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Résumé. Nous construisons explicitement une action de SO(2) sur une ver-
sion squelettique de la bicatégorie des cobordismes a bords a deux dimensions.
Par I’hypothese du cobordisme bidimensionnel pour les variétés a bords, nous
obtenons une action de SO(2) sur le noyau des objets complétement dual-
isables de la bicatégorie cible. Cette action coincide avec celle donnée par
I’automorphisme de Serre. Nous donnons une description explicite de la
bicatégorie des points fixes homotopiques de cette action, et discutons de sa
relation avec la classification des théories quantiques des champs topologiques
en 2 dimensions.

Abstract. We explicitly construct an SO(2)-action on a skeletal version of
the 2-dimensional framed bordism bicategory. By the 2-dimensional Cobor-
dism Hypothesis for framed manifolds, we obtain an SO(2)-action on the
core of fully-dualizable objects of the target bicategory. This action is shown
to coincide with the one given by the Serre automorphism. We give an explicit
description of the bicategory of homotopy fixed points of this action, and dis-
cuss its relation to the classification of oriented 2d topological quantum field
theories.
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1. Introduction

As defined by Atiyah in [Ati88] and Segal in [Seg04], an n-dimensional
Topological Quantum Field Theory (TQFT) consists of a functor between
two symmetric monoidal categories, namely a category of n-cobordisms, and
a category of algebraic objects. This definition was introduced to axiomatize
the locality properties of the path integral, and has given rise to a fruitful
interplay between mathematics and physics in the last 30 years. A prominent
example is given by a quantum-field-theoretic interpretation of the Jones
polynomial by Witten in [Wit89]].

More recently, there has been a renewed interest in the study of TQFTs,
due in great part to the Baez-Dolan Cobordism Hypothesis and its proof by
Lurie, whose main objects of investigation are fully extended TQFTs. These
are a generalization of the notion of n-dimensional TQFTs, where data is
assigned to manifolds of codimension up to n. The Baez-Dolan Cobordism
Hypothesis, originally stated in [BD93J]], and proved by Lurie in [Lur0O9] in
an oo-categorical version, can be stated as follows: fully extended framed
TQFTs are classified by their value on a point, which must be a fully dualiz-
able object in the target symmetric monoidal (oo, n)-category C. Moreover,
the oco-groupoid % (C'®) given by the core of fully dualizable objects of
C carries a homotopy O(n)-action induced by the “rotation of the framing”
on the framed (oo, n)-cobordism category [Lur09, Corollary 2.4.10]. The
inclusion SO(n) < O(n) then induces an SO(n)-action on # (C'®). By
the Cobordism Hyothesis for manifolds whose tangent bundle is equipped
with an additional G-structure, homotopy fixed-points for this action classify
fully extended oriented TQFTs. It is relevant to notice that in [Lur09] the
homotopy O(n)-action on the framed (0o, n)-category of cobordisms is not
explicitly constructed, or even briefly sketched. For an extensive introduction
to extended TQFTs and the Cobordism Hypothesis, we refer the reader to
[Erel2].

Blurring the distinction between (oo, 2)-categories and bicategories, in
[FHLT10] it is argued that in the case where the target is given by the bi-
category Alg, of algebras, bimodules, and intertwiners, the fully dualizable
objects are semisimple finite-dimensional algebras, and that the additional
SO(2)-fixed-points structure should correspond to the structure of a symmet-
ric Frobenius algebra. Via a direct construction, in [SP0Y] it is showed that
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the bigroupoid Frob of Frobenius algebras, Morita contexts and intertwin-
ers indeed classifies fully extended oriented 2-dimensional TQFTs valued in
Alg,. In [Davl1], it is observed that the SO(2)-action given by the Serre
automorphism on the core of fully-dualizable objects of Alg, is trivializable.
In a purely bicategorical setting, in [HSV17] the homotopy-fixed-point bi-
groupoid of the SO(2)-action on Alg, is computed, and it is shown that it
coincides with Frob.

In the present paper we provide an explicit SO(2)-action on the framed
bordism bicategory, and show that the SO(2)-action induced on .# (C™) for
any symmetric monoidal bicategory C is given by the Serre automorphism,
regarded as a pseudo-natural isomorphism of the identity functor. More
precisely, we make use of a presentation of the framed bordism bicategory
provided in [Pst14] to construct such an SO(2)-action.

By the Cobordism Hypothesis for framed manifolds, which has been
proven in the setting of bicategories in [Pstl14], there is an equivalence of
bicategories

Fung (Coby, 4,C) = #(C™). (1)

This equivalence allows us to transport the SO(2)-action on the framed bor-
dism bicategory to the core of fully-dualizable objects of C. We then prove
that this induced SO(2)-action on % (C') is given precisely by the Serre
automorphism, showing that the Serre automorphism has indeed a geometric
origin, as expected from [LurQ9].

Along the way, we also provide results concerning monoidal homotopy
actions which are useful in determining when such actions are trivializ-
able. The relevance for TQFT is the following: in the case of a trivializ-
able SO(2)-action, any framed fully extended 2d TQFT can be promoted
to an oriented one by providing the appropriate structure of a homotopy
fixed point. In particular, we apply these results to the case of invertible 2d
TQFTs, which have recently attracted interest for their application to con-
densed matter physics, more specifically to the study of topological insulators
[Erel4al Frel14bl [FH16]. Namely, fully extended invertible TQFTs have been
proposed as the low energy limit of short-range entanglement systems; see
[Ere14b] for a discussion of these topics.

First defintions of monoidal bicategories appear in [KV94], [BN96] and
[DS97], with a first full definition of a symmetric monoidal bicategory in
[McCO00]. We will refer to [SP09] for technical details. In section[3] we use
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the wire-diagram calculus developed in [Bar14].

It is worth noticing that the study of actions of groups on higher cate-
gories and their homotopy fixed points is also of independent interest, see for
instance [EGNO15, BGM17] for the case of finite groups.

The paper is organized as follows.

In Section [2] we recall the notion of a fully-dualizable object in a symmetric
monoidal bicategory C. For each such an object X, we define the Serre
automorphism as a certain 1-endomorphism of X. We show that the Serre
automorphism is a pseudo-natural transformation of the identity functor on
2 (C™), which is moreover monoidal. This suffices to define an SO(2)-
action on ¢ (C™?).

Section [3]investigates when a group action on a bicategory C is equivalent
to the trivial action. We obtain a general criterion for when such an action is
trivializable.

In Section ] we compute the bicategory of homotopy fixed points of an
SO(2)-action coming from a pseudo-natural transformation of the identity
functor of an arbitrary bicategory C. This generalizes the main result in
[HSV17]], which computes homotopy fixed points of the trivial SO(2)-action
on Alggd. Our more general theorem allows us to give an explicit description
of the bicategory of homotopy fixed points of the Serre automorphism.

In Section [5] we introduce a skeletal version of the framed bordism bi-
category by generators and relations, and define a non-trivial SO(2)-action
on this bicategory. By the framed Cobordism Hypothesis, as in Equation (T,
we obtain an SO(2)-action on % (C™), which we prove to coincide with the
one given by the Serre automorphism.

In Section[6| we discuss invertible 2d TQFTs, providing a general criterion
for the trivialization of the SO(2)-action in this case.

In Section[7] we give an outlook on homotopy co-invariants of the SO(2)-
action, and argue about their relation to the Cobordism Hypothesis for ori-
ented manifolds.

Acknowledgments

The authors would like to thank Domenico Fiorenza, Claudia Scheimbauer
and Christoph Schweigert for useful discussions. Furthermore, the authors
would like to thank the referee for useful comments and remarks which

-197 -



J. HESSE AND A. VALENTINO HOMOTOPY ACTIONS

improved the paper significantly. J.H. is supported by the RTG 1670 “Mathe-
matics inspired by String Theory and Quantum Field Theory”. A.V. is partly
supported by the NCCR SwissMAP, funded by the Swiss National Science
Foundation, and by the COST Action MP1405 QSPACE, supported by COST
(European Cooperation in Science and Technology).

