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Résumé. Dans cet article nous faisons le premier pas vers une comparai-
son entre une définition algébique et une définition non-algébrique des n-
catégories faibles. Cette comparaison prend la forme d’un foncteur ‘nerf’,
selon la méthode établie pour passer du cadre algébrique au cadre non-algébrique.
La définition algébrique que nous utilisons est due à Penon, et pour la définition
non-algébrique nous utilisons une variante selon Simpson de la définition
de Tamsamani. Comme prototype de notre construction du nerf, nous rap-
pelons la construction du nerf pour les bicatégories proposée par Leinster et
nous montrons que le nerf d’une bicatégorie ainsi obtenu est une 2-catégorie
faible au sens de Tamsamani-Simpson. Nous définissons alors notre foncteur
nerf pour les n-catégories faibles. Enfin nous prouvons que le nerf d’une
2-catégorie faible au sens de Penon est une 2-catégorie faible au sens de
Tamsamani-Simpson, et nous faisons l’hypothèse que ce résultat s’étend aux
niveaux n supérieurs.
Abstract. In this paper we take the first step towards a comparison between
an algebraic and a non-algebraic definition of weak n-category. This com-
parison takes the form of a nerve functor, the established method of moving
from the algebraic setting to the non-algebraic setting. The algebraic defini-
tion we use is that due to Penon, and the non-algebraic definition we use is
Simpson’s variant of Tamsamani’s definition. As a prototype for our nerve
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construction, we recall a nerve construction for bicategories proposed by Le-
inster, and prove that the nerve of a bicategory given by this construction is
a Tamsamani–Simpson weak 2-category. We then define our nerve functor
for Penon weak n-categories. We prove that the nerve of a Penon weak 2-
category is a Tamsamani–Simpson weak 2-category, and conjecture that this
result holds for higher n.
Keywords. n-category, higher-dimensional category, nerve construction.
Mathematics Subject Classification (2010). 18C15, 18D05.

1. Introduction

The aim of this paper, the second in a two-part series on Penon weak n-
categories, is to make the first comparison between an algebraic definition
and a non-algebraic definition of weak n-category. Many definitions of weak
n-category have been proposed [32, 1, 3, 29, 33, 20, 26, 17, 18, 19], and it
has been widely observed that each of these definitions is of one of two
types: algebraic definitions, in which composites and coherence cells are ex-
plicitly specified, and non-algebraic definitions, in which a coherent choice
of composites and constraint cells is merely required to exist [24, p. 5]. Al-
though there is a large number of different definitions, relatively few com-
parisons have been made between them, and most of the comparisons that
have been made are either exclusively between algebraic definitions, or ex-
clusively between non-algebraic definitions [4, 10, 9, 21, 8, 11, 2]. Very
little progress has been made in comparing algebraic and non-algebraic defi-
nitions, with the only existing comparisons being restricted to the case n = 2
(see [14, 24, 22, 16]). Moving between the algebraic and non-algebraic set-
tings is difficult; it is not simply a case of taking a non-algebraic definition
and making choices of composites and coherence cells, or of taking an alge-
braic definition and just asking for existence in place of specified structure.

One established method of moving between the algebraic and non-alge-
braic settings is the idea of a “nerve construction”. This idea arose from
the well-known nerve construction for categories, which allows us to ex-
press a category as a simplicial set satisfying a “nerve condition”. Roughly
speaking, a nerve construction takes an algebraic object, and produces from
it a particular kind of presheaf, so a nerve construction can be seen as a
way of passing from an algebraic setting to a non-algebraic setting. Various
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authors have given nerve constructions for algebraic definitions of weak n-
category [34, 28, 7], but these have focussed on extracting a canonical nerve
from a given algebraic notion of n-category, rather than making connections
with existing non-algebraic definitions. This can be seen as creating a new
non-algebraic definition corresponding to the given algebraic definition; the
presheaves this approach gives are therefore specific to the chosen algebraic
definition, and are unlikely to be presheaves on a category that arises nat-
urally elsewhere. One exception to this is the case of strict ω-categories;
Berger has shown that, in this case, the canonical nerve is a presheaf on a
category that arises naturally as a wreath product of the simplex category ∆
[5, 6].

In this paper we describe a nerve construction for weak n-categories.
The algebraic definition this construction uses is that of Penon [29, 13], and
it is designed to allow for comparison with the non-algebraic definition due
to Tamsamani and Simpson [33, 31].

The reason for choosing to use Penon weak n-categories over another al-
gebraic definition is that we are able to give an explicit description of Penon’s
monad (described in detail in Part 1 of this series), and thus of a free Penon
weak n-category. This was very useful when devising the nerve construc-
tions in this paper; these constructions involve algebras that are almost free,
and the construction of Penon’s monad in this chapter made it possible to
modify the free algebra construction in a way that would not be possible
with other algebraic definition, such as those of Batanin and Leinster. In
spite of its unusual construction, Penon’s monad is known to arise from an
n-globular operad with contraction and system of compositions (see [4]), so
this definition belongs to a commonly studied family of definitions of weak
n-category.

There are two reasons for choosing to use Tamsamani–Simpson weak
n-categories for the comparison. First, algebraic definitions such as Penon’s
are generally globular, with a set of cells for each dimension. The Tamsamani–
Simpson definition also draws a clear distinction between different dimen-
sions of cell; although this is universally true of algebraic definitions, it is
not so commonly true of non-algebraic “nerve-like” definitions. Second, we
are able to use an existing nerve construction – Leinster’s nerve construc-
tion for bicategories, described in Section 3, which compares bicategories to
Tamsamani–Simpson weak 2-categories – as a prototype for our construc-
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tion.
The paper is structured as follows: in Section 2 we recall the definition

of Tamsamani–Simpson weak n-category. In Section 3 we recall a nerve
construction for bicategories given by Lack and Paoli [22], and adapt this
into a form which we will use as a prototype for our nerve construction for
Penon weak n-categories, following earlier work of Leinster [24]. We then
prove that the nerve of a bicategory given by this nerve construction is a
Tamsamani–Simpson weak 2-category. In Section 4 we recall the definition
of Penon weak n-category. In Section 5 we give our nerve construction for
Penon weak n-categories in the case n = 2. In Section 6 we prove that
the nerve of a Penon weak 2-category satisfies the Segal condition, and is
therefore a Tamsamani–Simpson weak 2-category. The proof is unavoidably
technical, and is also in some parts elementary, and we apologise for this;
both Penon weak n-categories and Tamsamani–Simpson weak n-categories
are naturally arising in their own contexts, but these contexts are very differ-
ent, and it is inevitable that any comparison will be technically complicated.
In this proof we use the notation for the cells of a Penon weak n-category
given by our construction of Penon’s monad from Part 1 of this series. In
Section 7, we give our nerve construction for general n. Finally, in Sec-
tion 8, we conjecture that the nerve it gives is a Tamsamani–Simpson weak
n-category, and discuss possible directions for further investigation.
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2. Tamsamani–Simpson weak n-categories

In this section we recall Simpson’s variant of Tamsamani’s definition of
weak n-category [33, 31]. We begin by generalising the definition of sim-
plicial set to that of an n-simplicial set (often known as a multisimplicial set
when not specifying the value of n).
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Definition 2.1. The category of n-simplicial sets n-SSet is defined induc-
tively as follows:

• 0-SSet := Set;

• for n ≥ 1, n-SSet := [∆op, (n− 1)-SSet] ∼= [(∆n)op,Set], by carte-
sian closedness of Cat.

We could have defined n-simplicial sets to be presheaves on ∆n di-
rectly, but the form of the definition stated above highlights the fact that
n-simplicial sets can be obtained by a process of repeated internalisation,
which is a well-established method of adding extra dimensions; thus this il-
lustrates why ∆n is a reasonable category on which to take presheaves in a
definition of weak n-category. Note that the inductive nature of this defini-
tion means that the definition of Tamsamani–Simpson weak n-category does
not a priori allow for the case n = ω. We write an object of ∆n as an n-tuple

k = (k1, k2, . . . , kn),

where, for all 1 ≤ i ≤ n, ki ∈ N.
We now explain how we should think of the shapes of cells in an n-

simplicial set for the purposes of the definition of Tamsamani–Simpson weak
n-category. In ∆, the object [k] can be thought of as a string of k composable
morphisms. Similarly, in an n-simplicial set A : (∆n)op → Set, the set
A(k1, k2, . . . , kn) can be thought of as the set of pasting diagrams called
“cuboidal” by Leinster [25]. A cuboidal pasting diagram (k1, k1, . . . , kn) ∈
∆n consists of a grid of n-cells which is k1 n-cells long, k2 n-cells high, . . . ,
and kn n-cells wide; for example, the cuboidal pasting diagram (2, 3) ∈ ∆2

is shown in the diagram below.

�� ��

�� ��
•

��&&
88 EE•

��&&
88 EE•

�� ��

For this to give a globular notion of weak n-category, we need to ensure
that, if g : x → x′ is a k-cell in a weak n-category, then the (k − 1)-cells x
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and x′ have the same source and the same target. To do so we require that,
for any j, if kj = 0, i.e. the pasting diagram is 0 j-cells wide, then j − 1
should be the maximum dimension of cell in the diagram. In order to deal
with this issue we use Simpson’s approach, which is to use presheaves on a
quotient of ∆n, denoted Θn, rather than using presheaves on ∆n itself. Note
that if we do not ensure that our cells are globular, we obtain a definition of
weak n-tuple category (also known as a weak n-fold category).

We define Θn as a coequaliser in Cat. The idea is to identify objects in
∆n if they are to be thought of as the same cuboidal pasting diagram. For
example, in Θ2, given an object (j, k), if j = 0 the pasting diagram has zero
width, so the value of k should make no difference since the pasting diagram
must also have zero height. Thus in Θ2 we identify all objects of the form
(0, k), so Θ2 looks like:

(0, 0) (1, 0) (2, 0) . . .

(1, 1) (2, 1) . . .

(1, 2) (2, 2) . . .

...
...

//

//
oo

33
33

��

33
33

��
//

//

//
oo

oo

//

//

//
oo

oo

//

//

//
oo

oo

OO OO

��

OO OO

��

OO OO OO

����

OO OO OO

����

Similarly, for higher values of n, objects of ∆n are identified in Θn if they
differ only after a 0.

Definition 2.2. We define a category Θn as a coequaliser in Cat as follows:
first, let R be the subcategory of ∆n ×∆n with

• objects: for all objects (k1, k2, . . . , kn) of ∆n,

((k1, k2, . . . , kn), (k1, k2, . . . , kn))

is in R; also, for a fixed j with 1 ≤ j < n,

((k1, k2, . . . , kj, . . . , kn), (k′1, k
′
2, . . . , k

′
j, . . . , k

′
n))

is in R if kj = 0 = k′j and ki = k′i for all i < j;
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• morphisms: let l, m ≤ n, and let (k, 0) = (k1, . . . , kl, 0, . . . , 0) and
(k′, 0) = (k′1, . . . , k

′
m, 0, . . . , 0) be objects of ∆n. Then the morphism

(φ, ψ) : ((k, 0), (k, 0))→ ((k′, 0), (k′, 0)),

where φ = (φ1, . . . , φn), ψ = (ψ1, . . . , ψn), is in R if

– for all i ≤ j, φi = ψi;

– φj : [kj]→ [k′j] factors through [0] in ∆.

Since R is a subcategory of ∆n×∆n, it comes equipped with projection
maps π1, π2 : R → ∆n. The category Θn is defined to be the coequaliser of
the diagram

R ∆n
π1 //

π2
//

in Cat. A presheaf
A : (Θn)op −→ Set

is called an n-precategory.

Given an n-precategory

A : (Θn)op −→ Set,

and given an object j of Θn, we refer to an element of the set A(j) as a
“j-cell”.

Note that this is not the only way of ensuring that we have globular cells;
in the original definition, Tamsamani takes presheaves on ∆n, then includes
an extra condition to ensure that the cells are globular. In their expositions of
Simpson’s definition, both Cheng and Lauda [12] and Leinster [24] also take
this approach. Using Simpson’s approach does make a difference, since it
leads to a definition of a weak n-category as a presheaf satisfying the Segal
condition, with no extra conditions; this allows us to work with a presheaf
category, with all the usual desirable properties these have, such as com-
pleteness, cocompleteness, and the existence of the Yoneda embedding.

We now discuss the Segal condition, Tamsamani’s n-dimensional gener-
alisation of the nerve condition for categories originating in [30]. The Segal
condition is a condition on a family of morphisms of n-precategories, called
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the Segal maps; these Segal maps are defined to be induced by wide pull-
backs.

In the nerve condition for categories the Segal maps are required to be
isomorphisms, to ensure that well-defined, associative, unital composition
could be extracted from the nerve. In the Segal condition for weak n-
categories, we wish to weaken this since we only want composition that
is associative and unital up to coherent isomorphism. If the Segal maps
were maps of n-categories we would instead require them to be equivalences.
However, the Segal maps are merely maps of n-precategories, so we cannot
use the same notion of equivalence. A functor is an equivalence if it is full,
faithful, and essentially surjective on objects; for a map of n-precategories,
we can still define fullness and faithfulness in the same way, but we cannot
define what it means for a map to be essentially surjective since we do not
have a composition structure, and thus no notion of isomorphism between
cells.

It was Simpson’s insight that, instead of asking for essential surjectivity,
one can demand surjectivity on 0-cells. Simpson observed that the resulting
notion, which we call contractibility, is enough for the purposes of the Segal
condition, although it is not enough to define equivalences in general. (Note
that Simpson uses the phrase “easy equivalence” where we use “contractible
map”.)

Before defining contractibility, we establish some notation used in the
definition. Let 0 ≤ p ≤ n, and write 1p for the equivalence class in Θn of
the object

(1, . . . , 1︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
n−p

)

of ∆n, which should be thought of as a single globular p-cell.
Let A : (Θn)op → Set be an n-precategory. In ∆, we have maps σ,

τ : [0] → [1], with σ(0) = 0 and τ(0) = 1. We define the source and target
maps (denoted s and t respectively) in A, for each p, as follows:

s = A(id, . . . , id︸ ︷︷ ︸
p−1

, σ, id, . . . , id) : A(1p)→ A(1p−1);

t = A(id, . . . , id︸ ︷︷ ︸
p−1

, τ, id, . . . , id) : A(1p)→ A(1p−1).
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Note that this defines the underlying n-globular set of the n-precategory A,
with the set of p-cells for each 0 ≤ p ≤ n given by A(1p).

We now give the definition of contractibility.

Definition 2.3. Let m ≥ 1, let A, B : (Θm)op → Set be m-precategories,
and let α : A → B be a map of m-precategories. For each 0 ≤ p ≤ m − 1,
we write A(1p)×B(1p) B(1p+1)×B(1p) A(1p) for the limit of the diagram

A(1p)

α1p

��

B(1p+1) s
//

t
��

B(1p)

A(1p) α1p

// B(1p)

in Set. We also have a cone over this diagram with vertexA(1p+1), as shown
in the diagram below:

A(1p+1)
s //

t

��

α1p+1 %%

A(1p)

α1p

��

B(1p+1) s
//

t
��

B(1p)

A(1p) α1p

// B(1p)

The universal property of the limit induces a unique map

α̃1p+1 : A(1p+1)→ A(1p)×B(1p) B(1p+1)×B(1p) A(1p)
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such that

A1p+1
s

**

t

..

α1p+1
33

α̃1p+1

**

A(1p)×B(1p) B(1p+1)×B(1p) A(1p) //

��

**

A(1p)

α1p

��

B(1p+1) s
//

t
��

B(1p)

A(1p) α1p

// B(1p)

commutes.
The map α : A→ B is said to be contractible if:

• the map α10 : A(10)→ B(10) is surjective (this is surjectivity of α on
objects);

• for each 0 ≤ p ≤ m− 1, the map

α̃1p+1 : A(1p+1)→ A(1p)×B(1p) B(1p+1)×B(1p) A(1p)

is surjective (this gives fullness at dimension (p+ 1));

• for each p = m− 1, the map

α̃1p+1 : A(1p+1)→ A(1p)×B(1p) B(1p+1)×B(1p) A(1p)

is injective (this gives faithfulness at dimension m).

Note that the definition of contractibility above is only concerned with
the effect of A and B on 1p. The set A(1p) is the set of “globular p-cells”,
i.e. p-cells in A that are one 1-cell long, one 2-cell high, etc.; there are no
cells composed end-to-end (and similarly for B).

