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Résumé. Pour un quantaloı̈de Q, considéré comme une bicatégorie, Walters
a introduit des catégories enrichies dans Q. Nous étendons ici l’étude des
deux dernières décennies des catégories enrichies dans un quantale avec une
monade en introduisant des catégories enrichies dans Q avec une monade
et élargissant ainsi son éventail de catégories pour inclure, entre autres, des
structures métriques dites partielles. Nous faisons cela en établissant des lois
distributives relâchées d’une monade T sur la monade des préfaisceaux dis-
crets du petit quantaloı̈deQ, les données primaires de la théorie, plutôt que les
extensions relâchées de T dans la catégorie des relations avex valeurs dansQ
qu’elles décrivent de manière équivalente. La partie centrale du travail établit
une correspondance de Galois entre des lois distributives relâchées et des
structures algébriques d’Eilenberg-Moore sur l’ensemble des préfaisceaux
discrets sur l’ensemble d’objets deQ. Nous faisons une comparaison précise
de ces structures avec la notion introduite par Hofmann dans le cas d’un quan-
tale commutatif, appelée ici théories topologiques naturelles, et décrivons les
extensions de monade relâchées introduites par Hofmann comme minimales.
Tout au long de cet article, divers exemples anciens et nouveaux de struc-
tures ordonnées, métriques et topologiques illustrent la théorie développée,
qui inclut la prise en compte des foncteurs algébriques et des foncteurs de
changement de base en toute généralité.
Abstract. For a quantaloidQ, considered as a bicategory, Walters introduced
categories enriched in Q. Here we extend the study of monad-quantale-
enriched categories of the past two decades by introducing monad-quantaloid-
enriched categories and thereby enlarging its range of example categories to
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include, among others, so-called partial metric structures. We do so by mak-
ing lax distributive laws of a monad T over the discrete presheaf monad of the
small quantaloid Q the primary data of the theory, rather than the lax monad
extensions of T to the category ofQ-relations that they equivalently describe.
The central piece of the paper establishes a Galois correspondence between
such lax distributive laws and lax Eilenberg-Moore T-algebra structures on
the set of discrete presheaves over the object set of Q. We give a precise
comparison of these structures with the considerably more restrictive notion
introduced by Hofmann in the case of a commutative quantale, called natural
topological theories here, and describe the lax monad extensions introduced
by him as minimal. Throughout the paper, a variety of old and new examples
of ordered, metric and topological structures illustrate the theory developed,
which includes the consideration of algebraic functors and change-of-base
functors in full generality.
Keywords. Quantaloid, quantale, monad, discrete presheaf monad, lax dis-
tributive law, lax λ-algebra, lax monad extension, monad-quantaloid-enriched
category, topological theory, natural topological theory, algebraic functor,
change-of-base functor.
Mathematics Subject Classification (2010). 18 C15, 18C20, 18D99.

1. Introduction

For monads S and T on a category C, liftings of S along the forgetful functor
CT // C of the Eilenberg-Moore category of T, or extensions of T along the
insertion functor C // CS to the Kleisli category of S, correspond precisely
to Beck’s [4] distributive laws λ : TS //ST of T over S; see [3] and II.3 of
[26] for a compact account of these correspondences. For C = Set,T = L
the free monoid (or list) monad, and S the free Abelian group monad, their
algebraic prototype interpretes the left-hand terms of the equations

x(y + z) = xy + xz and (x+ y)z = xz + yz

as elements of the free monoid LSX over (the underlying set of) the free
Abelian group SX over some alphabetX and assigns to them the right-hand
terms in SLX , to then obtain the category of (unital) rings as the Eilenberg-
Moore algebras of a composite monad SL as facilitated by λ. Similarly,
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keeping T = L but letting now S = P be the power set monad, the distribu-
tive law

λX : LPX // PLX, (A1, ..., An) 7→ A1 × ...× An,

produces a composite monad whose Eilenberg-Moore category is the cate-
gory of quantales, i.e., of the monoid objects in the monoidal-closed cat-
egory Sup of sup-lattices (see [31, 46]), characterized as the complete lat-
tices with a monoid structure whose multiplication distributes over arbitrary
suprema in each variable. Ever since the appearance of Beck’s original work,
distributive laws have been, and continue to be, studied from a predomi-
nantly algebraic perspective, at many levels of generality; see, for example,
[54, 33, 21, 6]. But what is their role in topology, if any?

As a unification of the settings used by Lawvere [37] and by Manes [40]
and Barr [2] for their respective descriptions of metric spaces and topologi-
cal spaces, the viewpoint of monoidal topology [12, 15, 14, 49, 24, 26] has
been that some key categories of analysis and topology are described as cat-
egories of lax (T,V)-algebras, also called (T,V)-categories, where V is a
quantale and T a Set-monad with a lax extension to the category V-Rel of
sets and V-valued relations (or matrices [5]) as morphisms. For example, for
V = 2 the two-element chain and for T = U the ultrafilter monad with its
lax Barr extension to relations, one obtains the Manes-Barr presentation of
topological spaces in terms of ultrafilter convergence (with just two axioms
that generalize reflexivity and transitivity of ordered sets). With the same
monad, but now with V = [0,∞] being Lawvere’s extended real half-line
and addition playing the role of the tensor product, one obtains Lowen’s [38]
category of approach spaces, which incorporates both Barr’s Top and Law-
vere’s Met in a satisfactory manner. Perhaps one of the best successes of the
subject so far has been the strictly equational characterization of exponential
objects in the lax setting of (T,V)-categories. For the extensive literature on
the subject, we must refer the reader to the literature list in [26], in particu-
lar the Notes to Chapters III and IV of [26], which also list many important
related approaches, such as that of Burroni [10] (which drew Lambek’s [36]
multicategories into the setting) and the thesis of Möbus [44] (which, beyond
compactness and Hausdorff separation, explored a wide range of topological
concepts in the relational monadic setting).

In the (T,V)-setting, it had been realized early on that V-Rel is precisely
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the Kleisli category of the V-power set monad PV (with PVX = VX), and it
was therefore plausible that lax extensions T̂ of T to V-Rel correspond to
monotone lax distributive laws of T over PV (see [48] and Exercise III.1.I of
[26]). In this paper we present the lax distributive laws and their equivalent
lax monad extensions, together with their isomorphic model categories (i.e.,
lax λ-algebras vs. (T,V)-categories) at a considerably generalized level, by
replacing the quantale V by a small quantaloid Q, i.e., by a small category
(rather than a monoid) enriched in the category Sup of complete lattices and
their suprema preserving maps (see [47, 56, 57, 23]). For this to work, T
must now be a monad on the comma category Set/Q0, with Q0 the set of
objects of Q, rather than just on Set as in the quantale case when Q0

∼= 1 is
a singleton set. However, noting that every Set-monad T lifts to a Set/Q0-
monad whenQ0 carries a Eilenberg-Moore T-algebra structure, one realizes
immediately that the range of applications is not at all reduced by moving
to the comma category. The opposite is true, even when T is the identity
monad and λ the identity transformation of the discrete presheaf monad PQ,
where lax λ-algebras are simplyQ-categories, as first considered in Walters’
pioneering note [62]. More generally then, in the hierarchy

quantaloids monoidal−closed categories

closed bicategories

quantaloids

closed bicategories

monoidal−closed categoriesquantaloids

quantales

quantaloids monoidal−closed categoriesmonoidal−closed categories

quantales

we add a monad to the enrichment through quantaloids, thus complementing
the corresponding past efforts for quantales and monoidal-closed categories,
and leaving the field open for future work on closed bicategories. In doing
so, our focus is not on a generalization per se, but rather on the expansion
of the range of meaningful examples. In fact, through the consideration
of quantaloids that arise from quantales via the well-studied Freyd-Grandis
“diagonal construction”, originating with [18], presented in [20], and used
by many authors (see, for example, [29, 45, 58]), we demonstrate that the
quantaloidic context allows for the incorporation of many “partially defined”
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structures, which typically relax the reflexivity condition of the total context
in a meaningful way.

