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Résumé. Les structures tangentielles sur les variétés lisses, et l’extension
du ‘mapping class’ groupe qu’elles induisent, admettent une formulation na-
turelle en termes de géométrie différentielle supérieure (stratifiée). C’est la
traduction littérale d’une construction, classique en topologie différentielle,
en un langage sophistiqué, mais elle a l’avantage de souligner comment toute
la construction émerge naturellement de l’idée de base de travailler avec des
‘slice’ catégories. Nous caractérisons, pour chaque champ lisse supérieur
muni d’une structure tangentielle, l’extension induite du groupe supérieur
de la réalisation géométrique de son champ d’automorphismes supérieur.
Nous montrons que lorsque l’on se restreint à des variétés lisses équipées
de structures topologiques de degré supérieur, cela produit des extensions
supérieures de types homotopiques de groupes de difféomorphismes. Pas-
sant aux groupes de composantes connexes, nous obtenons des extensions
abéliennes des groupes de classes de difféomorphismes et nous en déduisons
des conditions suffisantes pour qu’elles soient centrales. Nous montrons, à
titre d’example, que ceci fournit une reconstruction élégante de l’approche de
Segal des extensions par Z du ‘mapping class’ groupe de surfaces qui four-
nissent une annulation d’anomalie du foncteur modulaire dans la théorie de
Chern-Simons. Notre construction généralise l’approche de Segal des exten-
sions centrales supérieures du ‘mapping class’ groupe de variétés de dimen-
sion supérieure avec des structures tangentielles supérieures, qui devraient
fournir une annulation d’anomalie analogue pour les TQFT en dimension
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supérieure.

Abstract. Tangential structures on smooth manifolds, and the extension
of mapping class groups they induce, admit a natural formulation in terms
of higher (stacky) differential geometry. This is the literal translation of a
classical construction in differential topology to a sophisticated language, but
it has the advantage of emphasizing how the whole construction naturally
emerges from the basic idea of working in slice categories. We characterize,
for every higher smooth stack equipped with tangential structure, the induced
higher group extension of the geometric realization of its higher automor-
phism stack. We show that when restricted to smooth manifolds equipped
with higher degree topological structures, this produces higher extensions of
homotopy types of diffeomorphism groups. Passing to the groups of con-
nected components, we obtain abelian extensions of mapping class groups
and we derive sufficient conditions for these being central. We show as a spe-
cial case that this provides an elegant re-construction of Segal’s approach to
Z-extensions of mapping class groups of surfaces that provides the anomaly
cancellation of the modular functor in Chern-Simons theory. Our construc-
tion generalizes Segal’s approach to higher central extensions of mapping
class groups of higher dimensional manifolds with higher tangential struc-
tures, expected to provide the analogous anomaly cancellation for higher di-
mensional TQFTs.
Keywords. Mapping class groups; diffeomorphism groups; characteristic
classes; higher categories.
Mathematics Subject Classification (2010). 57R50, 57R56.
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1. Introduction

We review the construction of higher automorphism groups of smooth man-
ifolds equipped with higher tangential structure from [GMTW06, GR-W10,
Lu09] reformulating it into the language of higher smooth stacks [Sc13]. In
the final part we use this to provide a clear and natural construction of central
extensions of mapping class groups, such as demanded by Segal’s discussion
of conformal field theory [Se04].

In higher (stacky) geometry, there is a general and fundamental class of
higher (stacky) group extensions: for ψ : Y → B any morphism between
higher stacks, the automorphism group stack of Y over B extends the auto-
morphisms of Y itself by the loop object of the mapping stack [Y,B] based
at ψ. Schematically this extension is of the following form

Y

ψ

{{

ψ

##
B

~�

 −→


Y

ψ
  

' // Y

ψ
~~

B

y�

 −→
{
Y

'−−−→ Y
}

but the point is that all three items here are themselves realized “internally”
as higher group stacks. This is not hard to prove [Sc13, prop. 3.6.16],
but as a general abstract fact it has many non-trivial incarnations. Here we
are concerned with a class of examples of these extensions for the case of
smooth higher stacks, i.e. higher stacks over the site of all smooth manifolds.

In [FRS13] it was shown that for the choice that B = BnU(1)conn is
the universal moduli stack for degree n + 1 ordinary differential coho-
mology, then these extensions reproduce and generalize the Heisenberg-
Kirillov-Kostant-Souriau-extension from prequantum line bundles to higher
“prequantum gerbes” which appear in the local (or “extended”) geometric
quantization of higher dimensional field theories.

Here we consider a class of examples at the other extreme: we consider
the case in which Y is a smooth manifold (regarded as the stack that it
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presents), but B is geometrically discrete (i.e., it is a locally constant ∞-
stack), and particularly the case that B is the homotopy type of the classi-
fying space of the general linear group. This means that the slice au-
tomorphism group (the middle term above) becomes a smooth group stack
that extends the smooth diffeomorphism group of Y (the item on the right
above) by a locally constant higher group stack (the item on the left).

We are interested in the homotopy type of this higher stacky extension of
the diffeomorphism group, that is in the geometric realization of the smooth
slice group stack. In general, geometric realization of higher smooth group
stacks will not preserve the above extension, but here it does, due to the fact
that B is assumed to be geometrically discrete. This resulting class of exten-
sions is our main Theorem 4.1 below. It uses that geometric realization of
smooth ∞-stacks happens to preserve homotopy fibers over geometrically
discrete objects [Sc13, thm. 3.8.19]. Hence, where the internal extension
theorem gives extensions of smooth diffeomorphism groups by higher ho-
motopy types, after geometric realization we obtain higher extensions of the
homotopy type of diffeomorphism groups, and in particular of mapping class
groups.

We emphasize that it is the interplay between smooth higher stacks and
their geometric realization that makes this work: one does not see diffeomor-
phism groups, nor their homotopy types, when forming the above extension
in the plain homotopy theory of topological spaces. So, even though the
group extensions that we study are geometrically discrete, they encode in-
formation about smooth diffeomorphism groups.

A key application where extensions of the mapping class group tradition-
ally play a role is anomaly cancellation in 3-dimensional topological field
theories, e.g., in 3d Chern-Simons theory, see, e.g., [Wi89].

Our general extension result reduces to a new and elegant construction
of the anomaly cancellation construction for modular functors in 3d Chern-
Simons theory, and naturally generalizes this to higher extensions relevant
for higher dimensional topological quantum field theories (TQFTs).

In more detail, by functoriality, a 3d TQFT associates to any connected
oriented surface Σ a vector space VΣ which is a linear representation of the
oriented mapping class group Γor(Σ) of Σ. However, if the 3d theory has an
“anomaly”, then the vector space VΣ fails to be a genuine representation of
Γor(Σ), and it rather is only a projective representation. One way to think of
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this phenomenon is to look at anomalous theories as relative theories, that
intertwine between the trivial theory and an invertible theory, namely the
anomaly. See, e.g. [FT12, FV14]. In particular, for an anomalous TQFT
of the type obtained from modular tensor categories with nontrivial central
charge [Tu94, BK01], the vector space VΣ can be naturally realised as a
genuine representation of a Z-central extension

0→ Z→ Γ̂(Σ)→ Γ(Σ)→ 1 (1)

of the mapping class group Γ(Σ). As suggested in Segal’s celebrated paper
on conformal field theory [Se04], these data admit an interpretation as a gen-
uine functor where one replaces 2-dimensional and 3-dimensional manifolds
by suitable “enriched” counterparts, in such a way that the automorphism
group of an enriched connected surface is the relevant Z-central extension
of the mapping class group of the underlying surface. Moreover, the set of
(equivalence classes of) extensions of a 3-manifold with prescribed (con-
nected) boundary behaviour is naturally a Z-torsor. In [Se04] the extension
consists in a “rigging” of the 3-manifold, a solution which is not particu-
larly simple, and which is actually quite ad hoc for the 3-dimensional case.
Namely, riggings are based on the contractibility of Teichmüller spaces, and
depend on the properties of the η-invariant for Riemannian metrics on 3-
manifolds with boundary. On the other hand, in [Se04] it is suggested that
simpler variants of this construction should exist, the leitmotiv being that of
associating functorially to any connected surface a space with fundamental
group Z. Indeed, there is a well known realization of extended surfaces as
surfaces equipped with a choice of a Lagrangian subspace in their first real
cohomology group. This is the point of view adopted, e.g., in [BK01]. The
main problem with this approach is the question of how to define a corre-
sponding notion for an extended 3-manifold.