2. Fully-dualizable objects and the Serre automorphism

The aim of this section is to introduce the main objects of the present pa-
per. On the algebraic side, these are fully-dualizable objects in a symmetric
monoidal bicategory C, and the Serre automorphism. Though some of the
following material has already appeared in the literature, we recall the rele-
vant definitions in order to fix notation. For details, we refer the reader to
[Pst14]].

Definition 2.1. A dual pair in a symmetric monoidal bicategory C consists
of an object X, an object X*, two 1-morphisms

evy X RX" =1

. (2)
coevy 11 > X ® X
and two invertible 2-morphisms o and 3 in the diagrams below.
XX 9X) "> (XXX
idX@CV \W?idx
X®1 “a 1®X
/ \
X . X
3)
(X*eX) o X" = X*® (X X"
coevx(gi(j/' wevx
1 X* “5 X*®1
X id x* X
4)
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We call an object X of C dualizable if it can be completed to a dual pair. A
dual pair is said to be coherent if the “swallowtail” equations are satisfied,
as in [Pstl4, Def. 2.6].

Remark 2.2. Given a dual pair, it is always possible to modify the 2-cell 5
in such a way that the swallowtail are fulfilled, cf. [Pst14, Theorem 2.7].

Dual pairs can be organized into a bicategory by defining appropriate 1-
and 2-morphisms between them, cf. [Pst14, Section 2.1]. The bicategory of
dual pairs turns out to be a 2-groupoid. Moreover, the bicategory of coherent
dual pairs is equivalent to the core of dualizable objects in C. In particular,
this shows that any two coherent dual pairs over the same dualizable object
are equivalent.

We now come to the stronger concept of fully-dualizability.

Definition 2.3. An object X in a symmetric monoidal bicategory is called
fully-dualizable if it can be completed into a dual pair and the evaluation
and coevaluation maps admit both left- and right adjoints.

Note that if left- and right adjoints exists, the adjoint maps will have
adjoints themselves, since we work in a bicategorical setting, cf. [Pst14]].
Note that if left- and right adjoints for the 1-morphisms ev and coev exist,
these adjoint 1-morphisms will in turn have additional adjoints themselves.
Thus, Definition [2.3]agrees with the definition of [Lur09] in the special case
of bicategories.

2.1 The Serre automorphism

Recall that by definition, the evaluation morphism for a fully dualizable
object X admits both a right-adjoint evi and a left adjoint evk. We use
these adjoints to define the Serre-automorphism of X:

Definition 2.4. Let X be a fully-dualizable object in a symmetric monoidal
bicategory. The Serre automorphism of X is the following composition of
1-morphisms:
~ idx®8V§ % Tx,x ®id x « dx®evx ~
Sx : X ZXQRI — XXX ———— XXX —— X®1 = X.
)
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Notice that the Serre automorphism is actually a 1-equivalence of X,
since an inverse is given by the 1-morphism

Sy = (idx oevy) o (Tx,x ® idx-) o (idx ® evk), (6)

cf. [Lur09, DSS13].
The next lemma is well-known [Lur(09, |Pst14]], and is straightforward to show
graphically.

Lemma 2.5. Let X be fully-dualizable in C. Then, there are 2-isomorphisms

evf} = 7x« x o (idx+ ® Sx) o coevy o
evg} = 7x« x o (idys ® S)_(l) 0 Ccoevy .
Next, we show that the Serre automorphism is actually a pseudo-natural
transformation of the identity functor on the maximal subgroupoid of C, as
suggested in [Schl13]. To the best of our knowledge, a proof of this state-
ment has not appeared in the literature so far, hence we illustrate the details
in the following. We begin by showing that the evaluation 1-morphism is
“dinatural”.

Lemma 2.6. Let X be dualizable in C. The evaluation I-morphism ev x is
“dinatural”: for every I-morphism f : X — Y between dualizable objects,
there is a natural 2-isomorphism ev ¢ in the diagram below.

idef*

XRY* X ®X*
f®idl vy J/QVX (8)
Y ® Y™ T> 1

By “di-naturality”, we explicitly mean that for every 2-morphism o : f = g
in C, the following diagram commutes

id®g*
%
XYV —— X X* XYV — X X*
id® f* id®g™
g®id ﬁlf@id% J/eVX = lg@id% J/eVX
Y@V —— 1 YOV —— 1

€))
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Proof. We explicitly write out the definition of f* and define ev to be the
composition of the 2-morphisms in the diagram below.

Yy Jdeoevxid g v ey S gy didesy g ¥ x*

ch x idid ~ va\, idid Jev X i
— . . id fid id evy
S ar| = | %11 1Xy 1yy* 11

fid l

%
z
\
<;
2

Xy idid Xy

(10)
Since the 2-morphism ev; is given by the composition of associators and un-
itors which are natural 2-morphisms, it is natural itself, and thus the diagram
in equation [9 commutes. [

In order to show that the Serre automorphism is pseudo-natural, we also
need to show the dinaturality of the right adjoint of the evaluation.

Lemma 2.7. For a fully-dualizable object X of C, the right adjoint ev® of
the evaluation is “dinatural” with respect to 1-equivalences: for every I-
equivalence f : X — Y between fully-dualizable objects, there is a natural
2-isomorphism eVJIE2 in the diagram below.

evl
] —— X X"

evﬁl f lf@id (11)
er

Proof. In a first step, we show that f @ (f *)_1 o ev® is a right-adjoint to
evy o(f~t® f*). In formula:

(evxof '@ f) = f@ (f) " oevk. (12)
Indeed, let
Nx : idxgxs — evf} oevy

13
SX:evXoevf}—Hdl (13)

-201 -



J. HESSE AND A. VALENTINO HOMOTOPY ACTIONS

be the unit and counit of the right-adjunction of evx and its right adjoint evZ.
We construct unit and counit for the adjunction in Equation (I2). Let

cevx o o (f@ (f) Doevl Zevyoevk 5 id,
vidyey- 2 (f@ (F) o (F @ f) (14)

SES (Fe () eevkoevko(f @ )

M

Rt

Now, one checks that the quadruple

(evxo(f '@ f*), (f& (f) ) oevk, &) (15)

fulfills indeed the axioms of an adjunction. This follows from the fact that the
quadruple (evy,ev¥, ex,nx) is an adjunction. This shows Equation (T2).

Now, notice that due to the dinaturality of the evaluation in Lemma [2.6]
we have a natural 2-isomorphism

evy Zevyo(f 1@ f*). (16)

Combining this 2-isomorphism with Equation (12) shows that the right ad-
joint of evy is given by f ® (f *)_1 oevil. Since all right-adjoints are isomor-
phic the 1-morphism f @ (f*)~" o ev% is isomorphic to evE, as desired. [

We can now prove the following proposition.

Proposition 2.8. Let C be a symmetric monoidal bicategory. Denote by
A (C) the maximal sub-bigroupoid of C. The Serre automorphism S is a
pseudo-natural isomorphism of the identity functor on ¥ (C™?).

Proof. Let f : X — Y be a l-morphism in .# (C'). We need to provide a
natural 2-isomorphism in the diagram

Sx

X 2, x
17
| A o
Y ——— Y
Sy
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By spelling out the definition of the Serre automorphism, we see that this is
equivalent to filling the following diagram with natural 2-cells:

i evi T id y idx evy
X X1 XNy e DXy xe X1 X
-fJ ind Jff(f*)l Jff(f*)l ind Jf
Y Y1— 5 YYY  — 5 YYY* — Y1 Y
idy evy Ty,y idy=* idy evy
(18)

The first, the last and the middle square can be filled with a natural 2-cell due
to the fact that C is a symmetric monoidal bicategory. The square involving
the evaluation commutes up to a 2-cell using the mate of the 2-cell of Lemma
[2.6, while the square involving the right adjoint of the evaluation commutes
up a 2-cell using the mate of the 2-cell of Lemma[2.7] [

2.2 Monoidality of the Serre automorphism

In this section we show that the Serre automorphism respects the monoidal
structure. We will show that the Serre-automorphism is a monoidal pseudo-
natural transformation of the identity functor. We begin with the following
two lemmas:

Lemma 2.9. Let C be a monoidal bicategory. Let X and Y be dualizable
objects of C. Then, there is a 1-equivalence {xy @ (X @ Y)* 2 YV* @ X*
Furthermore, this 1-equivalence £ is pseudo-natural: suppose that f : X —
X' and g : Y — Y’ are two I-morphisms in C. Then, there is a pseudo-
natural 2-isomorphism in the diagram in equation (19).