In carrying out this work, we underline the role of lax distributive laws
as the primary data in the study of topological categories, rather than as
some secondary data derived from lax monad extensions, the establishment
of which can be tedious (see [12, 49]). In fact, in analyzing step by step
the correspondence between the two entities (as we do in Section 6 of this
paper), we see that lax distributive laws minimize the number of variables
in, and often the computational effort for, checking the required inequalities.
It is therefore consequential that here we express (T,V)-categories directly
as lax λ-algebras, without prior reference to the lax monad extension which
the ambient lax distributive law λ corresponds to. Thus, their axioms are
entirely expressed in terms of maps, rather than V-relations, and of the two
Set-monads at play, T and PV. We note that, to date, the strict counterpart of
the notion of lax λ-algebra as introduced in Section 4 does not seem to have
been explored to a great extent (beyond one example discussed in [61])– and
may indeed be of much lesser importance than the lax version –, but must in
any case not be confused with a different notion appearing in IV.3 of Manes’
book [41].

In [24], Hofmann gave the notion of a (lax) topological theory which,
in the presence of the Set-monad T and the commutative quantale V, con-
centrates all needed information about the specific Barr-type lax extension
of T to V-Rel into a (lax) T-algebra structure ξ : TV // V on the set V,
such that ξ makes the monoid operations ⊗ : V × V // V and k : 1 // V
(lax) T-homomorphisms and satisfies a monotonicity and naturality condi-
tion. While in [16] we characterized the Barr-Hofmann lax extensions of T
arising from such theories among all lax extensions, the two main results of
this paper clarify the role of Hofmann’s notion in the quantale setting and
extend it considerably to the more general context of a quantaloid Q. First,
in Section 5 we establish a Galois correspondence between monotone lax
distributive laws of a given monad T on Set/Q0 and certain lax T-algebra
structures ξ on PQQ0. The lax distributive laws closed under this correspon-
dence, called maximal, give rise to new types of lax monad extension that
don’t seem to have been explored earlier. Secondly, in Theorem 8.2, we give
a precise comparison of our notion of topological theory (as given in Defini-
tion 5.4) with Hofmann’s more restrictive notion. We also give a context in
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which the Hofmann-type extensions are characterized as minimal (see The-
orem 8.5). Let us emphasize that the conditions on the cartesian binary and
nullary monoid operations used by Hofmann don’t compare easily with the
conditions on the multiplication and unit of the discrete presheaf monad as
used in our setting, and they don’t seem to be amenable to direct extension
from the context of a commutative quantale to that of a quantaloid. For an
overview chart on the relationships between lax distributive laws, lax monad
extensions, and topological theories, we refer to Section 8.

A comparison of this paper with its successor [35] seems to be in order,
where we present the non-discrete counterpart of the theory presented here,
thus considering monads on the category Q-Cat of small Q-categories and
their lax distributive laws over the (full) presheaf monad. While it is clear
from the outset that such setting will make for a more satisfactory theory,
simply because the full presheaf monad, unlike its discrete counterpart, is
lax idempotent (or of Kock-Zöberlein type), we should emphasize that the
prior consideration of the discrete case in this paper seems to be a necessary
step in order for [35] to be able to resort to a viable array of monads on Q-
Cat. Indeed, only with a lax extension of a monad on Set/Q0 at hand is it
easy to “lift” monads on Set/Q0 to Q-Cat, as first demonstrated in [60] in
the case of a quantale.

For general categorical background, we refer the reader to [39, 1, 7, 32].
Acknowledgements. Parts of the theory developed in the paper have been

presented in talks at the Joint Meeting of the American and Portuguese Math-
ematical Societies in Oporto (Portugal) in June 2015 and at Sichuan and
Nanjing Universities in November 2015. I am grateful for helpful comments
received, especially from Dirk Hofmann, Maria Manuel Clementino, Gavin
Seal, Lili Shen, Hongliang Lai, and Dexue Zhang. I also thank the anony-
mous referee for some final valuable suggestions.

2. Quantaloid-enriched categories

A quantaloid is a category Q enriched in the monoidal-closed category Sup
[31] of complete lattices with suprema-preserving maps; hence, the hom-
sets of Q are complete lattices, and composition of morphisms from either
side preserves arbitrary suprema and has therefore right adjoints. As a con-
sequence, one has binary operations ↘ and ↙ representing the “internal
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homs”, that is: for u : r // s, v : s // t, w : r // t in Q one has the
morphisms (v ↘ w) : r // s, (w ↙ u) : s // t given by the equivalences

u ≤ v ↘ w ⇐⇒ v ◦ u ≤ w ⇐⇒ v ≤ w ↙ u.

A lax homomorphism ϕ : Q // R of quantaloids is a lax functor (thus
satisfying the rules 1ϕt ≤ ϕ1t and ϕv ◦ ϕu ≤ ϕ(v ◦ u)) which maps hom-
sets monotonely; ϕ is a (strict) homomorphism if ϕ is a functor preserving
suprema taken in the hom-sets. We denote the category of small quantaloids
and their (lax) homomorphisms by Qnd (LaxQnd). The set-of-objects func-
tor

(−)0 : LaxQnd // Set,Q 7→ obQ =: Q0

has a right adjoint (−)c which provides each set X with the chaotic order
and considers it as a category Xc with (Xc)0 = X , so that for all x, y ∈ X
there is exactly one morphism x // y, denoted by (x, y); having singleton
hom-sets only, Xc is trivially a quantaloid, and every Set-map becomes a
homomorphism.

Throughout the paper, let Q be a small quantaloid. A small Q-category
is a set X provided with a lax homomorphism a : Xc

//Q. Its object part
a : X // Q0 assigns to every x ∈ X its array (also called type or extent)
ax ∈ Q0, often denoted by |x| = |x|X = ax, and its morphism part gives for
all x, y ∈X Q-morphisms a(x, y) : |x| // |y|, subject to the rules

1|x| ≤ a(x, x), a(y, z) ◦ a(x, y) ≤ a(x, z).

A Q-functor f : (X, a) // (Y, b) is an array-preserving map f : X // Y
with a(x, y) ≤ b(fx, fy) for all x, y ∈ X . In other words then, the resulting
categoryQ-Cat of smallQ-categories and theirQ-functors is the lax comma
category of small chaotic quantaloids over Q, and one has the set-of-objects
functor

Q−Cat Set/Q0
(−)0

//

Xc

Q
a ��

Xc Yc
f

// Yc

Q
b��

X

Q0

|−|X ��

X Y
f

// Y

Q0

|−|Y��
7→≤
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to the comma category of sets over Q0. In what follows, we will often write
X instead of Xc or (X, a).