In the present work we describe a natural way of defining enrichments
of 2-and-3-manifolds, which are topological (or better homotopical) in na-
ture, and in particular do not rely on special features of the dimensions 2
and 3. Moreover, they have the advantage of being immediately adapted
to a general TQFT framework. Namely, we consider enriched manifolds as
(X, ξ)-framed manifolds in the sense of [Lu09]. In this way, we in particu-
lar recover the fact that the simple and natural notion of p1-structure, i.e. a
trivialization of the first Pontryagin class, provides a very simple realization
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of Segal’s prescription by showing how it naturally drops out as a special
case of the “higher modularity” encoded in the (∞, n)-category of framed
cobordisms. This is discussed in detail in Section 5.2 below.
Finally, if one is interested in higher dimensional Chern-Simons theories, the
notable next case being 7-dimensional Chern-Simons theory [FSaS12], then
the above discussion gives general means for determining and constructing
the relevant higher extensions of diffeomorphism groups of higher dimen-
sional manifolds.
More on this is going to be discussed elsewhere.

The present paper is organised as follows. In section 2 we discuss the
ambient homotopy theory H∞ of smooth higher stacks, and we discuss
how smooth manifolds and homotopy actions of ∞-groups can be natu-
rally regarded as objects in its slice ∞-category over the homotopy type
BGL(n;R) of the mapping stack BGL(n;R) of principalGL(n;R)-bundles.
In section 3 we introduce the notion of a ρ-framing (or ρ-structure) over a
smooth manifold, and study extensions of their automorphism∞-group. We
postpone the proof of the extension result to the Appendix.
In section 4 we discuss the particular but important case of ρ-structures aris-
ing from the homotopy fibers of morphisms of ∞-stacks, which leads to
Theorem 4.1, the main result of the present paper. In this section we also
consider the case of manifolds with boundaries.
In section 5, we apply the abstract machinery developed in the previous sec-
tions to the concrete case of the mapping class group usually encountered in
relation to topological quantum field theories.
The Appendix contains a proof of the extension result in section 4.

Throughout, we freely use the language of ∞-categories, as developed
in [Lu06]. There are various equivalent models for these, such as by sim-
plicially enriched categories as well as by quasi-categories, but since these
are equivalent, we mostly do not specify the model, and the reader is free to
think of whichever model they prefer.

Acknowledgements. The authors would like to thank Oscar Randal-
Williams and Chris Schommer-Pries for useful discussions.
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2. Framed manifolds

2.1 From framed cobordism to (X, ξ)-manifolds

The principal player in the celebrated constructions of [GMTW06, GR-W10,
Lu09] are manifolds with exotic “tangential structure” or “framing”. These
framings come in various flavours, from literal n-framings, i.e., trivialisa-
tions of the (stabilized) tangent bundle to more general and exotic framings
called (X, ξ)-structures in [Lu09]. Here we make explicit that these struc-
tures are most naturally understood in the slice of a suitable smooth∞-topos
over H∞ over BGL(n;R). This will allow us not only to see Lurie’s fram-
ings from a unified perspective, but also to consider apparently more exotic
(but actually completely natural) framings given by characteristic classes for
the orthogonal group.

2.1.1 Homotopies, homotopies, homotopies everywhere

The∞-topos of∞-stacks over the site of all smooth manifolds, or equiva-
lently just over the site of Cartesian spaces among these, we denote by

H := Sh∞(SmthMfd) ' Sh∞(CartSp)

[FScS12, def. 3.1.4].
This is a cohesive ∞-topos [Sc13, prop. 4.4.8], which in particular

means ([Sc13, def. 3.4.1] following [Law07]) that the locally constant ∞-
stack functor LConst : ∞Grp −→ H is fully faithful and has a left adjoint
| − | that preserves products

(| − | a LConst a Γ) : H
×

|−|
//

oo LConst ?
_

Γ
//
∞Grpd .

This extra left adjoint | − | is the operation of sending a smooth∞-stack to
its topological geometric realization, thought of as an ∞-groupoid [Sc13,
cor. 4.4.28],[Car15, thm. 1.1]. In particular a smooth manifold is sent to its
homotopy type.

Notice that the hom-∞-groupoids of any∞-topos H may be expressed
in terms of the internal hom (mapping∞-stack) construction [−,−] as

H(Σ1,Σ2) ' Γ([Σ1,Σ2]) .
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But now since the left adjoint | − | exists and preserves products, this means
that there naturally exists an alternative ∞-category, which we denote by
H∞, with the same objects as H, but with hom-∞-groupoids defined by1

H∞(Σ1,Σ2) :=
∣∣[Σ1,Σ2]

∣∣ (2)

Accordingly, we write Aut∞(Σ) for the sub-∞-groupoid on the invertible
elements in H∞(Σ,Σ).

The reason we pass to H∞ is that H itself is too rigid (or, in other words,
the homotopy type of its hom-spaces is too simple) for our aims. For in-
stance, given two smooth manifolds Σ1 and Σ2, the∞-groupoid H(Σ1,Σ2)
is 0-truncated, i.e., it is just a set. Namely, H(Σ1,Σ2) is the set of smooth
maps from Σ1 and Σ2 and there are no nontrivial morphisms between smooth
maps in H(Σ1,Σ2). In other words, two smooth maps between Σ1 and Σ2 ei-
ther are equal or they are different: in this hom-space there’s no such thing as
“a smooth map can be smoothly deformed into another smooth map”, which
however is a kind of relation that geometry naturally suggests. To take it into
account, we make the topology (or, even better, the smooth structure) of Σ1

and Σ2 come into play, and we use it to informally define H∞(Σ1,Σ2) as
the∞-groupoid whose objects are smooth maps between Σ1 and Σ2, much
as for H(Σ1,Σ2), but whose 1-morphisms are the smooth homotopies be-
tween smooth maps, and we also have 2-morphisms given by homotopies be-
tween homotopies, 3-morphisms given by homotopies between homotopies
between homotopies, and so on.

Here is another example. For G a Lie group, we will write BG for the
smooth stack of principal G-bundles. This means that for Σ a smooth mani-
fold, a morphism f : Σ→ BG is precisely a G-principal bundle over Σ. So,
in particular, BGL(n;R) is the smooth stack of principalGL(n;R)-bundles.
Identifying a principal GL(n;R)-bundle with its associated rank n real vec-
tor bundle, BGL(n;R) is equivalently the smooth stack of rank n real vector

1 This construction of an ∞-category H∞ from a cohesive ∞-topos H is the direct
∞-category theoretic analog of what for cohesive 1-categories is called their “canonical ex-
tensive quality” in [Law07, thm. 1]. In fact | − | is the derived functor of a left Quillen
functor on the local projective model structure of simplicial presheaves over smooth man-
ifolds which preserves 1-categorical products [Sc13, proof of prop. 3.4.18]. Since this is
a Cartesian monoidal model category, any functorial cofibrant replacement functor is com-
patible with products, as is Kan’s fibrant replacement functor on simplicial sets. This means
that H∞ may be represented by a Kan-enriched category.
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bundles and their isomorphisms. In particular, a map Σ → BGL(n;R) is
precisely the datum of a rank n vector bundle on the smooth manifold Σ.
Again, for a given smooth manifold Σ, the homotopy type of H(Σ,BG) is
too rigid for our aims: the∞-groupoid H(Σ,BG) is actually a 1-groupoid.
This means that we have objects, which are the principal G-bundles over Σ,
and 1-morphisms between these objects, which are isomorphisms of princi-
pal G-bundles, and then nothing else: we do not have nontrivial morphisms
between the morphisms, and there’s no such a thing like “a morphism can
be smoothly deformed into another morphism”, which again is something
very natural to consider from a geometric point of view. Making the smooth
structure of the group G come into play we get the following description of
the ∞-groupoid H∞(Σ,BG): its objects are the principal G-bundles over
Σ and its 1-morphism are the isomorphisms of principal G-bundles, much
as for H(Σ,BG), but then we have also 2-morphisms given by isotopies
between isomorphisms, 3-morphisms given by isotopies between isotopies,
and so on. Notice that we have a canonical∞-functor2

H(Σ,BG) −→ H∞(Σ,BG). (3)

This is nothing but saying that for j ≥ 2, the j-morphisms in H(Σ,BG)
are indeed very special j-morphisms in H∞(Σ,BG), namely the identities.
Moreover, whenG happens to be a discrete group, this embedding is actually
an equivalence of∞-groupoids.

