η is

X X̂

S S,

f

��

ηX //

f̂

��

idS
//

where ηX is defined by

(ηX)k =

{
idXk

if k 6= j,

the coprojection map c(0)j : Xj → X̂j if k = j.

Naturality of η is immediate at dimensions k 6= j, and follows from the
definition of the action of Mj on maps when k = j.

Now let
X

S

f

��
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be an object in Magj . The corresponding component of the counit map ε
should be a map of the form

X̂ X

S S.

f̂

��

εX //

f

��

idS
//

To define the map εX , recall that

X̂j := colim
k≥0

X
(k)
j ;

thus for each k ≥ 0, we define a map

ε
(k)
X : X

(k)
j → Xj,

by induction over k.
When k = 0, X(k)

j = Xj , and we define

ε
(0)
X := idXj

.

Now suppose we have defined ε(k)X for some k = l. Recall that

X
(l+1)
j := Xj +

∐
0≤p<j

X
(l)
j ×Xp X

(l)
j .

We define ε(l+1)
X by

ε
(l+1)
X := idXj

+
∐

0≤p<j

(
(◦jp) ◦

(
ε
(l)
X , ε

(l)
X

))
: X

(l+1)
j −→ Xj,

where ◦jp is the composition map from the j-magma structure onX . We then
define (εX)j : X̂j → Xj to be the unique map such that, for all k ≥ 0, the
diagram

X
(k)
j X̂j

Xj

c
(k)
j
//

ε
(k)
X ��

(εX)j

��
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commutes. This defines the counit ε : MjNj ⇒ 1. We now check naturality
of ε. Let

X Y

S R

u //

f

��

g

��

v
//

be a morphism in Magj; since the components of ε are identities on strict
n-category parts, and at all dimensions other than dimension j, to show that
ε is natural we need only show that the diagram

X̂j Ŷj

Xj Yj

ûj
//

(εX)j

��

(εY )j

� �

uj
//

commutes. By definition of X̂ as a colimit, this diagram commutes if, for
each k ≥ 0, the diagram

X
(k)
j Y

(k)
j

Xj Yj

u
(k)
j
//

ε
(k)
X

��

ε
(k)
Y

��

uj
//

commutes; we prove this by induction over k. It is immediate when k = 0,
since ε(0)X = idXj

and ε(0)Y = idYj . Now suppose we have shown that the
diagram commutes for some k = l; then we have

u ◦ ε(l+1)
X = uj +

∐
0≤p<j

(
uj ◦ (◦jp) ◦

(
ε
(l)
X , ε

(l)
X

))
= uj +

∐
0≤p<j

(
(◦jp) ◦

(
ujε

(l)
X , ujε

(l)
X

))
= uj +

∐
0≤p<j

(
(◦jp) ◦

(
ε
(l)
X u

(l)
j , ε

(l)
X u

(l)
j

))
= ε

(l+1)
j u

(l+1)
j ,
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so the diagram commutes for k = l + 1. Thus, by induction, the diagram
commutes for all k ≥ 0. Hence ε is natural.

We now check that η and ε satisfy the triangle identities, i.e. that the
diagrams

Nk
ηNk //

1
((

NkMkNk

Nkε
��

Mk
Mkη //

1
((

MkNkMk

εMk

��

Nk, Mk

commute. In all of the natural transformations in these diagrams, the compo-
nents on strict n-category parts are all identities, so to show that the diagrams
commute we need only consider the components on n-globular set parts.
Since the components of the maps of n-globular sets are identities at every
dimension except dimension j, we need only check that the corresponding
diagrams of maps of sets of j-cells commute.

For the first triangle identity, let

X

S

f

��

be an object of Magj . Then the diagram

Xj X̂j

Xj

(ηX)j=c
(0)
j
//

ε
(0)
j $$

(εX)j

��

commutes by the universal property of (εX)j , so this triangle identity is sat-
isfied.

Similarly, for the second triangle identity, let

X

S

f

��
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be an object of Magj−1. Then the diagram

X̂j
̂̂
Xj

X̂j

(η
X̂
)j=c

(0)
j
//

ε
(0)
j $$

(ε
X̂
)j

��

commutes by the universal property of (εX̂)j , so this triangle identity is sat-
isfied.

Thus we have an adjunction Mj a Nj , as required.