An easily proved (see [51]), but useful, fact is:

Proposition 2.1. The functor (−)0 is topological (in the sense of [22]) and,
as a consequence, Q-Cat is totally complete and totally cocomplete (in the
sense of [55]).

Proof. The (−)0-initial structure a onX with respect to a family of (Set/Q0)-
morphisms fi : X // Yi with each Yi carrying the Q-category structure
bi(i ∈ I) is given by

a(x, y) =
∧
i∈I

bi(fix, fiy),

with x, y ∈ X .

Incidentally, it seems fitting to note here that topologicity of a faithful
functor is characterized as total cocompleteness when the concrete category
in question is considered as a category enriched over a certain quantaloid:
see [19, 52].

Next, one easily sees that every lax homomorphism ϕ : Q // R of
quantaloids induces the change-of-base functor

Bϕ : Q−Cat //R−Cat, (X, a) 7→ (X, ϕa),

which commutes with the underlying Set-functors. More precisely, with
Bϕ0 denoting the effect of Bϕ on the underlying sets over Q0, one has the
commutative diagram of functors which exhibits (Bϕ, Bϕ0) as a morphism
of topological functors:

Set/Q0 Set/R0Bϕ0

//

Q−Cat

Set/Q0

(−)0
��

Q−Cat R−Cat
Bϕ

//R−Cat

Set/R0

(−)0
��

Obviously,Bϕ preserves (−)0-initiality when ϕ preserves infima. Let us also
mention that, if we order the hom-sets of LaxQnd by

ϕ ≤ ψ ⇐⇒ ∀u : r // s in Q : ϕr = ψr, ϕs = ψs and ϕu ≤ ψu,
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then ϕ ≤ ψ gives a natural transformation Bϕ
//Bψ whose components at

the Set-level are identity maps; thus a 2-functor B(−) : LaxQnd //CAT
emerges.

The one-object quantaloids are the (unital) quantales, i.e., the complete
lattices V that come with a monoid structure whose binary operation ⊗ pre-
serves suprema in each variable. We generally denote the ⊗-neutral element
by k; so, in quantaloidic terms, k = 1∗, when we denote by ∗ the only object
of V as a category. Let us record here a well-known list of relevant quantales
V with their induced categories V−Cat.

Example 2.2. (1) The terminal quantaloid 1 is a quantale, and 1−Cat =
Set. The initial quantale is (as a lattice) the two-element chain 2 =
{⊥< >}, with ⊗ = ∧, k = >, and 2−Cat is the category Ord of
preordered sets and monotone maps. (In what follows, we suppress
the prefix “pre” in “preorder(ed)”, adding “separated” whenever an-
tisymmetry is required.)

(2) [0,∞] denotes the extended real line, ordered by the natural ≥ (so
that 0 becomes the largest and ∞ the least element) and considered
as a quantale with the binary operation +, naturally extended to ∞.
(This is the monoidal-closed category first considered by Lawvere
[37].) A [0,∞]-category is a generalized metric space, i.e., a set X
provided with a function a : X ×X // [0,∞] with a(x, x) = 0 and
a(x, z) ≤ a(x, y) + a(y, z) for all x, y, z ∈ X; [0,∞]-functors are
non-expanding maps. We write Met = [0,∞]-Cat for the resulting
category and allow ourselves to call its objects just metric spaces. The
only homomorphism 2 // [0,∞] of quantales has both a left and a
right adjoint, hence there is an embedding Ord //Met that is both
reflective and coreflective.

(3) The quantale [0,∞] is of course isomorphic to the unit interval [0, 1],
ordered by the natural ≤ and provided with the multiplication. Inter-
preting a(x, y) ∈ [0, 1] as the probability that x, y ∈ X be related
under a given random order ã on X , we call (X, a) ∈ [0, 1]−Cat a
probabilistic ordered set and denote the resulting cateory by ProbOrd,
which, of course, is just an isomorphic guise of Met.

- 319 -



W. THOLEN LAX DISTRIBUTIVE LAWS, I

Both, [0,∞] and [0, 1] are embeddable into the quantale ∆ of all dis-
tance distribution functions ϕ : [0,∞] // [0, 1], required to satisfy the
left-continuity condition ϕ(β) = supα<βϕ(α), for all β ∈ [0,∞]. Its
order is inherited from [0, 1], and its monoid structure is given by the
commutative convolution product (ϕ⊗ ψ)(γ) = supα+β≤γϕ(α)ψ(β);
the⊗-neutral function κ satisfies κ(0) = 0 and κ(α) = 1 for all α > 0.
Interpreting a(x, y)(α) as the probability that a given randomized met-
ric ã : X ×X // [0,∞] satsisfies ã(x, y) < α, one calls the objects
(X, a) in ∆−Cat probabilistic metric spaces [25, 30], and we denote
their category by ProbMet.
The quantale homomorphisms σ : [0,∞] //∆ and τ : [0, 1] //∆,
defined by σ(α)(γ) = 0 if γ ≤ α, and 1 otherwise, and τ(u)(γ) = u if
γ > 0, and 0 otherwise, induce full embeddings of Met and ProbOrd
into ProbMet, respectively. Their significance lies in the fact that
they present ∆ as a coproduct of [0,∞] and [0, 1] in the category of
commutative quantales and their homomorphisms, since every ϕ ∈∆
has a presentation ϕ = supγ∈[0,∞]σ(γ)⊗ τ(ϕ(γ)).

(4) The powerset 2M of a (multiplicative) monoid M (with neutral ele-
ment eM ) becomes a quantale when ordered by inclusion and provided
with the composition B ◦ A = {βα | α, β ∈ M} for A,B ⊆ M ; in
fact, it is the free quantale over the monoid M . The objects of 2M -
Cat are sets X equipped with a family (≤α)α∈M of relations on them
satisfying the rules x ≤eM x and (x ≤α y, y ≤β z ⇒ x ≤βα z);
morphisms must preserve each relation of the family; see [26] V.1.4.
Every homomorphism ϕ : M //N of monoids may be considered a
homomorphism ϕ : 2M // 2N of quantales via direct image, while its
right adjoint given by inverse image is in general only a lax homomor-
phism ϕ−1 : 2N // 2M . Still, 2-functoriality of (−)−Cat produces
adjunctions ϕ(−) a ϕ−1(−) : 2N−Cat // 2M−Cat. In particular,
when considering 1 //M // 1 with 1 trivial, one sees that there is a
coreflective embedding of Ord into 2M−Cat, as well as a reflective
one.

(5) Every frame, i.e., every complete lattice in which binary infima dis-
tribute over arbitrary suprema, may be considered a quantale; in fact,
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these are precisely the commutative quantales in which every ele-
ment is idempotent. For example, in addition to 2 of (1), ([0,∞],≥)
may be considered a quantale [0,∞]max when, instead of α + β as
in (2), the binary operation is given by max{α, β}. The resulting
category [0,∞]max−Cat is the category UMet of generalized ultra-
metric spaces (X, a) whose distance function must satisfy a(x, z) ≤
max{a(x, y), a(y, z)} instead of the weaker triangle inequality.

A quantale V is called divisible [28] if for all u ≤ v in V there are a, b ∈ V
with a⊗v = u = v⊗b; it is easy to see that then one may choose a = u↙ v
and b = v ↘ u. Applying the defining property to u = k and v = > the
top element, so that > = > ⊗ k = > ⊗ > ⊗ b ≤ > ⊗ b = k, one sees that
such a quantale must be integral, i.e., k = >. Of the quantales of Example
2.2, all but ∆ (3) and 2M (4) are divisible; 2M is not even integral, unless the
monoid M is trivial.