(XQY) —2X |, yrg X

(f®g)*T Tg*@f* (19)
5}‘39

(X/®Y/)* - Y/* ®X/*

gX’,Y/
Proof. Define a 1-morphism (X ® Y')* — Y*® X* in C by the composition

(idy+®idx- ®evxgy)o(idy+®coev x ®idy ®id(xgy)-)o(coevy ®id(xgy)+)
(20)
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and define another 1-morphism Y*®X* — (X®Y')* in C by the composition

(id(X®y)* ® eVX) o (id(X@)y)* ®idx ®evy ®idx« ) o (COQVX®Y ®id; ®1d x= )

2D
These two 1-morphisms are (up to invertible 2-cells) inverse to each other.
This shows the first claim. The existence and the pseudo-naturality of the
2-isomorphism &, now follows from the definition of § and lemma[2.6l [

Now, we show that the evaluation 1-morphism respects the monoidal
structure:

Lemma 2.10. For a dualizable object X of a symmetric monoidal bicategory
C, the evaluation 1-morphism ev x is a monoidal pseudo-dinatural transfor-
mation: namely, the following diagram commutes up to 2-isomorphism.

(X0Y)®(X®Y) ey 1

idx®Y®f$l l

(X@Y)@Y*®X* — 5 X RX'RQY QY —— » 1®1
idx®Tygy*, x* evy ®evy
(22)

Here, the 1-equivalence § is due to Lemma

Proof. Let us construct a 2-isomorphism in the diagram in Equation (22]).
Consider the diagram in figure [[|on page @I} here, the composition of the
horizontal arrows at the top, together with the two arrows on the vertical right
are exactly the 1-morphism in Equation (22)). The other arrow is given by
evyxgy. We have not written down the tensor product, and left out isomor-
phisms of the form 1 ® X = X = X ® 1 for readability. [

We can now establish the monoidality of the right adjoint of the evaluation
via the following lemma.

Lemma 2.11. Let C a symmetric monoidal bicategory, and let X and Y be
fully-dualizable objects. Then, the right adjoint of the evaluation is monoidal.
More precisely: if § - (X @ Y)* — Y* ® X* is the I-equivalence of Lemma
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2.9 the following diagram commutes up to 2-isomorphism.

R
ey oy

1

P XY QX ®Y)
ev§ ®ev§J{ lidx@y@g (23)

XX'QQYQRQY — X QYY" ® X"

dx®Tx* yoy~
Proof. In a first step, we show that the right adjoint of the 1-morphism
(evx ®evy) o (idxy @ Tygy« x+) o (ldxgy ® &) (24)
is given by the 1-morphism
(idxey ® £71) o (idx o Tx yey+) o (evi ®evi). (25)

Indeed, if
Nx :idxgxs — ev§ oevy

(26)

€x : evXoevf} — idy

are the unit and counit of the right-adjunction of evy and its right adjoint

evl, we construct adjunction data for the adjunction in equations (24) and

(23) as follows. Let £ and 7] be the following 2-morphisms:

£: (evy ®evy) o (idxy ® Tyey- x+) o (idxey ® &) o (idyey ® 1)
o (idx ® Tx+yay+) o (evy @evi)
>~ (evy ®evy) o (idy ® Tyey-.x-) o (idx ® Tx-yey-) o (evh @ evy)
>~ (evy ®evy) o (ev§ ® ev{?) ExPev, id;
(27)

and

77 idxeve(xey)y = (ldxgy ® 1) o (idxgy ® §)
= (idX®y ® 5_1) o (ldX ® TX*,Y@Y*) o (ldX & TY®Y*,X*) o (idX®y & f)

idonx @ny ®id . _ )
RS NS EN (idxgy ® € 1) o(ildx ® Tx+ygy+) © (evf} ® ev{z)

o(evy ®evy) o (idx ® Tygy= x+) o (ldxgy ® §)
(28)
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One now shows that the two 1-morphisms in Equation (24)) and (23), together
with the two 2-morphisms £ and 7 form an adjunction. This gives that the
two 1-morphisms in Equations and are adjoint.

Next, notice that the 1-morphism in Equation is isomorphic to the
l-morphism ev ygy by Lemma [2.10] Thus, the right adjoint of evygy is
given by the right adjoint of the 1-morphism in Equation (24)), which is the
I-morphism in Equation (25]) by the argument above. Since all adjoints are
equivalent, this shows the lemma. O]

We are now ready to prove that the Serre automorphism is a monoidal
pseudo-natural transformation.

Proposition 2.12. Let C be a symmetric monoidal bicategory. Then, the Serre
automorphism is a monoidal pseudo-natural transformation of 1d ; cta).

Proof. By definition (cf. [SP09, Definition 2.7]), we have to provide invert-
ible 2-cells
nyy : SX®Y — SX ® Sy
M Sl — idl,

satisfying suitable coherence equations. By the definition of the Serre au-
tomorphism in Definition [2.4] it suffices to show that the evaluation and its
right adjoint are monoidal, since the braiding 7 will be monoidal by defi-
nition. The monoidality of the evaluation is proven in Lemma [2.10, while
the monoidality of its right adjoint follows from Lemma 2.T1] These two
lemmas thus provide an invertible 2-cell Sxgy = Sx ® Sy. The second
2-cell id; — Sy can be constructed in a similar way, by noticing that 1 =2 1%,

The three coherence equations for a pseudo-natural transformation now
read

(29)

[xgy,z o (llxgy ®ids,) = lx yez o (idsy @ Ilyz)

I x = M ®idg, (30)
Iy, =ids, ® M
and can be checked directly by hand. [

3. Monoidal homotopy actions

In this section, we investigate homotopy actions on symmetric monoidal
bicategories. In particular, we are interested in the case when the group
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action is compatible with the monoidal structure. By a (homotopy) action of
a topological group GG on a bicategory C, we mean a weak monoidal 2-functor
p : 1Io(G) — Aut(C), where I15(G) is the fundamental 2-groupoid of GG, and
Aut(C) is the bicategory of auto-equivalences of C. For details on homotopy
actions of groups on bicategories, we refer the reader to [HSV17]].

In order to simplify the exposition, we introduce the following

Definition 3.1. Let G be a topological group. We will say that G is 2-
truncated if mo(G, x) is trivial for every base point x € G.

Moreover, we will need also the following definition.

Definition 3.2. Let C be a symmetric monoidal bicategory. We will say that C
is algebraically I-connected if it is monoidally equivalent to B*H, for some
abelian group H.

In the following, we denote by Autg(C) the monoidal bicategory of in-
vertible monoidal weak 2-functors of C, invertible monoidal pseudo-natural
transformations, and invertible monoidal modifications. Details of the con-
struction can be found in [Hes17, Appendix A].

Definition 3.3. Let C be a symmetric monoidal category and G be a topolog-
ical group. A monoidal homotopy action of G on C is a monoidal morphism
p: 1Io(G) — Autg(C).

We now prove a general criterion for when monoidal homotopy actions
are trivializable.

Proposition 3.4. Let C be a symmetric monoidal bicategory, and let G be a
path connected topological group. Assume that G is 2-truncated, and that
Autg (C) is algebraically 1-connected, with abelian group H. If the second
cohomology group H gzrp(m(G, e), H) ~ 0, then any monoidal homotopy
action of G on C is pseudo-naturally isomorphic to the trivial action.