2.2 Geometrically discrete∞-stacks and the homotopy type BGL(n)

The following notion will be of great relevance for the results of this note.
Recall from above the full inclusion

LConst :∞Grpd→ H (4)

given by regarding an∞-groupoid G as a constant presheaf over Cartesian
spaces. We will say that an object in H is a geometrically discrete∞-stack
if it belongs to the essential image of LConst. An example of a geomet-
rically discrete object in H is given by the 1-stack BG, with G a discrete

2In terms of cohesion this is a component of the canonical points-to-pieces-transform
Γ[Σ,BG]→ [Σ,BG]→ |[Σ,BG]|.
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group. More generally, for A an abelian discrete group the (higher) stacks
BnA of principal A-n-bundles are geometrically discrete. The importance
of considering geometrically discrete∞-stacks is that the geometric realiza-
tion functor | − | introduced before is left adjoint to LConst. In particular,
denoting by Π: H→ H the composition LConst◦|−|, we have a canonical
unit morphism

idH → Π (5)

which is the canonical morphism from a smooth stack to its homotopy type
(and which corresponds to looking at points of a smooth manifold Σ as con-
stant paths into Σ). In particular, for G a group, we will write BG for the
homotopy type of BG, i.e., we set BG := ΠBG. This precisely encodes the
traditional classifying space BG for the group G (or rather of its principal
bundles) within H∞. Namely, for Σ a smooth manifold we have, by the
very definition of adjunction

H(Σ,BG) =∞Grpd(|Σ|, |BG|).

A model for the classifying space BG is precisely given by the topological
realization of BG, while |Σ| is nothing but the topological space underlying
the smooth manifold Σ (so that by a little abuse of notation, we will simply
write Σ for Σ). Moreover, since by definition BG is geometrically discrete
we also have H∞(Σ,BG) ∼= H(Σ,BG), so that in the end we have a natural
equivalence

H∞(Σ,BG) =∞Grpd(Σ, BG).

Under the equivalence between (nice) topological spaces and∞-groupoids,
on the right we have the ∞-groupoid of continuous maps from Σ to the
classifying space BG. Notice how this example precisely shows how H∞

is a setting where we can talk on the same footing of smooth and continu-
ous phenomena. For instance, smooth maps from a smooth manifold Σ to
another smooth manifold M and their smooth homotopies are encoded into
H∞(Σ,M), while continuous maps between Σ and M and their continuous
homotopies are encoded into H∞(Σ,Π(M)).

The unit idH → Π gives a canonical morphism

BG→ BG, (6)
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which is an equivalence for a discrete group G. This tells us in particular
that any object over BG is naturally also an object over BG. For instance
(and this example will be the most relevant for what follows), a choice of a
rank n vector bundle over a smooth manifold Σ realises Σ as an object over
BGL(n;R).
Notice how we have a canonical morphism

H(Σ,BG) −→ H∞(Σ,BG) (7)

obtained by composing the canonical morphism H(Σ,BG)→ H∞(Σ,BG)
mentioned in the previous section with the push forward morphism
H∞(Σ,BG) → H∞(Σ,BG), The main reason to focus on geometrically
discrete stacks is that, though | − | preserves finite products, it does not in
general preserve homotopy pullbacks. Nevertheless, | − | does indeed pre-
serve homotopy pullbacks of diagrams whose tip is a geometrically discrete
object in H [Sc13, thm. 3.8.19].

2.2.1 Working in the slice

Let now n be a fixed nonnegative integer and let 0 ≤ k ≤ n. Any k-
dimensional smooth manifold Mk comes canonically equipped with a rank
n real vector bundle given by the stabilized tangent bundle T stMk = TMk⊕
Rn−k
Mk

, where Rn−k
Mk

denotes the trivial rank (n − k) real vector bundle over
Mk. We can think of the stabilised tangent bundle3 as a morphism

Mk
T st

−−→ BGL(n) (8)

where GL(n), as in the following, denotes GL(n;R).
Namely, we can regard any smooth manifold of dimension at most n as an
object over BGL(n). This suggests that a natural setting to work in is the
slice topos H∞/BGL(n), which in the following we will refer to simply as “the
slice”: in other words, all objects involved will be equipped with morphisms
to BGL(n), and a morphism between X

ϕ−→ BGL(n) and Y
ψ−→ BGL(n)

3To be precise, T st is the map of stacks induced by the frame bundle of the stabilised
tangent bundle to Mk.
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will be a homotopy commutative diagram

X

ϕ
$$

f
// Y

ψzz

BGL(n)

η{�

. (9)

More explicitly, if we denote by Eϕ and Eψ the rank n real vector bundles
over X and Y corresponding to the morphisms ϕ and ψ, respectively, then
we see that a morphism in the slice between X

ϕ−→ BGL(n) and Y
ψ−→

BGL(n) is precisely the datum of a morphism f : X → Y together with an
isomorphism of vector bundles over X ,

η : f ∗Eψ
'−→ Eϕ. (10)

Notice that these are precisely the same objects and morphisms as if we were
working in the slice over BGL(n) in H. Nevertheless, as we will see in the
following sections, where the use of H∞ makes a difference is precisely in
allowing nontrivial higher morphisms. Also, the use of the homotopy type
BGL(n) in place of the smooth stack BGL(n) will allow us to make all
constructions work “up to homotopy”, and to identify, for instance, BGL(n)
with BO(n).

Example 2.1. The inclusion of the trivial group intoGL(n) induces a natural
morphism ∗ → BGL(n), corresponding to the choice of the trivial bundle.
If Mk is a k-dimensional manifold, then a morphism

Mk

T st
$$

// ∗

{{

BGL(n)

η{�

(11)

is precisely a trivialisation of the stabilised tangent bundle of Mk, i.e., an
n-framing of M .

Example 2.2. Let X be a smooth manifold, and let ζ be a rank n real vector
bundle over X , which we can think of as a morphism ρζ : X → BGL(n).
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Then a morphism

Mk

T st
$$

f
// X

ρζzz

BGL(n)

η{�

(12)

is precisely the datum of a smooth map f : Mk → X and of an isomorphism
η : f ∗ζ → TM ⊕ Rn−k

Mk
. These are the data endowing Mk with a (X, ζ)-

structure in the terminology of [Lu09].

The examples above suggest to allow X to be not only a smooth man-
ifold, but a smooth ∞-stack. While choosing such a general target (X, ζ)
could at first seem like a major abstraction, this is actually what one com-
monly encounters in everyday mathematics. For instance a lift through
BO(n) → BGL(n) is precisely a (n-stable) Riemannian structure. Gen-
erally, for G ↪→ GL(n) any inclusion of Lie groups, or even more gen-
erally for G → GL(n) any morphism of Lie groups, then a lift through
BG → BGL(n) is a (n-stable) G-structure, e.g., an almost symplectic
structure, an almost complex structure, etc. (one may also phrase inte-
grable G-structures in terms of slicing, using more of the axioms of co-
hesion than we need here). For instance, the inclusion of the connected
component of the identity GL+(n) ↪→ GL(n) corresponds to a morphism of
higher stacks ι : BGL+(n) → BGL(n), and a morphism in the slice from
(Mk, T

st) to (BGL+(n), ι) is precisely the choice of a (stabilised) orien-
tation on Mk. For G a higher connected cover of O(n) then lifts through
BG → BO(n) → BGL(n) correspond to spin structures, string structures,
etc.
On the other hand, since BO(n) → BGL(n) is an equivalence, a lift
through BO(n) → BGL(n) is no additional structure on a smooth man-
ifold Mk, and the stabilized tangent bundle of Mk can be equally seen as
a morphism to BO(n). Similarly, for G → GL(n) any morphism of Lie
groups, lifts of T st through BG→ BGL(n) correspond to (n-stable) topo-
logical G-structures.