3.4 Interleaving the contraction and magma structures

We now explain the interleaving argument and show that we can interleave
the constructions of Subsections 3.2 and 3.3 to give a construction of the left
adjoint to the functor

W : Q → R.

To do so we add the contraction and magma structures one dimension at a
time, starting with dimension 1 and working upwards. At dimension m we
first add free contraction cells using the functorCm, then add free composites
using the functor Mm, and then move up to the next dimension. Finally, we
add “contraction (n + 1)-cells” using the functor Cn+1, which identifies the
appropriate cells at dimension n. Note that the method we use very closely
follows the method used by Cheng in [7].

This construction is possible because of the dimensional dependencies of
the functors Ck and Mj defined in Subsections 3.2 and 3.3; the contraction
k-cells added by Ck only depend on the (k − 1)-cells, and the composites
added by the Mj only depend on the j-cells.

In order to describe this interleaving process formally, we define, for
each 0 ≤ j, k ≤ n, a category whose objects are objects ofR equipped with
both a j-magma structure and a k-contraction.

Definition 3.14. For each 0 ≤ j ≤ n, 0 ≤ k ≤ n+1, define a categoryRj,k

with
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• objects: an object of Rj,k consists of an n-globular set X equipped
with a j-magma structure, a strict n-category S, and a map of n-
globular sets

X

S

f

��

that preserves the j-magma structure of X , equipped with a k-contra-
ction γ;

• morphisms: a morphism inRj,k is a commuting square

X Y

S R

u //

f

��

g

��

v
//

in n-GSet such that

– v is a map of strict n-categories;

– u preserves the j-magma structure of X;

– writing γ for the contraction on the map f and δ for the contrac-
tion on the map g, for all 0 < m ≤ n, and (a, b) ∈ Xc

m, we
have

u(γm(a, b)) = δm(u(a), u(b)).

For 0 < j ≤ n, 0 < k ≤ n+ 1, we have forgetful functors

Dj,k : Rj,k → Rj,k−1,

which forgets the contraction structure at dimension k, and

Nj,k : Rj,k → Rj−1,k,

which forgets the magma structure at dimension j. Thus we can write the
forgetful functor

W : Q → R
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as the composite

Q = Rn,n+1

Dn,n+1
//Rn,n

Nn,n
//Rn−1,n

Dn−1,n
// · · ·

N1,1
//R0,1

D0,1
//R0,0 = R.

In order to construct the left adjoint to W , we construct a left adjoint to each
of the factors in the composite above, by lifting the constructions of Ck and
Mj from Subsections 3.2 and 3.3 in a way that interacts properly with the
forgetful functors

Rj,k →Magj,

which forget the k-contraction structure entirely, and

Rj,k → Contrj,

which forget the j-magma structure entirely.

Lemma 3.15. For all 0 < k ≤ n+ 1, the adjunction

Contrk−1 Contrk
Ck

⊥
//

Dk

oo

lifts to an adjunction

Rk−1,k−1 Rk−1,k

Ck−1,k

⊥
//

Dk−1,k

oo

making the diagram

Rk−1,k−1 Rk−1,k

Contrk−1 Contrk

Ck−1,k

⊥
//

Dk−1,k

oo

Ck

⊥
//

Dk

oo

�� ��

commute serially.

Proof. We need to show that, given an object of Contrk−1 with n-globular
set partX , ifX is equipped with a (k−1)-magma structure, then this (k−1)-
magma structure is “stable” under Ck; this is immediate since, by construc-
tion, Ck adds only k-cells to X , so the underlying (k − 1)-globular set of X
remains stable under Ck.
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Lemma 3.16. For all 0 < j ≤ n, the adjunction

Magj−1 Magj

Mj

⊥
//

Nj

oo

lifts to an adjunction

Rj−1,j Rj,j

Mj,j

⊥
//

Nj,j

oo

making the diagram

Rj−1,j Rj,j

Magj−1 Magj

Mj,j

⊥
//

Nj,j

oo

Mj

⊥
//

Nj

oo

�� ��

commute serially.

Proof. We need to show that, given an object

X

S

f

��

of Magj−1, if f is equipped with a j-contraction γ, this j-contraction struc-
ture is “stable” under Mj . By construction, Mj adds only j-cells to X , so
Trj−1X remains stable under Mj . The required contraction j-cells depend
only on the (j−1)-cells of X̂ , and we have X̂c

j−1 = Xc
j−1, so the contraction

j-cells in X̂ are given by

Xc
j−1

γj−1
// Xj

cj
// X̂j.