We refer to [18, 20] for the the Freyd-Grandis construction of freely ad-
joining a proper orthogonal factorization system to a category. In the case
of a quantaloid Q it produces the quantaloid DQ of “diagonals” of Q (so
named in [58], after the prior treatments in [29, 45]), which has a partic-
ulary easy description when the quantaloid is a divisible quantale V: the
objects of the quantaloid DV are the elements of V, and there is a morphism
(u, d, v) : u // v in DV if d ∈ V satisfies d ≤ u ∧ v; for ease of notation,
we write d : u // v, keeping in mind that it is essential to keep track of the
domain u and the codomain v. The composite e ◦ d of d with e : v // w in
DV is defined by e ⊗ (v ↘ d) = (e ↙ v) ⊗ d in V, and v : v // v serves
as the identity morphism on v in DV. The order of the hom-sets of DV is
inherited from V.

The quantale V is fully embedded into DV by the homomorphism ι = ιV :
V //DV, v 7→ (v : k //k), of quantaloids. There are lax homomorphisms,
known as the backward and forward globalization functors (see [17, 45, 59]),

δ : DV // V, γ : DV // V,

(d : u // v) 7→ v ↘ d (d : u // v) 7→ d↙ u

which, from a factorization perspective, play the role of the domain and
codomain functors. They satisfy διV = 1V = γιV and therefore make V
a retract of DV. Consequently, the full embedding V−Cat // DV−Cat
induced by ι has retractions, facilitated by δ and γ (see Example 7.5).
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More importantly, when one considers V as a V-category (V, h) with
h(u, v) = v ↙ u, there is a full reflective embedding

EV : DV−Cat // V−Cat/V

which provides a DV-category (X, a) with the V-category structure d defined
by d(x, y) = a(x, y) ↙ a(x, x) and considers it as a V-category over V via
tx = a(x, x). Conversely, the reflector provides a V-category (X, d) that
comes equipped with a V-functor t : X //V, with the DV-category structure
a, defined by a(x, y) = d(x, y)⊗ tx; see [35].

The quantaloids DV induced by the divisible quantales V of Example 2.2
are of interest in what follows. Here we mention only a couple of easy cases.

Example 2.3. (1) The quantaloid D2 has objects ⊥,>, and there are ex-
actly two morphisms⊥,> : > //> while all other hom-sets are triv-
ial, each of them containing only ⊥. The object part of a D2-category
structure on a setX is given by its fibre over>, i.e., by a subsetA ⊆ X
and an order on A; in other words, by a truly partial (!) order on X . A
D2-functor f : (X,A) //(Y,B) is a map f : X //Y with f−1B = A
whose restriction to A is monotone. We write ParOrd for D2-Cat.

(2) For a D([0,∞])-category (X, a) one must have (in the natural order ≤
of [0,∞]) |x| ≤ a(x, x) ≤ |x| for all x ∈ X , so that the object part of
the structure a : X×X // [0,∞] is determined by its morphism part.
Since α ◦ β = (α ↙ ν) + β = α − ν + β for ν ≤ α, β ∈ [0,∞], the
defining conditions on a may now be stated as

a(x, x) ≤ a(x, y), a(x, z) ≤ a(x, y)−a(y, y)+a(y, z) (x, y, z ∈ X).

With D([0,∞])-functors f : (X, a) // (Y, b) required to satisfy

b(f(x), f(y)) ≤ a(x, y), b(f(x), f(x)) = a(x, x) (x, y ∈ X)

one obtains the category ParMet of partial metric spaces, as origi-
nally considered in [43]; see also [9]. (For example, when one thinks
of a(x, y) as of the cost of transporting goods from location x to loca-
tion y, which will entail some fixed overhead costs a(x, x) and a(y, y)
at these locations, the term−a(y, y) in the “partial triangle inequality”
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justifies itsself since the operator should not pay the overhead twice at
the intermediate location y.) For V = [0,∞], the full embedding EV

in fact gives an isomorphism

ParMet ∼= Met/[0,∞]

of categories; i.e., partial metric spaces and their non-expanding maps
may equivalently be considered as metric spaces (X, d) that come
with a “norm” t : X // [0,∞] satisfying ty − tx ≤ d(x, y) for
all x, y ∈ X , the morphisms of which are norm-preserving and non-
expanding. The presentation of ParMet as a comma category makes
it easy to relate it properly to Met, as we may look at the forgetful
functor Σ : Met/[0,∞] // Met and its right adjoint X 7→ (π2 :
X × [0,∞] // [0,∞]) (with the direct product taken in Met). When
expressed in terms of partial metrics, Σ is equivalently described by

Bγ : ParMet //Met, (X, a) 7→ (X, ã), ã(x, y) = a(x, y)−a(x, x),

and its right adjoint assigns to (X, d) ∈Met the set X × [0,∞] pro-
vided with the partial metric d+, defined by

d+((x, α), (y, β)) = d(x, y) + max{α, β}

for all x, y ∈ X,α, β ∈ [0,∞]. For a recent discussion of partial
metrics we refer to [27].

3. Encoding a quantaloid by its discrete presheaf monad

For a quantaloid Q one forms the category Q−Rel of Q-relations, as fol-
lows: its objects are those of Set/Q0, i.e., sets X that come with an array
(or type) map a = aX : X // Q0, also denoted by |− | = |− |X , and
a morphism ϕ : X //7 Y in Q−Rel is given by a family of morphisms
ϕ(x, y) : |x|X //|y|Y (x ∈ X, y ∈ Y ) inQ; its composite with ψ : Y //7 Z
is defined by

(ψ ◦ ϕ)(x, z) =
∨
y∈Y

ψ(y, z) ◦ ϕ(x, y).
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A map f : X // Y over Q0 may be seen as a Q-relation via its Q-graph or
its Q-cograph, as facilitated by the functors

Set/Q0
(−)◦

//Q−Rel oo
(−)◦

(Set/Q0)
op

f◦(x, y) =

{
1|x| if f(x) = y
⊥ else

}
= f ◦(y, x).

For X in Set/Q0 and s ∈ Q0, a Q-presheaf σ on X with array |σ| = s is
a Q-relation σ : X //7 {s} (where {s} is considered as a set over Q0 via
the inclusion map); hence, σ is a family (σx : |x| // s)x∈X ofQ-morphisms
with specified common codomain. By definition then, the hom-functor Q−
Rel(−, {s}) : Q−Relop // Set assigns to X the set of Q-presheaves with
array s; its left adjoint provides every element of a given set with the constant
array s. Universal quantification over s ∈ Q0 produces the functor

(Q−Rel(−, {s}))s∈Q0 : Q−Relop // SetQ0

whose left adjoint is the coproduct of the left adjoints of its components, By
composition with the category equivalence Set/Q0 ' SetQ0 we obtain the
Q-presheaf functor P, assigning to X the set PX = PQX of Q-presheaves
on X; its left adjoint turns out to be (the opposite of) theQ-cograph functor.
(TheQ-graph functor is produced similarly.) We may describe the morphism
part of P and the correspondence under the adjunction by

X Y
ϕ
//7

Y PX
←−ϕ
//

(←−ϕ (y))x = ϕ(x, y)
Set/Q0 Q−Relop

(−)◦
// Q−RelopSet/Q0

P
oo ⊥

(PY PX)
ϕ�
// �oo (X Y ).