2.3 From homotopy group actions to objects in the slice

We will mainly be interested in objects of H∞/BGL(n) obtained as a homo-
topy group action of a smooth (higher) group G on some stack X , when
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G is equipped with a ∞-group morphism to GL(n). We consider then the
following

Definition 2.3. A homotopy action of a smooth∞-group G on X is the da-
tum of a smooth∞-stackX//hG together with a homotopy pullback diagram

X

��

// X//hG

ρ

��

∗ //BG

(13)

Unwinding the definition, one sees that a homotopy action of G is nothing
but an action of the homotopy type of G and that X//hG is realised as the
stack quotient X//ΠG. See [NSS12a] for details. Since G is equipped with
a smooth group morphism to GL(n), and since this induces a morphism of
smooth stacks BG→ BGL(n), the stack X//hG is naturally an object over
BGL(n). In particular, when X is a deloopable object, i.e., when there
exists a stack Y such that ΩY ∼= X , then one obtains a homotopy G-action
out of any morphism c : BG → Y . Indeed, in this situation one can define
X//hG→ BG by the homotopy pullback

X//hG

ρc
��

// ∗

��

BG c // Y

(14)

By using the pasting law for homotopy pullbacks, we can see thatX ,X//hG,
and the morphism ρc fit in a homotopy pullback diagram as in (13).

Example 2.4. Let c be a degree d + 1 characteristic class for the group
SO(n). Then c can be seen as the datum of a morphism of stacks c : BSO(n)
→ Bd+1Z ∼= Bd+1Z, where Bd+1Z is the smooth stack associated by the
Dold-Kan correspondence to the chain complex with Z concentrated in de-
gree d + 1, i.e., the stack (homotopically) representing degree d + 1 in-
tegral cohomology. Notice how the discreteness of the abelian group Z
came into play to give the equivalence Bd+1Z ∼= Bd+1Z. Since we have
ΩBd+1Z ∼= BdZ, the characteristic class c defines a homotopy action

ρc : BdZ//hSO(n)→ BSO(n) (15)
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and so it realises BdZ//hSO(n) as an object in the slice H∞/BGL(n). For
instance, the first Pontryagin class p1 induces a homotopy action

ρp1 : B3Z//hSO(n)→ BSO(n). (16)

3. ρ-framed manifolds and their automorphisms∞-group

We can now introduce the main definition in the present work.

Definition 3.1. Let M be a k-dimensional manifold, and let ρ : X →
BGL(n) be a morphism of smooth∞-stacks, with k ≤ n. Then a ρ-framing
(or ρ-structure) on M is a lift of the stabilised tangent bundle seen as a mor-
phism T st : M → BGL(n) to a morphism σ : M → X , namely a homotopy
commutative diagram of the form

M

T st
$$

σ // X

ρ
zz

BGL(n)

η{�

(17)

By abuse of notation, we will often say that the morphism σ is the ρ-
framing, omitting the explicit reference to the homotopy η, which is, how-
ever, always part of the data of a ρ-framing.
Since the morphism ρ : X → BGL(n) is an object in the slice H∞/BGL(n)

,
we can consider the slice over ρ: (H∞/BGL(n)

)/ρ . Although this double slice
may seem insanely abstract at first, it is something very natural. Its objects
are homotopy commutative diagrams, namely 2-simplices

Y

ρ̃ $$

a // X

ρ
zz

BGL(n)

η{�

(18)
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while its morphisms are homotopy commutative 3-simplices

Y

Z

X

BGL(n)

((

44
11

���� ��

ρ
ρ̃

ρ̂

a

b

f (19)

where for readability we have omitted the homotopies decorating the faces
and the interior of the 3-simplex, and similarly, additional data must be pro-
vided for higher morphisms.
In particular we see that a ρ-framing σ on M is naturally an object in the
double slice (H/BGL(n)

)/ρ . Moreover, the collection of all k-dimensional
ρ-framed manifolds has a natural ∞-groupoid structure which is compati-
ble with the forgetting of the framing, and with the fact that any ρ-framed
manifold is in particular an object in the double slice (H∞/BGL(n)

)/ρ . More
precisely, let Mk denote the ∞-groupoid whose objects are k-dimensional
smooth manifolds, whose 1-morphisms are diffeomorphisms of k-dimension-
al manifolds whose 2-morphisms are isotopies of diffeomorphisms, and so
on4. There is then an ∞-groupoid M ρ

k of ρ-framed k-dimensional mani-
folds which is a∞-subcategory of (H∞/BGL(n)

)/ρ , and comes equipped with
a forgetful∞-functor

M ρ
k →Mk. (20)

Namely, since the differential of a diffeomorphism between k-dimensional
manifolds M and N can naturally be seen as an invertible 1-morphism be-
tween M and N as objects over BGL(n), we have a natural (not full) em-
bedding

Mk ↪→ H∞/BGL(n). (21)

Consider then the forgetful functor

(H∞/BGL(n)
)/ρ → H∞/BGL(n) (22)

We have then the following important
4The∞-groupoid Mk can be rigorously defined as Ω(Cobt(k)), where Cobt(k) is the

(∞, 1)-category defined in [Lu09] in the context of topological field theory.
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Definition 3.2. Let ρ : X → BGL(n) be an object in H∞/BGL(n)
. The ∞-

groupoid M ρ
k is then defined as the homotopy pullback diagram

M ρ
k

//

��

(H∞/BGL(n)
)/ρ

��

Mk
//H∞/BGL(n)

(23)

Given two ρ-framed k-dimensional manifolds (M,σ, η) and (N, τ, ϑ),
the∞-groupoid M ρ

k ((M,σ, η), (N, τ, ϑ)) is the homotopy pullback

M ρ
k ((M,σ, η), (N, τ, ϑ)) //

��

(H∞/BGL(n)
)/ρ(σ, τ)

��

Mk(M,N) //H∞/BGL(n)(T
st
M , T

st
N )

(24)

In particular, if we denote with Diff(M) the∞-groupoid of diffeomorphisms
of M , namely the automorphism∞-group of M as an object in Mk, and we
accordingly write Diffρ(M,σ) for the automorphisms∞-group of (M,σ) as
an object in M ρ

k (where to simplify notation we suppress the dependence on
η) , then we have a homotopy pullback

Diffρ(M,σ) //

��

Aut∞/ρ(σ)

��

Diff(M) //Aut∞/BGL(n)(T
st
M)

(25)

where Aut∞(−)(−) denotes the homotopy type of the relevant H-internal au-
tomorphisms ∞-group. In particular, to abbreviate the notation, we will
denote with Aut∞/ρ(σ) the automorphism∞-group of σ in (H∞/BGL(n)

)/ρ .
More explicitly, an element in Diffρ(M,σ) is a diffeomorphism ϕ : M →M
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together with an isomorphism α : ϕ∗σ
'−→ σ, and a filler β for the 3-simplex

M

M

X

BGL(n)

++

44
00

���� ��

ρ

T st
T st

dϕ⇒

σ

α

⇒

σ
η⇒

ϕ (26)

3.1 Functoriality and homotopy invariance of M ρ
k

In this section we will explore some of the properties of M ρ
k , which will be

useful in the following.
It immediately follows from the definition that the forgetful functor M ρ

k →
Mk is an equivalence for ρ : X → BGL(n) an equivalence in H∞(X,
BGL(n)). In particular, if ρ is the identity morphism of BGL(n) and we
write MGL(n)

k for M
idBGL(n)

k then we have MGL(n)
k

∼= Mk. Less trivially, if
X = BO(n), and ρ is the natural morphism

ιO(n) : BO(n)→ BGL(n) (27)

induced by the inclusion of O(n) in GL(n), then ρ is again an equivalence,
and we get MO(n)

k
∼= Mk, where we have denoted M

ιO(n)

k with MO(n)
k .