We now give the construction of the Segal maps. In the nerve condition
for categories one considers composable strings of k morphisms for every
k ∈ N; here we consider, for every 0 ≤ m ≤ n, the composable strings of k
m-cells for every k and every composite of m-cells.
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Let A : (Θn)op → Set be an n-precategory. Then, for all 1 ≤ m ≤ n,
and all k = (k1, . . . , km−1), we have a functor

A(k,−,−) : ∆op → [(Θn−m)op,Set]

[k] 7→ A(k, k,−),

with the effect on morphisms given by composition.
Consider the following diagram in ∆:

[k]

[1]

ι1

44

[1]

ι2

77

[1]

ι3

EE

. . . [1]

ιk−1

ee

[1]

ιk

jj

[0]
τ

__

σ

??

[0]
τ

__

σ

??

[0]
τ

__

σ

??

Applying the functor A(k,−,−) to this diagram gives us the following
diagram in [(Θn−m)op,Set]:

A(k, k,−)

i1
tt

i2
~~

ik−1
  

ik
**

A(k, 1,−)

t &&

A(k, 1,−)

sxx

. . . A(k, 1,−)

t &&

A(k, 1,−)

sxx

A(k, 0,−) A(k, 0,−)

and this is a cone over the diagram:

k︷ ︸︸ ︷
A(k, 1,−)

t &&

A(k, 1,−)

sxx

. . . A(k, 1,−)

t &&

A(k, 1,−)

sxx

A(k, 0,−) A(k, 0,−)

Since Set is complete, [(Θn−m)op,Set] is complete, so we can take the
limit of this diagram, denoted

A(k, 1,−)×A(k,0,−) · · · ×A(k,0,−) A(k, 1,−),
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called a “wide pullback”. The universal property of this wide pullback in-
duces a unique morphism such that the diagram

A(k, k,−)

A(k, 1,−)×A(k,0,−) · · · ×A(k,0,−) A(k, 1,−)

A(k, 1,−)A(k, 1,−) A(k, 1,−)A(k, 1,−)

A(k, 0,−) A(k, 0,−)

Sk,k

��

i1

��

i2

��

ik−1

��

ik

��tt vv (( **

t
��

s
��

t
��

s
��

commutes. The maps Sk,k, for all k = (k1, . . . , km−1) and all k ∈ N, are
called the Segal maps.

We now give Simpson’s variant of Tamsamani’s definition of weak n-
category.

Definition 2.4. Let n ∈ N. A Tamsamani–Simpson weak n-category is
an n-precategory A : (Θn)op → Set such that, for all 1 ≤ m ≤ n, k =
(k1, . . . , km−1) ∈ ∆m, and [k] ∈ ∆, the Segal map

Sk,k : A(k, k,−)→ A(k, 1,−)×A(k,0,−) · · · ×A(k,0,−) A(k, 1,−)

is contractible.

3. A bisimplicial nerve construction for bicategories

In this section we describe a nerve construction for bicategories, due to Lack
and Paoli [22], that will serve as a prototype for our nerve construction for
Penon weak n-categories in Section 5. The description we give is an adap-
tation: the original definition given by Lack and Paoli depends on the use of
both normal homomorphisms of bicategories and icons – concepts that we
do not have in the case of Penon weak n-categories. Thus, we re-express
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this nerve in a form that uses only strict homomorphisms, so that it can be
adapted to the context of Penon’s definition.

The conceptual derivation of this nerve is as follows: first, consider the
2-functor J given by the composite of the canonical cosimplicial object ∆→
Cat followed by the inclusion Cat ↪→ Bicat that realises each category as
a bicategory with only identity 2-cells. This gives rise to a nerve functor

Bicat→ [∆op,Cat]

B 7→ Bicat(J(−),B).

This is the method followed by Lack and Paoli. Note that one requires the
1-cells in Bicat to be normal homomorphisms and the 2-cells to be icons.
Applying the standard nerve functor N : Cat → [∆op,Set] pointwise, one
obtains

Bicat→ [∆op,Cat]
N◦−−→[∆op, [∆op,Set]] ∼= [(∆2)op,Set].

In fact, the resulting nerve can be considered to be in [(Θ2)op,Set] with-
out losing any information, since Bicat(J(0),B) is a discrete category, so
this functor takes a bicategory and produces from it a 2-precategory as its
nerve. This nerve matches an earlier nerve functor partially described by
Leinster [24]; thus the description we give effectively completes Leinster’s
original definition. Leinster defined this nerve construction only on objects;
we extend this to a nerve functor

N : Bicat −→ [(Θ2)op,Set]

by describing the action on morphisms.
Before formally describing the nerve of a bicategory, we discuss the

shapes of the simplicial cells in the nerve. The reason for giving this expla-
nation is that the formal description is necessarily notation-heavy, as each
(j, k)-cell of the nerve of a bicategory B is made up of multiple cells in B.
This explanation of shapes of cells also helps motivate the shapes of cells
used in our nerve construction for Penon weak n-categories.

For all k > 0, 0 ≤ i ≤ k, there is a map di : [k − 1]→ [k] in ∆ given by

di(j) =

{
j if j < i,
j + 1 if j ≥ i.
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In the nerve of a category NC, a simplicial k-cell consists of a string of
k composable morphisms, and the face maps NC(di) are defined either to
omit a single cell at one end of this string, or to compose a single pair of
cells within the string. One would expect the definition of a (k, 0)-cell in the
nerve of a bicategory to be similar; however, one cannot define these face
maps in exactly the same way, since composition of 1-cells in a bicategory
is not associative. We now explain why this causes problems.

Suppose we define a (k, 0)-cell in the nerve of a bicategory to consist just
of a string of k composable morphisms, which we write as (f1, f2, . . . , fk),
with the face maps defined using composition in the same way as in the nerve
of a category. In ∆2, the diagram

(3, 0) (2, 0)

(2, 0) (1, 0)

(d1,1)oo

(d2,1)

OO

(d1,1)

OO

(d1,1)
oo

commutes. Write NB for the nerve of B; then, in order for NB to be a
bisimplicial set, the diagram

NB(3, 0) NB(2, 0)

NB(2, 0) NB(1, 0)

NB(d1,1)//

NB(d2,1)

��

NB(d1,1)

��

NB(d1,1)
//

must commute in Set. However, consider a (3, 0)-cell (f, g, h) ∈ NB(3, 0).
Applying the maps along the top and right of the diagram above gives

(f, g, h) � NB(d1,1) // (g ◦ f, h) � NB(d1,1) // (h ◦ (g ◦ f)),

whereas applying the maps along the left and bottom of the diagram gives

(f, g, h) � NB(d2,1) // (f, h ◦ g) � NB(d1,1) // ((h ◦ g) ◦ f),

so the diagram does not commute.
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Thus a (k, 0)-cell in the nerve of a bicategory consists not only of a string
of k composable 1-cells, but of a whole k-simplex with 1-cells for its edges
and isomorphism 2-cells for its faces; the data for each (k, 0)-cell includes
all of its faces, not just those which make up the composable string of 1-cells.
For example, a (2, 0)-cell looks like:

a1

a0 a2

f01

GG

f12

��

f02
//

i012∼
��

This should be thought of as a pair of composable 1-cells, together with
another 1-cell that would be a “valid choice” for their composite (but not
necessarily their actual composite in the bicategory).

Similarly, a (3, 0)-cell looks like

a1 a2

a0 a3

=

a1 a2

a0 a3

f01

GG

f12 //

f23

��

f03
//

f02

::

f01

GG

f12 //

f23

��

f03
//

f13

$$

∼
ι012
�# ∼

ι123
{�

∼ι023 �� ∼ ι013��

i.e. a commuting tetrahedron whose faces are isomorphism 2-cells.
The (j, k)-cells in the nerve, for k > 0, are “simplicially weakened”

versions cuboidal pasting diagrams. We usually draw these as grids of 2-
cells; for example, we draw a (3, 2)-cell as:

w�α1
01

w�α1
12

w�α1
23

a0

f001

��f101 //

f201

BB
a1

f012

��f112 //

f212

BB
a2

f023

��f123 //

f223

AA
a3.w�α2

01

w�α2
12

w�α2
23

However, such diagrams are misleading since they do not capture the whole
simplicial shape of the cell. In fact, each string of k composable 1-cells
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on the same “level” (i.e. with the same superscript) is a (k, 0)-cell, and all
diagrams of 2-cells within each (j, k)-cell commute.

Note that the notation used in the diagrams above is the notation we use
throughout this section. The subscripts and superscripts decorating each cell
should be thought of as the coordinates of that cell, with the subscripts giving
the horizontal coordinates, and superscripts giving the vertical coordinates.

We break the description of the nerve functor for bicategories into three
parts. In Definition 3.1 we define, for a bicategory B and for each object
(j, k) in Θ2, a setNB(j, k), which is the set of (j, k)-cells in the nerve of B.
Then, in Definition 3.2, we extend this to a definition of a 2-precategory

NB : (Θ2)op −→ Set

by describing the action of this presheaf on maps. This gives the action of
the nerve functor

N : Bicat −→ [(Θ2)op,Set].

on objects; in Definition 3.3 we give the action of this functor on maps.
Recall that an object of Θ2 is an equivalence class of objects of ∆2. An

object of ∆2 is in an equivalence class with more than one member if and
only if it is of the form (0, k). Thus, we treat the equivalence class of (0, k)
as the object (0, 0) of ∆2; all other equivalence classes are treated as their
sole member. Note that the exact choice of representative does not make a
difference to the definition.

Note that, ideally, we would give an abstract definition of the nerve of
a bicategory by first defining a functor i : Θ2 → Bicat, then defining the
nerve of a bicategory B to be given by Bicat(i(−),B), as one does when
defining the nerve of a category. However, since we also want to avoid using
normal homomorphisms or any kind of 2-cells, this is not practical as the
bicategories in the image of the functor i are difficult to describe (in par-
ticular, they are not free, unlike in the case of the nerve of a category). We
believe that describing these bicategories would require extra machinery (for
example, we believe it could be done using computads) and is thus beyond
the scope of this paper. Note that this is one of the reasons for using Penon
weak n-categories in the remainder of the paper; in the case of Penon weak
n-categories we are able to construct the nerve in this abstract way, by mod-
ifying the construction of a free Penon weak n-category, in a way that is not
possible with bicategories. We do this in Sections 5 and 7.
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Definition 3.1. Let B be a bicategory. We associate to B a 2-precategory
NB : (Θ2)op → Set, called the nerve of B, as follows:

Given (j, k) ∈ Θ2, NB(j, k) is the set which has as its elements all
quadruples(

(au)0≤u≤j, (f
z
uv)0≤u<v≤j

0≤z≤k
, (αzuv)0≤u<v≤j

1≤z≤k
, (ιzuvw)0≤u<v<w≤j

0≤z≤k

)
where

• each au is an object of B;

• each f zuv : au → av is a 1-cell of B;

• each αzuv : f z−1uv → f zuv is a 2-cell of B;

• each ιzuvw : f zvw ◦ f zuv → f zuw is an isomorphism 2-cell of B, with
inverse (ιzuvw)−1;

and these cells satisfy the following axioms:

• for all 0 ≤ u < v < w ≤ j, 1 ≤ z ≤ k, the diagram

f z−1vw ◦ f z−1uv f z−1uw

f zvw ◦ f zuv f zuw

ιz−1
uvw //

αz
vw∗αz

uv

��

αz
uw

��

ιzuvw

//

commutes; alternatively, we can draw this axiom as

• •

•

= • • •$$
::

55

��

ιz−1
uvw��

αz
uw��

��

CC

��

CC EEαz
uv��

αz
vw��

ιzuvw��
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• for all 0 ≤ u < v < w < x ≤ j, 0 ≤ z ≤ k, the diagram

(f zwx ◦ f zvw) ◦ f zuv f zwx ◦ (f zvw ◦ f zuv)

f zvx ◦ f zuv f zwx ◦ f zuw

f zux

suvwx //

ιzvwx∗1fzuv

��

1fzwx
∗ιzuvw

��

ιzuvx ''
ιzuwxww

commutes, where

suvwx : (f zwx ◦ f zvw) ◦ f zuv → f zwx ◦ (f zvw ◦ f zuv)

is the component of the appropriate associativity isomorphism for B;
alternatively, we can draw this axiom as

av aw

au ax

=

av aw

au ax

fzuv

GG

fzvw //

fzwx

��

fzux

//

fzuw

::

fzuv

GG

fzvw //

fzwx

��

fzux

//

fzvx
$$

∼
ιuvw
�# ∼

ιvwx
{�

∼ιuwx �� ∼ ιuvx��

We now explain the action on maps in Θ2, then make it precise in the
next definition. Given a map (p, q) : (l,m)→ (j, k) in Θ2, we define a map

NB(p, q) : NB(j, k)→ NB(l,m).

To understand what this map does, recall that an element of NB(j, k) con-
sists of a collection of cells of B which form a (j, k)-cell, and that each of
these cells has subscripts and (in some cases) superscripts which we think
of as the coordinates of this cell within the (j, k)-cell. Given an element of
NB(j, k), its image under NB(p, q) is the element of NB(l,m) made up
of those cells whose horizontal coordinates are in the image of p and, where
appropriate, whose vertical coordinate is in the image of q; any cells whose
coordinates are not in the images of p and q are omitted, and cells with re-
peated coordinates are taken to be identities (or unitors in some cases).
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Definition 3.2. Let B be a bicategory, and write l and r for its left and right
unitors respectively. Let (p, q) : (h, i)→ (j, k) be a map in Θ2. We define a
function of sets

NB(p, q) : NB(j, k)→ NB(h, i)

as follows:

NB(p, q) :

(
(au)0≤u≤j, (f

z
uv)0≤u<v≤j

0≤z≤k
, (αzuv)0≤u<v≤j

1≤z≤k
, (ιzuvw)0≤u<v<w≤j

0≤z≤k

)
7−→

(
(bu)0≤u≤h, (g

z
uv)0≤u<v≤h

0≤z≤i
, (βzuv)0≤u<v≤h

1≤z≤i
, (κzuvw)0≤u<v<w≤h

0≤z≤i

)
where

• bu = ap(u)

• gzuv =

{
f
q(z)
p(u)p(v) if p(u) 6= p(v),

idap(u) if p(u) = p(v);

• βzuv =


α
q(z)
p(u)p(v) if p(u) 6= p(v), q(z − 1) 6= q(z),

id
f
q(z)
p(u)p(v)

if p(u) 6= p(v), q(z − 1) = q(z),

ididap(u)
if p(u) = p(v);

• κzuvw =


ι
q(z)
p(u)p(v)p(w) if p(u) 6= p(v) 6= p(w),

l
f
q(z)
p(u)p(v)

if p(u) 6= p(v) = p(w),

r
f
q(z)
p(u)p(v)

if p(u) = p(v) 6= p(w),

ididap(u)
if p(u) = p(v) = p(w).

This defines the action of the nerve functor on objects; we now extend
this to a definition of a nerve functor

N : Bicat −→ [(Θ2)op,Set],

by describing the action of this functor on morphisms.
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Definition 3.3. Let F : A → B be a strict functor of bicategories. We define
a map of bisimplicial sets NF : NA → NB to be the map whose compo-
nent NF(j,k) : NA(j, k)→ NB(j, k), for each (j, k) ∈ ∆2, is given by

NF(j,k)

(
(au)0≤u≤j, (f

z
uv)0≤u<v≤j

0≤z≤k
, (αzuv)0≤u<v≤j

1≤z≤k
, (ιzuvw)0≤u<v<w≤j

0≤z≤k

)
=

(
(F (au))0≤u≤j, (Ff

z
uv)0≤u<v≤j

0≤z≤k
, (Fαzuv)0≤u<v≤j

1≤z≤k
, (Fιzuvw)0≤u<v<w≤j

0≤z≤k

)
.

The above defines a functorN : Bicat→ [(Θ2)op,Set], called the nerve
functor.

The nerve of a bicategory satisfies the Segal condition, and is thus a
Tamsamani–Simpson weak 2-category. Before giving the proof, we recall
the definition of Tamsamani–Simpson weak n-category (Definition 2.4) in
the case n = 2; the following is a slight unpacking of the definition, which
treats Segal maps of the forms Sk and Sj,k separately.