Proof. Let p : TIo(G) — Autg(C) be a weak monoidal 2-functor. Since
Autg (C) was assumed to be monoidally equivalent to B2 H for some abelian
group H, the group action p is equivalent to a weak monoidal 2-functor
p : ly(G) — B%H. Due to the fact that G is path connected and 2-truncated,
we have that II5(G) ~ Bm(G,e), where 7 (G, e) is regarded as a discrete
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monoidal category. Thus, the monoidal homotopy action p is monoidally
equivalent to a weak monoidal 2-functor B (G, e¢) — B?H.

We claim that such functors are classified by H;,, (71(G,e), H) up to
monoidal pseudo-natural isomorphism. Indeed, let F' : Bm(G,e) — B*H
be a weak monoidal 2-functor. It is easy to see that F' is trivial as a weak
2-functor, since we must have F'(x) = # on objects, F'(vy) = id, on 1-
morphisms, and B (G) only has identity 2-morphisms. Thus, the only
non-trivial data of F' can come from the monoidal structure on /. The 1-
dimensional components of the pseudo-natural transformations x,; : F(a)®
F(b) — F(a®b) must be trivial since there are only identity 1-morphisms in
B?H. The 2-dimensional components of this pseudo-natural transformation
consists of a 2-morphism Yy, in B2H for every pair of 1-morphisms 7 :
a—band v : a’ — V' in Bmi(G) in the diagram in equation (31) below.

Fla)® F(d') —=“ % Fla®d)
F(7)®F(7/)l - le@v’) (1)

Hence, we obtain a 2-cochain 7 (G) x 71 (G) — H, which obeys the cocycle
condition due to the coherence equations of a monoidal 2-functor, cf. [SPQ9,
Definition 2.5].

One now checks that a monoidal pseudo-natural transformation between
two such functors is exactly a 2-coboundary, which shows the claim. Since
we assumed that Hj, (71 (G, e), H) ~ 0, the original action p must be trivi-

alizable. O

Next, we show that the bicategory Alggd of finite-dimensional, semi-
simple algebras, bimodules and intertwiners, equipped with the monoidal
structure given by the direct sum fulfills the conditions of Proposition [3.4]

Lemma 3.5. Let K be an algebraically closed field. Let C = Alg'' be the bi-
category where objects are given by finite-dimensional, semi-simple algebras,
equipped with the monoidal structure given by the direct sum. By viewing C
with the monoidal structure equipped by the direct sum, C turns into a linear
bicategory. Then, Autg (C) and B*K* are equivalent as symmetric monoidal
bicategories.
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Proof. Let F' : Alggd — Alggd be a weak monoidal 2-equivalence, and let
A be a finite-dimensional, semi-simple algebra. Then A is isomorphic to
a direct sum of matrix algebras. Calculating up to Morita equivalence and
using that F' has to preserve the single simple object K of Alg,, we have

F(A) = F (@ M, (K)) =~ EB F (M, (K)) = @F(K)
~PK=P M, (K) = A

A straightforward calculation using basic linear algebra confirms that these
isomorphisms are even pseudo-natural. Thus, the functor F' is pseudo-
naturally isomorphic to the identity functor on Alggd.

Now, letn : F' — G be a monoidal pseudo-natural isomorphism between
two endofunctors of Alg,. Since both F' and G are pseudo-naturally isomor-
phic to the identity, we may consider instead a pseudo-natural isomorphism
1 :idpge — idyn. We claim that up to an invertible modification, the
1-equivalence 74 : A — A must be given by the bimodule 4 A 4, which is the
identity 1-morphism on A in Alg,. Indeed, since 74 is assumed to be linear,
it suffices to consider the case of A = M,,(K) and to take direct sums. It is
well-known that the only simple modules of A are given by K". Thus,

na = (K" @k (K", (33)

where o and (8 are multiplicities. Now, [HSV17, Lemma 2.6] ensures that
these multiplicities are trivial, and thus we have 74 = 4 A 4 up to an invertible
intertwiner. This shows that up to invertible modifications, all 1-morphisms
in Autg (Alghk') must be identities.

Now, let m be a monoidal invertible endo-modification of the pseudo-
natural transformation ididAlgg .- Then, the component my : 444 — 4Aais

(32)

an element of End4 4)(A) = K. As the modification square commutes auto-

matically, this show that the 2-morphisms of Autg(Algk') stand in bijection
to K*. [

Remark 3.6. Notice that the symmetric monoidal structure on Alg consid-
ered above is not the standard one, which is instead the one induced by the
tensor product of algebras, and which is the monoidal structure relevant for
the remainder of the paper.
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The last lemmas imply the following

Lemma 3.7. Any monoidal SO(2)-action on Alggd equipped with the monoidal
structure given by the direct sum is trivial.

Proof. Since m(SO(2),e) ~ Z, and HZ (Z,K*) ~ H*(S',K*) ~ 0,
Proposition [3.4] and Lemma 3.5 ensure that any monoidal SO(2)-action on

Algl is trivializable. O

Recall that we regarded C = Alggd as a monoidal bicategory with the
monoidal structure given by direct sums.

Corollary 3.8. Since Alggd and Vectgd are equivalent as additive categories,
any SO(2)-action on Vecty via linear morphisms is trivializable.

Remark 3.9. The last two results rely on the fact that Autg(Algh') and
Autg(Vecth!) are 1-connected as additive categories. This is due to the fact
that fully-dualizable part of either Alg, or Vect, is semi-simple. An example
in which the conditions in Proposition [3.4] do not hold is provided by the
bicategory of Landau-Ginzburg models.

4. Computing homotopy fixed points

In this Section, we explicitly compute the bicategory of homotopy fixed
points of an SO(2)-action which is induced by an arbitrary pseudo-natural
equivalence of the identity functor of an arbitrary bicategory C. Recall that
a G-action on a bicategory C is a monoidal 2-functor p : II,(G) — Aut(C),
or equivalently a trifunctor p : Blly(G) — Bicat with p(x) = C. The
bicategory of homotopy fixed points C¢ is then given by the tri-limit of this
trifunctor.

In Bicat, the tricategory of bicategory, this trilimit can be computed as
follows: if A : BIlo(G) — Bicat is the constant functor assigning to the
one object * the terminal bicategory with one object, the trilimit of the action
functor p is given by

CY :=lim p = Nat(A, p), (34)

the bicategory of tri-transformations between p and A. This definition is
explicitly spelled out in [HSV17, Remark 3.11]. We begin by defining an
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SO(2)-action on an arbitrary symmetric monoidal bicategory, starting from
a pseudo-natural transformation of the identity functor on C.

Definition 4.1. Since 115(SO(2)) is equivalent to the bicategory with one
object, Z worth of morphisms, and only identity 2-morphisms, we may define
an SO(2)-action p : 115(SO(2)) — Autg(C) by the following data:

e For every group element g € SO(2), we assign the identity functor of
C.

e For the generator 1 € 7, we assign the pseudo-natural transforma-
tion of the identity functor given by . Due to the monoidality, this
determines the value of p on an arbitrary integer.

e Since there are only identity 2-morphisms in 7., we have to assign these
to identity 2-morphisms in C.

e For composition of 1-morphisms, we assign the invertible modification
pla +b) = p(a) o p(b) coming from the fact that « is a monoidal
pseudo-natural transformation with respect to composition, which is
the monoidal product in Autg(C).

e [n order to make p into a monoidal 2-functor, we have to assign ad-
ditional data which we can choose to be trivial. In detail, we set
p(g®@h) = p(g)® p(h), and p(e) := id¢. Finally, we choose w, y and
0 as in [HSV17, Remark 3.8] to be identities.

For a proof that this defines indeed a weak 2-functor, we refer to [Davll1,
Lemma 3.2.3].

Our main example is the action of the Serre automorphism on the core of
fully-dualizable objects:

Example 4.2. If C is a symmetric monoidal bicategory, consider .# (C'),
the core of the fully-dualizable objects of C. By Proposition the Serre
automorphism defines a pseudo-natural equivalence of the identity functor on
¢ (C'). By Definition we obtain an SO(2)-action on % (C™), which
we denote by p°.
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The next theorem computes the bicategory of homotopy fixed points
C39() of the action in Definition This theorem generalizes [HSV17,
Theorem 4.1], which only computes the bicategory of homotopy fixed points
of the trivial SO(2)-action.