For m < j, we have X̂c
m−1 = Xc

m−1, X̂m = Xm, and the contraction m-
cells are given by γm−1 : Xc

m−1 → Xm. Hence the j-contraction structure is
stable under Mj .
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Combining Lemmas 3.15 and 3.16, we obtain a chain of adjunctions

R = R0,0

C0,1

⊥
//
R0,1

D0,1

oo

M1,1

⊥
//
. . .

N1,1

oo

Cn−1,n

⊥
//
Rn−1,n

Dn−1,n

oo

Mn,n

⊥
//
Rn,n

Nn,n

oo

Cn,n+1

⊥
//
Rn,n+1 = Q.

Dn,n+1

oo

Composing these, we obtain an adjunction

R
J

⊥
//
Q,

W
oo

where J = Cn,n+1 ◦Mn,n ◦ Cn−1,n ◦ · · · ◦M1,1 ◦ C0,1. We then have

n-GSet
F

⊥
//
Q,

U
oo

where F = J ◦H . Thus U has a left adjoint, so Penon weak n-categories are
indeed well-defined, and moreover we have an explicit description of this
left adjoint.

We now explain how to apply this construction in the case n = ω. In this
case, for each natural number k we have a composite adjunction

R
Jk

⊥
//
Rk,k

Wk

oo

(i.e. Jk =Mk,k◦Ck−1,k◦· · ·◦M1,1◦C0,1). We define the functor J : R −→ Q
as follows: for an object A inR, and for each natural number k,

(JA)k := (JkA)k,

with magma structure, map of magmas, and contraction structure at dimen-
sion k given by those of JkA. We then define F := J ◦H as before, and we
have

ω-GSet
F

⊥
//
Q.

U
oo
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4. The operad for Penon weak n-categories

In [3], Batanin proved that there is an n-globular operad whose algebras
are Penon weak n-categories, and that this operad can be equipped with
a contraction and system of compositions. In this section we give a new,
alternative proof of this fact using the construction of Penon’s left adjoint
from Section 3. Although it is not a new result, our proof is more direct than
that of Batanin, offering an alternative point of view in a way that elucidates
the structure of the operad, and makes clear the fact that the contraction
and system of compositions arise naturally from the contraction and magma
structure in the original definition of the monad P .

Throughout this section, we write T for the free strict n-category monad
on n-GSet. This is the monad induced by the adjunction

n-GSet n-Cat,⊥
//

oo

where n-Cat is the category of strict n-categories, and the right adjoint is
the forgetful functor sending a strict n-category to its underlying n-globular
set. We write ηT : 1 ⇒ T for the unit of the monad T , and µT : T 2 ⇒ T
for its multiplication. Similarly, for any monad P , we denote its unit by
ηP : 1⇒ P and its multiplication by µP : P 2 ⇒ P .

We begin by recalling the definition of n-globular operad. These were
introduced by Batanin [2]; as it is technically convenient for our purposes,
we use a form of the definition that describes an n-globular operad as a
cartesian map of monads (see [13, Corollary 6.2.4]).

Definition 4.1. An n-globular operad consists of a monad K on n-GSet,
and a cartesian map of monads k : K ⇒ T (by which we mean a cartesian
natural transformation k : K ⇒ T respecting the monad structure). Given
operads k : K ⇒ T , k′ : K ′ ⇒ T , a map of operads f : K ⇒ K ′ is a map of
monads such that the diagram

K K ′

T

f +3

k
�� k′��

commutes. The category of algebras for an operad k : K ⇒ T is the category
K-Alg of algebras for the monad K.
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It is a straightforward and enlightening exercise to prove that the monad
K is necessarily cartesian. We leave this to the reader.

In Definition 4.1, replacing n-GSet with Set and T with the free monoid
monad yields a definition equivalent to that of classical non-symmetric oper-
ads. Both are examples of the more general notion of T -operads, introduced
by Burroni [5] and described in detail by Leinster [13, Section 4.2]. Sym-
metric operads can then be obtained by equipping classical non-symmetric
operads with a symmetric group action, but there is no such action in the
case of n-globular operads. For the remainder of the paper “operad” is taken
to mean “n-globular operad”, since they are the only type of operads we use.