Definition 3.4. A Tamsamani–Simpson weak 2-category is a functor

A : (Θ2)op → Set

such that

(i) for each k ≥ 0, the Segal map

Sk : A(k,−) −→ A(1,−)×A(0,1) · · · ×A(0,1) A(1,−)︸ ︷︷ ︸
k

is contractible, i.e. it is surjective on objects, and full and faithful on
1-cells;

(ii) for each m, k ≥ 0, the Segal map

Sj,k : A(j, k) −→ A(j, 1)×A(j,0) · · · ×A(j,0) A(j, 1)︸ ︷︷ ︸
k

is a bijection.
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Thus to prove that the nerve of a bicategory is a Tamsamani–Simpson
weak 2-category, we break this statement down into four propositions: one
stating that each of the Segal maps Sj,k is a bijection, and the other three
stating the three conditions required for contractibility of the Segal maps Sk.

Proposition 3.5. Let B be a bicategory. For all j, k ≥ 0, the Segal map

Sj,k : NB(j, k) −→ NB(j, 1)×NB(j,0) · · · ×NB(j,0) NB(j, 1)︸ ︷︷ ︸
k

is a bijection.

Proof. Let(
(au)0≤u≤j, (f

z
uv)0≤u<v≤j

0≤z≤k
, (αzuv)0≤u<v≤j

1≤z≤k
, (ιzuvw)0≤u<v<w≤j

0≤z≤k

)
be an element of NB(j, k). The function Sj,k maps this to((

(au)0≤u≤j, (f
z
uv)0≤u<v≤j

0≤z≤1
, (α1

uv)0≤u<v≤j, (ι
z
uvw)0≤u<v<w≤j

0≤z≤1

)
,(

(au)0≤u≤j, (f
z
uv)0≤u<v≤j

1≤z≤2
, (α2

uv)0≤u<v≤j, (ι
z
uvw)0≤u<v<w≤j

1≤z≤2

)
,

. . . ,(
(au)0≤u≤j, (f

z
uv)0≤u<v≤j

k−1≤z≤k
, (αkuv)0≤u<v≤j, (ι

z
uvw)0≤u<v<w≤j

k−1≤z≤k

))
.

Every cell listed in the original element of NB(j, k) is listed in its image
under Sj,k, so this function is injective. Furthermore, any element of the
wide pullback

NB(j, 1)×NB(j,0) · · · ×NB(j,0) NB(j, 1)︸ ︷︷ ︸
k

can be written in the form above. Thus Sj,k is surjective.
Hence Sj,k is a bijection.

Proposition 3.6. Let B be a bicategory. For all k ≥ 0, the Segal map

Sk : NB(k,−) −→ NB(1,−)×NB(0,0) · · · ×NB(0,0) NB(1,−)︸ ︷︷ ︸
k

is surjective on objects.
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Proof. Let ((
a0 a1

f001 //
)
,
(
a1 a2

f012 //
)
, . . . ,

(
ak−1 ak

f0k−1,k
//
))

be an element of

A(1, 0)×A(0,0) · · · ×A(0,0) A(1, 0)︸ ︷︷ ︸
k

.

This is a string of k composable 1-cells inB. We seek an element ofNB(k, 0)
that maps to this under (Sk)0. We define an element(

(au)0≤u≤j, (f
0
uv)0≤u<v≤j, (ι

0
uvw)0≤u<v<w≤j

)
of NB(k, 0); to do so we must define f 0

uv for every v > u+ 1, and we must
define the ι0uvw for all 0 ≤ u < v < w ≤ k. Our approach is to define each
f 0
uv to be a composite of the cells of the form f 0

u,u+1, then define each ι0uvw to
be a composite of constraint cells in B that mediate between the appropriate
cells.

Let 0 ≤ u < u+ 1 < v ≤ j, and define f 0
uv to be given by the composite

f 0
uv := (· · · (f 0

v−1,v ◦ f 0
v−2,v−1) ◦ · · · ) ◦ f 0

u,u+1.

Then, for all 0 ≤ u < v < w ≤ j, there is a composite of constraint
isomorphism 2-cells

ι0uvw : f 0
vw ◦ f 0

uv → f 0
uw

in B, which is unique by coherence for bicategories [15, 23].
This defines an element of NB(k, 0); by construction we see that this

element maps to((
a0 a1

f001 //
)
,
(
a1 a2

f012 //
)
, . . . ,

(
ak−1 ak

f0k−1,k
//
))

under (Sk)0, as required. Hence Sk is surjective on objects.

To show that the Segal maps are full and faithful on 1-cells, we use the
fact that there is some redundancy in the definition ofNB(j, k). Specifically,
to specify an element ofNB(j, k) we only need to specify αzuv for v = u+1,
rather than for all u < v < j (note that we still have to specify every au,
f zuv and ιzuvw). Since this fact is used in the proofs of both fullness and
faithfulness, we state and prove it as a separate lemma:
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Lemma 3.7. Let B be a bicategory, let j, k ∈ N, and suppose we have the
following data:

• for all 0 ≤ u ≤ j, an object au of B;

• for all 0 ≤ u < v ≤ j, 0 ≤ z ≤ k, a 1-cell f zuv : au → av in B;

• for all 0 ≤ u < j, 1 ≤ z ≤ k, a 2-cell αzu,u+1 : f z−1u,u+1 → f zu,u+1 in B;

• for all 0 ≤ u < v < w ≤ j, 0 ≤ z ≤ k, an isomorphism 2-cell
ιzuvw : f zvw ◦ f zuv → f zuw in B, with inverse (ιzuvw)−1;

such that the isomorphism 2-cells ιzuvw satisfy the pentagon axiom from the
definition of NB on objects, Definition 3.1. Then this specifies a unique
element(

(au)0≤u≤j, (f
z
uv)0≤u<v≤j

0≤z≤k
, (αzuv)0≤u<v≤j

1≤z≤k
, (ιzuvw)0≤u<v<w≤j

0≤z≤k

)
of NB(j, k).

Proof. We need to show that, for all 0 ≤ u < u + 1 < v ≤ j, 1 ≤ z ≤ k,
there is a unique choice of 2-cell αzuv in B such that the axioms for an element
of NB(j, k) are satisfied. We do this by strong induction over v.

First, let v = u + 2. For all 1 ≤ z ≤ k, write w := u + 1, and define
αzuv = αzu,u+2 to be given by the composite

• • •
��

@@

��

@@ CC

��

(ιz−1
uwv)

−1

��

αz
uw��

αz
wv��

ιzuwv��

in B. By considering the composite αzuv ◦ ιz−1uwv, we see that αzuv satisfies the
square axiom from the definition of NB(j, k), Definition 3.1; furthermore,
it is the only 2-cell of B satisfying these axioms, given that αzuw, αzwv, ι

z−1
uwv

and ιzuwv are fixed.

- 54 -



T. COTTRELL PENON WEAK n-CATEGORIES: PART 2

Now let m ≥ 1 and suppose we have defined αzuv for all u + 1 ≤ v ≤
u + m. We define αzuv for v = u + m + 1 as follows: let w be a natural
number with u < w < v, and define αzuv to be given by the composite

• • •
��

@@

��

@@ CC

��

(ιz−1
uwv)

−1

��

αz
uw��

αz
wv��

ιzuwv��

Note that the pentagon axiom from the definition of NB(j, k) ensures that
this is independent of our choice of w. As before, by considering the com-
posite αzuv ◦ ιz−1uwv, we see that αzuv satisfies the square axiom from the def-
inition of NB(j, k), Definition 3.1; furthermore, it is the only 2-cell of B
satisfying these axioms, given that αzuw, αzwv, ι

z−1
uwv and ιzuwv are fixed.

This defines a unique element(
(au)0≤u≤j, (f

z
uv)0≤u<v≤j

0≤z≤k
, (αzuv)0≤u<v≤j

1≤z≤k
, (ιzuvw)0≤u<v<w≤j

0≤z≤k

)
of NB(j, k), as required.

This now allows us to prove the Segal maps are full and faithful on 1-
cells.

Proposition 3.8. Let B be a bicategory. For all k ≥ 0, the Segal map

Sk : NB(k,−) −→ NB(1,−)×NB(0,0) · · · ×NB(0,0) NB(1,−)︸ ︷︷ ︸
k

is full on 1-cells.

Proof. Suppose we have two elements f , g ∈ NB(k, 0), which we denote

f =
(

(au)0≤u≤k, (f
0
uv)0≤u<v≤k, (ι

0
uvw)0≤u<v<w≤k

)
and

g =
(

(bu)0≤u≤k, (g
0
uv)0≤u<v≤k, (κ

0
uvw)0≤u<v<w≤k

)
,
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and suppose we have an element α of

NB(1, 1)×NB(0,0) · · · ×NB(0,0) NB(1, 1)︸ ︷︷ ︸
k

,

with s(α) = Sk(f) and t(α) = Sk(g). Then, for all 0 ≤ u ≤ k, au = bu, and
we can write α as

α =


(
a0 a1

f001

��

g001

??
α1
01��

)
,

(
a1 a2

f012

��

g012

??
α1
12��

)
, . . . ,

(
ak−1 ak

f0k−1,k

��

g0k−1,k

??
α1
k−1,k��

) .

By Lemma 3.7, α, combined with the isomorphism 2-cells ι0uvw and κ0uvw,
defines a unique element(

(au)0≤u≤k, (f
z
uv)0≤u<v≤k

0≤z≤1
, (α1

uv)0≤u<v≤k, (ι
z
uvw)0≤u<v<w≤k

0≤z≤1

)
of NB(k, 1), where

• for all 0 ≤ u < v ≤ k, f 1
uv = g0uv;

• for all 0 ≤ u < v < w ≤ k, ι1uvw = κ0uvw.

Denote this by α̂; then s(α̂) = f , t(α̂) = g, and Sk(α̂) = α, so Sk is full on
1-cells.

Proposition 3.9. Let B be a bicategory. For all k ≥ 0, the Segal map

Sk : NB(k,−) −→ NB(1,−)×NB(0,0) · · · ×NB(0,0) NB(1,−)︸ ︷︷ ︸
k

is faithful on 1-cells.

Proof. Suppose we have two parallel elements α, β ∈ NB(k, 1) such that
(Sk)1(α) = (Sk)1(β). We wish to show that α = β. We can write f and g as

α =

(
(au)0≤u≤k, (f

z
uv)0≤u<v≤k

0≤z≤1
, (α1

uv)0≤u<v≤k, (ι
z
uvw)0≤u<v<w≤k

0≤z≤1

)
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and

β =

(
(au)0≤u≤k, (f

z
uv)0≤u<v≤k

0≤z≤1
, (β1

uv)0≤u<v≤k, (ι
z
uvw)0≤u<v<w≤k

0≤z≤1

)
.

Note that the fact α and β are parallel tells us that they can only differ on
their 2-cell parts. We write (Sk)1(α) = (Sk)1(β) as

(
a0 a1

f001

��

g001

??
γ101��

)
,

(
a1 a2

f012

��

g012

??
γ112��

)
, . . . ,

(
ak−1 ak

f0k−1,k

��

g0k−1,k

??
γ1k−1,k��

) ,

which is an element of

NB(1, 1)×NB(0,0) · · · ×NB(0,0) NB(1, 1)︸ ︷︷ ︸
k

.

Furthermore, since (Sk)1(α) = (Sk)1(β), we have that, for all 0 ≤ u < k,

α1
u,u+1 = γ1u,u+1 = β1

u,u+1.

Thus, by Lemma 3.7, for all 0 ≤ u < v ≤ k, we have

α1
uv = γ1uv = β1

uv,

so α = β, as required.

We now have everything we need to prove that the nerve of a bicategory
satisfies the Segal condition.

Theorem 3.10. Let B be a bicategory. Then the nerve of B, NB, satisfies
the Segal condition, and is thus a Tamsamani–Simpson weak 2-category.

Proof. For all j, k ≥ 0, the Segal map

Sj,k : NB(j, k) −→ NB(j, 1)×NB(j,0) · · · ×NB(j,0) NB(j, 1)︸ ︷︷ ︸
k

is a bijection by Proposition 3.5.
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For all k ≥ 0, the Segal map

Sk : NB(k,−) −→ NB(1,−)×NB(0,0) · · · ×NB(0,0) NB(1,−)︸ ︷︷ ︸
k

is surjective on 0-cells by Proposition 3.6, full on 1-cells by Proposition 3.8,
and faithful on 1-cells by Proposition 3.9.

Thus NB satisfies the Segal condition, so it is a Tamsamani–Simpson
weak 2-category.

4. Penon weak n-categories

In this section we recall the non-reflexive variant of Penon’s definition of
weak n-category [29, 4, 13]. We refer the reader to Part 1 of this series for a
more detailed description and an intuitive explanation; here we just give the
formal definition.

We begin by recalling the definition of an n-globular set, the underlying
data for a Penon weak n-category.

Definition 4.1. The n-globe category G is defined as the category with

• objects: natural numbers 0, 1, . . . , n− 1, n;

• morphisms generated by, for each 1 ≤ m ≤ n, morphisms

σm, τm : (m− 1)→ m

such that σm+1σm = τm+1σm and σm+1τm = τm+1τm for m ≥ 2
(called the “globularity conditions”).

An n-globular set is a presheaf on G. We write n-GSet for the category of
n-globular sets [Gop,Set].

For an n-globular set X : Gop → Set, we write s for X(σm), and t for
X(τm), regardless of the value of m, and refer to them as the source and
target maps respectively. We denote the set X(m) by Xm. We say that two
m-cells x, y ∈ Xm are parallel if s(x) = s(y) and t(x) = t(y); note that all
0-cells are considered to be parallel.
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We now recall the definition of an n-magma, an n-globular set equipped
with composition operations.

Definition 4.2. An n-magma (or simply magma, when n is fixed) consists
of an n-globular set X equipped with, for each m, p, with 0 ≤ p < m ≤ n,
a binary composition function

◦mp : Xm ×Xp Xm → Xm,

where Xm ×Xp Xm denotes the pullback

Xm ×Xp Xm Xm

Xm Xp

//

��

t
//

s

��

in Set; these composition functions must satisfy the following source and
target conditions:

• if p = m− 1, given (a, b) ∈ Xm ×Xp Xm,

s(b ◦mp a) = s(a), t(b ◦mp a) = t(b);

• if p < m− 1, given (a, b) ∈ Xm ×Xp Xm,

s(b ◦mp a) = s(b) ◦m−1p s(a), t(b ◦mp a) = t(b) ◦m−1p t(a).

A map of n-magmas f : X → Y is a map of the underlying n-globular sets
such that, for allm, p, with 0 ≤ p < m ≤ n, and for all (a, b) ∈ Xm×XpXm,

f(b ◦mp a) = f(b) ◦mp f(a).

We write n-Mag for the category whose objects are n-magmas and whose
morphisms are maps of n-magmas.

Definition 4.3. Let f : X → S be a map of n-globular sets, where S is the
underlying n-globular set of a strict n-category. The map f is said to be tame
if, given a, b ∈ Xn, if s(a) = s(b), t(a) = t(b), and fn(a) = fn(b), then
a = b.
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For each 0 ≤ m < n, define a set Xc
m+1 by the following pullback:

Xc
m+1 Xm

Xm Xm−1 ×Xm−1 × Sm.

//

��

(s,t,fm)
//

(s,t,fm)

��

Note that when m = 0, we take Xm−1 to be the terminal set.
A contraction γ on a tame map f : X → S consists of, for each 0 ≤

m < n, a map
γm+1 : Xc

m+1 → Xm+1

such that, for all (a, b) ∈ Xc
m+1,

• s(γm+1(a, b)) = a;

• t(γm+1(a, b)) = b;

• fm+1(γm+1(a, b)) = 1fm(a) = 1fm(b).

Note that we only ever speak of a contraction on a tame map; thus, when-
ever we state that a map is equipped with a contraction, the map is automat-
ically assumed to be tame. One way to think about this is to say that we do
require a contraction (n+ 1)-cell for each pair of n-cells in Xc

n, and the only
(n+ 1)-cells in X are equalities.

Definition 4.4. The category of n-categorical stretchings Q is the category
with

• objects: an object of Q consists of an n-magma X , a strict n-category
S, and a map of n-magmas

X

S

f

��

equipped with a contraction γ;
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• morphisms: a morphism in Q is a commuting square

X Y

S R

u //

f

��

g

��

v
//

in n-Mag such that

– v is a map of strict n-categories;

– writing γ for the contraction on the map f and δ for the contrac-
tion on the map g, for all 0 ≤ m < n, and (a, b) ∈ Xc

m+1, we
have

u(γm(a, b)) = δm(u(a), u(b)).