Theorem 4.3. Let C be a symmetric monoidal bicategory, and let o : ide —
id¢ be a monoidal pseudo-natural equivalence of the identity functor on C.
Let p be the SO(2)-action on C as in Definition Then, the bicategory of
homotopy fixed points C© is equivalent to the bicategory with

e objects: (c,\) where c is an object of C and \ : o, — id. is a 2-
isomorphism,

o [-morphisms (c,\) — (¢, \') in C€ are given by 1-morphisms f : c —

c in C, so that the diagram

id £ %\
Oéc’of <a—f foOécl> foidc

x*idfl l (35)

id. o f > f

commutes,
o 2-morphisms of C¢ are given by 2-morphisms in C.

Proof. In order to prove the theorem, we need to explicitly unpack the defini-
tion of the bicategory of homotopy fixed points C%. This is done in [HSV17,
Remark 3.11 - 3.14]. In the following, we will use the notation introduced in
[HSV17].

The idea of the proof is to show that the forgetful functor which on objects
of CY forgets the data ©, IT and M is an equivalence of bicategories. In order
to show this, we need to analyze the bicategory of homotopy fixed points.
We start with the objects of CC.

By definition, a homotopy fixed point of this action consists of

e Anobjectc € C,

e A l-equivalence © : ¢ — ¢,
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e For every n € Z, an invertible 2-morphism ©,, : ol 0 © — © oid, so
that (9, ©,,) fulfill the axioms of a pseudo-natural transformation,

e A 2-isomorphism Il : ©o© — O which obeys the modification square,
e Another 2-isomorphism M : © — id.

so that the following equations hold: Equation 3.18 of [HSV17]] demands
that
[To (ide *x IT) =TT o (IT x idg) (36)

whereas Equation 3.19 of [HSV17] demands that IT equals the composition

000 MM 9544, ~ 0 (37)

and finally Equation 3.20 of [HSV17] tells us that II must also be equal to
the composition

000 Mo iy co =0, (38)

Hence II is fully specified by M. An explicit calculation using the two
equations above then confirms that Equation (36) is automatically fulfilled.
Indeed, by composing with II~! from the right, it suffices to show that idg *
IT = II * ide. Suppose for simplicity that C is a strict 2-category. Then,

idg * II = idg * (M * idg) by equation (38))
= (ide * M) = ide (39)
= Il xide by equation (37)).

Adding appropriate associators shows that this is true in a general bicategory.
Note that by using the modification M, the 2-morphism ©,, : af —

O o id. can be regarded as a 2-morphism )\, : a. — id.. Here, o is the

n-times composition of 1-morphism «.. Indeed, define A, by setting

Ap = <acgacoidcw>aco@e—”>@oidcg@ﬂndc). (40)

In a strict 2-category, the fact that © is a pseudo-natural transformation re-
quires that Ay = id. and that \,, = A % --- % A\;. In a bicategory, similar
equations hold by adding coherence morphisms. Thus, \,, is fully determined
by A;. In order to simplify notation, we set A := Ay : o, — id,.
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A 1-morphism of homotopy fixed points (¢, ©,0,,,II, M) — (¢,©",0! 11’ M’)
consists of:

e a l-morphism f : ¢ — ¢/,

e an invertible 2-morphism m : f o ©® — ©’ o f which fulfills the
modification square. Note that m is equivalent to a 2-isomorphism
m : f — f’ which can be seen by using the 2-morphism M.

The condition due to Equation 3.24 of [HSV17] demands that the following
2-isomorphism

fo0 XN, foid, = f @a1)
is equal to the 2-isomorphism
foo ™o of LU iq,0fxf 42)

and thus is equivalent to the equation
id s /71*1 X
m = (fo®Mfoidcgfgiddofu@’of> 43)
Thus, m is fully determined by M and M’. The condition due to Equation
3.23 of [HSV17]] reads
mo (idy % IT) = (II' x idy) o (ider * m) o (m * ide) (44)

and is automatically satisfied, as an explicit calculation in [HSV17] confirms.
Now, it suffices to look at the modification square of m, in Equation 3.25 of
[HSV17]. This condition is equivalent to the commutativity of the diagram

ay o f o @ arxide f o @ idy*0O1 f o @
ida,, ml lm (45)
/ R /
a0 ®o f ) +id; » &of

Substituting m as in Equation (#3)) and ©, for A := )\, as defined in Equation
(40), one confirms that this diagram commutes if and only if the diagram in
Equation (35) commutes.
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If (f,m) and (g,n) are 1-morphisms of homotopy fixed points, a 2-
morphism of homotopy fixed points consists of a 2-isomorphism 3 : f — g
in C. The condition coming from Equation 3.26 of [HSV17]] then demands
that the diagram

foO —™ L ©0f

g*id@l lid@,*g (46)

go® ——— O’ oy

commutes. Using the fact that both m and n are uniquely specified by M
and M’, one quickly confirms that this diagram commutes automatically.
Our detailed analysis of the bicategory C“ shows that the forgetful functor
which forgets the data ©, M, and II on objects and assigns ©; to A, which
forgets the data m on 1-morphisms, and which is the identity on 2-morphisms
is an equivalence of bicategories. ]

Corollary 4.4. Let C be a symmetric monoidal bicategory, and consider
the SO(2)-action of the Serre automorphism on ¢ (C') as in Example
Then, the bicategory of homotopy fixed points # (C*)%°?) is equivalent to
a bicategory where

e objects are given by pairs (X, Ax) with X a fully-dualizable object of
C and \x : Sx — idyx is a 2-isomorphism which trivializes the Serre
automorphism,

e [-morphisms are given by 1-equivalences f : X — Y in C, so that the
diagram

SyOf(S—ffoSXM)foidX

ey | | 47)

idXof )f

commutes, and
e 2-morphisms are given by 2-isomorphisms in C.

Remark 4.5. Recall that we have defined the bicategory of homotopy fixed
points C“ as the tri-limit of the action considered as a trifunctor p : BII(G) —
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Bicat. Since we only consider symmetric monoidal bicategories, we actu-
ally obtain an action with values in SymMonBicat, the tricategory of sym-
metric monoidal bicategories. It would be interesting to compute the limit
of the action in this tricategory. We expect that this trilimit computed in
SymMonBicat is given by C¢ as a bicategory, with the symmetric monoidal
structure induced by the symmetric monoidal structure of C.

Remark 4.6. By [Dav11]], the action via the Serre automorphism on .# (Alg’)
is trivializable. The category of homotopy fixed points %2 (Alggd)s‘)@) is then
equivalent to the bigroupoid of symmetric, semi-simple Frobenius algebras.

Similarly, the action of the Serre automorphism on Vects, is trivializable.
The bicategory of homotopy fixed points of this action is equivalent to the
bicategory of finite Calabi-Yau categories, cf. [HSV17].

5. The 2-dimensional framed bordism bicategory

In this Section, we introduce a stricter version of the framed bordism bicate-
gory Cobé‘:m: this symmetric monoidal bicategory s, is the free bicategory
of a coherent fully-dual pair as introduced in [Pst14, Definition 3.13].

In order to efficiently work with this symmetric monoidal bicategory I,
we use a strictification result for symmetric monoidal bicategories as proven
in [Barl4, Proposition 13]: any symmetric monoidal bicategory is equiva-
lent to a stringent symmetric monoidal 2-category, which can be completely
described in terms of a wire diagram calculus introduced in [Barl4]. In
the following, we apply this strictification result to the symmetric monoidal
bicategory F.rq, and provide a description using the wire diagram calculus
developed in [Bar14], which we also refer to for the definition of a stringent
symmetric monoidal 2-category.