More generally, if ρ and ρ̃ are equivalent objects in the slice H∞/BGL(n), then
we have equivalent ∞-groupoids M ρ

k and M ρ̃
k . For instance, the inclu-

sion of SO(n) into GL(n)+ induces an equivalence between BSO(n) and
BGL(n)+ over BGL(n), and so we have a natural equivalence M SO(n)

k
∼=

MGL(n)+

k . Since the objects in the∞-groupoid MGL(n)+

k are k-dimensional
manifolds whose stabilised tangent bundle is equipped with a lift to an
SO(n)-bundle, the objects of MGL(n)+

k are oriented k-manifolds. Moreover
the pullback defining MGL(n)+

k precisely picks up oriented diffeomorphisms,
hence the forgetful morphism MGL(n)+

k → Mk induces an equivalence be-
tween MGL(n)+

k and the∞-groupoid M or
k of oriented k-dimensional mani-

folds with orientation preserving diffeomorphisms between them. As a con-
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sequence, one has a natural equivalence

M SO(n)
k

∼= M or
k (28)

Let ψ : ρ → ρ̃ be a morphism in the slice H∞/BGL(n) between ρ : X →
BGL(n) and ρ̃ : Y → BGL(n). Then one has an induced push-forward
morphism

ψ∗ : M ρ
k →M ρ̃

k , (29)

which (by (24), and using the pasting law) fits into the homotopy pullback
diagram

M ρ
k

//

ψ∗
��

(H∞/BGL(n)
)/ρ

Ψ∗

��

M ρ̃
k

// (H∞/BGL(n)
)/ρ̃

(30)

where Ψ∗ denotes the base changing∞-functor on the slice topos.
The homotopy equivalences illustrated above are particular cases of this
functoriality: indeed, when ψ is invertible, then ψ∗ is invertible as well (up
to coherent homotopies, clearly).
Recall from Example 2.4 that for any characteristic class c of SO(n) we
obtain an object ρc in the slice H∞/BGL(n). In this way we obtain natural mor-

phisms M ρc
k → M SO(n)

k . In particular, by considering the first Pontryagin
class p1 : BSO(n)→ B4Z, we obtain a canonical morphism

M
ρp1
k →M or

k . (31)

3.2 Extensions of ρ-diffeomorphism groups

We are now ready for the extension theorem, which is the main result of this
note. Not to break the flow of the exposition, we will postpone the details of
the proof to the Appendix.
Let

X

ρ
$$

ψ
// Y

ρ̃zz

BGL(n)

Ψ{�

(32)
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be a morphism in the slice over BGL(n), as at the end of the previous sec-
tion, and let

M

T st
M $$

τ // Y

ρ̃zz

BGL(n)

T{�

(33)

be a ρ̃-structure on M . Then, arguing as in Section 3, associated to any lift

M

Y

X

BGL(n)

++ tt

00

���� ��

ρ

T st
ρ̃

T⇒

σ

α ⇒

ψ
Ψ⇒

τ
(34)

(where we are not displaying the label Σ on the back face, nor the filler β of
the 3-simplex) of T to a ρ-structure Σ on M , we have a homotopy pullback
diagram

Diffρ(M,Σ) //

ψ∗
��

Aut∞/ρ(Σ)

ψ∗

��

Diff ρ̃(M,T ) //Aut∞/ρ̃(T )

(35)

By the pasting law for homotopy pullbacks, we have the following homotopy
diagram (see Appendix for the proof)

Ωβ(H∞/BGL(n))/ρ̃(T,Ψ) //

��

ΩΣH∞/BGL(n)(T
st
M , ρ) //

��

Aut∞/ρ(Σ)

ψ∗

��

∗ // ΩTH∞/BGL(n)(T
st
M , ρ̃)

��

//Aut∞/ρ̃(T )

��

∗ //Aut∞/BGL(n)(T
st
M)

(36)
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We therefore obtain the homotopy pullback diagram

Ωβ(H∞/BGL(n))/ρ̃(T,Ψ) //

��

Diffρ(M,Σ)

ψ∗
��

∗ // Diff ρ̃(M,T )

(37)

presenting Diffρ(M,Σ) as an extension of Diff ρ̃(M,T ) by the ∞-group
Ωβ(H∞/BGL(n))/ρ̃(T,Ψ), i.e., by the loop space (at a given lift β) of the space
(H∞/BGL(n))/ρ̃(T,Ψ) of lifts of the ρ̃-structure T on M to a ρ-structure Σ.
Now notice that, by the Kan condition, we have a natural homotopy equiva-
lence

(H∞/BGL(n))/ρ̃(T,Ψ) ∼= H∞/Y (τ, ψ). (38)

Namely, since T and Ψ are fixed, the datum of the filler α is homotopically
equivalent to the datum of the full 3-simplex, as T,Ψ and α together give the
datum of the horn at the vertex Y . As a consequence we see that the space
of lifts of the ρ̃-structure T to a ρ-structure Σ is homotopy equivalent to the
space of lifts

X

ψ
��

M
τ //

σ

>>

Y
α{�

(39)

of τ to a morphism σ : M → X . We refer the reader to the Appendix for a
rigorous proof of equivalence (38).
The arguments above lead directly to

Proposition 3.3. Let ρ : X → BGL(n) and ρ̃ : Y → BGL(n) be mor-
phisms of∞-stacks, and let (ψ,Ψ) : ρ→ ρ̃ be a morphism in H∞/BGL(n). Let
(M,T ) be a ρ̃-framed manifold, and let Σ be a ρ-structure on M lifting T
through (α, β). We have then the following homotopy pullback

ΩαH
∞
/Y (τ, ψ) //

��

Diffρ(M,Σ)

ψ∗
��

∗ // Diff ρ̃(M,T )

(40)

Proof. Combine diagram (37) with equivalence (38), which preserves ho-
motopy pullbacks.
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Remark 3.4. Proposition 3.3 gives a presentation of Diffρ(M,Σ) as an ex-
tension of Diff ρ̃(M,T ) by the ∞-group ΩαH

∞
/Y (τ, ψ). Notice how, for

(T, τ) the identity morphism, i.e.

Y

ρ̃ $$

idY // Y

ρ̃zz

BGL(n)

Id{�

(41)

the space H∞/Y (τ, idY ) is contractible since idY is the terminal object in the
slice H∞/Y and so one finds that the extension of Diff ρ̃(M,T ) is the trivial
one in this case, as expected.

4. Lifting ρ-structures along homotopy fibres

In this section we will investigate a particularly simple and interesting case of
the lifting procedure of ρ-structures, and of extensions of ρ-diffeomorphisms
∞-groups, namely the case when ψ : X → Y is the homotopy fibre in H∞

of a morphism c : Y → Z from Y to some pointed stack Z.
In this case, by the universal property of the homotopy pullback, the space
H∞/Y (τ, ψ) of lifts of the ρ̃-structure τ to a ρ-structure σ is given by the
space of homotopies between the composite morphism c ◦ τ and the trivial
morphism M → Z given by the constant map on the marked point of Z:

M

��

τ

##

σ

  

X //

ψ
��

∗

��

Y
c // Z

(42)

This fact has two important consequences:

• a lift σ of τ exists if and only if the class of c ◦ τ in π0H
∞(M,Z) is

the trivial class (the class of the constant map on the marked point z of
Z);
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• when a lift exists, the space H∞/Y (τ, ψ) is a torsor for the∞-group of
self-homotopies of the constant map M → Z, i.e., for the ∞-group
object ΩH∞(M,Z). In particular, as soon as H∞/Y (τ, ψ) is nonempty,
any lift σ of τ induces an equivalence of ∞-groupoids H∞/Y (τ, ψ) ∼=
ΩH∞(M,Z) and so an equivalence

ΩαH
∞
/Y (τ, ψ) ∼= Ω2H∞(M,Z). (43)

Moreover, as soon as (Z, z) is a geometrically discrete pointed∞-stack, we
have ΩH∞(M,Z) ∼= H∞(M,ΩZ), where ΩZ denotes the loop space of Z
in H at the distinguished point z. In other words, for a geometrically discrete
∞-stack Z, the loop space of Z in H also provides a loop space object for
Z in H∞. Namely, by definition of H∞, showing that

H∞(W,ΩZ) //

��

∗

��

∗ //H∞(W,Z)

(44)

is a homotopy pullback of ∞-groupoids for any ∞-stack W amounts to
showing that ∣∣[W,ΩZ]

∣∣ //

��

∗

��

∗ //
∣∣[W,Z]

∣∣
(45)

is a homotopy pullback, and this in turn follows from the fact that [W,−]
preserves homotopy pullbacks and geometrical discreteness, and that | − |
preserves homotopy pullbacks along morphisms of geometrically discrete
stacks [Sc13, thm. 3.8.19]. If the pointed stack (Z, z) is geometrically dis-
crete, then so is the stack ΩZ (pointed at the constant loop at z), and so

Ω2H∞(M,Z) ∼= ΩH∞(M,ΩZ) ∼= H∞(M,Ω2Z). (46)

Therefore, we can assemble the general considerations of the previous sec-
tion in the following
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Theorem 4.1. Let ψ : X → Y be the homotopy fibre of a morphism of
smooth ∞-stacks Y → Z, where Z is pointed and geometrically discrete.
For any ρ̃-structured manifold (M, τ), we have a sequence of natural homo-
topy pullbacks

H∞(M,Ω2Z) //

��

Diffρ(M,σ)

ψ∗
��

// ∗

��

∗ // Diff ρ̃(M, τ) //H∞(M,ΩZ)

(47)

whenever a lift to of τ to a ρ-structure σ exists.