We denote such a morphism by (u, v).

There is a forgetful functor

U : Q n-GSet

X

X

S

//

f

��

� //

and this functor has a left adjoint F : n-GSet→ Q.

Definition 4.5. Let P be the monad on n-GSet induced by the adjunction
F a U . A Penon weak n-category is defined to be an algebra for the monad
P , and P -Alg is the category of Penon weak n-categories.

Finally, for the purpose of our nerve construction, it will necessary to use
the fact that adjunction F a U can be factorised as:

n-GSet R Q⊥
//

oo ⊥
//

oo

where, writingUT : n-Cat→ n-GSet for the forgetful functor (the notation
UT is used because n-Cat = T -Alg, where T is the free strict n-category
monad on n-GSet),R is the comma category

n-GSet ↓ UT .
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5. The nerve construction for n = 2

In this section we construct a nerve functor for Penon weak 2-categories.
The construction for the case of general n is given in Section 7; we present
the 2-dimensional case separately since it is simpler, both conceptually and
notationally, than the general case, but not too simple to exhibit all the key
features of the n-dimensional construction. We are also able to prove that
nerves satisfy the Segal condition in the case n = 2; we do this in Section 6.
We use Leinster’s nerve construction for bicategories as the prototype for
our construction, and also use his notation. As in the previous section, we
write P for the monad for Penon weak 2-categories, and T for the free strict
2-category monad.

When defining the nerve of a category, one common method is first to
define a functor I : ∆ ↪→ Cat, and then define the nerve NC of a category
C to be given by NC = Cat(I(−), C). In analogy with this, to define our
nerve functor for Penon weak 2-categories, we first define a functor

I2 : Θ2 −→ P -Alg.

This functor should give us, for each object of Θ2, the corresponding cuboidal
2-pasting diagram, expressed as a freely generated Penon weak 2-category
(recall that cuboidal pasting diagrams were discussed in Section 2, and again,
in-depth, in Section 3). However, we have to be very careful about what we
mean by “freely generated” in this context. Each cuboidal 2-pasting diagram
has associated to it a 2-globular set whose cells are those which we draw in
the pasting diagram. We could simply define I2 to give us the free P -algebra
on these 2-globular sets. Let (j, k) ∈ Θ2 and write FP (j, k) for the free
P -algebra on the corresponding 2-globular set. We would then have, for a
Penon weak 2-category A, the nerve defined by

NA(j, k) = P -Alg(FP (j, k),A).

Consider the object (2, 0) of Θ2; writing f and g for the generating 1-cells,
the free P -algebra on the corresponding 2-globular set looks like

•
g

��
•

f

FF

g◦f
// •,
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(omitting identities and any composites involving identities). Thus, for A ∈
P -Alg, the set P -Alg(FP (2, 0),A) is the set of all composable pairs of
1-cells in A. However, we want an element of NA(2, 0) to consist of a
composable pair of 1-cells together with a choice of alternative composite,
so we want I2(2, 0) to look like

•
g

��
•

f

FF

g◦f
∼= //

h

DD
•,

(once again omitting identities, etc.), where h is the choice of alternative
composite. Note that these alternative composites are also required to allow
us to define the face maps in our nerve; we cannot define the face maps using
composition, as in the nerve of a category, because composition of 1-cells is
not strictly associative in a Penon weak 2-category. We can think of this as
weakening the maps in NA(2, 0) on composites, but keeping them strict on
identities. Thus, we may think we want to use a notion of normalised maps
of Penon weak n-categories; that is, maps which preserve identities strictly
but preserve composition only up to coherent isomorphism (note that there
is no established definition of normalised maps of P -algebras, but for the
purposes of this thought experiment this is not important). We would thus
define

NA(j, k) := P -Algnorm(FP (j, k),A),

where P -Algnorm is the category of P -algebras and normalised maps. In
fact, normalised maps turn out to be too weak, as we will now demonstrate.
Consider the pasting diagram (2, 2) shown below:

a0 a1 a2

f1

��

g1
//

h1

DD

f2

��

g2
//

h2

DD

�� ��

�� ��

If we use normalised maps, each simplicial (2, 2)-cell will include an ex-
tra 1-cell isomorphic to each of the binary composites of f ’s, g’s and h’s.
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However, owing to the simplicial nature of Tamsamani–Simpson weak n-
categories, we only wish to specify 1-cells in place of f2 ◦ f1, g2 ◦ g1, and
h2◦h1. This is because we should have a 2-simplex of 1-cells at each “level”
of the pasting diagram (here we have three such levels, one containing f1 and
f2, one containing g1 and g2, and one containing h1 and h2) to allow us to de-
fine the face maps properly, but there should be no extra interaction between
the levels. Recall from Definition 3.4 that the Segal map S2,2 divides pasting
diagrams of this shape along the 1-cells g1 and g2, and the Segal condition
requires this map to be an isomorphism; if we add extra cells isomorphic to
h2 ◦ f1 and h1 ◦ f2 to the diagram above, these cells are forgotten by S2,2 so
it is not an isomorphism.

We therefore want a method of weakening P -algebras that is biased to-
wards specific choices of simplicial shapes. Such a method cannot be defined
for a general P -algebra, since in general we have no notion of “level” like
we do in a 2-pasting diagram. Thus, we define this weakening by explicitly
stating which extra cells we are going to add. We do so by modifying the
construction of the free Penon weak 2-category on a 2-globular set, using the
construction of Penon’s left adjoint from Part 1 of this series.

Recall from Section 4 that the adjunction inducing the monad P can be
decomposed as

n-GSet R Q,
H

⊥
//

V
oo

J

⊥
//

W
oo

where R is the comma category n-GSet ↓ UT , and Q is R with the added
condition that the map part of each object is equipped with a contraction.
Thus we can write the free P -algebra functor as the composite

2GSet R Q P -Alg,H // J // K //

where K is the Eilenberg–Moore comparison functor. Thus, instead of start-
ing in 2GSet, we can start with an object of R and apply KJ to obtain a
P -algebra that is “partially free” in the sense that the constraint cells and
composites are still added freely (by the functor J), but the contraction is
now taken over a different map, rather than a component of ηT . This al-
lows us to add the isomorphism 2-cells we want using the contraction, thus
avoiding the need to specify these cells individually.
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Before defining the process in general we first describe a small example;
specifically, we construct the P -algebra I2(2, 1). Write X(2, 1) for the 2-
globular set illustrated below:

a0 a1 a2

f001

��

f101

??

f012

��

f112

??
α1
01
��

α1
12
��

This is the associated 2-globular set of the pasting diagram, a concept in-
troduced by Batanin [3, Proof of Proposition 4.2]. As explained earlier, we
want I2(2, 1) to be a “simplicially weakened” version of the free P -algebra
on this 2-globular set, and to do so we construct an object of R, then gen-
erate the “partially free” P -algebra on it. We take the strict 2-category part
of this object of R to be the free strict 2-category on X(2, 1). To obtain the
2-globular set part of this object of R we add extra cells to X(2, 1) in the
places where we want to weaken the diagram. Specifically, we add 1-cells

a0 a2 a0 a2.and
f002 //

f102 //

Based on Leinster’s nerve construction for bicategories, we might also ex-
pect that we need to add a 2-cell

a0 a2,

f002

��

f102

__
α1
02
��

but this will be added automatically as a composite of other 2-cells, as we
shall see later. We write R(2, 1) for the resulting 2-globular set; it can be
drawn as:

a0 a1 a2

f002

��

f001

��

f101

BB

f012

��

f112

BB

f102

EEα1
01��

α1
12��
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To get an object ofR, we define a map

θ(2,1) : R(2, 1) −→ TX(2, 1)

as follows: θ(2,1) leaves cells in R(2, 1) that are also in X(2, 1) unchanged;
on the extra cells, we have

• θ(2,1)(f 0
02) = f 0

12 ◦ f 0
01;

• θ(2,1)(f 1
02) = f 1

12 ◦ f 1
01.

We now explain what happens when we apply the functor

J : R −→ Q

to

R(2, 1) TX(2, 1),
θ(2,1)
//

using the interleaving construction from Part 1 of this series. First we add
contraction 1-cells; since R(2, 1) and TX(2, 1) have the same 0-cells, this
just adds identities. We then generate composites of 1-cells freely; this adds
f 0
12 ◦ f 0

01, f
1
12 ◦ f 1

01, f
1
12 ◦ f 0

01 and f 0
12 ◦ f 1

01, as well as composites involv-
ing identities. Next we add contraction 2-cells; this is where the “simpli-
cial weakening” manifests itself. Observe that, after having generated 1-cell
composites, we have pairs of 1-cells:

• f 0
02 and f 0

12 ◦ f 0
01, which are parallel and are mapped to the same cell

in TX(2, 1);

• f 1
02 and f 1

12 ◦ f 1
01, which are parallel and are mapped to the same cell

in TX(2, 1).

Thus, as well as the usual identities, associators, and unitors, generating
contraction 2-cells freely adds the following cells:

a1

a0 a2

a1

a0 a2

f001

EE

f012

��

f002

//
��

f001

EE

f012

��

f002

//

KS

- 66 -



T. COTTRELL PENON WEAK n-CATEGORIES: PART 2

a1

a0 a2

a1

a0 a2

f101

EE

f112

��

f102

//
��

f101

EE

f112

��

f102

//

KS

We generate composites of 2-cells, then “add contraction 3-cells”, which
forces all diagrams of 2-cells to commute. In particular, this forces the pairs
of triangular cells shown above to be inverses of one another (and thus iso-
morphisms), and also gives us a 2-cell

a0 a2 = a0 a1 a2

f002

%%

f102

99α1
02��

f002

��

f001

��

f101

BB

f012

��

f112

BB

f102

EE

��

α1
01��

α1
12��

��

Observe that this corresponds to the first axiom from Leinster’s nerve con-
struction (see Definition 3.1); adding “contraction 3-cells” also ensures that
the second axiom holds when we perform this construction for longer cuboidal
pasting diagrams.

This whole process gives an object of Q, denoted

Q(j, k) TX(j, k).
φ(j,k)
//

We obtain the P -algebra I2(2, 1) by applying the Eilenberg–Moore compari-
son functor; the resulting P -algebra has as its underlying magma the magma
part of the object of Q above.

Note that the triangular cells added by the free contraction are considered
contraction cells in the object ofQ, but when we apply the Eilenberg–Moore
comparison functor they are not contraction cells from the point of view of
the P -algebra action. They retain their commutativity properties, however,
so given any other P -algebra A, a map of P -algebras

I2(2, 1) −→ A
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can map these cells to any suitably coherent choice of cells inA; their images
need not be contraction cells.

We now describe this construction for a general object of Θ2. As above,
we use Leinster’s notation from his nerve construction for bicategories (Sec-
tion 3). Recall that the subscripts and superscripts adorning each cell should
be thought of as being the “coordinates” of that cell within the pasting dia-
gram; the subscripts are the horizontal coordinates, and the superscripts are
the vertical coordinates.

Note that an object of Θ2 is an equivalence class of objects of ∆2. An
object of ∆2 is in an equivalence class with more than one member if and
only if it has a 0 in the first position. Thus, for the purposes of the following
definition we represent the equivalence class of (0, k) for all k ∈ N by the
object (0, 0) of ∆2; all other equivalence classes are represented by their sole
member.

Let (j, k) be an object of Θ2; we first define the 2-globular set X(j, k),
the associated 2-globular set of the cuboidal pasting diagram (j, k), as fol-
lows:

• X(j, k)0 = {au | u ∈ N, 0 ≤ u ≤ j};

• X(j, k)1 = {f zu,u+1 | u, z ∈ N, 0 ≤ u < j, 0 ≤ z ≤ k};

• X(j, k)2 = {αzu,u+1 | u, z ∈ N, 0 ≤ u < j, 1 ≤ z ≤ k},

with source and target maps given by

s(f zu,u+1) = au, t(f
z
u,u+1) = au+1,

s(αzu,u+1) = f z−1u,u+1, t(α
z
u,u+1) = f zu,u+1.

We then add extra 1- and 2-cells to this to obtain a 2-globular set R(j, k),
defined as follows:

• R(j, k)0 = {au | u ∈ N, 0 ≤ u ≤ j};

• R(j, k)1 = {f zuv | u, v, z ∈ N, 0 ≤ u < v ≤ j, 0 ≤ z ≤ k};

• R(j, k)2 = {αzu,u+1 | u, z ∈ N, 0 ≤ u < j, 1 ≤ z ≤ k},
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with source and target maps given by

s(f zuv) = au, t(f
z
uv) = av,

s(αzu,u+1) = f z−1u,u+1, t(α
z
u,u+1) = f zu,u+1.

It is important to note that, in spite of the notation, this does not define func-
tors X and R into 2-GSet. This is because, at this stage of the construction,
there is no way to define the action on maps in Θ2, since we cannot map cells
to identities as we do not have these in the 2-globular sets.

We now construct, for each (j, k) ∈ Θ2, an object

R(j, k) TX(j, k)
θ(j,k)
//

ofR. We define the map θ(j,k) as follows:

• on 0-cells, θ(j,k)0(au) = au;

• on 1-cells, θ(j,k)1(f zuv) = f zv−1,v ◦ f zv−2,v−1 ◦ · · · ◦ f zu,u+1;

• on 2-cells, θ(j,k)2(αzu,u+1) = αzu,u+1.

This map coincides with ηTX(j,k), the unit for the monad T , for all cells in
X(j, k); the extra cells in R(j, k) can be thought of as weakenings of the
composites at each level of the cuboidal pasting diagram, and θ(j,k) maps
each of these cells to the corresponding freely generated strict composite in
TX(j, k).

We now apply the functor J : R → Q to the object ofR described above;
this adds to R(j, k) all the required composites and contraction cells. As
demonstrated in the example above, this includes contraction cells in both
directions between each of the extra 1-cells (those in R(j, k)1 but not in
X(j, k)1) and the corresponding freely generated composites at the same
level of the pasting diagram (i.e. of cells with the same z-coordinate). The
tameness condition in the contraction ensures that these contraction 2-cells
are isomorphisms. The extra 1-cells will give the necessary 1-dimensional
faces in the nerve, and the contraction cells ensure that these are coher-
ently isomorphic to the composites we originally had in the Penon weak
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2-category whose nerve we are taking. We denote the resulting object of Q
by

Q(j, k) TX(j, k).
φ(j,k)
//

We now extend this to a definition of a functor E2 : Θ2 → Q, with the
action on objects as described above. To describe the action on a morphism
in Θ2, we first define a morphism inR, and then take its transpose under the
adjunction

R Q
J

⊥
//

W
oo

to obtain a morphism in Q.
Let (p, q) : (j, k) → (l,m) be a morphism in Θ2. We define the strict

2-category part of the morphism of R first. Define a map of 2-globular sets
x(p, q) : X(j, k)→ TX(l,m) as follows:

• on 0-cells, x(p, q)0(au) = ap(u);

• on 1-cells, x(p, q)1(f
z
u,u+1) ={

f
q(z)
p(u+1)−1,p(u+1) ◦ · · · ◦ f

q(z)
p(u),p(u)+1 if p(u) < p(u+ 1),

1ap(u) if p(u) = p(u+ 1);

• on 2-cells, x(p, q)2(α
z
u,u+1) ={

α
q(z)
p(u+1)−1,p(u+1) ∗ · · · ∗ α

q(z)
p(u),p(u)+1 if p(u) < p(v), q(z − 1) < q(z),

1TX(p,q)1(fzu,u+1)
if q(z − 1) = q(z).

To obtain a map TX(j, k) → TX(l,m) we apply T and compose this with
the multiplication for T , giving

TX(j, k) T 2X(l,m) TX(l,m)
Tx(p,q)

//
µT
X(l,m)
//
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We now define a map

R(j, k) Q(l,m)

TX(j, k) T 2X(l,m) TX(l,m),

r(p,q)
//

θ(j,k)

��

φ(l,m)

��

Tx(p,q)
//

µT
X(l,m)

//

where the map r(p, q) is defined as follows:

• on 0-cells, R(p, q)0(au) = ap(u);

• on 1-cells,

R(p, q)1(f
z
uv) =

{
f
q(z)
p(u)p(v) if p(u) < p(v),

1ap(u) if p(u) = p(v);

• on 2-cells,

R(p, q)2(α
z
uv) =


α
q(z)
p(u)p(v) if p(u) < p(v), q(z − 1) < q(z),

1
f
q(z)
p(u)p(v)

if p(u) < p(v), q(z − 1) = q(z),

11ap(u)
if p(u) = p(v).