To prove that there is an operad whose algebras are Penon weak n-
categories using Proposition 4.1 we must prove three facts: that there is a
natural transformation

p : P =⇒ T,

that this natural transformation is cartesian, and that it is a map of monads.
Note that we know that the source of this natural transformation must be P
to ensure that the algebras for the resulting operad are indeed P -algebras.

Proposition 4.2. Recall from Definition 2.5 that P : n-GSet→ n-GSet is
the monad induced by the adjunction

n-GSet Q.
F

⊥
//

U
oo

There is a natural transformation p : P ⇒ T whose component pX at an
object X of n-GSet is given by

F (X) = ( PX
pX // TX ),

an object of Q.

Proof. Recall that there is a forgetful functor

UT : n-Cat −→ n-GSet

that sends a strict n-category to its underlying n-globular set, and that the
categoryR can be considered as the comma category

n-GSet ↓ UT .
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Write
π1 : n-GSet ↓ UT → n-GSet

and
π2 : n-GSet ↓ UT → n-Cat

for the projection maps, and consider the following diagram:

n-GSet

Q

n-GSet ↓ G

n-GSet n-Cat.

F��

W��

π1

��

π2

� �

G
oo

#+

Then the universal property of n-GSet ↓ UT as a 2-limit (see [16]) induces
a unique natural transformation p : P ⇒ T such that

n-GSet

Q

n-GSet ↓ UT

n-GSet n-Cat

n-GSet

n-Catn-GSet

=

F��

P

��

FT



W��

π1

��

π2

��

G
oo

#+

P

��

FT



G
oo

p

#+

where FT is the free strict n-category functor.

Proposition 4.3. The natural transformation p : P ⇒ T is cartesian.

To prove this, we must show that each naturality square for p is a pullback
square. To do so, we use the construction of the adjunction

n-GSet Q.
F

⊥
//

U
oo
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from Section 2. Recall that this adjunction can be decomposed as

n-GSet R Q.
H

⊥
//

V
oo

J

⊥
//

W
oo

Given a map f : X → Y in n-GSet, the corresponding naturality square is
obtained by applying the functor J : R → Q to the map

X Y

TX TY.

f
//

ηTX

��

Tf
//

ηTY

� �

inR, which is a pullback square in n-GSet, since the free strict n-category
monad T is cartesian [13, 4.1.18 and F.2.2]. Thus we prove that p is carte-
sian by proving that the functor J sends maps that are pullback squares to
maps that are pullback squares (in fact, we do so only for a certain class of
such maps). Recall that the adjunction J a W can be decomposed as the
following chain of adjunctions:

R = R0,0

C0,1

⊥
//
R0,1

D0,1

oo

M1,1

⊥
//
. . .

N1,1

oo

Cn−1,n

⊥
/ /
Rn−1,n

Dn−1,n

oo

Mn,n

⊥
//
Rn,n

Nn,n

oo

Cn,n+1

⊥
//
Rn,n+1 = Q,

Dn,n+1

oo

where the functor Cm,m+1 freely adds the contraction structure at dimension
m+ 1, and the functor Mm,m freely adds the magma structure at dimension
m. We now prove three lemmas to show that each of these functors sends
maps that are pullback squares to maps that are pullback squares, thus show-
ing that their composite J does so as well. There are three lemmas since
the functor Cn,n+1 must be treated separately from the functors Cm,m+1 for
0 ≤ m ≤ n− 1.

Note that we only consider maps whose the strict n-category part is a
map in the image of T between free strict n-categories; this is as general as
we need it to be to prove Proposition 4.3, and it allows us to use the fact that
T is cartesian in the proofs of the lemmas.
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Lemma 4.4. Let 0 ≤ m ≤ n− 1 and suppose we have a morphism

X Y

TA TB

u //

x

��

Tf
//

y

��

in Rm,m that is a pullback square in n-GSet. Then its image under the
functor

Cm,m+1 : Rm,m −→ Rm,m+1

is also a pullback square in n-GSet.

Proof. The idea of the proof is as follows: the functor Cm,m+1 freely adds
contraction (m + 1)-cells to X and Y . These contraction cells are obtained
by taking pullbacks in Set, and then added to the sets of (m + 1)-cells
Xm+1 and Ym+1 by taking coproducts in Set. The action of Cm,m+1 on the
map itself is then induced by the universal properties of these pullbacks and
coproducts. Thus the image of this map under the functor Cm,m+1 is a co-
product of pullback squares (with some adjustments at the bottom to ensure
that the strict n-category parts TX and TY remain unchanged). Since pull-
backs commute with coproducts in Set [14, IX.2 Exercise 3], this coproduct
of pullback squares is itself a pullback square.