ϕ
//7

τ 7→ τ ◦ ϕ

The unit y and counit ε of the adjunction are given by

yX =
←−
1◦X : X // PX, (yy)x = 1|y| =⇒ x = y;

εX : X //7 PX, εX(x, σ) = σx : |x| // |σ|.

The adjunction induces the monad P = PQ = (P, s, y) on Set/Q0; for future
reference, we record here explicitly its functor P : Set/Q0

// Set/Q0 and
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multiplication s as well:

(X
f
// Y ) 7→ f! := (f ◦)� : PX // PY, (f!σ)y =

∨
x∈f−1y

σx;
σ 7→ σ ◦ f ◦

sX = ε�X : PPX // PX, (sXΣ)x =
∨
σ∈PX

Σσ ◦ σx.
Σ 7→ Σ ◦ εX

One notes thatQ−Rel is a (large) quantaloid that inherits the pointwise
order of its hom-sets from Q. The full embedding Q // Q−Rel, which
interprets every s ∈ Q0 as the set {s} over Q0, is therefore a homomor-
phism of quantaloids. Its image serves as a generating set in Q−Rel. As
outlined earlier, under the category equivalence Set/Q0 ' SetQ0 the set
PX over Q0 corresponds to (Q−Rel(X, {s}))s∈Q0 , which lives in SupQ0 .
The corresponding order on PX is described by

σ ≤ σ′ ⇐⇒ |σ| = |σ′| and ∀x ∈ X (σx ≤ σ′x).

For f : X // Y in Set/Q0, the map f! : PX // PY , considered as a
morphism in SupQ0 , preserves suprema and, therefore, has a right adjoint
f ! : PY // PX which actually preserves suprema as well and is easily
described in Set/Q0 by

∀τ ∈ PY, x ∈ X ((f !τ)x = τfx);

since
f ! = (f◦)

�,

the adjunction f! a f ! follows from f◦ a f ◦ inQ−Rel and the monotonicity
of (−)� on hom-sets, which we explain next.

The sets Set(Y,PX) with their pointwise order inherited from PX make
the bijections

Q−Rel(X, Y ) // Set/Q0(Y,PX), ϕ 7→ ←−ϕ ,

order isomorphisms. Since

←−−−
ψ ◦ ϕ = ϕ� · ←−ψ
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(for ψ : Y //7 Z), monotonicity of (ψ 7→ ψ ◦ ϕ) in ψ makes the maps

Set/Q0(Z,PY ) // Set/Q0(Z,PX), g 7→ ϕ� · g,

monotone. This proves item (1) of the following Lemma.

Lemma 3.1. For ϕ, ϕ′ : X //7 Y in Q−Rel and f : X // Y, g, g′ :
Z // PY, h : W // Z in Set/Q0 one has:

(1) ϕ ≤ ϕ′, g ≤ g′ ⇒ ϕ� · g · h ≤ ϕ′� · g′ · h;

(2) yX ≤ f ! · yY · f, f ! · sY = sX · (f !)!.

Proof. The inequality of (2) follows from the naturality of y and the adjunc-
tion f! a f !. For the stated equality, using

ϕ� = sX · (←−ϕ )!

we can show more generally

ϕ� · sY = sX · (←−ϕ )! · sY = sX · sPX · (←−ϕ )!! = sX · (sX)! · (←−ϕ )!! = sX · (ϕ�)!.

Let us finally mention that, of course, there is a functorial dependency
of PQ on the quantaloid Q, which we may describe briefly, as follows.
Let ϑ : Q // R be a lax homomorphism of quantaloids, and let Bϑ0 :
Set/Q0

//Set/R0 be the induced “discrete change-of-base functor” (as in
Section 2). We can then regard ϑ as a lax natural transformation

ϑ : Bϑ0PQ // PRBϑ0 ,

so that
(Bϑ0f)! · ϑX ≤ ϑY ·Bϑ0(f!)

for all f : X // Y in Set/Q0; indeed, for X ∈ Set/Q0, one defines
ϑX : Bϑ0PQX // PRBϑ0X by

σ = (σx)x∈X 7→ ϑσ = (ϑ(σx))x∈X .

In fact, ϑ is now a lax monad morphism, as described by the following two
diagrams:
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Bϑ0PQ PRBϑ0ϑ
//

Bϑ0

Bϑ0PQ

Bϑ0
yQ

��

Bϑ0

PRBϑ0

yRBϑ0

��≥
Bϑ0PQ PRBϑ0ϑ

//

Bϑ0PQPQ

Bϑ0PQ

Bϑ0
sQ
��

Bϑ0PQPQ PRPRBϑ0PRPRBϑ0

PRBϑ0

sRBϑ0
��

Bϑ0PQPQ PRBϑ0PQ
ϑPQ

// PRBϑ0PQ PRPRBϑ0

PRϑ //

≥

Note that, if Q,R are quantales, these properties simplify considerably,
since then Bϑ0 may be treated as being the identity functor of Set. Fur-
thermore, if ϑ : Q // R is a homomorphism of quantaloids, the lax natu-
ral transformation ϑ becomes strict and makes the two diagrams commute
strictly. Consequently, in the strict case one obtains a morphism PQ // PR
of monads.

We will return to ϑ as a lax monad morphism in Section 7 where we
discuss change-of-base functors in greater generality.

4. Monads laxly distributing over the presheaf monad, and
their lax algebras

Let T = (T,m, e) be a monad on Set/Q0. We wish to generate cer-
tain lax extensions of T to Q−Rel, i.e., to the (dual of the) Kleisli cate-
gory of the presheaf monad PQ. Since, as it is well known, strict exten-
sions are provided by distributive laws TP // PT (see [26]), we should
consider a lax distributive law λ : TP // PT instead, that is: a family
λX : TPX // PTX (X ∈ Set/Q0) of morphisms in Set/Q0 satisfying
the following inequalities for all maps f : X // Y over Q0:

(a)
TPY PTY

λY
//

TPX

TPY

T (f!)
��

TPX PTX
λX // PTX

PTY

(Tf)!
��

≤ (Tf)! · λX ≤ λY · T (f!)
(lax naturality of λ);

(b)
TPX PTX

λX
//

TX

TPX

T yX

��

TX

PTX

yTX

��≥ yTX ≤ λX · T yX
(lax PQ-unit law);
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(c)

TPX PTX
λX

//

TPPX

TPX

T sX
��

TPPX PPTXPPTX

PTX

sTX

��

TPPX PTPX
λPX // PTPX PPTX

(λX)!
//

≥ sTX · (λX)! · λPX ≤ λX · T sX
(lax PQ-multiplication law);

(d)
TPX PTX

λX
//

PX

TPX

ePX

��

PX

PTX

(eX)!

��≥ (eX)! ≤ λX · ePX
(lax T-unit law);

(e)
TPX PTX

λX
//

TTPX

TPX

mPX

��

TTPX PTTXPTTX

PTX

(mX)!
��

TTPX TPTX
TλX // TPTX PTTX

λTX //

≥ (mX)! · λTX · TλX ≤ λX · mPX

(lax T-multiplication law).

Each of these laws is said to hold strictly (at f or X) if the respective in-
equality sign may be replaced by an equality sign; for a strict distributive
law, all lax laws must hold strictly everywhere.