4.1 The case of manifolds with boundary

With an eye to topological quantum field theories, it is interesting to consider
also the case of k-dimensional manifolds with boundary (M,∂M). Since
the boundary ∂M comes with a collar in M , i.e. with a neighbourhood in
M diffeomorphic to ∂M × [0, 1) the restriction of the tangent bundle of M
to ∂M splits as5 TM |∂M ∼= T∂M ⊕R∂M and this gives a natural homotopy
commutative diagram

∂M

T st
%%

ι //M

T st
zz

BGL(n)

(48)

for any n ≥ k. In other words, the embedding of the boundary, ι : ∂M →M
is naturally a morphism in the slice over BGL(n). This means that any ρ̃-
framing on M can be pulled back to a ρ̃-framing on ∂M :

ι∗ : H∞/BGL(n)(T
st, ρ̃)→ H∞/BGL(n)(T

st
∣∣
∂M
, ρ̃). (49)

5See section 2.2.1 for notation.
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That is, for any ρ̃-framing on M we have a natural homotopy commutative
diagram

∂M
τ |∂M

%%

T st|∂M

��

ι //M
τ

yy

T st

��

Y

��

BGL(n)

(50)

realizing ι as a morphism in the slice over Y . Therefore we have a further
pullback morphism

ι∗ : H∞/Y (τ, ψ)→ H/Y (τ |∂M , ψ) (51)

for any morphism ψ : (X, ρ) → (Y, ρ̃) in the slice over BGL(n). For any
fixed ρ-framing � on ∂M we can then form the space of ρ-framings on the
ρ̃-framed manifold M extending �. This is the homotopy fibre of ι∗ at �:

H∞,�/Y ((M,∂M, τ), (X,ψ)) //

��

∗

�
��

H/Y (τ, ψ) ι∗ //H/Y (τ |∂M), ψ)

(52)

Reasoning as in Section 4, when the morphism ψ : X → Y is the ho-
motopy fibre of a morphism c : Y → Z one sees that, as soon as the ρ-
structure � on ∂M can be extended to a ρ-structure on M , then the space
H∞,�/Y ((M,∂M, τ), (X,ψ)) of such extensions is a torsor for the ∞-group
H∞,rel(M,∂M ; ΩZ) defined by the homotopy pullback

H∞,rel(M,∂M ; ΩZ) //

��

∗

0
��

H∞(M,ΩZ) ι∗ //H∞(∂M,ΩZ)

(53)

In particular, for Z = BnA for some discrete abelian group A, the space
H∞,rel(M,∂M ; Bn−1A) is the space whose set of connected components is
the (n− 1)-th relative cohomology group of (M,∂M):

π0H
∞,rel(M,∂M ; Bn−1A) ∼= Hn−1(M,∂M ;A). (54)
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Moreover, since BnA is (n− 1)-connected, we see that any homotopy from
c ◦ τ |∂M : ∂M → BnA to the trivial map can be extended to a homotopy
from c ◦ τ : M → BnA to the trivial map, as soon as dimM < n. In other
words, for Z = BnA, if k < n every ρ-structure on ∂M can be extended to
a ρ-structure on M .

The space H∞,�/Y ((M,∂M, τ), (X,ψ)) has a natural interpretation in terms of
ρ-framed cobordism: it is the space of morphisms from the empty manifold
to the ρ-framed manifold (∂M,�), whose underlying non-framed cobor-
dism is M . As such, it carries a natural action of the∞-group of ρ-framings
on the cylinder ∂M × [0, 1] which restrict to the ρ-framing � both on ∂M ×
{0} and on ∂M × {1}. These are indeed precisely the ρ-framed cobordisms
lifting the trivial non-framed cobordism. Geometrically this action is just the
glueing of such a ρ-framed cylinder along ∂M , as a collar inM . On the other
hand, by the very definition of H∞, this ∞-group of ρ-framed cylinders is
nothing but the loop space Ω�(H∞/BGL(n))/ρ(T

st
∣∣
∂M
, ψ), i.e., the loop space

at � of the space of ρ-structures on ∂M lifting the ρ̃-structure τ |∂M . Com-
paring this to the diagram (37), we see that the space of ρ-structures on M
extending a given ρ-structure on ∂M comes with a natural action of the∞-
group which is the centre of the extension Diff ρ̃(∂M,�) of Diff ρ̃(M, τ |∂M).6

In the case ψ : X → Y is the homotopy fibre of a morphism c : Y → BnA,
passing to equivalence classes we find the natural action of Hn−2(∂M,A)
on the relative cohomology group Hn−1(M,∂M ;A) given by the suspen-
sion isomorphism Hn−2(∂M,A) ∼= Hn−1(∂M × [0, 1], ∂M × {0, 1}, A)
combined with the natural translation action

Hn−1(M,∂M ;A)×Hn−1(∂M×[0, 1], ∂M×{0, 1}, A)→ Hn−1(M,∂M ;A).
(55)

For instance, ifM is a connected oriented 3-manifold with connected bound-
ary ∂M and we choose n = 4 and A = Z, then we get the translation action
of Z on itself.7

6This should be compared to Segal’s words in [Se04]: “An oriented 3-manifold Y whose
boundary ∂Y is rigged has itself a set of riggings which form a principal homogeneous set
under the group Z which is the centre of the central extension of Diff(∂Y ).”

7Again, compare to Segal’s prescription on the set of riggings on a oriented 3-manifold.
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5. Mapping class groups of ρ-framed manifolds

In this final section, we consider an application of the general notion of ρ-
structure developed in the previous sections to investigate extensions of the
mapping class group of smooth manifolds.
Inspired by the classical notion of mapping class group, see for instance
[Ha12], we consider the following

Definition 5.1. Let M be a k-dimensional manifold, and let ρ : X →
BGL(n) be a morphisms of smooth ∞-stacks, with k ≤ n. The mapping
class group Γρ(M,σ) of a ρ-framed manifold (M,σ) is the group of con-
nected components of the ρ-diffeomorphism∞-group of (M,σ), namely

Γρ(M,σ) := π0Diffρ(M,σ) (56)

In the setting of the Section 4, we consider the case in which the∞-stack
X is the homotopy fiber of a morphism Y → Z, with Z a geometrically
discrete ∞-stack. Then, induced by diagram (47), we have the following
long exact sequence in homotopy

· · · → π1Diffρ(M,σ)→ π1Diff ρ̃(M, τ)→ π2H
∞(M,Z)→

→ Γρ(M,σ)→ Γρ̃(M, τ)→ π1H
∞(M,Z). (57)

Notice that the morphism

Γρ̃(M, τ)→ π1H
∞(M,Z) (58)

is a homomorphism at the π0 level, so it is only a morphism of pointed sets
and not a morphism of groups. It is the morphism that associates with a ρ-
diffeomorphism f the pullback of the lift σ of τ . In other words, it is the mor-
phism of pointed sets from the set of isotopy classes of ρ-diffeomorphisms
to the set of equivalence classes of lifts induced by the natural action

Γρ̃(M, τ)×{(equivalence classes of) lifts of τ} →
→ {(equivalence classes of) lifts of τ} (59)

once one picks a distinguished element σ in the set (of equivalence classes
of) of lifts and uses it to identify this set with π0H

∞(M,ΩZ) ∼= π1H
∞(M,Z).