Using this description, we define a non-trivial SO(2)-action on Fz4. If C
is an arbitrary symmetric monoidal bicategory, the action on F. ¢4 will induce
an action on the functor bicategory Fung (F.rq,C) of symmetric monoidal
functors. Using the Cobordism Hypothesis for framed manifolds, which has
been proven in the bicategorical framework in [Pst14], we obtain an SO(2)-
action on % (C™®). We show that this induced action coming from the framed
bordism bicategory is exactly the action given by the Serre automorphism.
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We begin by recasting the definition of ¢4 in terms of the wire diagram
calculus.

Definition 5.1. The symmetric monoidal bicategory F ;4 consists of
e 2 generating objects L and R,

o 4 generating I-morphisms, given by

R L
a I-morphism coev : 1 — R ® L, which we write as U

ev: L ® R — 1whichwe write as LmR

a I-morphismq : L — L,

another 1-morphism ¢ ':L— L,

o [2 generating 2-cells given by

— isomorphisms o, B, o' and 7! as in Definition which in
pictorial form are given as follows:

(48)
— isomorphisms ) : qq~ ' = idy Y land ¢ : g lqg = idy, o7t

— 2-cells p, : id; — evoevl and e, : evFoev — idgpr, where
evl := 70 (idg ® ¢71) o coev which in pictorial form are given
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as follows:

(49)

— 2-cells ji. : idpgr, — coevocoevl and e, : coevl o coev — id,
where coevl := evo(q ® idg) o T which in pictorial form are
given as follows:

R L

L R
R |L 2 L R «
R L
4 (50)

so that the following relations hold:

o aand oY, Band B, ¢ and ¢, ¢ and =" are inverses to each
other,

e L. and €. satisfy the two Zorro equations, which in pictorial form
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demand that the following composition of 2-morphisms

(s

h
®
= ./
oy
h

£ | IR L =

LmR LmR (51)

is equal to ide,, and that the following composition of 2-morphisms

~

Iz

(52)

is equal to idg,r.

e L. and €. satisfy the two Zorro equations, which in pictorial form
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demand that the composition

R L
L R
g
d
LUV

RUL

(53)

is equal to id ey, and the composition of the following 2-morphisms

L R L@R

.

RUL
4

g
L@R

is equal t0 id ey L.

e ¢ and v satisfy triangle identities,

4 (54)
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e the cusp-counit equations in figure 5 and 6 on p.33 of [|Psti4] are
satisfied,

e the swallowtail equations in figure 3 and 4 on p.15 of [Pstl4] are
satisfied.

5.1 Action on the framed bordism bicategory

We can now proceed to construct an SO(2)-action on Fz4. This action will
be vital for the remainder of the paper.

By Definition {.1] it suffices to construct a pseudo-natural equivalence
of the identity functor on F.f, in order to construct an SO(2)-action. This
pseudo-natural transformation is given as follows:

Definition 5.2. Let F.;q be the free symmetric monoidal bicategory on a
coherent fully-dual object as in Definition[5.1] We construct a pseudo-natural
equivalence « : idy,,, — idr,_,, of the identity functor on F ;4 as follows:

o For every object ¢ of F.rq, we need to provide a I-equivalence o :
c—c
— For the object L of ¥4, we define oy, :=q : L — L,

— for the object R of F.pq, we set ag := (q~')*, which in pictorial
form is given by

(a7) = ¢ (55)
R L |R

o for every I-morphism f : ¢ — d in F.zq, we need to provide a 2-
isomorphism
af: foa, = ago f. (56)

— Forthe 1-morphism q : L — L of F.;q we define the 2-isomorphism
0 i= idgoq-
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— For the 1-morphism q¢~' : L — L we define the 2-isomorphism
-1
g1 1= (q_1 oq 2, idy, v, qo q_1> ) 87

— For the evaluation ev : L @ R — 1, we define the 2-isomorphism

Qey to be the following composition:
o e o s

~

=

~
U=
I

(58)

— For the coevaluation coev : 1 — R ® L, we define the 2-
isomorphism Q...ey to be the composition

[4]
(q—l)* n L R L
"\ ]
R L RUL RUL

(59)

One now checks that this defines a pseudo-natural transformation of
idr,,,. Using Deﬁnition gives us a non-trivial SO(2)-action on F_ .

Remark 5.3. Note that the SO(2)-action on F. ;4 does not send generators
to generators: for instance, the 1-morphism (¢~')* in Equation (533) is not
part of the generating data of ..

Remark 5.4. Notice that the pseudo-natural equivalence « : idr,,, — idp,,,
constructed in Definition [5.2] is a monoidal pseudo-natural transformation.
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This follows from the fact that we have defined « via generators and relations.
In detail, we set
ax Q@ ay = axgy
o (60)
oy = 1id;.

Thus, we can choose the additional data IT and M of a monoidal pseudo-
natural transformation to be trivial, and we obtain an SO(2)-action on [z,
via symmetric monoidal morphisms.

5.2 Induced action on functor categories

Starting from the action defined on [F.s4, we induce an action on the bicate-
gory of functors Fun(F,s4, C) for an arbitrary bicategory C. The construction
of the induced action on the bicategory of functors is a general construction.
We provide details in the following.

Definition 5.5. Let p : II5(G) — Aut(C) be a G-action on a bicategory C,
and let D be another bicategory. The G-action p : Il5(G) — Aut(Fun(C, D))
induced by p is defined as follows:

e On objects g € G, we define an endofunctor p(g) of Fun(C, D) on
objects F on Fun(C,D) by p(g9)(F) :== Fop(g'). Ifa: F - Gisa
1-morphism in Fun(C, D), we define

Yp(g=1)(

_ c) —
Fp(g~')e ——— Gp(g~')e
plg) (@) = Folg™)(f) / o1y (61)
p(g= ()

Ifm : o — B is a2-morphism in Fun(C, D), the value of p(7y) is given
by
ﬁ(’y)(m)x = Mpg—1)(2)- (62)
e on I-morphisms y : g — h of lI5(G), we define a 1-morphism p(7y) in
Aut(Fun(C, D)) between the two endofunctors F — F o p(g~') and
F s Fop(h™') of Fun(C, D).

Explicitly, this means:
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— For each 2-functor F : C — D, we need to provide a pseudo-
natural transformation p(y)p : F o p(g~') — F o p(h™1) which
we define via the diagram

-1
Fplg e L0, po(h-1)z

Fp(g=1)(f) Po-1)) Fp(h=Y)(f) (63)

Fp(g™")y Fp(h™Y)y

F(p(v™1)y)

1

Here, v~ ! is the “inverse” path of y given by t — ~(t)™!, and

f:x — yisal-morphisminC.

— For every pseudo-natural transformation o : F' — G, we need to
provide a modification p(7y),, in the diagram

Pg)(F) =222 5(h)(F)

A(9)(a) - A(h)(@) (64)
AV

which we define by
P 1= s, (65)

e For the 2-morphisms in Aut(Fun(C, D)) we proceed in a similar fash-
ion: if m : v — v is a 2-track, we have to provide a 2-morphism
p(m) : p(y) — p(v') which can be done by explicitly writing down
diagrams as above.

The rest of the data of a monoidal functor p is induced from the data of the
monoidal functor p.

For C and D symmetric monoidal bicategories, the bicategory of symmet-
ric monoidal functors Fung (C, D) acquires a monoidal structure by “point-
wise evaluation” of functors. Such a monoidal structure is also symmetric,
see [SPO9]]. The following result is straightforward.
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Lemma 5.6. Let C and D be symmetric monoidal bicategories, and let p be

a monoidal action of a group G on C. Then p induces a monoidal action
p: 1Io(G) — Autg(Fung(C, D)) .