The lax distributive law λ is called monotone if

f ≤ g ⇒ λX · Tf ≤ λX · Tg

for all f, g : Y // PX in Set/Q0. For simplicity, in what follows, we
refer to a monotone lax distributive law λ : TP // TP just as a monotone
distributive law, which indirectly emphasizes the fact that the ambient 2-cell
structure is given by order; we also say that T distributes monotonely over
PQ by λ in this case, adding strictly when λ is strict.

Example 4.1. (1) For every quantaloidQ, the identity monad on Set/Q0

distributes strictly and monotonely over PQ, via the identity transfor-
mation 1P.

(2) For every quantale V, the list-monad L on Set, i.e., the free-monoid
monad with underlying Set-functorLX =

⋃
n≥0X

n, distributes strictly
and monotonely over PV, via ⊗X : LPVX // PVLX defined by

(σ1, ..., σn) 7→ σ, σ(x1,...,xm) =

{
σ1
x1
⊗ ...⊗ σnxn if m = n,

⊥ else.

}
For V = 2, so that P2

∼= P is the (covariant) power set functor, we in
particular obtain the strict monotone distributive law

×X : LPX // PLX, (A1, ..., An) 7→ A1 × ...× An,
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that was mentioned in the Introduction.

(3) For every quantale V, the Set-monad L may be extended to Set/V:
using the monoid structure of V, one maps every (X, a) ∈ Set/V to
(LX, ζ · La), with ζ : LV // V the monoid homomorphism with
ζ(v) = v, i.e., ζ : (v1, ..., vn) 7→ v1 ⊗ ...⊗ vn. For the quantaloidQ =
DV (as described in Section 2 when V is divisible) and L considered
as a Set/V-monad, one now obtains a strict monotone distributive law
⊗ : LPQ // PQL defined just as in (2), with the understanding that
σ = ⊗X(σ1, ..., σn) is now given by Q-arrows

σ(x1,...,xm) : |x1| ⊗ ...⊗ |xm| // |σ| = |σ1| ⊗ ...⊗ |σn|.

(4) (See [34].) For every quantale V = (V,⊗, k), the power set monad
P = P2 of Set distributes monotonely over PV by the law δ : PPV

//PVP
which, when we write PVX = VX as the set of maps X // V, is de-
fined by

δX : P(VX) // VPX , (δXF)(A) =
∧
x∈A

∨
σ∈F

σ(x),

for all F ⊆ VX , A ⊆ X.

(5) Let U = (U,Σ, ˙(−)) denote the ultrafilter monad on Set; so, U assigns
to a set X the set of ultrafilters on X , the unit assigns to a point in X
its principal ultrafilter on X , and the monad multiplication is given by
the so-called Kowalsky sum; see [40, 2, 26]. For every completely dis-
tributive quantale V (see [63, 26]), one defines a monotone distributive
law β : UPV

// PVU by

βX : U(VX) // VUX , (βXz)(x) =
∧

A∈x,C∈z

∨
x∈A,σ∈C

σ(x),

for all ultrafilters z on VX , x on X; compare with Corollary IV.2.4.5 of
[26] and see [34].

Returning to the general context of a quantaloid Q and a monad T on
Set/Q0, we define:
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Definition 4.2. For a monotone distributive law λ : TP // PT , a lax λ-
algebra (X, p) over Q is a set X over Q0 with a map p : TX // PX over
Q0 satisfying

(f)

TX PXp
//

X

TX

eX

��

X

PX

yX

��≥ yX ≤ p · eX
(lax unit law);

(g)

TX PXp
//

TTX

TX

mX

��

TTX PPXPPX

PX

sX
��

TTX TPX
Tp
// TPX PTX

λX // PTX PPX
p! //

≥ sX · p! · λX · Tp ≤ p ·mX

(lax multiplication law).

A lax λ-homomorphism f : (X, p) // (Y, q) of lax λ-algebras must
satisfy

(h)

PX PY
f!

//

TX

PX

p
��

TX TY
Tf

// TY

PY

q
��

≤ f! · p ≤ q · Tf
(lax homomorph. law).

The resulting category is denoted by (λ,Q)−Alg.

Example 4.3. (1) For T the identity monad on Set/Q0 and λ = 1PQ ,
there is an isomorphism (λ,Q)−Alg ∼= Q− Cat that commutes
with the forgetful functors to Set/Q0. Indeed, a lax homomorphism
a : Xc

// Q of quantaloids constitutes a Q-relation a : X //7 X ,
such that p =←−a : X // PX satisfies the lax unit- and multiplication
laws (f) and (g), and conversely; similarly for the morphisms of the
two categories.

(2) In Section 6 we will elaborate on the correspondence between mono-
tone distributive laws λ of T over PQ and lax extensions T̂ of the
monad T to Q−Rel. The λ-algebra axioms for p : TX // PQX
may then be expressed in terms of a Q-relation X //7 TX . In the
case of Q being a commutative quantale V,

(λ,V)−Alg ∼= (T,V)−Cat

becomes the familiar category of (T,V)-categories (X, a : TX //7 X)
(as defined in [26], but see Remark 6.7), satisfying the lax-algebra con-
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ditions conditions

k ≤ a(eX(x), x), a(y, z)⊗ T̂ a(X, y) ≤ a(mX(X), z)

for all z ∈ X, y ∈ TX,X ∈ TTX; morphisms, i.e., (T,V)-functors
f : (X, a) // (Y, b), satisfy a(x, x′) ≤ b(fx, fx′) for all x, x′ ∈ X .
For example, in the case of Example 4.1(2), with T = L and V = 2,
one obtains the category MulOrd of multiordered sets X (carrying
a reflexive and transitive relation LX //7 X). For V = [0,∞] one
obtains the category MulMet of multimetric spaces (X, a : LX ×
X // [0,∞]), defined to satisfy the conditions a((x), x) = 0 and

a((x1,1, . . . , x1,n1︸ ︷︷ ︸
x1

, . . . , xm,1, . . . , xm,nm︸ ︷︷ ︸
xm

), z)

≤ a(x1, y1) + . . .+ a(xm, ym) + a((y1, . . . , ym), z);

morphisms f : (X, a) // (Y, b) are non-expanding maps:

b((fx1, ..., fxn), fy) ≤ a((x1, ..., xn), y)

.

(3) (See [34].) For any quantale V and the monotone distributive law δ
of Example 4.1(4) that makes the powerset monad P = P2 distribute
over PV,

(δ,V)−Alg = V−Cls

is the category of V-valued closure spaces (X, c : PX // VX) (see
[50]). When V is integral, at every “level” u ∈ V they give rise to the
“c-closure” A(u) = {x ∈ X | c(A)(x) ≥ u} of A ⊆ X . Considering
now the full reflective subcategory of V−Cls of those spaces (X, c)
for which c is a homomorphism of join-semilattices, so that the finite
additivity conditions

c(∅) = ⊥ and c(A ∪B) = c(A) ∨ c(B)

for all A,B ⊆ X are satisfied, one obtains for V = 2, [0,∞], or ∆,
respectively topological spaces (as described by a closure operation),
approach spaces (as described by a point-set distance function [38]),
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or probabilistic approach spaces [8]; in general, we call them V-valued
topological spaces. Since lax δ-homomorphisms provide the “right”
morphisms in each of the three cases, we denote the resulting category
by V−Top and obtain in the special cases the categories

2−Top = Top, [0,∞]−Top = App, ∆−Top = ProbApp.