Recall from Definition 2.3 that we have

Xc
m+1 Xm

Xm Xm−1 ×Xm−1 × TAm

//

��

(s,t,xm)
//

(s,t,xm)

��

For k 6= m + 1, we have Cm,m(u, Tf)k = (u, Tf)k, and since pullbacks in
n-GSet are computed pointwise, we need only check that Cm,m(u, Tf)m+1

is a pullback square, i.e. that

Xm+1 qXc
m+1 Ym+1 qXc

m+1

TAm+1 TBm+1

um+1qucm+1 //

xm+1qxcm+1

��

Tfm+1

//

ym+1qycm+1

��
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is a pullback square. Since coproducts commute with pullbacks in Set [14,
IX.2, exercise 3], this is true if the squares

Xm+1 Ym+1

TAm+1 TBm+1

Xc
m+1 Y c

m+1

TAm+1 TBm+1

um+1 //

xm+1

��

Tfm+1

//

ym+1

��

ucm+1 //

xcm+1

��

Tfm+1

//

ycm+1

��

are both pullback squares. The left-hand square is a pullback square by
hypothesis. For the right-hand square, suppose we have a cone

V Y c
m+1

TAm+1 TBm+1

v1 //

v2

��

Tfm+1

//

ycm+1

��

in Set. Recall that we have source and target maps s, t : Y c
m+1 → Ym given

by the projections from the pullback defining Y c
m+1. Composing with these,

and source and target maps for TA and TB, induces maps

V

Xm Ym

TAm TBm,

V

Xm Ym

TAm TBm.

um //

xm

��

Tfm
//

ym

��

sv1

!!

sv2

��

!σ
�� um //

xm

��

Tfm
//

ym

��

tv1

!!

tv2

��

!τ
��

The maps σ and τ give us a cone over the pullback square defining Xc
m+1;

commutativity of this cone comes from the globularity conditions and the
fact that every cell in the image of v2 is an identity, so has the same source
and target. Thus the universal property of Xc

m+1 induces a unique map such
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that the diagram

V

Xc
m+1 Xm

Xm Xm−1 ×Xm−1 × TAm.

σ

''

τ

��

v
��

//

��

(s,t,xm)
//

(s,t,xm)

��

commutes.
We now check that v makes the diagram

V

Xc
m+1 Y c

m+1

TAm+1 TBm+1

v1

$$

v2

��

v
�� ucm+1 //

xcm+1

��

Tfm+1

//

ycm+1

��

commute. To show that the top triangle commutes, observe that the map
v1 = ucm+1 ◦ v makes the following diagram commute:

V

Xc
m+1 Xm

Xm

Y c
m+1 Ym

Ym Ym−1 × Ym−1 × TBm.

v
''

σ

( (

τ

%%

ucm+1

''

s //

t

��

um

''

um ''

s //

t

��

(s,t,ym)
//

(s,t,ym)

� �

Since umσ = sv1 and umτ = tv1, by the universal property of Y c
m+1, we

have ucm+1 ◦ v = v1.
To show that the left-hand triangle commutes, write i : TAm → TAm+1

for the map that sends an m-cell to its identity (m + 1)-cell, and consider
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that we can factorise xcm+1 ◦ v as

V Xc
m+1 Xm TAm TAm+1.

v // s //

xcm+1

**
xm // i //

σ

77

sv2

;;

Thus we have xcm+1 ◦ v = isv2 = v2, since all cells in the image of v2 are
identities.

Finally, uniqueness of v comes from the universal property of Xc
m+1.

Hence
Xc
m+1 Y c

m+1

TAm+1 TBm+1

ucm+1 //

xcm+1

��

Tfm+1

//

ycm+1

��

is a pullback square, so Cm,m+1(u, Tf) is a pullback square.

We must treat the case m = n separately.

Lemma 4.5. Suppose we have a morphism

X Y

TA TB

u //

x

��

Tf
//

y

��

in Rn,n that is a pullback square in n-GSet. Then its image under the
functor

Cn,n+1 : Rn,n −→ Rn,n+1 = Q
is also a pullback square in n-GSet.