Example 5.7. Our main example for induced actions is the SO(2)-action
on F.z4 as in Definition This action only depends on a pseudo-natural
equivalence « of the identity functor on idg,_,,. Consequently, the induced
action on Fun(F.y4, C) also only depends on a pseudo-natural equivalence of
the identity functor on Fun(F.. d,C ). Using the definition above, we construct
this induced pseudo-natural equivalence & as follows.

e For every 2-functor F' : C — D, we need to provide a pseudo-natural
equivalence o : F' — F', which is given by the diagram

—1

ap = F(f) F(f) (66)

F(a}?l)

Fy Fa™h), Fy

e for every pseudo-natural transformation 5 : F' — (G, we need to give a
modification &g, which we define by the diagram

F(az ")

Fzx Fx

5 At (67)

(az 1)

GZL‘ e E— GZE
G(oﬁl)x

This defines a pseudo-natural equivalence of the identity functor on Fun(F.;q4, C).
By Definition[4.1]} we obtain an SO(2)-action on Fun(Fz4,C). Note that F

is even a symmetric monoidal bicategory. The SO(2)-action on F..4 of Defi-
nition[5.2)is via symmetric monoidal homomorphisms by Remark[5.4] Hence,

if C is also symmetric monoidal, then Lemma 5.6 provides a monoidal action

on Fun® (Fcfda C)
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5.3 Induced action on the core of fully-dualizable objects

In this subsection, we compute the SO(2)-action on the core of fully-dualizable
objects coming from the SO(2)-action on F. 4. Starting from the SO(2)-
action on [F.¢4 as by Definition we have shown in the previous subsec-
tion how to induce an SO(2)-action on the bicategory of symmetric monoidal
functors Fung (F.fq4, C) for C some symmetric monoidal bicategory. By the
Cobordism Hypothesis for framed manifolds, we obtain an induced SO(2)-
action on % (C'®). More precisely, denote by

evy, : Fung (Fepq,C) — H#(C') 63
Z — Z(L) (68)
the evaluation map. The Cobordism Hypothesis for framed manifolds in
two dimensions [Pst14, [LurQ9] states that evy, is an equivalence of symmet-
ric monoidal bicategories. Hence, the composition of the SO(2)-action on
Fung (F.sq4, C) and (the inverse of) ev;, provides an SO(2)-action on % (C™).
The next proposition shows that this action is equivalent to the action p° in-
duced by the Serre automorphism which is illustrated in Example 4.2}

Proposition 5.8. Let p be the SO(2)-action on F .4 given in Definition
and let C be a symmetric monoidal bicategory. By Definition we obtain
a monoidal SO(2)-action on Fung(F.s4,C). Then, the monoidal SO(2)-
action induced by the evaluation in Equation (68) on ¢ (C') is equivalent
to p°.

Proof. Let
p : 115(S0O(2)) — Autg(Fung (Fefq,C)) (69)

be the SO(2)-action on the bicategory of symmetric monoidal functors
Fung(F.s4,C) as in Example This action only depends on a monoidal
pseudo-natural transformation « on the identity functor on Fung(F.s4,C).
By [Pstl14], the 2-functor in Equation (68) which evaluates a framed field
theory on the object L is an equivalence of bicategories. Thus, we obtain
an SO(2)-action p' on ¢ (C™). This action is given as follows. By Defini-
tion 4.1 we only need to provide a monoidal pseudo-natural transformation
of the identity functor of J# (C®). In order to write down this monoidal
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pseudo-natural transformation, note that the functor

Aut®(Fun®(Fcfd, C)) — AU.t@(JAi/(Cfd))

1

- (70)
FrevpoF oev,

is a monoidal equivalence. Hence, the induced pseudo-natural transformation
of id - (cray s given as follows:

e For each fully-dualizable object ¢ of C, we assign the 1-morphism
al. : ¢ — c defined by

al :=evy, <a<ev21(0))) (71)

e for each 1-equivalence f : ¢ — d between fully-dualizable objects of
C, we define a 2-isomorphism «; : f o o, — ;o f by the formula

oz} = evy, <O‘(evgl(f))> ) (72)

Here, « is the pseudo-natural transformation as in Example In order
to see that o/, is given by the Serre automorphism of the fully-dualizable
object ¢, note that the 1-morphism ¢ : L — L of ¢4 is mapped to the Serre
automorphism Sz by the equivalence in Equation (68). [

Corollary 5.9. Let p be the SO(2)-action on F.pq given in Definition
and let C be a symmetric monoidal bicategory. Consider the SO(2)-action
p° on A (CY) induced by the Serre automorphism. Then the evaluation
morphism evy, induces an equivalence of bicategories

Fung (F.zq,C)°® — o7 (C1)50®), (73)

Proof. By Proposition|[5.8] the equivalence of Equation (68) is SO(2)-equivariant.
Thus, it induces an equivalence on homotopy fixed points, cf. [Hes16, Def-
inition 5.3] for an explicit description. It is also possible to construct this
equivalence directly: by theorem[4.3] the bicategory of homotopy fixed points
Fung (F.zq4,C)%°®@ is equivalent to the bicategory where
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e objects are given by symmetric monoidal functors Z : F.rq — C,
together with a modification Az : ay — idy. Explicitly, this means:
if « is the endotransformation of the identity functor of F.z4 as in
Definition we obtain two 2-isomorphisms in C:

AL : Z(q_l) — idZ(L)
Ae: Z(((gH) ) = idgm

which are compatible with evaluation and coevaluation,

(74)

e |-morphisms are given by symmetric monoidal pseudo-natural trans-
formations p : Z — Z’, so that the analogue of the diagram in Equa-
tion (35) commutes,

e 2-morphisms are given by symmetric monoidal modifications.

Now notice that Z(q) is precisely the Serre automorphism of the object Z(L).
Thus, A\;, provides a trivialization of (the inverse of) the Serre automorphism.
Applying theorem 4.3 again to the action of the Serre automorphism on the
core of fully-dualizable objects shows that the functor Z +— (Z(L), A1) is an
equivalence of homotopy fixed point bicategories. 0

Remark 5.10. Note that in Corollary [5.9| we have proven that the evaluation
induces an equivalence of bicategories Fung (F,zq,C)*?? — 7 (Cf)50X),
We expect that this equivalence is an equivalence of monoidal bicategories.
In order to prove this, one would have to explicitly work out the monoidal
structure of .7 (C™)%°) which is induced from the monoidal structure of

H(C1).

6. Invertible Field Theories

In the section, we consider the case of 2-dimensional oriented invertible
topological field theories: such theories are in many ways easier to describe
than arbitrary TQFTs, and play an important role in condensed matter physics
and homotopy theory, as suggested in [Frel4al Frel4b].

Denote with Pic(C) the Picard groupoid of a symmetric monoidal bicate-
gory C: it is defined as the maximal subgroupoid of C where the objects are in-
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vertible with respect to the monoidal structure of C. Notice that Pic(C) inher-
its the symmetric monoidal structure from C. Recall that Fung (Coba 9, C)
is equipped with a monoidal structure which is defined pointwise.

Definition 6.1. An invertible framed TQFT with values in C is an invertible
object in Fun®(C0bgr’LO, C). The space of invertible framed TQFTs with
values in C is given by Pic(Fung(Coby 1 ,C)).

Remark 6.2. Equivalently, an invertible TQFT assigns to the pointin Cobs 1 o
an invertible object in C, and to any 1- and 2-dimensional manifold it assigns
invertible 1- and 2-morphisms.

Since the Cobordism Hypothesis provides a monoidal equivalence be-
tween Fung (Cobg 1 o, C) and ¢ (C'4), the space of invertible framed TQFTs
is given by Pic(.# (C'?)), since taking the Picard groupoid behaves well with
respect to monoidal equivalences.

We begin by proving the following:

Lemma 6.3. Let C be a symmetric monoidal bicategory. Then, there is an
equivalence of symmetric monoidal bicategories

Pic(# (C')) = Pic(C). (75)

Proof. First note that .# (C™) is a monoidal 2-groupoid, so there is an equiv-
alence of bicategories Pic(#(C™)) = Pic(C™). Now, it suffices to show
that every object X in Pic(C) is already fully-dualizable. Indeed, denote
the tensor-inverse of X by X~ !. By definition, we have 1-equivalences
X®X '=~1and1 = X' ® X, which serve as evaluation and coeval-
uation. These maps may be promoted to adjoint 1-equivalences by [SPQ9,
Proposition A.27]. Thus, the evaluation and coevaluation also admit adjoints,
which suffices for fully-dualizability. 0

Notice that given a monoidal bicategory C, any monoidal auto-equivalence
of C preserves the Picard groupoid of C, since it preserves invertibility of ob-
jects and (higher) morphisms. In particular, we have a monoidal 2-functor

Autg(C) — Autg(Pic(C)) (76)

obtained by restriction. Since the SO(2)-action induced by the action on
Coby 1 is monoidal, it induces an action on Pic(C). To proceed, we need
the following
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Lemma 6.4. Let C be a symmetric monoidal bicategory such that Pic(C) is
monoidally equivalent to B’K*. Then

Autg (Pic(C)) ~ Iso(K*) (77)

where the category on the right hand side is regarded as a discrete symmetric
monoidal bicategory.