(4) As shown in [34], for a completely distributive quantale V and the
monotone distributive law β of Example 4.1(5) that makes U distribute
over PV,

(β,V)−Alg ∼= V−Top

is the category of V-valued topological spaces; see also Example 7.3.
Considering for V the quantales 2, [0,∞], and ∆, in this way one
obtains respectively the ultrafilter characterization of the objects of
the categories Top of topological spaces ([2, 26]), App of approach
spaces ([38, 12, 26]), and ProbApp of probabilistic approach spaces
([8, 64, 25, 30]).

In generalization of Proposition 2.1 one easily proves:

Proposition 4.4. (λ,Q)−Alg is topological over Set/Q0 and, hence, totally
complete and totally cocomplete.

Proof. For any family of λ-algebras (Yi, qi) and Set/Q0-maps fi : X //Yi (i ∈
I), the fixed set X obtains its initial structure p with respect to the forgetful
functor (λ,Q)−Alg // Set/Q0 as

p :=
∧
i∈I

(fi)
! · qi · Tfi

which, in pointwise terms, reads as (px)x =
∧
i∈I(qi(Tfi(x)))fix, for all x ∈

X, x ∈ TX .

5. Topological theories and maximal lax distributive laws

In addition to the given small quantaloid Q, in this section we restrict our-
selves to considering monads T on Set/Q0 that are liftings of Set-monads
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along the forgetful functor Σ : Set/Q0
// Set. The following proposition

(which remains valid when Set is replaced by an arbitrary category) states
that these are completely described by Eilenberg-Moore algebra structures
onQ0, just as we have encountered them in the special case of the list monad
in Example 4.1(3).

Proposition 5.1. Let T = (T,m, e) be a monad on Set. Then there is a
bijective correspondence between T-algebra structures ζ : TQ0

//Q0 and
monads T′ = (T ′,m′, e′) on Set/Q0 with

ΣT ′ = TΣ, Σe′ = eΣ, Σm′ = mΣ.

Proof. For a “Σ-lifting” T′ of T, let ζ be the array function of the Set/Q0-
object T ′(Q0, 1Q0), whose domain must necessarily be TQ0. For any Set/Q0-
object (X, a), the unique Set/Q0-morphism a : (X, a) // (Q0, 1Q0) to the
terminal object is being mapped by T ′ to

(TX, aTX) Ta // (TQ0, ζ), so that aTX = ζ · Ta (∗).

The object assignment by T ′ is therefore uniquely determined by ζ , and
so is its morphism assignment, by faithfulness of Σ. Furthermore, since
necessarily

e′(X,a) = eX : (X, a) // (TX, ζ · Ta),

m′(X,a) = mX : (TTX, ζ · Tζ · TTa) // (TX, ζ · Ta),

in Set/Q0, one has ζ · Ta · eX = aX and ζ · Ta ·mX = ζ · Tζ · TTa which,
for X = Q0 and a = 1Q0 , amount to the T-algebra laws ζ · eQ0 = 1Q0 and
ζ ·mQ0 = ζ · Tζ .

Conversely, with T ′ defined by (∗), these laws similarly give the lifting
T′ of T along Σ.

In what follows, we will not distinguish notationally between T′ and T.
So, we are working with a Set-monad T = (T,m, e) and a fixed T-algebra
structure ζ : TQ0

// Q0 on Q0 that allows us to treat T as a monad on
Set/Q0. For such T and a monotone distributive law λ : TP // PT we
consider the Set/Q0-maps

ξ := (TPQ0

λQ0 // PTQ0
ζ! // PQ0),

θ := (TPPQ0

λPQ0 // PTPQ0
ξ! // PPQ0).
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Proposition 5.2. ξ and θ are lax T-algebra structures on PQ0 and PPQ0, re-
spectively, making yQ0 : (Q0, ζ) //(PQ0, ξ) and νQ0 : (PPQ, θ) //(PQ0, ξ)
lax T-homomorphisms, that is, producing the following laxly commuting di-
agrams:

PQ0 TPQ0

ePQ0 //PQ0

PQ0

1PQ0

""

TPQ0

PQ0

ξ

��

TPQ0 PQ0ξ
//

TTPQ0

TPQ0

mPQ0

��

TTPQ0 TPQ0
Tξ

// TPQ0

PQ0

ξ

� �

Q0 PQ0yQ0

//

TQ0

Q0

ζ

��

TQ0 TPQ0

T yQ0 // TPQ0

PQ0

ξ

��

≤ ≥ ≤

PPQ0 TPPQ0

ePPQ0 //PPQ0

PPQ0

1PPQ0

""

TPPQ0

PPQ0

θ

��

TPPQ0 PPQ0θ
//

TTPPQ0

TPPQ0

mPPQ0

��

TTPPQ0 TPPQ0
Tθ // TPPQ0

PPQ0

θ

��

PPQ0 PQ0sQ0

//

TPPQ0

PPQ0

θ

��

TPPQ0 TPQ0

T sQ0 // TPQ0

PQ0

ξ

��

≤ ≥ ≤

Moreover, ξ (θ) is a strict T-algebra structure on PQ0 (PPQ0) if λ satisfies
the lax T-unit and -multiplication laws (d) and (e) strictly at Q0 (at PQ0,
respectively); and yQ0 (sQ0) is a strict T-homomorphism if λ satisfies the lax
PQ-unit law (b) (the lax PQ-multiplication law (c), respectively) strictly at
Q0.

Proof. Lax unit law for ξ: By (d), ξ · ePQ0 ≥ ζ! · (eQ0)! = (ζ · eQ0)! = 1PQ0 ,
with equality holding when λ satisfies (d) strictly at Q0.

Lax multiplication law for ξ: By (e),
ξ ·mPQ0 ≥ ζ! · (mQ0)! · λTQ0 · TλQ0

= ζ! · (Tζ)! · λTQ0 · TλQ0 = ζ! · λQ0 · T (ζ!) · TλQ0 = ξ · Tξ,
with equality holding when λ satisfies (e) strictly at Q0.
One proceeds similarly for the (lax) unit and multiplication laws for θ.
Lax homomorphism law for yQ0: By (b), ξ · T yQ0 ≥ ζ! · yTQ0 = yQ0 · ζ,

with equality holding when λ satisfies (b) strictly at Q0.
Lax homomorphism law for sQ0: By (c),

- 334 -



W. THOLEN LAX DISTRIBUTIVE LAWS, I

ξ · T sQ0 ≥ ζ! · sTQ0 · (λQ0)! · λPQ0

= sQ0 · ζ!! · (λQ0)! · λPQ0 = sQ0 · ξ! · λPQ0 = sQ0 · T yQ0 ,
with equality holding when λ satisfies (c) strictly at Q0.

Remark 5.3. (1) Let t := | − |PQ0 denote the array map of PQ0 (that
assigns to aQ0-indexed family ofQ-morphisms in PQ0 their common
codomain). Then |−|TPQ0 = ζ · Tt (see (∗) of Proposition 5.1), and
since ξ is a map over Q0, we must have t · ξ = ζ · Tt. In other words,
t : (PQ0, ξ) // (Q0, ζ) is a strict T-homomorphism.

(2) From ξ = ζ! · λQ0 one obtains λQ0 ≤ ζ ! · ξ by adjunction, and the lax
naturality (a) of λ at t then gives

λPQ0 ≤ (Tt)! · λQ0 · T (t!) ≤ (Tt)! · ζ ! · ξ · T (t!).