Proof. Recall from Definition 3.8 that we have

Xc
n+1 Xn

Xn Xn−1 ×Xn−1 × TAn,

π1 //

π2

��

(s,t,xn)
//

(s,t,xn)

��
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and that X̃n is defined to be the coequaliser of the diagram

Xc
n+1 Xn

π1 //

π2
//

in Set. We write q : Xn → X̃n for the coprojection. The set Ỹn is defined
similarly, and we write r : Yn → Ỹn for the coprojection. For all 0 ≤ m < n
we have

Cn,n+1(u, Tf)m = (u, Tf)m,

and for m = n, we have that Cn,n+1(u, Tf)n is given by

X̃n Ỹn

TAn TBn,

ũn //

x̃n

��

Tfn
//

ỹn

��

so we only need to check that this is a pullback square in Set.
Write w for the unique map making the diagram

Xn

•

Yn

Ỹn

TAn TBn

un //

r
��
//

� �

Tfn
//

ỹn

��

xn

��

w

� �

commute. We will show that, for a, b ∈ Xn, w(a) = w(b) if and only if
(a, b) ∈ Xc

n+1, and also that w is surjective; and thus Cn,n+1(u, Tf)n is a
pullback square and w = q.

Let (a, b) ∈ Xc
n+1, so xn(a) = xn(b), s(a) = s(b), t(a) = t(b). We have

(un(a), un(b)) ∈ Y c
n+1, so run(a) = run(b). Thus

w(a) = (xn(a), run(a)) = (xn(b), run(b)) = w(b).

Now let a, b ∈ Xn with w(a) = w(b), so xn(a) = xn(b), run(a) =
run(b). The source map s : Xn → Xn−1 is the unique map making the
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diagram
Xn Yn

TAn

Xn−1 Yn−1

TAn−1 TBn−1

un−1 //

xn−1

��

Tfn−1

//

yn−1

��

un //

s
%%xn

��

s %%

s
% %

commute. Thus, since sun(a) = sun(b) and sxn(a) = sxn(b), we have
s(a) = s(b). Similarly, t(a) = t(b). Hence (a, b) ∈ Xc

n+1.
Now let π ∈ TAn, c ∈ Ỹn, with Tfn(π) = ỹn(c). We wish to show that

there is some a ∈ Xn with w(a) = (π, c), and thus that w is surjective. Since
r is surjective, there exists c′ ∈ Yn with r(c′) = c. Since Xn is given by the
pullback

Xn Yn

TAn TBn

un //

xn

��

Tfn
//

yn

��

and yr(c′) = Tfn(π), we have a ∈ Xn with xn(a) = π, un(a) = c′. Thus
w(a) = (π, c), so w is surjective. Hence

X̃n Ỹn

TAn TBn

ũn //

x̃n

��

Tfn
//

ỹn

��

is a pullback square.

Thus we have shown that the functors adding the free contraction cells
send maps that are pullback squares to maps that are pullback squares. We
now do the same for the functors adding the free magma structure.
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Lemma 4.6. Let 0 < m ≤ n and suppose we have a morphism

X Y

TA TB

u //

x

��

Tf
//

y

��

in Rm−1,m that is a pullback square in n-GSet. Then its image under the
functor

Mm,m : Rm−1,m −→ Rm,m

is also a pullback square in n-GSet.

Proof. The idea of this proof is similar to that of the proof of Lemma 4.4,
but is slightly more complicated since the construction of Mm,m uses fil-
tered colimits as well as coproducts. The functor Mm,m freely adds binary
composites of m-cells to X and Y . These composites are added through a
process of taking pullbacks, coproducts, and filtered colimits in Set. The
action of Mm,m on the map itself is then induced by the universal proper-
ties of these pullbacks, coproducts, and filtered colimits. Thus the image of
this map under the functor Mm,m is a filtered colimit of coproducts of pull-
back squares (with some adjustments at the bottom to ensure that the strict
n-category parts TX and TY remain unchanged). Since pullbacks commute
with both coproducts and filtered colimits in Set [14, IX.2, Exercise 3 and
Theorem 1], this filtered colimit of coproducts of pullback squares is itself a
pullback square.

Recall the notation from Definition 3.12: we write

Mm,m( X
x // TA ) = X̂

x̂ // TA ,

Mm,m( Y
y
// TB ) = Ŷ

ŷ
// TB .