Finally, we take the transpose of this map under the adjunction

R Q.
J

⊥
//

W
oo

We write ε : JW ⇒ 1 for the counit of this adjunction, and εφ(l,m)
for the

component corresponding to

Q(l,m) TX(l,m).
φ(l,m)
//

Then the transpose is given by the composite

εφ(l,m)
◦ J
(
r(p, q), µTX(l,m) ◦ Tx(p, q)

)
.

This allows us to define the functors E2 : Θ2 → Q and I2 : Θ2 → P -Alg.
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Definition 5.1. Define a functor E2 : Θ2 → Q as follows:

• given an object (j, k) ∈ Θ2, E2(j, k) is defined to be the object

Q(j, k) TX(j, k).
φ(j,k)
//

of Q;

• given a morphism (p, q) : (j, k)→ (l,m) in Θ2, E2(p, q) is defined to
be the map

εφ(l,m)
◦ J
(
r(p, q), µTX(l,m) ◦ Tx(p, q)

)
.

Write K : Q → P -Alg for the Eilenberg–Moore comparison functor for the
adjunction

n-GSet Q.
F

⊥
//

U
oo

We define a functor I2 := K ◦ E2 : Θ2 → P -Alg.

We can now define the nerve functor for Penon weak 2-categories.

Definition 5.2. The nerve functor N for Penon weak 2-categories is defined
by

N : P -Alg −→ [(Θ2)op,Set]

A

f

��

P -Alg(I2(−),A)

f◦−
��

7−→

B P -Alg(I2(−),B).

For a P -algebraA, the presheafNA = P -Alg(I2(−),A) is called the nerve
of A.

6. The Segal condition

In this section we prove that the nerve of a Penon weak 2-category satis-
fies the Segal condition, and is therefore a Tamsamani–Simpson weak 2-
category. Recall from Definition 3.4 that NA satisfies the Segal condition
if
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(i) for all j ≥ 0, the Segal map

Sj : NA(j,−) −→ NA(1,−)×NA(0,1) · · · ×NA(0,1) NA(1,−)︸ ︷︷ ︸
j

is contractible, i.e. surjective on objects, full and faithful on 1-cells;

(ii) for all j, k ≥ 0, the Segal map

Sj,k : NA(j, k) −→ NA(j, 1)×NA(j,0) · · · ×NA(j,0) NA(j, 1)︸ ︷︷ ︸
k

is a bijection.

Our approach is to use the way in which nerve functor is defined to rewrite
the Segal maps in terms of composition with certain maps of P -algebras;
this then allows us to express most parts of the Segal condition (everything
except surjectivity on objects) as statements describing certain P -algebras in
the image of I2 as colimits of diagrams in the image of I2.

Before doing this, we establish some notation for certain free P -algebras
in the image of I2 that can be expressed as colimits of others; these P -
algebras arise in the reformulation of the Segal condition described above.
Observe that the free P -algebra functor FP can be factorised as

2-GSet
FP //

F
##

P -Alg

Q
K

;;

Thus, we see from the construction of I2 that, for (j, k) in Θ2, if R(j, k) =
X(j, k), then I2(j, k) = FPX(j, k). Since R(j, k) and X(j, k) differ only
on 1-cells, this happens precisely when R(j, k)1 = X(j, k)1. This is true
when j = 0 and j = 1, since

• for j = 0, R(j, k)1 = ∅ = X(j, k)1;

• for j = 1, R(j, k)1 = {f z01 | 0 ≤ z ≤ k} = X(j, k)1.
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Thus I2(0, 0) = FPX(0, 0), and I2(1, k) = FPX(1, k) for all k ∈ N. For
j ≥ 2, we have f 0

02 ∈ R(j, k), but f 0
02 6∈ X(j, k), so this does not hold for

j ≥ 2.
Recall that, for all k > 0, 0 ≤ i ≤ k, we have a map di : [k− 1]→ [k] in

∆ given by

di(j) =

{
j if j < i,
j + 1 if j ≥ i,

and consider the following diagram in P -Alg:

I2(0, 0)
I2(d0,1)

{{

I2(d1,1)

##

I2(0, 0)
I2(d0,1)

{{

I2(d1,1)

##

I2(1, 0) I2(1, 0) . . . I2(1, 0) I2(1, 0).︸ ︷︷ ︸
j copies of I2(1,0)

Write I2(1, 0)qj for the colimit of this diagram in P -Alg. By the observa-
tions above, this diagram is the image under FP of the diagram

X(0, 0)
a1

{{

a0

##

X(0, 0)
a1

{{

a0

##

X(1, 0) X(1, 0) . . . X(1, 0) X(1, 0)︸ ︷︷ ︸
j copies of X(1,0)

in 2-GSet, where a0 : X(0, 0)→ X(1, 0) maps the single 0-cell of X(0, 0)
to a0, and similarly for a1. The colimit in 2-GSet of this diagram isX(j, 0),
and thus

I2(1, 0)qj = FPX(j, 0),

the free P -algebra on a composable string of j 1-cells.
Similarly, write I2(1, 1)qj for the colimit in P -Alg of the diagram

I2(0, 1)
I2(d0,1)

{{

I2(d1,1)

##

I2(0, 1)
I2(d0,1)

{{

I2(d1,1)

##

I2(1, 1) I2(1, 1) . . . I2(1, 1) I2(1, 1),︸ ︷︷ ︸
j copies of I2(1,1)
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which is the image under FP of the diagram

X(0, 1)
a1

{{

a0

##

X(0, 1)
a1

{{

a0

##

X(1, 1) X(1, 1) . . . X(1, 1) X(1, 1)︸ ︷︷ ︸
j copies of X(1,1)

in 2-GSet. The colimit in 2-GSet of this diagram is X(j, 1), and thus

I2(1, 1)qj = FPX(j, 1),

the free P -algebra on a string of j 2-cells composable along boundary 0-
cells.

We now rewrite the Segal maps of the form Sj in terms of composition
with certain maps of P -algebras.

Lemma 6.1. Let A be a Penon weak 2-category. For all j > 0, we have

NA(1,−)×NA(0,−) · · · ×NA(0,−) NA(1,−)︸ ︷︷ ︸
j

∼= P -Alg(I2(1,−)qj,A)

and the Segal map Sj is given by

Sj = · ◦ dqj : P -Alg(I2(j,−),A) −→ P -Alg(I2(1,−)qj,A),

where dqj : I2(1,−)qj → I2(j,−) is a map in [∆, P -Alg] induced by the
universal property of I2(1,−)qj , defined in the proof.

Proof. We have the following functors:

N 2A(·,−) : ∆op −→ [∆op,Set]

k

α

��

P -Alg(I2(k,−),A)

·◦I2(α,−)
��

7−→

j P -Alg(I2(j,−),A),
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I2(·,−) : ∆ −→ [∆, P -Alg]

j

α

��

I2(j,−)

I2(α,−)
��

7−→

k I2(k,−),

and
P -Alg(−,A) : [∆, P -Alg]op −→ [∆op,Set]

X

δ

��

P -Alg(X(−),A)

−◦δ
��

7−→

Y P -Alg(Y (−),A).

We can factorise NA(·,−) as follows:

∆op NA(·,−)
//

I2(·,−) ((

[∆op,Set]

[∆, P -Alg]op
P -Alg(−,A)

55

For each, [j] ∈ ∆, we consider the actions of the functors NA(·,−) and
I2(·,−) on the diagram

[j]

[1]

ι1

44

[1]

ι2

77

[1]

ι3

EE

. . . [1]

ιj−1

ee

[1]

ιj

jj

[0]
τ

__

σ

??

[0]
τ

__

σ

??

[0]
τ

__

σ

??

in ∆.
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Applying NA(·,−) to this diagram gives

P -Alg(I2(j,−),A)

P -Alg(I2(1,−),A)

P -Alg(I2(1,−),A) P -Alg(I2(1,−),A)

P -Alg(I2(1,−),A)

P -Alg(I2(0,−),A) P -Alg(I2(0,−),A)

. . .

uu

�� ��

))

t

��
s

��
t
��

s

��

which is a cone over the diagram

P -Alg(I2(1,−),A)

P -Alg(I2(1,−),A) P -Alg(I2(1,−),A)

P -Alg(I2(1,−),A)

P -Alg(I2(0,−),A) P -Alg(I2(0,−),A)

. . .
t

��
s

��
t
��

s

��

Applying I2(·,−)op to the original diagram gives

I2(j,−)

vv �� �� ))

I2(1,−)

t ##

I2(1,−)

s{{

. . . I2(1,−)

t ##

I2(1,−)

s{{

I2(0,−) I2(0,−)

in [∆, P -Alg]op, which is a cone over the diagram

j︷ ︸︸ ︷
I2(1,−)

t $$

I2(1,−)

szz

. . . I2(1,−)

t $$

I2(1,−)

szz

I2(0,−) I2(0,−)
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The limit of this diagram is I2(1,−)qj , and this limit induces a unique map
dqj such that the diagram

I2(j,−)

�� �� �� ��

!dqj

��

I2(1,−)qj

uu �� �� ))

I2(1,−)

t ##

I2(1,−)

s{{

. . . I2(1,−)

t ##

I2(1,−)

s{{

I2(0,−) I2(0,−)

Applying P -Alg(−,A) to this diagram, we get:

P -Alg(I2(j,−),A)

P -Alg(I2(1,−)qj,A)

P -Alg(I2(1,−),A)

P -Alg(I2(1,−),A) P -Alg(I2(1,−),A)

P -Alg(I2(1,−),A)

P -Alg(I2(0,−),A) P -Alg(I2(0,−),A)

. . .

−◦dqj

��

��

�� ��

��uu

�� ��

))

t

��
s

��
t
��

s

��

Since P -Alg(−,A) is representable, it preserves limits [27, V.6 Theorem
3], so we have that

P -Alg(I2(1,−),A)×P -Alg(I2(0,−),A) · · · ×P -Alg(I2(0,−),A) P -Alg(I2(1,−),A)︸ ︷︷ ︸
k

∼= P -Alg(I2(1,−)qj,A)

and the Segal map Sj is given by composition with dqj , as required.
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Similarly, we now rewrite the Segal maps of the form Sj,k in terms of
composition with certain maps of P -algebras.

Lemma 6.2. Let A be a Penon weak 2-category. For all j, k > 0, we have

NA(j, 1)×NA(j,0) · · · ×NA(j,0) NA(j, 1)︸ ︷︷ ︸
k

∼= P -Alg(I2(j, 1)qk,A)

and the Segal map Sj,k is given by

Sj,k = · ◦ dqk : P -Alg(I2(j, k),A) −→ P -Alg(I2(j, 1)qk,A),

where dqk : I2(j, 1)qk → I2(j, k) is a map of P -algebras induced by the
universal property of I2(j, 1)qk, defined in the proof.

Proof. We take a similar approach to that used in the proof of Lemma 6.1.
For each j > 0, we have the following functors:

N 2A(j, ·) : ∆op −→ [∆op,Set]

l

α

��

P -Alg(I2(j, l),A)

·◦I2(1j ,α)
��

7−→

k P -Alg(I2(j, k),A),

and
I2(j,−) : ∆ −→ [∆, P -Alg]

k

α

��

I2(j, k)

I2(1j ,α)

��

7−→

l I2(j, l),

and we can factorise NA(j, ·) as follows:

∆op NA(j,·)
//

I2(j,·) ((

[∆op,Set]

[∆, P -Alg]op
P -Alg(−,A)

55
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For each, [k] ∈ ∆, we consider the effects of the functors NA(j, ·) and
I2(j, ·) on the diagram

[k]

[1]

ι1

44

[1]

ι2

77

[1]

ι3

EE

. . . [1]

ιk−1

ee

[1]

ιk

jj

[0]
τ

__

σ

??

[0]
τ

__

σ

??

[0]
τ

__

σ

??

in ∆. By exactly the same argument as the case of Sj , we have a unique map
dqk such that

I2(j, k)

�� �� 

 ��

!dqk

��

I2(j, 1)qk

vv �� �� ((

I2(j, 1)

t !!

I2(j, 1)

s}}

. . . I2(j, 1)

t !!

I2(j, 1)

s}}

I2(j, 0) I2(j, 0)

and applying the functor P -Alg(−,A) gives us the diagram

P -Alg(I2(j, k),A)

P -Alg(I2(j, 1)qk,A)

P -Alg(I2(j, 1),A)

P -Alg(I2(j, 1),A) P -Alg(I2(j, 1),A)

P -Alg(I2(j, 1),A)

P -Alg(I2(j, 0),A) P -Alg(I2(j, 0),A)

. . .

−◦dqk

��

��

�� ��

��uu

�� ��

))

t

��
s

��
t
��

s

��
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Thus we have that

P -Alg(I2(j, 1),A)×P -Alg(I2(j,0),A) · · · ×P -Alg(I2(j,0),A) P -Alg(I2(j, 1),A)︸ ︷︷ ︸
k

∼= P -Alg(I2(j, 1)qk,A)

and the Segal map Sj,k is given by composition with dqk, as required.

We now use Lemmas 6.1 and 6.2 to prove that the nerve of a Penon weak
2-category satisfies the Segal condition. We begin with the Segal maps of
the form Sj .

Proposition 6.3. LetA be a Penon weak 2-category. For all j > 0, the Segal
map

Sj : NA(j,−)→ NA(1,−)×NA(0,−) · · · ×NA(0,−) NA(1,−)︸ ︷︷ ︸
j

is surjective on 0-cells, i.e. the map

(Sj)0 : NA(j, 0)→ NA(1, 0)×NA(0,0) · · · ×NA(0,0) NA(1, 0)︸ ︷︷ ︸
j

is surjective.

Proof. By Lemma 6.1, the Segal map Sj is given by

Sj = · ◦ dqj : P -Alg(I2(j,−),A)→ P -Alg(I2(1,−)qj,A),

so we need to show that

(Sj)0 = · ◦ dqj : P -Alg(I2(j, 0),A)→ P -Alg(I2(1, 0)qj,A)

is surjective. Let φ : I2(1, 0)qj → A be a map of Penon weak 2-categories.
We must find a map ψ : I2(j, 0)→ A such that (Sk)0(ψ) = φ, i.e. such that
the diagram

I2(1, 0)qj
φ

//
� s

dqj %%

A

I2(j, 0)

ψ

<<
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commutes.
Write the P -algebra A as

PA A
θ //

so UPA = A. We define ψ by first defining a map into the free algebra FPA,
then composing this with the algebra action θ. Define a map

R(j, 0) PA

TX(j, 0) T 2A TA

g
//

θ(j,0)

��

pA

��

Th
//

µTA

//

inR as follows:
The map g : R(j, 0)→ PA is defined by:

• for all au ∈ R(j, 0)0, g0(au) = φ0(au);

• for f 0
uv ∈ R(j, 0)1 with v = u+ 1,

g1(f
0
uv) = φ1(f

0
uv);

• for f 0
uv ∈ R(j, 0)1 with v > u+ 1

g1(f
0
uv) =

((
· · ·
(
φ1(f

0
v−1,v) ◦ φ1(f

0
v−2,v−1)

)
◦ · · ·

)
◦ φ1(f

0
u,u+1)

)
.

Note that R(j, 0)2 = ∅, so we do not need to define g on 2-cells.
The map h : X(k, 0)→ TA is defined by:

• for all au ∈ X(j, 0)0, h0(au) = φ0(au);

• for all f 0
u,u+1 ∈ X(j, 1)1,

h1(f
0
u,u+1) = pA ◦ φ1(f

0
u,u+1)
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Note that X(j, 0)2 = ∅, so we do not need to define h on 2-cells.
This defines a map in R. We then take the transpose of this map under

the the adjunction

R Q
J

⊥
//

W
oo

We write ε : JW ⇒ 1 for the counit of this adjunction, and εφk for the
component corresponding to

Q(j, 0) TX(j, 0).
φ(j,0)
//

Then the transpose is given by the composite

εφ(j,0) ◦ J(g, µTA ◦ Th).

Finally, we apply the Eilenberg–Moore comparison functorK : Q → P -Alg
to this; we write

χ := K(εφ(j,0) ◦ J(g, µTA ◦ Th)),

and define
ψ := θ ◦ χ : I2(j, 0)→ A.