Proof. Since Pic(C) ~ B?K* monoidally, we have to describe the Picard
groupoid of the category of monoidal functors from B*K* to B*K*. First,
notice that the monoidal bicategory B?K* is the strict symmetric monoidal
bicategory with a single object e, and BK* as the strict symmetric monoidal
category of 1- and 2-morphisms. The bicategory of symmetric monoidal func-
tors from B2K* to itself is then equivalent to the category Fung ( BK*, BK*)
regarded as a bicategory with only identity 2-cells; see [CGO7]] for details.
By direct investigation, Fung, (BK*, BK*) is equivalent as a symmetric
monoidal category to Hom (K*, K*) regarded as a discrete category. Indeed,
any monoidal functor F' : BK* — BK* is determined by a group homomor-
phism ¢! : K* — K*, and monoidality ensures that any natural transforma-
tion must correspond to the identity element in K*. Notice that the composi-
tion of monoidal functors F o F' corresponds to ¢ o ¢F. In follows then
that the Picard groupoid of Fung (B?K*, B*K*) is given by Iso(K*), which
correspond to the invertible elements in the monoid Hom (K*, K*). O

Examples of symmetric monoidal bicategories satisfying the assumption
of Lemma are Algi! and Vect¥, In general cases, we have the following

Lemma 6.5. Let C be a symmetric monoidal bicategory such that Pic(C) is
monoidally equivalent to B*K*. Then any monoidal SO(2)-action on Pic(C)
is trivializable.

Proof. Since we have equivalences of monoidal bicategories I15(SO(2)) ~
BZ and Autg(Pic(C)) ~ Iso(K*), monoidal actions correspond to monoidal
2-functors BZ — Iso(KK*): here we regard BZ as a symmetric monoidal bi-
category with a single object, and the group Iso(K*) as a discrete symmetric
monoidal bicategory, i.e. all 1- and 2-cells are identities. Monoidality im-
plies that the single object of BZ is sent to the identity isomorphism of K*,
which correspond to the identity functor on Pic(C). This forces the func-
tor to be trivial on objects. It is clear that the action is also trivial on 1-
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and 2-morphisms. Since there are no nontrivial morphisms in Iso(K*), the
monoidal structure on the action p must also be trivial. [

Finally, we need the following

Lemma 6.6. Let C be a symmetric monoidal bicategory, and let ps be the
SO(2)-action on # (C') by the Serre automorphism as in Example
Since this action is monoidal, it induces an action on Pic(# (C'?)) = Pic(C)
by Lemmal6.3] We have then an equivalence of monoidal bicategories

Pic ((#(€™))5°®) = Pic(C)°®. (78)

Proof. Theorem [.3]allows us to compute the two bicategories of homotopy
fixed points explicitly: we see that both bicategories have invertible objects
X of C, together with the choice of a trivialization of the Serre automorphism
as objects. The 1-morphisms of both bicategories are given by 1-equivalences
between invertible objects of C, so that the diagram in equation (¢7) com-
mutes, while 2-morphisms are given by 2-isomorphisms in C. [l

The implication of the above lemmas is the following: when C is a sym-
metric monoidal bicategory with Pic(C) = B?K*, the action of the Serre-
automorphism on framed, invertible field theories with values in C is trivial-
izable. Thus all framed invertible 2d TQFTs with values in C can be turned
into orientable ones.

7. Comments on Homotopy Orbits

So far, we have constructed an SO(2)-action on the bicategory F ;. We
have shown how the action on [F.¢; induces an action on the bicategory
of symmetric monoidal functors Fung(F.f4,C), and that via the (framed)
Cobordism Hypothesis the induced action on # (C!®) for framed manifolds
agrees with the action of the Serre automorphism. As a consequence, we are
able to provide an equivalence of bicategories

Fung (T4, C)%°® — ¢ (C™)50@ (79)

in Corollary [5.9] We could then in principle deduce the Cobordism Hy-
pothesis for oriented manifolds from /9, once we provide an equivalence of
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bicategories
Fung (F.zq,C)°°® = Fung (Cobg o, C). (80)

The above equivalence can be proven directly by using a presentation of the
oriented bordism bicategory via generators and relations, given in [SPO9],
and the notion of a Calabi-Yau object internal to a bicategory. The details
appear in [Hes17/].

Here, we want instead to comment on an alternative approach. Namely, in
order to provide an equivalence as in (80)), it suffices to identify the oriented
bordism bicategory with the colimit of the SO(2)-action on F;,. Indeed,
recall that one may define a (G-action on a bicategory C to be a trifunctor
p : Bll1(G) — Bicat with p(x) = C. The tricategorical colimit of this
functor will then be the bicategory of co-invariants or homotopy orbits of the
G-action, denoted by C;. By Definition of the tricategorical colimit, and the
fact that colimits are sent to limits by the Hom functor, we then obtain an
equivalence of bicategories

Fung(Cg, D) = Fung (C, D)C. (81)
The following conjecture is then natural:

Conjecture 7.1. The bicategory of co-invariants of the SO(2)-action on F ;4
is monoidally equivalent to the oriented bordism bicategory, i.e. we have a
monoidal equivalence

(Fera)so(e) = Coby'y g - (82)
Furthermore, the colimit is compatible with the monoidal structure.

Remark 7.2. We believe that this is not an isolated phenomenon, in the
sense that any higher bordism category equipped with additional tangential
structure should be obtained by taking an appropriate colimit of a G-action
on the framed bordism category.

Given Conjecture[7.1]and Equation[81] we obtain the following sequence
of monoidal equivalences

Fun®(Cob‘2)f1’0, C)= Fun@((Fcfd)SO(Q)a C

83
= Fun®(]Fcfd,C)SO(2) ~ e%/(cfd)SO(z)' (83)
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Hence Conjecture implies the Cobordism Hypothesis for oriented 2-
manifolds. Notice that the chain of equivalences in[83]is natural in C.

On the other hand, the Cobordism Hypothesis for oriented manifolds in 2-
dimensions implies Conjecture [7.1]. Indeed, by using a tricategorical version
of the Yoneda Lemma, as developed for instance in [Buhl35l], the chain of
equivalences

Fung (Cobg’ 4,C) 2 J#(C™)59®)
= Fung (Cobl, 4,C)%0® (84)
= Fung ((Fefa)so2), C)

implies that Coby', ; is equivalent to (F.zq)s0(2), due to the uniqueness of
representable objects.
We summarize the above arguments in the following

Lemma 7.3. The Cobordism Hypothesis for oriented 2-dimensional mani-
folds is equivalent to Conjecture

It would then be of great interest to develop concrete constructions of ho-
motopy co-invariants of actions of groups on bicategories, in the same spirit
of [HSV17] and the present work, in order to verify directly the equivalence
in Conjecture and to extend the above arguments to general tangential
G-structures.

XY(XY) 2o bar: | vy yry(XY)s D00 Sy ans vy ys Xe XY (XY)S XYV ey | yype ye  WXTYYexr L v xeyye

114

idx evy idye xy (xv)e o idy evy idy-

114

idiay oy idia yy idy evy idy (x y)e

Xyxy)y ——— Xy\Xy) —— . XX* XY (XY) XX 5 1

Wxy ¥y idy coovy idy (xy)r iy xe OVxy

ay idigyy,. [“\"‘\)‘\yw ~

BRRY, 6 3 0. & ) i evyy l

Figure 1: Diagram for the proof of Lemma2.10)
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