Since Mm,m changes only dimension m, and since pullbacks in n-GSet are
computed pointwise, we just need to check that

X̂m Ŷm

TAm TBm

ûm //

x̂m

��

Tfm
//

ŷm

��
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is a pullback square in Set. Recall that X̂m and Ŷm are defined as filtered
colimits in Set, with

X̂m := colim
j≥1

X(j)
m , Ŷm := colim

j≥1
Y (j)
m .

Since pullbacks commute with filtered colimits in Set, we can prove that
the above diagram is a pullback square by proving that, for each j ≥ 1, the
diagram

X
(j)
m Y

(j)
m

TAm TBm

u
(j)
m //

x
(j)
m

��

Tfm
//

y
(j)
m

��

is a pullback square in Set. We do this by induction. When j = 1, we have
X

(j)
m = Xm, Y (j)

m = Ym, and the square above becomes is a pullback square
by hypothesis.

Now suppose that j > 1, and we have shown that

X
(j−1)
m Y

(j−1)
m

TAm TBm

u
(j−1)
m //

x
(j−1)
m

��

Tfm
//

y
(j−1)
m

��

is a pullback square; we will show that

X
(j)
m Y

(j)
m

TAm TBm

u
(j)
m //

x
(j)
m

��

Tfm
//

y
(j)
m

��

is a pullback square. Recall that X(j)
m is defined by

X(j)
m := Xm q

∐
0≤p<m

X(j−1)
m ×Xp X

(j−1)
m ,
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and similarly for Y (j)
m . Since pullbacks commute with coproducts in Set, the

above diagram is a pullback square if, for all 0 ≤ p < m, the diagram

X
(j−1)
m ×Xp X

(j−1)
m Y

(j−1)
m ×Yp Y

(j−1)
m

TAm TBm

(u
(j−1)
m ,u

(j−1)
m )
//

��

Tfm
//
��

is a pullback square. We can write this as

X
(j−1)
m ×Xp X

(j−1)
m Y

(j−1)
m ×Yp Y

(j−1)
m

TAm ×TAp TAm TBm ×TBp TBm

TAm TBm.

(u
(j−1)
m ,u

(j−1)
m )
//

(x
(j,1)
m ,x

(j,1)
m )

��

(Tfm,T fm)
//

(y
(j,1)
m ,y

(j,1)
m )

��

◦mp
��

◦mp
��

Tfm
//

The top square is a pullback of pullback squares, and hence is itself a pull-
back square. The fact that the bottom square is a pullback square is left as a
straightforward exercise to the reader; it is an application of the fact that T is
a cartesian monad [13, Example 4.1.18 and Theorem F.2.2], so the naturality
squares for its multiplication µT are pullbacks squares, and the fact that T 2A
and T 2B can be constructed via a series a pullbacks in n-GSet (see [13,
F.1] and [8], which give constructions of T using this method).

Thus the diagram

X̂m Ŷm

TAm TBm

ûm //

x̂m

��

Tfm
//

ŷm

��

is a pullback square in n-GSet. Hence Mm,m sends maps that are pullback
squares to maps that are pullback squares, as required.

We now combine these results to prove that p : P ⇒ T is cartesian.
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Proof of Proposition 4.3. Combining the above results, and using the fact
that J : R → Q is defined as the composite

J = Cn,n+1 ◦Mn,n ◦ Cn−1,n ◦ · · · ◦M1,1 ◦ C0,1,

we see that, given a map (u, Tf) inR such that

X Y

TA TB

u //

x

��

Tf
//

y

��

is a pullback square in n-GSet, the map J(u, Tf) in Q is also a pullback
square in n-GSet. Take (u, Tf) to be

A B

TA TB

f
//

ηTA

��

Tf
//

ηTB

��

for any f : A → B in n-GSet, which is a pullback square since T is carte-
sian. Applying J gives us that

PA PB

TA TB

Pf
//

pA

��

Tf
//

pB

��

is a pullback square in n-GSet. Thus p : P ⇒ T is a cartesian natural
transformation.

Thus the natural transformation p : P ⇒ T satisfies one of the conditions
in Proposition 4.1; to prove that it is an operad, we now only need to prove
the following:

Proposition 4.7. The natural transformation p : P ⇒ T is a map of monads.