We now check commutativity of the diagram

I2(1, 0)qj
φ

//
� s

dqj %%

A

I2(j, 0)

ψ

<<

Since I2(1, 0)qj ∼= FPX(j, 0), this commutes if the diagram

X(j, 0) UPFPX(j, 0) UPA

UPFPX(j, 0) UP I2(j, 0)

ηP
X(j,0)
//

ηP
X(j,0) ��

UPφ //

UP d
qj
//

UPψ

GG

in 2-GSet commutes; we check this using an elementary approach. Since
X(j, 0)2 = ∅, we do not have to check commutativity on 2-cells. We have
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• for au ∈ X(j, 0)0,

UPψ0 ◦ UPdqj0 ◦ ηPX(j,0)(au) = UPψ0(au) = UPφ0 ◦ ηPX(j,0)(au);

• for f zu,u+1 ∈ X(j, 0)1,

UPψ1◦UPdqj1 ◦ηPX(j,0)(f
z
u,u+1) = UPψ1(f

z
u,u+1) = UPφ1◦ηPX(j,0)(f

z
u,u+1);

hence the diagram commutes. Hence Sj is surjective on 0-cells.

We now use Lemma 6.1 to express the fullness and faithfulness part of
the Segal condition in terms of colimits of P -algebras. Recall from Defini-
tion 2.3 that, given a map of simplicial sets α : A→ B, we have an induced
map α̃1 in Set, as shown in the diagram below:

A1
s

&&

t

--

α1
44

α̃1

''

A0 ×B0 B1 ×B0 A1
//

��

''

A0

α0

��

B1 s
//

t
��

B0

A0 α0

// B0

and that α is full and faithful on 1-cells if the map α̃1 is an isomorphism. We
wish to show that, for all j ≥ 0, the Segal map

Sj : P -Alg(I2(j,−),A) −→ P -Alg(I2(1,−)qj,A)

is full and faithful on 1-cells. By the description of fullness and faithfulness
above, this happens when the diagram

P -Alg(I2(j, 1),A) s //

−◦(dqj)1

**

t

��

P -Alg(I2(j, 0),A)

−◦(dqj)0
��

P -Alg(I2(1, 1)qj,A) s
//

t
��

P -Alg(I2(1, 0)qj,A)

P -Alg(I2(j, 0),A)
−◦(dqj)0

// P -Alg(I2(1, 0)qj,A).
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is a limit cone in Set. This cone lies in the image of the functor

P -Alg(−,A) : P -Algop −→ Set,

and this functor is representable, so it preserves limits [27, V.6 Theorem 3].
Hence Sj is full and faithful on 1-cells if the diagram

I2(1, 0)q3

(dq3)0

yy

I2(d1,1)q3

&&

I2(1, 0)q3

I2(d0,1)q3

xx

(dq3)0

%%

I2(3, 0)

I2(1,d1)
**

I2(1, 1)q3

(dq3)1
��

I2(3, 0)

I2(1,d0)
tt

I2(3, 1)

is a colimit cocone in P -Alg.
Before proving this, we describe what this means in the case j = 3. The

P -algebra I2(1, 1)q3 consists of three 2-cells composed horizontally:

a0 a1 a2 a3,

f001

��

f101

??

f012

��

f112

??

f012

��

f112

__
α1
01
��

α1
12
��

α1
23
��

with the copies of I2(1, 0)q3 in the diagram giving its source and target
strings of 1-cells. The P -algebra I2(3, 0) is a tetrahedron whose faces are
isomorphism 2-cells:

a1 a2

a0 a3

=

a1 a2

a0 a3.

f01

GG

f12 //

f23

��

f03
//

f02

::

f01

GG

f12 //

f23

��

f03
//

f13

$$

∼= �# ∼={�

∼=�� ∼= ��

Taking the colimit of the diagram glues one of these tetrahedra to the string
of source 1-cells of I2(1, 1)q3, and the other to the string of target 1-cells.
Thus the fullness and faithfulness condition tells us that I2(3, 1) can be ob-
tained this way; it is a simplicially weakened version of the cuboidal pasting
diagram (3, 1).
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Lemma 6.4. For all j > 0, the diagram

I2(1, 0)qj

(dqj)0

yy

I2(d1,1)qj

&&

I2(1, 0)qj

I2(d0,1)qj

xx

(dqj)0

%%

I2(j, 0)

I2(1,d1)
**

I2(1, 1)qj

(dqj)1
��

I2(j, 0)

I2(1,d0)
tt

I2(j, 1)

is a colimit cocone in P -Alg.

To prove Lemma 6.4, we check directly that I2(j, 1) satisfies the univer-
sal property for the colimit. In order to do this we must specify maps out
of I2(j, 1) and I2(j, k), which we define dimension by dimension, starting at
dimension 0 and working up.

In this proof we write down the cells of I2(j, 1) explicitly. We are able to
do this using the description of the functor J : R → Q (which is used in the
definition of I2) given in Part 1 of this series.

Recall from the construction of I2(j, k) that at each dimension (excluding
dimension 0), we have three types of cell: generating cells (those inR(j, k)),
contraction cells, and composites. We use the following notation: for com-
posites we write ◦ for composition of 1-cells and vertical composition of
2-cells, and ∗ for horizontal composition of 2-cells; for contraction cells, we
write [a, b] for the contraction cell from a to b. Since we are defining a map
of P -algebras, once we have defined the effect of the map on generating cells
and contraction cells, the effect on composites is determined by the fact that
the map must preserve the P -algebra structure (in a way that we will make
precise later). A similar statement is true for some of the contraction cells,
but not all of them; due to the fact that (for j > 1) I2(j, k) is not a free
P -algebra, only certain contraction cells are required to be preserved by the
P -algebra structure. We refer to these cells as “algebraic contraction cells”.

To see which contraction cells are algebraic contraction cells, suppose we
are defining a map ψ : I2(j, k) → A. This consists of a map of 2-globular
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sets ψ : UP I2(j, k) = Q(j, k)→ A such that

PQ(j, k) PA

Q(j, k) A

Pψ
//

��

θ

��

ψ
//

commutes, where the left-hand map is the algebra action for I2(j, k). The
commutativity of this diagram is what ensures that the P -algebra structure
is preserved. Thus, the contraction cells that must be preserved are precisely
those which are recognised as contraction cells by the P -algebra structure,
i.e. a contraction cell in Q(j, k) is an algebraic contraction cell if it is the
image under the algebra action PQ(j, k) → Q(j, k) of a contraction cell in
PQ(j, k). Since the only contraction 1-cells in I2(j, k) are the identities, all
contraction 1-cells are algebraic. The algebraic contraction 2-cells in I2(j, k)
consist of the identities, and any contraction cells that alter the bracketing of
a composite, or alter the number of identities that appear in a composite, but
do nothing else. In particular, the source and target of a non-identity alge-
braic contraction 2-cell in I2(j, k) are always composites of cells in I2(j, k),
and these composites feature the same generating cells in the same order.

Another pivotal fact about I2(j, k) is that, in the construction, the functor
J : R → Q “adds contraction 3-cells” (as well as adding other contraction
cells and composites). This has the effect of identifying all parallel 2-cells,
so in I2(j, k) there are no distinct parallel 2-cells. This allows us to write
many of the contraction cells as composites of others.

Proof of Lemma 6.4. In this proof, we present the case j = 3, before moving
on to the case of general j, since for a fixed value of j we are able to write
down all of the cells in I2(j, 1) (though note that we still omit certain com-
posites). We use j = 3 rather than j = 2 (the simplest case of the lemma)
because I2(2, 1) is too small for this case to exhibit all the features of the
general case.

- 87 -



T. COTTRELL PENON WEAK n-CATEGORIES: PART 2

Suppose we have a P -algebra A and a cocone

I2(1, 0)q3

(dq3)0

yy

I2(d1,1)q3

&&

I2(1, 0)q3

I2(d0,1)q3

xx

(dq3)0

%%

I2(3, 0)

g

++

I2(1, 1)q3

λ
��

I2(3, 0)

h
ssA

in P -Alg. We define a map of P -algebras

ψ : I2(3, 1)→ A

such that the diagram

I2(1, 0)q3

(dq3)0

yy

I2(d1,1)q3

&&

I2(1, 0)q3

I2(d0,1)q3

xx

(dq3)0

%%

I2(3, 0)

g

//

I2(1,d1)
**

I2(1, 1)q3

λ

((

(dq3)1
��

I2(3, 0)

h

oo

I2(1,d0)
tt

I2(3, 1)

ψ
��

A

commutes.
To define the map ψ, we first list the cells in I2(3, 1). We list the cells by

dimension, and for dimensions above 0, we break the list down further, into
generating cells, contraction cells, and composites.

• 0-cells: au for all 0 ≤ u ≤ 3;

• 1-cells:

– Generating cells:

f zuv for all 0 ≤ u < v ≤ 3, 0 ≤ z ≤ 1;
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– Contraction cells:

[au, au] = idau for all 0 ≤ u ≤ 3;

– Composites: Although we don’t need to define the action of ψ on
composites, since this is determined by the fact that ψ preserves
the P -algebra structure, it is useful to list them here since we
need to know what they are in order to write down the contraction
2-cells. Note that this list does not include composites involving
identities.

f zvw ◦ f yuv for all 0 ≤ u < v < w ≤ 3, y, z ∈ {0, 1};

(f z23 ◦ f
y
12) ◦ fx01, f z23 ◦ (f y12 ◦ fx01) for all x, y, z ∈ {0, 1}

• 2-cells:

– Generating cells:

α1
uv for all 0 ≤ u < v ≤ 3;

– Contraction cells: There are three different types of contraction
cell in I2(3, 1) – the algebraic contraction cells, the triangular
contraction cells corresponding to the cells denoted ιzuvw in Le-
inster nerve construction (see Section 3), and those which are
composites of cells of the two other types.
The algebraic contraction cells are those of the form:

[(f z23 ◦ f
y
12) ◦ fx01, f z23 ◦ (f y12 ◦ fx01)],

[f z23 ◦ (f y12 ◦ fx01), (f z23 ◦ f
y
12) ◦ fx01],

for all x, y, z ∈ {0, 1}, as well as identities on all 1-cells. The
triangular contraction cells, all of which lie in the image of either
I2(1, d1) or I2(1, d0), are those of the form:

[f 0
uw, f

0
vw ◦ f 0

uv] = I2(1, d1)[f
0
uw, f

0
vw ◦ f 0

uv],

[f 0
vw ◦ f 0

uv, f
0
uw] = I2(1, d1)[f

0
vw ◦ f 0

uv, f
0
uw],

[f 1
uw, f

1
vw ◦ f 1

uv] = I2(1, d0)[f
0
uw, f

0
vw ◦ f 0

uv],
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[f 1
vw ◦ f 1

uv, f
1
uw] = I2(1, d0)[f

0
vw ◦ f 0

uv, f
0
uw],

For all 0 ≤ u < v < w ≤ 3. The remaining contraction cells are
composites of those above:

[f 0
13 ◦ f 1

01, (f
0
23 ◦ f 0

12) ◦ f 1
01] = [f 0

13, f
0
23 ◦ f 0

12] ∗ [f 1
01, f

1
01],

[(f 0
23 ◦ f 0

12) ◦ f 1
01, f

0
13 ◦ f 1

01] = [f 0
23 ◦ f 0

12, f
0
13] ∗ [f 1

01, f
1
01],

[f 1
13 ◦ f 0

01, (f
1
23 ◦ f 1

12) ◦ f 0
01] = [f 1

13, f
1
23 ◦ f 1

12] ∗ [f 0
01, f

0
01],

[(f 1
23 ◦ f 1

12) ◦ f 0
01, f

1
13 ◦ f 0

01] = [f 1
23 ◦ f 1

12, f
1
13] ∗ [f 0

01, f
0
01],

[f 0
23 ◦ f 1

02, f
0
23 ◦ (f 1

12 ◦ f 1
01)] = [f 0

23, f
0
23] ∗ [f 1

02, f
1
12 ◦ f 1

01],

[f 0
23 ◦ (f 1

12 ◦ f 1
01), f

0
23 ◦ f 1

02] = [f 0
23, f

0
23] ∗ [f 1

12 ◦ f 1
01, f

1
02],

[f 1
23 ◦ f 0

02, f
1
23 ◦ (f 0

12 ◦ f 0
01)] = [f 1

23, f
1
23] ∗ [f 0

02, f
0
12 ◦ f 0

01],

[f 1
23 ◦ (f 0

12 ◦ f 0
01), f

1
23 ◦ f 0

02] = [f 1
23, f

1
23] ∗ [f 0

12 ◦ f 0
01, f

0
02].

We now define the map ψ : I2(3, 1)→ A:

• On 0-cells:

ψ0(au) := g0(au) = h0(au) = λ0(au).

• On 1-cells:

ψ1(f
z
uv) :=

{
g1(f

z
uv) if z = 0,

h1(f
z−1
uv ) if z = 1;

ψ1[au, au] = ψ(idau) := λ1(idau) = g1(idau) = h1(idau).

We do not need to define the action of ψ1 on composites explicitly;
this is automatic since ψ must preserve the P -algebra structure.

• On 2-cells:
ψ2(α

1
uv) := λ(α1

uv);

ψ2[(f
z
23 ◦ f

y
12) ◦ fx01, f z23 ◦ (f y12 ◦ fx01)]

:=[ψ1

(
(f z23 ◦ f

y
12) ◦ fx01

)
, ψ1

(
f z23 ◦ (f y12 ◦ fx01)

)
];

ψ2[f
z
23 ◦ (f y12 ◦ fx01), (f z23 ◦ f

y
12) ◦ fx01]

:=[ψ1

(
f z23 ◦ (f y12 ◦ fx01)

)
, ψ1

(
(f z23 ◦ f

y
12) ◦ fx01

)
];
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ψ2[f
0
uw, f

0
vw ◦ f 0

uv] := g2[f
0
uw, f

0
vw ◦ f 0

uv];

ψ2[f
0
vw ◦ f 0

uv, f
0
uw] := g2[f

0
vw ◦ f 0

uv, f
0
uw];

ψ2[f
1
uw, f

1
vw ◦ f 1

uv] := h2[f
0
uw, f

0
vw ◦ f 0

uv];

ψ2[f
1
vw ◦ f 1

uv, f
1
uw] := h2[f

0
vw ◦ f 0

uv, f
0
uw].

As with 1-cells, we do not need to define the action of ψ2 on compos-
ites, including those contraction cells that are composites of others,
since ψ must preserve the P -algebra structure.

We see by definition of ψ that it is a map of P -algebras, and that it makes
the required diagram commute. It is clear that, at each stage of the construc-
tion of ψ, if we defined the map differently it would not have satisfied these
conditions; in the case of the cells on which ψ is defined explicitly, any other
definition would fail to make the diagram commute, and in the case of all
other cells, any other definition would fail to give a map of P -algebras.

Thus, ψ is the unique map of P -algebras making the required diagram
commute, so I2(3, 1) is the colimit in P -Alg of the diagram

I2(1, 0)q3

(dq3)0

yy

I2(d1,1)q3

&&

I2(1, 0)q3

I2(d0,1)q3

xx

(dq3)0

%%

I2(3, 0) I2(1, 1)q3 I2(3, 0)

We now prove the lemma for a general value of j. Suppose we have a
P -algebra A and a cocone

I2(1, 0)qj

(dqj)0

yy

I2(d1,1)qj

&&

I2(1, 0)qj

I2(d0,1)qj

xx

(dqj)0

%%

I2(j, 0)

g

++

I2(1, 1)qj

λ
��

I2(j, 0)

h
ssA

in P -Alg. We define a map of P -algebras

ψ : I2(j, 1)→ A
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such that the diagram

I2(1, 0)qj

(dqj)0

yy

I2(d1,1)qj

&&

I2(1, 0)qj

I2(d0,1)qj

xx

(dqj)0

%%

I2(j, 0)

g

//

I2(1,d1)
**

I2(1, 1)qj

λ

((

(dqj)1
��

I2(j, 0)

h

oo

I2(1,d0)
tt

I2(j, 1)

ψ
��

A

commutes.
To define the map ψ, we first list the cells in I2(j, 1). As for the case

j = 3, we list the cells by dimension, and for dimensions above 0, we list
generating cells and contraction cells separately. Note that in this case we
do not list the composites, since the notation would become very unwieldy;
the action of ψ on composites is determined by the fact that it must preserve
the P -algebra structure, so we do not need to list the composites explicitly.