- 286 -



FIORENZA, SCHREIBER, VALENTINO CENTRAL EXTENSIONS

A particularly interesting situation is the case when c is a degree d character-
istic class for Y , i.e., when c : Y → BdA for some discrete abelian group A,
and M is a closed manifold. Since BdA is a geometrically discrete∞-stack,
we have that H∞(M,BdA) is equivalent, as an∞-groupoid, to H(M,BdA)
. Consequently, we obtain that πkH∞(M,BdA) = Hd−k(M,A) for 0 ≤
k ≤ d (and zero otherwise): in particular, the obstruction to lifting a ρ̃-
framing τ on M to a ρ-framing σ is given by an element in Hd(M,A).
When this obstruction vanishes, hence when a lift σ of τ does exist, the long
exact sequence above reads as

· · · → π1Diff ρ̃(M, τ)→ Hd−2(M,A)→ Γρ(M,σ)→
→ Γρ̃(M, τ)→ Hd−1(M,A) (60)

for d ≥ 2, and simply as

· · · → π1Diff ρ̃(M, τ)→ 1→ Γρ(M,σ)→ Γρ̃(M, τ)→ H0(M,A) (61)

for d = 1.

Remark 5.2. The long exact sequences (60) and (61) are a shadow of The-
orem 4.1, which is a more general extension result for the whole ∞-group
Diffρ(M,σ).

The morphism of pointed sets Γρ̃(M, τ) → Hd−1(M,A) is easily de-
scribed: once a lift σ for τ has been chosen, the space of lifts is identified
with H∞(M,Bd−1A) and the natural pullback action of the ρ̃-diffeomor-
phism group of M on the space of maps from M to Bd−1A induces the
morphism

Diff ρ̃(M, τ) → H∞(M,Bd−1A)
f 7→ f ∗σ − σ (62)

where we have written f ∗σ − σ for the element in H∞(M,Bd−1A) which
represents the “difference” between f ∗σ and σ in the space of lifts of τ seen
as a H∞(M,Bd−1A)-torsor. The morphism Γρ̃(M, τ) → Hd−1(M,A) is
obtained by passing to π0’s and so we see in particular from the long exact
sequence (60) that the image of Γρ(M, τ) into Γρ̃(M, τ) consist of precisely
the isotopy classes of those ρ̃-diffeomorphisms of (M, ρ̃) which fix the ρ-
structure σ up to homotopy.
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Similarly, for d ≥ 2, the morphism of groups π1Diff ρ̃(M, τ)→ Hd−2(M,A)
in sequence (60) can be described explicitly as follows. A closed path
γ based at the identity in Diff ρ̃(M, τ) defines then a morphism γ# : M ×
[0, 1]→ Bd−1A, as the composition

M × [0, 1]→M
0−→ Bd−1A, (63)

where the first arrow is the homotopy from the identity of M to itself and
where 0 : M → Bd−1A is the collapsing morphism, namely the morphism
obtained as the composition M → ∗ → Bd−1A (here we are using that
Bd−1A comes naturally equipped with a base point). The image of [γ] in
Hd−2(M,A) is then given by the element [γ#] in the relative cohomology
group

Hd−1(M × [0, 1],M × {0, 1}, A) ∼= Hd−1(ΣM,A) ∼= Hd−2(M,A) . (64)

By construction, [γ#] is the image in Hd−1(M × [0, 1],M × {0, 1}, A) ∼=
Hd−2(M,A) of the zero class in Hd−1(M,A) via the pullback morphism
M × [0, 1]→M , so it is the zero class in Hd−1(M × [0, 1],M ×{0, 1}, A).
That is, the morphism π1Diff ρ̃(M, τ)→ Hd−2(M,A) is the zero morphism,
and we obtain the short exact sequence

1→ Hd−2(M,A)→ Γρ(M,σ)→ Γρ̃(M, τ)→ Hd−1(M,A) (65)

showing that Γρ(M,σ) is aHd−2(M,A)-extension of a subgroup of Γρ̃(M, τ):
namely, the subgroup is the Γρ̃(M, τ)-stabilizer of the element ofHd−1(M,A)
corresponding to the lift σ of τ . The action of this stabiliser on Hd−2(M,A)
is the pullback action of ρ̃-diffeomorphisms ofM on the (d−2)-th cohomol-
ogy group of M with coefficients in A. Since this action is not necessarily
trivial, the Hd−2(M,A)-extension Γρ(M,σ) of the stabiliser of σ is not a
central extension in general.

5.1 Oriented and spin manifolds, and r-spin surfaces

Before discussing p1-structures and their modular groups, which is the main
goal of this note, let us consider two simpler but instructive examples: ori-
ented manifolds and spin curves.
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Since the ∞-stack BSO(n) is the homotopy fibre of the first Stiefel-
Whitney class

w1 : BO(n)→ BZ/2Z (66)

an n-dimensional manifold can be oriented if and only if [w1 ◦ TM ] is the
trivial element in π0H

∞(M,BZ/2Z) = H1(M,Z/2Z). When this happens,
the space of possible orientations on M is equivalent to H∞(M,Z/2Z), so
when M is connected it is equivalent to a 2-point set. For a fixed orientation
on M , we obtain from (61) with A = Z/2Z the exact sequence

1→ Γor(M)→ Γ(M)→ Z/2Z (67)

where Γor(M) denotes the mapping class group of oriented diffeomorphisms
of M , and where the rightmost morphism is induced by the action of the dif-
feomorphism group ofM on the set of its orientations. The oriented mapping
class group of M is therefore seen to be a subgroup of order 2 in Γ(M) in
case there exists at least an orientation reversing diffeomorphism of M , and
to be the whole Γ(M) when such a orientation reversing diffeomorphism
does not exist (e.g., for M = Pn/2C, for n ≡ 0 mod 4).

Consider now the∞-stack BSpin(n) for n ≥ 3. It can be realised as the
homotopy fibre of the second Stiefel-Whitney class

w2 : BSO(n)→ B2Z/2Z. (68)

An oriented n-dimensional manifold M will then admit a spin structure
if and only if [w2 ◦ TM ] is the trivial element in π0H

∞(M,B2Z/2Z) =
H2(M,Z/2Z). When this happens, the space of possible orientations on M
is equivalent to H∞(M,BZ/2Z), and we obtain, for a given spin structure
σ on M lifting the orientation of M , the exact sequence

1→ H0(M,Z/2Z)→ ΓSpin(M,σ)→ Γor(M)→ H1(M,Z/2Z). (69)

In particular, if M is connected, we get the exact sequence

1→ Z/2Z→ ΓSpin(M,σ)→ Γor(M)→ H1(M,Z/2Z). (70)

Since, for a connected M , the pullback action of oriented diffeomorphisms
on H0(M,Z/2Z) is trivial, we see that in this case the group ΓSpin(M,σ) is
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a Z/2Z-central extension of the subgroup of Γor(M) consisting of (isotopy
classes of) orientation preserving diffeomorphisms of M which fix the spin
structure σ (up to homotopy). The group ΓSpin(M,σ) and its relevance to
Spin TQFTs are discussed in detail in [Ma96].

For n = 2, the homotopy fibre of w2 : BSO(2) → B2Z/2Z is again
BSO(2) with the morphism BSO(2) → BSO(2) induced by the group
homomorphism

SO(2) → SO(2)
x 7→ x2 (71)

Since the second Stiefel-Whitney class of an oriented surfaceM is the mod 2
reduction of the first Chern class of the holomorphic tangent bundle of M
(for any choice of a complex structure compatible with the orientation), and
〈c1(T hol)M |[M ]〉 = 2−2g, where g is the genus ofM , one has that [w2◦TM ]
is always the zero element in H2(M,Z/2Z) for a compact oriented surface,
and so the orientation of M can always be lifted to a spin structure. More
generally, one can consider the group homomorphism SO(2) → SO(2)
given by x 7→ xr, with r ∈ Z. We have then a homotopy fibre sequence

BSO(2) //

ρ1/r

��

∗

��

BSO(2)
c(x→xr)

// B2Z/2Z

(72)

In this case one sees that an r-spin structure on an oriented surface M , i.e.
a lift of the orientation of M through ρ1/r, exists if and only if 2 − 2g ≡ 0
mod r. When this happens, one obtains the exact sequence

1→ Z/rZ→ Γ1/r(M,σ)→ Γor(M)→ H1(M,Z/rZ), (73)

which exhibits the r-spin mapping class group Γ1/r(M,σ) as a Z/rZ-central
extension of the subgroup of Γor(M) consisting of isotopy classes of orien-
tation preserving diffeomorphisms of M fixing the r-spin structure σ (up to
homotopy). The group Γ1/r(M,σ) appears as the fundamental group of the
moduli space of r-spin Riemann surfaces, see [R-W12, R-W14].
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5.2 p1-structures on oriented surfaces