- 254 -



T. COTTRELL PENON WEAK n-CATEGORIES, PART 1

Proof. We need to check that p satisfies the monad map axioms. To do so,
recall that P is the monad induced by the adjunction

n-GSet Q
F

⊥
//

U
oo

defined in Section 3, and that this adjunction can be decomposed as

n-GSet R Q.
H

⊥
//

V
oo

J

⊥
//

W
oo

Write α, β for the unit and counit of H a V , and write κ, ζ for the unit and
counit of J a W . Then the unit η = ηP of the adjunction F a U is given by
the composite

1 V H VWJH = UF
α // V κH //

and the counit ε of F a U is given by the composite

FU = JHVW JW 1.
JβW
//

ζ
//

To show that p satisfies the axioms for a monad map we consider the unit
ηP and counit ε for the adjunction F a U . By Proposition 3.3, α = id, so
ηP = V κH . For all X ∈ n-GSet, κHX is the map

X PX

TX TX

ηPX //

ηTX

��

idTX

//

pX

��

in R. Commutativity of this diagram shows that p satisfies the first axiom
for a monad map.

For all X ∈ n-GSet, εFX is the map

P 2X PX

TPX T 2X TX

µPX //

pPX

��

pX

��

TpX
//

µTX

//
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in Q. Commutativity of this diagram shows p satisfies the second axiom for
a monad map.

Thus p : P ⇒ T is a monad map.

Combining Propositions 4.3 and 4.7 gives us the following theorem:

Theorem 4.8. There is an operad whose algebras are Penon weak n-cate-
gories, given by the cartesian map of monads p : P ⇒ T .

Proof. The natural transformation p : P ⇒ T is cartesian by Proposition 4.3,
and is a monad map by Proposition 4.7. Thus it is an operad, and its category
of algebras is P -Alg, the category of Penon weak n-categories.

In [2] Batanin uses two pieces of extra structure to identify which n-
globular operads give sensible notions of weak n-category: a system of com-
positions, which gives the operad binary composition operations, and a con-
traction, which gives coherence. Both pieces of extra structure are defined
on the “underlying collection” of an operad – its component on the terminal
n-globular set. We now recall the necessary definitions, then show that the
operad p : P ⇒ T can be equipped with both structures in a way that arises
naturally from the n-magma and contraction structures in the definition of
P .

Definition 4.9. Given an n-globular operad k : K ⇒ T , its underlying
collection is the component of k at the terminal n-globular set 1, that is
k1 : K1→ T1.

Definition 4.10. A contraction on an n-globular operad k : K ⇒ T consists
of a contraction (in the sense of Definition 2.3) on its underlying collection.

Definition 4.11. Let 0 ≤ m ≤ n, and write ηm := ηTm(1), the single m-cell
in the image of the unit map ηT : 1→ T1. Define, for 0 ≤ p ≤ m ≤ n,

βmp =

{
ηm if p = m,
ηm ◦mp ηm if p < m.

Define an n-globular set S, in which

Sm := {βmp | 0 ≤ p ≤ m ≤ n} ⊆ T1m.
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Write s : S → T1 for the inclusion, and define the “unit” map ηS : 1 → S
by ηSm(1) = βmm .

A system of compositions on an n-globular operad k : K ⇒ T consists
of a map σ : S → K1 in n-GSet such that the diagrams

S K1

T1

σ //

s
��

k1
� �

and

1 S K1
ηS
// σ //

ηK1

99

commute.

Proposition 4.12. The operad P for Penon weak n-categories can be equ-
ipped with a contraction and system of compositions which arise naturally
from the contraction on p1 : P1 → T1 and the magma structure on P1
respectively.

Proof. The presence of the contraction is immediate, since

P1

p1
� �

T1

is an object of Q, so is equipped with a contraction as constructed in Sec-
tion 3. Similarly, P1 is equipped with a magma structure; we use this to
define a system of compositions

S P1

T1

σ //

s
��

p1
��

as follows: for all 0 ≤ m ≤ n, writing 1 for the uniquem-cell in the terminal
n-globular set,
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• σm(βmm) := (ηP1 )m(1) = 1;

• for 0 ≤ l ≤ m, σm(βml ) := 1 ◦ml 1.

From the definition of the magma structure on P1 given in Definition 3.12,
this satisfies the source and target conditions for a map of n-globular sets,
and the commutativity conditions required to be a map of collections. By
definition of σm(βmm),

1 S P1
εS // σ //

ηP1

99

commutes. Thus, σ is a system of compositions on p : P ⇒ T .
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