• 0-cells: au for all 0 ≤ u ≤ j;

• 1-cells:

– Generating cells:

f zuv for all 0 ≤ u < v ≤ j, 0 ≤ z ≤ 1;

– Contraction cells:

[au, au] = idau for all 0 ≤ u ≤ j;

• 2-cells:

– Generating cells:

α1
uv for all 0 ≤ u < v ≤ j;
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– Contraction cells: As in the case j = 3, we have algebraic con-
traction cells and triangular contraction cells corresponding to
the cells ιzuvw; since all diagrams of contraction 2-cells commute
in I2(j, 1), all other contraction cells can be expressed as com-
posites of contraction cells of these two types.
The algebraic contraction cells are those mediating between dif-
ferently bracketed composites of the same 1-cells, and also iden-
tities on all 1-cells. The triangular contraction cells are those of
the form:

[f 0
uw, f

0
vw ◦ f 0

uv] = I2(1, d1)[f
0
uw, f

0
vw ◦ f 0

uv],

[f 0
vw ◦ f 0

uv, f
0
uw] = I2(1, d1)[f

0
vw ◦ f 0

uv, f
0
uw],

[f 1
uw, f

1
vw ◦ f 1

uv] = I2(1, d0)[f
0
uw, f

0
vw ◦ f 0

uv],

[f 1
vw ◦ f 1

uv, f
1
uw] = I2(1, d0)[f

0
vw ◦ f 0

uv, f
0
uw],

for all 0 ≤ u < v < w ≤ j. All remaining contraction cells are
horizontal composites of those of the form

[f zvm−1,vm
◦ · · · ◦ f zv1,v2 ◦ f

z
v0,v1

, f zul−1,ul
◦ · · · ◦ f zu1,u2 ◦ f

z
u0,u1

],

for all l, m ≥ 2, 0 ≤ u0 < u1 < · · · < ul ≤ j, u0 = v0 <
v1 < · · · < vm = ul, 0 ≤ z ≤ 1. Note that we omit the choice
of bracketing in the contraction cell above; there is one such cell
for each choice of bracketing of the source and target. Each of
these contraction cells can be written as a composite of algebraic
contraction cells and the triangular contraction cells above.

We now define the map ψ : I2(j, 1)→ A:

• On 0-cells:

ψ0(au) := g0(au) = h0(au) = λ0(au).

• On 1-cells:

ψ1(f
z
uv) :=

{
g1(f

z
uv) if z = 0,

h1(f
z−1
uv ) if z = 1;

ψ1[au, au] = ψ(idau) := λ1(idau) = g1(idau) = h1(idau).

As in the case j = 3, we do not need to describe the action of ψ on
composites explicitly, since it must preserve the P -algebra structure.
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• On 2-cells:

ψ2(α
1
uv) := λ(α1

uv);

ψ2[f
0
uw, f

0
vw ◦ f 0

uv] := g2[f
0
uw, f

0
vw ◦ f 0

uv];

ψ2[f
0
vw ◦ f 0

uv, f
0
uw] := g2[f

0
vw ◦ f 0

uv, f
0
uw];

ψ2[f
1
uw, f

1
vw ◦ f 1

uv] := h2[f
0
uw, f

0
vw ◦ f 0

uv];

ψ2[f
1
vw ◦ f 1

uv, f
1
uw] := h2[f

0
vw ◦ f 0

uv, f
0
uw].

As in the case j = 3, we do not need to describe the action of ψ on the
remaining 2-cells explicitly, since they are either algebraic contraction
cells, or composites involving the algebraic contraction cells and those
above.

We see by definition of ψ that it is a map of P -algebras, and that it makes
the required diagram commute. It is clear that, at each stage of the construc-
tion of ψ, if we defined the map differently it would not have satisfied these
conditions; in the case of the cells on which ψ is defined explicitly, any other
definition would fail to make the diagram commute, and in the case of all
other cells, any other definition would fail to give a map of P -algebras.

Thus, ψ is the unique map of P -algebras making the required diagram
commute, so I2(j, 1) is the colimit in P -Alg of the diagram

I2(1, 0)qj

dqj0

yy

I2(d1,1)qj

&&

I2(1, 0)qj

I2(d0,1)qj

xx

dqj0

&&

I2(j, 0) I2(1, 1)qj I2(j, 0),

as required.

The following is now an immediate corollary of Lemma 6.4, via our
characterisation of fullness and faithfulness of the Segal maps in terms of
colimits in P -Alg.

Corollary 6.5. Let A be a Penon weak 2 category. For all j > 0, the Segal
map

Sj : P -Alg(I2(j,−),A) −→ P -Alg(I2(1,−)qj,A)

is full and faithful on 1-cells.

- 94 -



T. COTTRELL PENON WEAK n-CATEGORIES: PART 2

We now apply a similar argument to the Segal maps Sj,k, and reformulate
the remaining part of the Segal condition in terms of colimits of P -algebras,
as we did for Sj . By Lemma 6.2, Sj,k is given by

Sj,k = · ◦ dqk : P -Alg(I2(j, k),A) −→ P -Alg(I2(j, 1)qk,A).

This is a bijection if I2(j, 1)qk = I2(j, k), and the map

dqk : I2(j, 1)qk → I2(j, k)

is the identity. This tells us that I2(j, k) can be obtained by gluing k copies
of I2(j, 1) along their boundary copies of I2(j, 0). Thus, the Segal map Sj,k
is a bijection if the following lemma holds:

Lemma 6.6. For all j ≥ 0, k > 0, the diagram

I2(j, 0)

I2(j, 1) I2(j, 1)

I2(j, 0)

I2(j, 1)I2(j, 1). . .

I2(j, k)

I2(1,d0)

��

I2(1,d1)

��

I2(1,d0)

��

I2(1,d1)

��

I2(1,ι1) ..

I2(1,ι2) ��
I2(1,ιk−1)��

I2(1,ιk)pp

is a colimit cocone in P -Alg.

Proof. Let A be a Penon weak 2-category, and suppose we have a cocone

I2(j, 0)

I2(j, 1) I2(j, 1)

I2(j, 0)

I2(j, 1)I2(j, 1). . .

A

I2(1,d0)

��

I2(1,d1)

��

I2(1,d0)

��

I2(1,d1)

��

g(1) ..

g(2)
��

g(k−1)

��
g(k)pp

in P -Alg. We define a map of P -algebras

ψ : I2(j, k) −→ A

- 95 -



T. COTTRELL PENON WEAK n-CATEGORIES: PART 2

such that the diagram

I2(j, 0)

I2(j, 1) I2(j, 1)

I2(j, 0)

I2(j, 1)I2(j, 1). . .

I2(j, k)

A

I2(1,d0)

��

I2(1,d1)

��

I2(1,d0)

��

I2(1,d1)

��

..
�� ��

pp

g(1)

--

g(2)

  

g(k−1)

~~
g(k)

qq

ψ

��

commutes, and show that this is the unique such map of P -algebras. We take
the same approach as in the proof of Lemma 6.4, defining the map by an el-
ementary approach, and using the fact that it must preserve the P -algebra
structure to avoid having to define it explicitly on every cell of I2(j, k).
To do so we now list the cells of I2(j, k); we use the same notation as in
Lemma 6.4, and note that, as before, we do not list composites or algebraic
contraction cells.

• 0-cells: au for all 0 ≤ u ≤ j;

• 1-cells:

– Generating cells:

f zuv for all 0 ≤ u < v ≤ j, 0 ≤ z ≤ k;

– Contraction cells:

[au, au] = idau for all 0 ≤ u ≤ j;

• 2-cells:

– Generating cells:

αzuv for all 0 ≤ u < v ≤ j, 1 ≤ z ≤ k;
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– Contraction cells: As in Lemma 6.4, we have algebraic con-
traction cells and triangular contraction cells corresponding to
the cells ιzuvw from Leinster’s nerve construction for bicategories
(Section 3); since all diagrams of contraction 2-cells commute in
I2(j, 1), all other contraction cells can be expressed as compos-
ites of contraction cells of these two types.
The algebraic contraction cells are those mediating between dif-
ferently bracketed composites of the same 1-cells, and also iden-
tities on all 1-cells. The triangular contraction cells are those of
the form:

[f zuw, f
z
vw ◦ f zuv],

and
[f zvw ◦ f zuv, f zuw],

for all 0 ≤ u < v < w ≤ j, 0 ≤ z ≤ k. As in Lemma 6.4, all
remaining contraction cells are composites of those above.

We now define the map ψ : I2(j, k)→ A:

• On 0-cells:
ψ0(au) := g

(1)
0 (au).

• On 1-cells:

ψ1(f
z
uv) :=

{
g
(0)
1 (f 0

uv) if z = 0,

g
(z)
1 (f 1

uv) otherwise;

ψ1[au, au] = ψ(idau) := g
(1)
1 (idau).

As in Lemma 6.4, we do not need to describe the action of ψ on com-
posites explicitly, since it must preserve the P -algebra structure.

• On 2-cells:

ψ2(α
z
uv) := g

(z)
2 (α1

uv);

ψ2[f
0
uw, f

0
vw ◦ f 0

uv] := g
(1)
2 [f 0

uw, f
0
vw ◦ f 0

uv];

ψ2[f
0
vw ◦ f 0

uv, f
0
uw] := g

(1)
2 [f 0

vw ◦ f 0
uv, f

0
uw];
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and for 1 ≤ z ≤ k,

ψ2[f
z
uw, f

z
vw ◦ f zuv] := g

(z)
2 [f 1

uw, f
1
vw ◦ f 1

uv];

ψ2[f
z
vw ◦ f zuv, f zuw] := g

(z)
2 [f 1

vw ◦ f 1
uv, f

1
uw].

As in Lemma 6.4, we do not need to describe the action of ψ on the
remaining 2-cells explicitly, since they are either algebraic contraction
cells, or composites involving the algebraic contraction cells and those
above.

We see by definition of ψ that it is a map of P -algebras, and that it makes
the required diagram commute. It is clear that, at each stage of the construc-
tion of ψ, if we defined the map differently it would not have satisfied these
conditions; in the case of the cells on which ψ is defined explicitly, any other
definition would fail to make the diagram commute, and in the case of all
other cells, any other definition would fail to give a map of P -algebras.

Thus, ψ is the unique map of P -algebras making the required diagram
commute, so I2(j, k) is the colimit in P -Alg of the diagram

I2(j, 0)

I2(j, 1) I2(j, 1)

I2(j, 0)

I2(j, 1)I2(j, 1). . .

I2(1,d0)

��

I2(1,d1)

��

I2(1,d0)

��

I2(1,d1)

��

︸ ︷︷ ︸
k

as required.

The following is now an immediate corollary of Lemma 6.6:

Corollary 6.7. Let A be a Penon weak 2-category. For each j, k > 0, the
Segal map

Sj,k : NA(j, k)→ NA(j, 1)×NA(j,0) · · · ×NA(j,0) NA(j, 1)︸ ︷︷ ︸
k

is a bijection.

We now have all the results we need to show that the nerve of a Penon
weak 2-category is a Tamsamani–Simpson weak 2-category.
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Theorem 6.8. LetA be a Penon weak 2-category. Then the nerveNA satis-
fies the Segal condition, and is thus a Tamsamani–Simpson weak 2-category.

Proof. Let A be a Penon weak 2-category, and consider its nerve NA. For
all j ≥ 0, the Segal map

Sj : NA(j,−) −→ NA(1,−)×NA(0,1) · · · ×NA(0,1) NA(1,−)︸ ︷︷ ︸
j

is surjective on objects by Proposition 6.3 and full and faithful on 1-cells
by Corollary 6.5; hence Sj is contractible. Note that the proposition and
corollary are valid only for j > 0, but for j = 0 the result holds trivially.

For all j, k ≥ 0, the Segal map

Sj,k : NA(j, k) −→ NA(j, 1)×NA(j,0) · · · ×NA(j,0) NA(j, 1)︸ ︷︷ ︸
k

is a bijection by Corollary 6.7. As above, this corollary is only valid for
k > 0, but for k = 0 the result holds trivially.

Hence NA satisfies the Segal condition, so it is a Tamsamani–Simpson
weak 2-category.

7. The nerve construction for general n

In this section we generalise the nerve construction for Penon weak 2-cate-
gories from Section 5 to a nerve construction for Penon weak n-categories
for all n ∈ N. As in Section 5, we write P for the monad for Penon weak
n-categories, and T for the free strict n-category monad.

The construction proceeds analogously to that for n = 2. Since we
are potentially working with a greater number of dimensions in the general
case, we have to weaken composition in each cuboidal n-pasting diagram
at every dimension (apart from dimensions 0 and n). The greater number
of dimensions entails that the notation for the cells of the P -algebras we
construct necessarily becomes more complicated and unwieldy.

In analogy with the case n = 2, when defining the nerve functor for
Penon weak n-categories, we first define a functor In : Θn → P -Alg which
gives us, for each object of Θn, the corresponding cuboidal n-pasting dia-
gram expressed as a freely generated Penon weak n-category. We obtain the
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functor In by defining a functor En : Θn → Q, then composing this with the
Eilenberg–Moore comparison functor K : Q → P -Alg for the adjunction
F a U defining the monad P .

As in the 2-dimensional case, for each object j = (j1, j2, . . . , jn) of Θn,
we define two n-globular sets, X(j) and R(j); X(j) is the associated n-
globular set of the cuboidal pasting diagram j, whileR(j) also contains extra
cells to weaken the composition structure on certain simplicial shapes of
composite. We then define an object ofR

R(j) TX(k),
θj
//

and define En(j) to be the image of this under the functor J : R → Q; that
is, the left adjoint to the forgetful functor W : Q → R.

Before giving the construction, once again we discuss the notation we
will use. We will use a coordinate system similar to that used in the 2-
dimensional construction. The difference is that, since higher dimensional
cells require a greater number of coordinates, instead of using subscripts and
superscripts, the coordinates of a cell will be written as a string in brackets.
Thus, the m-cell

αm(u0, v0;u1, v1; . . . ;um−1, vm−1; z)

has source (m−1)-cell with coordinates (u0, v0; . . . ;um−2, vm−2;um−1) and
target (k − 1)-cell with coordinates (u0, v0; . . . ;um−2, vm−2; vm−1). The z-
coordinate indicates the position of this cell in relation to the other m-cells
parallel to it, and the superscript m indicates the dimension of the cell. As in
the 2-dimensional construction, each n-cell has the same coordinates as its
target (n− 1)-cell.

Recall that an object of Θn is an equivalence class of objects of ∆n.
An object of ∆n is in an equivalence class with more than one member
if and only if it has a 0 in the kth position for some k < n. Thus, for
the purposes of the following definition we treat the equivalence class of
(l1, . . . , lm−1, 0, lm+1, . . . , ln), with m < n, as the object

(l1, . . . , lm−1, 0, 0, . . . , 0)

of ∆n; all other equivalence classes are treated as their sole member.
Let j ∈ Θn and define n-globular sets X(j) and R(j) as follows: the sets

of cells of X(j) are defined by
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• X(j)0 = {au | u ∈ N, 0 ≤ u ≤ j1};

• for 0 < m < n,

X(j)m = {αm(u1, u1 + 1;u2, u2 + 1; . . . ;um, um + 1; z)

| 0 ≤ ul < jl for all 1 ≤ l ≤ m, 0 ≤ z ≤ jm+1};

• for m = n,

X(j)n = {αn(u1, u1 + 1;u2, u2 + 1; . . . ;un−1, un−1 + 1; z)

| 0 ≤ ul < jl for all 1 ≤ l ≤ n− 1, 1 ≤ z ≤ jn};

and those for R(j) are defined by

• R(j)0 = {au | u ∈ N, 0 ≤ u ≤ j1};

• for 0 < m < n,

R(j)m = {αm(u1, v1;u2, v2; . . . ;um, vm; z)

| 0 ≤ ul < vl ≤ jl for all 1 ≤ l ≤ m, 0 ≤ z ≤ jm+1};

• for m = n,

R(j)n = {αn(u1, v1;u2, v2; . . . ;un−1, vn−1; z)

| 0 ≤ ul < vl ≤ jl for all 1 ≤ l ≤ n− 1, 1 ≤ z ≤ jn}.