Let us now finally specialise the general construction above to the case of
p1-structures on closed oriented surfaces, to obtain the Z-central extensions
considered in [Se04] around page 476. In particular we will see, how p1-
structures provide a simple realisation of Segal’s idea of extended surfaces
and 3-manifolds (see also [BN09, CHMV95]).8To this aim, our stack Y will
be the stack BSO(n) for some n ≥ 3, the stack Z will be B4Z and the
morphism c will be the first Pontryagin class p1 : BSO(n) → B4Z. the
stack X will be the homotopy fiber of p1, and so the morphism ψ will be the
morphism

ρp1 : B3Z//hSO(n)→ BSO(n). (74)

of example 2.4. A lift σ of an orientation on a manifold M of dimension at
most 3 to a morphism M → B3Z//hSO(n) over BO(n) will be called a
p1-struture on M . That is, a pair (M,σ) is the datum of a smooth oriented
manifold M together with a trivialisation of its first Pontryagin class. Note
that, since p1 is a degree four cohomology class, it can always be trivialised
on manifolds of dimension at most 3. In particular, when M is a closed con-
nected oriented 3-manifold, we see that the space of lifts of the orientation
of M to a p1 structure, is equivalent to the space H(M,B3Z) and so its set
of connected components is

π0H(M,B3Z) = H3(M,Z) ∼= Z. (75)

In other words, there is a Z-torsor of equivalence classes of p1-strctures on a
connected oriented 3-manifold. Similarly, in the relative case, i.e., when
M is a connected oriented 3-manifold with boundary, the set of equiva-
lence classes of p1-strctures on M extending a given p1-structure on ∂M
is nonempty and is a torsor for the relative cohomology group

H3(M,∂M ;Z) ∼= Z, (76)

8In [Se04], the extension is defined in terms of “riggings”, a somehow ad hoc con-
struction depending on the contractiblity of Teichmf̈uller spaces and on properties of the
η-invariant of metrics on 3-manifolds. Segal says: “I’ve not been able to think of a less
sophisticated definition of a rigged surface, although there are many possible variants. The
essential idea is to associate functorially to a smooth surface a space -such as PX - which
has fundamental group Z.”
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in perfect agreement with the prescription in [Se04, page 480].9

We can now combine the results of the previous section in the following

Proposition 5.3. Let M be a connected oriented surface, and let σ be a
p1-structure on M . We have then the following central extension

1→ Z→ Γp1(M,σ)→ Γor(M)→ 1, (77)

where Γp1 as a shorthand notation for Γρp1 .

Proof. Since M is oriented, we have a canonical isomorphism H2(M,Z) ∼=
Z induced by Poincaré duality. Moreover, since M is connected, from (65)
we obtain the following short exact sequence

1→ Z→ Γρp1 (M,σ)→ Γor(M)→ 1 (78)

Finally, since the oriented diffeomorphisms action on H2(M,Z) is trivial
for a connected oriented surface M , this short exact sequence is a Z-central
extension.

Appendix: proof of the extension theorem

Here we provide the details for proof of the existence of the homotopy fibre
sequence (36), which is the extension theorem this note revolves around. All
the notations in this Appendix are taken from Section 3.2.

Lemma A.1. We have a homotopy pullback diagram

Diffρ(M,Σ) //

ψ∗
��

Aut∞/ρ(σ)

ψ∗

��

Diff ρ̃(M,T ) //Aut∞/ρ̃(τ)

(79)

9The naturality of the appearance of this Z-torsor here should be compared to Segal’s
words in [Se04]: “An oriented 3-manifold Y whose boundary ∂Y is rigged has itself a set
of riggings which form a principal homogeneous set under the group Z which is the centre
of the central extension of Diff(∂Y ). I do not know an altogether straightforward way to
define a rigging of a 3-manifold.” Rigged 3-manifolds are then introduced by Segal in terms
of the space of metrics on the 3-manifold Y and of the η-invariant of these metrics.
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Proof. By definition of (equation (25)), we have homotopy pullback dia-
grams

Diffρ(M,Σ) //

��

Aut∞/ρ(σ)

��

Diff(M) //Aut∞/BGL(n)(T
st
M)

(80)

and
Diff ρ̃(M,T ) //

��

Aut∞/ρ̃(τ)

��

Diff(M) //Aut∞/BGL(n)(T
st
M)

(81)

By pasting them together as

Diffρ(M,Σ) //

ψ∗
��

Aut∞/ρ(σ)

ψ∗

��

Diff ρ̃(M,T ) //

��

Aut∞/ρ̃(τ)

��

Diff(M) //Aut∞/BGL(n)(T
st
M)

(82)

and by the 2-out-of-3 law for homotopy pullbacks the claim follows.

We need the following basic fact [Lu06, Lemma 5.5.5.12]:

Lemma A.2. Let C be an∞-category, C/x its slice over an object x ∈ C,
and let f : a → x and g : b → x be two morphisms into x. Then the hom
space C/x(f, g) in the slice is expressed in terms of that in C by the fact that
there is a homotopy pullback (in∞Grpd) of the form

C/x(f, g) //

��

C(a, b)

g◦(−)

��

∗ [f ]
// C(a, x)

where the right morphism is composition with g, and where the bottom mor-
phism picks f regarded as a point in C(a, x).
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Lemma A.3. We have homotopy pullback diagrams

ΩTH∞/BGL(n)(T
st
M , ρ̃)

��

//Aut∞/ρ̃(T )

��

∗ //Aut∞/BGL(n)(T
st
M)

(83)

and
ΩΣH∞/BGL(n)(T

st
M , ρ)

��

//Aut∞ρ (Σ)

��

∗ //Aut∞/BGL(n)(T
st
M)

(84)

Proof. Let C be an (∞, 1)-category, and let f : x→ y be a morphism in C.
Then by Lemma A.2 and using 2-out-of-3 for homotopy pullbacks, the for-
getful morphism C/y → C from the slice over y to C induces a morphism
of∞-groups AutC/y(f)→ AutC(x) sitting in a pasting of homotopy pull-
backs like this:

ΩfC(x, y) //

��

AutC/y(f)

��

// ∗
[f ]

��

∗ [id]
//

[f ]

33AutC(x)
f◦(−)

// C(x, y)

(85)

By taking here C = H∞/BGL(n), x = T st
M , y = ρ̃ (resp., y = ρ), and f = T

(resp., f = Σ), the left square yields the first (resp., the second) diagram in
the statement of the lemma.

Lemma A.4. We have a homotopy pullback diagram

Ωβ(H∞/BGL(n))/ρ̃(T,Ψ) //

��

ΩΣH∞/BGL(n)(T
st
M , ρ)

��

∗ // ΩTH∞/BGL(n)(T
st
M , ρ̃)

(86)
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Proof. If we take C = H∞/BGL(n), g = (ψ,Ψ), a = T st
M , f = T , b = ρ and

x = ρ̃ in Lemma A.2, we find the homotopy fibre sequence

(H∞/BGL(n))/ρ̃(T,Ψ)

��

//H∞/BGL(n)(T
st, ρ)

ψ∗
��

∗ //H∞/BGL(n)(T
st, ρ̃)

(87)

By looping the above diagram, the claim follows.

Lemma A.5. We have an equivalence of (∞, 1)-categories

(H∞/BGL(n))/ρ̃
∼= H∞/Y . (88)

Proof. Let C be an (∞, 1)-category, and let f : b → x be a 1-morphism in
C. By abuse of notation, we can regard f as a diagram f : ∆1 → C. We
have then a morphism

ϕ : (C/x)/f → C/b (89)

induced by the∞-functor ∆0 ↪→ ∆1 induced by sending 0 to 1. Since 1 is an
initial object in ∆1, the opposite∞-functor is a cofinal map. By noticing that
Cop
x/ is canonically equivalent to C/x, then by [Lu06, Proposition 4.1.1.8]

we have that ϕ is an equivalence of ∞-categories. Therefore, if we take
C = H∞, and f = ρ̃ : Y → BGL(n), we have that the claim follows.
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Žitná 25
115 67 Praha 1
Czech Republic

Alessandro Valentino
Max Planck Institut für Mathematik
Vivatsgasse 7
53113 Bonn
Germany

- 298 -


	Introduction
	Framed manifolds
	-framed manifolds and their automorphisms -group
	Lifting -structures along homotopy fibres
	Mapping class groups of -framed manifolds