For both X(j) and R(j), the source and target maps are defined by:

• for all 1-cells α1(u1, v1; z),

s(α1(u1, v1; z)) = au1 , t(α
1(u1, v1; z)) = av1 ;

• for all 1 < m < n, and for allm-cells αm(u1, v1;u2, v2; . . . ;um, vm; z),

s(αm(u1, v1;u2, v2; . . . ;um, vm; z))

= αm−1(u1, v1;u2, v2; . . . ;um−1, vm−1;um),

and

t(αm(u1, v1;u2, v2; . . . ;um, vm; z))

= αm−1(u1, v1;u2, v2; . . . ;um−1, vm−1; vm),
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• for all n-cells αn(u1, v1;u2, v2; . . . ;un−1,

s(αn(u1, v1;u2, v2; . . . ;un−1, vn−1; z))

= αn−1(u1, v1;u2, v2; . . . ;un−1, vn−1; z − 1),

and

t(αn(u1, v1;u2, v2; . . . ;un−1, vn−1; z))

= αn−1(u1, v1;u2, v2; . . . ;un−1, vn−1; z).

Once again we note that, in spite of the notation, this does not define functors
R and X into n-GSet.

We now wish to construct, for each j ∈ Θn, an object of R which will
consist of a map from R(j) into the free strict n-category on X(j). Before
doing so, we must first establish notation for the freely generated composite
cells in TX(j). Following Penon’s notation for composition in an n-magma
(see Definition 4.2), given m-cells α1, α2 and 0 ≤ p < m, where the target
p-cell of α1 coincides with the source p-cell of α2, we write α2 ◦mp α1 for
their composite along boundary p-cells. For composites involving greater
numbers of cells we extend this to summation-style notation; for m-cells αi,
1 ≤ i ≤ k for some k, satisfying the appropriate source and target conditions
to be composable, we write

m,p

©
1≤i≤k

αi := αk ◦mp αk−1 ◦mp · · · ◦mp α2 ◦mp α1.

We now define θj : R(j)→ TX(j) by:

• for au ∈ R(j)0, (θj)0(au) = au;

• for 0 < m < n, (θj)m(αm(u1, v1;u2, v2; . . . ;um, vm; z)) =

m,m−1
©

um≤wm<vm

· · ·
m,0

©
u1≤w1<v1

αm(w1, w1 +1;w2, w2 +1; . . . ;wm, wm+1; z)

• for m = n, (θj)n(αn(u1, v1;u2, v2; . . . ;un−1, vn−1; z)) =
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n,n−2
©

un−1≤wn−1<vn−1

· · ·
n,0

©
u1≤w1<v1

αm(w1, w1+1;w2, w2+1; . . . ;wn−1, wn−1+1; z)

Similar to the 2-dimensional case, θj coincides with ηTX(j) whenever vl =
ul + 1 for all 0 ≤ l ≤ m− 1.

To complete the construction of the action of the functor En : Θn → Q
on objects, we apply the functor J : R → Q to θj : R(j) → TX(j). This
adds to R(j) all the required composites and contraction cells, including
those which ensure that the weakened composites (those cells in R(j) but
not in X(j)) are coherently equivalent to the corresponding freely generated
composites at the same level in the pasting diagram. We denote the resulting
object of Q by

Q(j) TX(j).
φj
//

We now define the action of the functor En : Θn → Q on morphisms.
As in the 2-dimensional case, to do so we first define a morphism inR, then
take its transpose under the adjunction

R Q
J

⊥
//

W
oo

to obtain a morphism in Q.
Let p : j→ k be a morphism in Θn. We define the strict n-category part

of the morphism of R first. Define a map of 2-globular sets x(p) : X(j) →
TX(k) as follows:

• for au ∈ X(j)0, x(p)0(au) = ap1(u);

• for 0 < m < n, αm(u1, u1 + 1; . . . ;um, um + 1; z) ∈ X(j)m, if for all
1 ≤ l ≤ m we have pl(ul) < pl(vl), then

x(p)m(αm(u1, u1 + 1; . . . ;um, um + 1; z)) =
m,m−1
©

pm(um)≤wm

<pm(um+1)

· · ·
m,0

©
p1(u1)≤w1

<p1(u1+1)

αm(w1, w1 + 1; . . . ;wm, wm + 1; pm+1(z));

otherwise, for the smallest l such that pl(ul) = pl(vl) we define

x(p)m(αm(u1, u1 + 1; . . . ;um, um + 1; z))
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to be the identity m-cell on the (l − 1)-cell

l−1,l−2
©

pl−1(ul−1)≤wl−1

<pl−1(ul−1+1)

· · ·
l−1,0
©

p1(u1)≤w1

<p1(u1+1)

αm(w1, w1 +1; . . . ;wl−1, wl−1 +1; pl(ul));

• for αn(u1, u1+1; . . . ;un−1, un−1+1; z) ∈ X(j)n, if for all 1 ≤ l ≤ m
we have pl(ul) < pl(vl), and pn(z − 1) < pn(z), then

x(p)n(αn(u1, u1 + 1; . . . ;un−1, un−1 + 1; z)) =
n,n−2
©

pn−1(un−1)≤wn−1

<pn−1(un−1+1)

· · ·
n,0

©
p1(u1)≤w1

<p1(u1+1)

αm(w1, w1 + 1; . . . ;wn−1, wn−1 + 1; pn(z));

if for all 1 ≤ l ≤ m we have pl(ul) < pl(vl), and pn(z − 1) = pn(z),
then we define

x(p)n(αn(u1, u1 + 1; . . . ;un−1, un−1 + 1; z))

to be the identity n-cell on the (n− 1)-cell

n−1,n−2
©

pn−1(un−1)≤wn−1

<pn−1(un−1+1)

· · ·
n,0

©
p1(u1)≤w1

<p1(u1+1)

αm(w1, w1+1; . . . ;wn−1, wn−1+1; pn(z));

otherwise, for the smallest l such that pl(ul) = pl(vl), we define

x(p)n(αn(u1, u1 + 1; . . . ;un−1, un−1 + 1; z))

to be the identity m-cell on the (l − 1)-cell

l−1,l−2
©

pl−1(ul−1)≤wl−1

<pl−1(ul−1+1)

· · ·
n,0

©
p1(u1)≤w1

<p1(u1+1)

αm(w1, w1 +1; . . . ;wl−1, wl−1 +1; pl(ul)).

To obtain a map TX(j) → TX(k) we apply T and compose this with
the multiplication for T , giving

TX(j) T 2X(k) TX(k)
Tx(p)

//
µT
X(k)
//
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We now define a map

R(j) Q(k)

TX(j) T 2X(k) TX(k),

r(p)
//

θj

��

φk

��

Tx(p)
//

µT
X(k)

//

where the map r(p) is defined as follows:

• for au ∈ R(j)0, r(p)0(au) = ap1(u);

• for 0 < m < n, αm(u1, v1; . . . ;um, vm; z) ∈ R(j)m, if for all 1 ≤ l ≤
m we have pl(ul) < pl(vl), then

r(p)m(αm(u1, v1; . . . ;um, vm; z)) =

αm(p1(u1), p1(v1); . . . ; pm(um), pm(vm); pm+1(z));

otherwise, for the smallest l such that pl(ul) = pl(vl), we define

r(p)m(αm(u1, v1; . . . ;um, vm; z))

to be the identity m-cell on the (l − 1)-cell

αl−1(p1(u1), p1(v1); . . . ; pl−1(ul−1), pl−1(vl−1); pl(ul));

• for αn(u1, v1; . . . ;un−1, vn−1; z) ∈ R(j)n, if for all 1 ≤ l ≤ n− 1 we
have pl(ul) < pl(vl), and pn(z − 1) < pn(z), then

r(p)n(αm(u1, v1; . . . ;un−1, vn−1; z)) =

αm(p1(u1), p1(v1); . . . ; pn−1(un−1), pn−1(vn−1); pn(z));

if for all 1 ≤ l ≤ n−1 we have pl(ul) < pl(vl), and pn(z−1) = pn(z),
then we define

r(p)n(αm(u1, v1; . . . ;un−1, vn−1; z))

to be the identity n-cell on the (n− 1)-cell

αn−1(p1(u1), p1(v1); . . . ; pl−1(ul−1), pn−1(vn−1); pl(z));
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otherwise, for the smallest l such that pl(ul) = pl(vl), we define

r(p)n(αm(u1, v1; . . . ;un−1, vn−1; z))

to be the identity m-cell on the (l − 1)-cell

αl−1(p1(u1), p1(v1); . . . ; pl−1(ul−1), pl−1(vl−1); pl(ul)).

Finally, we take the transpose of this map under the adjunction

R Q.
J

⊥
//

W
oo

We write ε : JW ⇒ 1 for the counit of this adjunction, and εφk for the
component corresponding to

Q(k) TX(k).
φk //

Then the transpose is given by the composite

εφk ◦ J
(
r(p), µTX(k) ◦ Tx(p)

)
.

This allows us to define the functors En : Θn → Q and In : Θn → P -Alg.

Definition 7.1. Define a functor En : Θn → Q as follows:

• given an object j ∈ Θn, En(j) is defined to be the object

Q(j) TX(j).
φ(j)
//

of Q;

• given a morphism p : j→ k in Θn, En(p) is defined to be the map

εφk ◦ J
(
r(p), µTX(k) ◦ Tx(p)

)
.

Write K : Q → P -Alg for the Eilenberg–Moore comparison functor for the
adjunction

n-GSet Q.
F

⊥
//

U
oo

We define a functor In := K ◦ En : Θn → P -Alg.
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We can now define the nerve functor for Penon weak n-categories.

Definition 7.2. The nerve functor N for Penon weak n-categories is defined
by

N : P -Alg −→ [(Θn)op,Set]

A

f

��

P -Alg(In(−),A)

f◦−
��

7−→

B P -Alg(In(−),B).

For a P -algebraA, the presheafNA = P -Alg(In(−),A) is called the nerve
of A.

8. Directions for further investigation

In this section we discuss the questions that arise from this nerve construc-
tion, and what further results need to be proved in order to make a more
complete comparison between Penon weak n-categories and Tamsamani–
Simpson weak n-categories. The central question is whether the following
conjecture holds:

Conjecture 8.1. Let A be a Penon weak n-category. Then the nerve NA
satisfies the Segal condition, and is thus a Tamsamani–Simpson weak n-
category.

We have proved this only in the case n = 2 (Theorem 6.8). As in the
2-dimensional case, for general n we can express the Segal maps in terms of
composition with wide pushouts of face maps, allowing us to rephrase some
parts of the Segal condition in terms of colimits of P -algebras in the image
of the functor In : Θn → P -Alg (for the 2-dimensional version, see Lem-
mas 6.1 and 6.2). However, it is not practical to generalise the proofs from
the 2-dimensional case to the general case by hand, due to their elemen-
tary approach. The use of computers in mathematical proofs has become
more prevalent in recent years, and it may be possible to generalise these
elementary proofs for low values of n, by using a computer to perform the
calculations of the cells in the P -algebras In(j). To prove Conjecture 8.1 in
general we would need a more abstract approach. The author believes that
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this would require a deeper understanding of the “partially free” P -algebras
(those generated from an object of R rather than an n-globular set) used in
the nerve construction; colimits of free P -algebras are easy to work with,
since the free P -algebra functor preserves colimits, but this is not true for
“partially free” P -algebras. Coherence for “partially free” Penon weak n-
categories would likely play a key role in this, though we have not yet made
this precise.

Another natural question to ask is whether the nerve functor for Penon
weak n-categories is full and faithful. We now prove that it is faithful, then
argue that it is not full and explain why this is the case.

Proposition 8.2. The nerve functor N : P -Alg→ [(Θn)op,Set] is faithful.

Proof. The idea of the proof is as follows: every presheaf (Θn)op → Set has
an underlying n-globular set, and in the case of the nerve of a Penon weak
n-category, this is isomorphic to the underlying n-globular set of the original
P -algebra. A map of P -algebras is a map of the underlying n-globular sets
satisfying a certain commutativity condition, and when we apply the nerve
functor to such a map the action on underlying n-globular sets remains un-
changed.

For all 0 ≤ k ≤ n, write

(1k,0) := (1, 1, . . . , 1︸ ︷︷ ︸
k times

, 0, 0, . . . , 0) ∈ Θn.

Observe that R(1k,0) = X(1k,0), so In(1k,0) = FPX(1k,0), where

FP : n-GSet −→ P -Alg

is the free P -algebra functor. Furthermore, for k ∈ Gn,

X(1k,0) ∼= Hk = Gn(−, k),

i.e. X(1k,0) is a representable functor. Thus, by the Yoneda lemma, for any
A ∈ n-GSet,

Ak ∼= n-GSet(Hk, A) ∼= n-GSet(X(1k,0, A)),
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naturally in A and k. Let A = (θA : PA→ A) be a P -algebra. Then, by the
adjunction FP a UP ,

n-GSet(X(1k,0), A) ∼= P -Alg(In(1k,0),A),

naturally in A.
Now suppose we have P -algebrasA = (θA : PA→ A), B = (θB : PB →

B), and maps of P -algebras u, v : A → B such that Nu = N v. Thus, for
each 0 ≤ k ≤ n we have

u ◦ − = v ◦ − : P -Alg(In(1k,0),A)→ P -Alg(In(1k,0),B).

We can write uk as the composite shown in the diagram below:

Ak Bk

n-GSet(Hk, A) n-GSet(Hk, B)

n-GSet(X(1k,0), A) n-GSet(X(1k,0), B)

P -Alg(In(1k,0),A) P -Alg(In(1k,0),B)

uk //

u◦−
//

u◦−
//

u◦−
//

∼=
��

∼=
��

∼=
��

∼=

OO

∼=

OO

∼=

OO

and similarly, we can write vk as:

Ak Bk

n-GSet(Hk, A) n-GSet(Hk, B)

n-GSet(X(1k,0), A) n-GSet(X(1k,0), B)

P -Alg(In(1k,0),A) P -Alg(In(1k,0),B).

vk //

v◦−
//

v◦−
//

v◦−
//

∼=
��

∼=
��

∼=
��

∼=

OO

∼=

OO

∼=

OO
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Since u◦− = v◦−, these diagrams give us that uk = vk for all 0 ≤ k ≤ n, so
u = v. Hence the nerve functor N : P -Alg→ [(Θn)op,Set] is faithful.

To see that the nerve functor is not full, consider the P -algebra illustrated
below:

•

g

��
•

f

FF

h
∼= //

k

AA •

where g ◦f = h. Any endomorphism of this P -algebra that sends f to f and
g to g must also send h to h, since maps of P -algebras preserve composition,
and h = g ◦ f . However, when we consider endomorphisms of the nerve of
this P -algebra, we see that there are endomorphisms sending f to f and g
to g that send h to k; such endomorphisms are not in the image of the nerve
functor.

This illustrates a key difference between algebraic and non-algebraic def-
initions of weak n-category: in the algebraic case the natural notion of map
preserves the composition structure, but in the non-algebraic case there is no
specified composition structure to preserve. In the example above, once we
have applied the nerve functor we no longer remember which cell was g ◦ f ,
and morphisms can now map h to any legitimate choice of composite.

Note that maps of nerves are still required to preserve identities, how-
ever, since these are specified by degeneracy maps. This means that maps
of Tamsamani–Simpson weak n-categories behave like normalised maps,
i.e. those that preserve identities strictly, but are only required to preserve
composition weakly. This has been formalised in the 2-dimensional case by
Lack and Paoli [22]. There is currently no definition of normalised maps
of Penon weak n-categories, and we believe that such a definition would
be necessary to adapt our nerve construction to give a full nerve functor for
Penon weak n-categories.

One final question raised by this work is whether every Tamsamani–
Simpson weak n-category arises as the nerve of a Penon weak n-category. To
answer this question we would need to construct a Penon weak n-category
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from a Tamsamani–Simpson weak n-category. Note that there will be no
canonical way to do this, since it would involve making choices of compos-
ites.

This nerve construction is a first step towards understanding the relation-
ships between algebraic and non-algebraic definitions of weak n-categories.
We have made a connection between the algebraic definition of Penon weak
n-categories and the non-algebraic setting in which Tamsamani–Simpson
weak n-categories are defined, allowing for the relationship between these
definitions to be studied. Our nerve construction is the first to allow for such
a comparison, and we believe that it should pave the way for more connec-
tions to be made between algebraic and non-algebraic definitions of weak
n-category.
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