Consequently, one obtains an upper bound for θ:

θ = ξ! · λPQ0 ≤ ξ! · (Tt)! · ζ ! · ξ · T (t!).

We now embark on a converse path, by establishing a monotone distribu-
tive law from a given map ξ, in addition to ζ , and by choosing θ maximally.

Definition 5.4. Let T be a Set-monad that comes with a T-algebra structure
ζ on the object set Q0 of the small quantaloid Q. A topological theory for T
and Q is a Set-map ξ : TPQ0

// PQ0 which is array compatible, satisfies
the lax T-algebra and homomorphism laws, and is monotone, as follows:

0. t · ξ = ζ · Tt (with t as in Remark 5.3(1));
1. 1PQ0 ≤ ξ · ePQ0 , ξ · Tξ ≤ ξ ·mPQ0;
2. yQ0 · ζ ≤ ξ · T yQ0 , sQ0 · θ ≤ ξ · T sQ0 (θ := ξ! · (ζ · Tt)! · ξ · T (t!));
3. ∀f, g : Y // PQ0 in Set/Q0 (f ≤ g ⇒ ξ · Tf ≤ ξ · Tg).

The theory is strict if the inequality signs in conditions 1 and 2 may be re-
placed by equality signs.

Proposition 5.2 produces for every (strict) monotone distributive law a
(strict) topological theory. We will call this theory induced by the given law.
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Theorem 5.5. For T,Q, ζ as in Definition 5.4 and a topological theory ξ,

λξX := (ζ · Ta)! · ξ · T (a!)

for all X = (X, a) ∈ Set/Q0 defines a monotone distributive law λξ for T
and Q. This law is largest amongst all laws that induce the given theory ξ.

Proof. We check monotonicity of λ = λξ and each of the conditions (a)-(e),
considering f : (X, a) // (Y, b) in Set/Q0. Note that c := ζ · Ta is the
array function of TX . With t the array function of PQ0 (see Remark (1)),
an easy inspection shows that s := t · a! is the array function of PX .

Monotonicity: For g, h : Y //7 PX in Set/Q0, monotonicity of ξ gives

λX · Tg = c! · ξ · T (a! · g) ≤ c! · ξ · T (a! · h) = λX · Th.

(a) With the adjunction (Tf)! a (Tf)!, from b · f = a one obtains
(Tf)! · (Ta)! ≤ (Tb)!. Hence,

(Tf)!·λX = (Tf)!·(Ta)!·ζ !·ξ ·T (a!) ≤ (Tb)!·ζ !·ξ ·T (b!)·T (f!) = λY ·T (f!).

(b) Condition 2 for a lax topological theory and Lemma 3.1(2) give

λX · T yX = c! · ξ · T (a!) · T yX = c! · ξ · T yQ0 · Ta ≥ c! · yQ0 · c ≥ yTX .

(c) The adjunction (T (a!))! a (T (a!))
! gives (T (a!))! · (Ts)! ≤ (Tt)!.

Hence, with Condition 2 for a lax topological theory and Lemma 3.1(2) one
obtains

λX · T sX = c! · ξ · T (a!) · T sX = c! · ξ · T sQ0 · T (a!!)
≥ c! · sQ0 · θ · T (a!!) = sTX · (c!)! · θ · T (a!!)
= sTX · (c!)! · ξ! · (Tt)! · ζ ! · ξ · T (t!) · T (a!!)
≥ sTX · (c!)! · ξ! · (T (a!))! · (Ts)! · ζ ! · ξ · T (s!)
= sTX · (c!)! · ξ! · (T (a!))! · (ζ · Ts)! · ξ · T (s!)
= sTX · (λX)! · λPX .

(d) From ζ · eQ0 = 1Q0 one obtains (eQ0)! ≤ ζ ! by adjunction. Together
with Condition 3 for a lax topological theory, this gives

λX · ePX = c! · ξ · T (a!) · ePX = c! · ξ · ePQ0 · a! ≥ (ζ · Ta)! · a!
≥ (Ta)! · (eQ0)! · a! = (Ta)! · (Ta)! · (eX)! ≥ (eX)!.

(e) With d := ζ · Tc the array function of TTX , from c ·mX = d one
obtains (mX)! · d! ≤ c! by adjunction, so that condition 3 for a topological
theory gives
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λX ·mPX = c! · ξ · T (a!) ·mPX = c! · ξ ·mPQ0 · TT (a!)
≥ c! · ξ · Tξ · TT (a!) ≥ (mX)! · d! · ξ · Tξ · TT (a!)
≥ (mX)! · d! · ξ · T (c!) · T (c!) · T (ξ) · TT (a!)
= (mX)! · λTX · TλX .

Next we show that the topological theory ξ′ induced by λ = λξ equals ξ.
Indeed, since ζ is surjective, one has ζ◦ ◦ ζ◦ = 1TQ0 and therefore

ξ′ = ζ! · λQ0 = ζ! · ζ ! · ξ = (ζ◦ ◦ ζ◦)� · ξ = ξ.

Finally, let κ : TP // PT be any monotone distributive law inducing ξ,
so that ζ! · κQ0 = ξ. Then

λX = c! · ξ · T (a!) = (Ta)! · ζ ! · ζ! · κQ0 · T (a!)
≥ (Ta)! · κQ0 · T (a!) = (Ta)! · T (a!) · κX ≥ κX .

Remark 5.6. (1) When stated in pointwise terms, the definition of λ = λξ

reads as
(λXz)x = (ξ · T (a!)(z))ζ·Ta(x),

for all X = (X, a) ∈ Set/Q0, x ∈ TX, z ∈ TPX .
(2) For a topological theory ξ, the structure θ as in Definition 5.4 always

satisfies the lax T-unit and -multiplication laws of Proposition 5.2, since ξ is
induced by the monotone distributive law λξ.

Corollary 5.7. For a quantaloidQ and a Set-monad T that comes equipped
with a T-algebra structure ζ on the set of objects of Q, the assignments

(ξ 7→ λξ), (λ 7→ ξλ := ζ! · λQ0)

define an adjunction between the ordered set of topological theories for T
and Q and the conglomerate of monotone distributive laws TPQ // PQT ,
ordered componentwise.

Definition 5.8. A monotone distributive law λ is maximal if it is closed un-
der the correspondence of Corollary 5.7, that is, if it is induced by some
topological theory or, equivalently, by ξλ. More explicitly then, λ is maximal
if, and only if, for all X = (X, a) ∈ Set/Q0,

λX = (Ta)! · ζ ! · ζ! · λQ0 · T (a!).

Note that this condition simplifies to λX = (Ta)! · λQ0 · T (a!) when ζ is
bijective.
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Corollary 5.9. Maximal monotone distributive laws correspond bijectively
to topological theories.

Example 5.10. (1) For T and λ identical (as in Example 4.1(1)), with ζ =
1Q0 also the induced map ξ = 1PQ0 is identical, but the maximal law
λξ associated with it (by Theorem 5.5) is not; for a set X with array
function |−| : X //Q0 one has

λξX : PQX // PQX, (λξXσ)y =
∨
{σx | x ∈ X, |x| = |y|},

for all σ ∈ PX, y ∈ X.

(2) For T = L and the strict distributive law ⊗ of Example 4.1(2), the
induced map ξ : LV // V with (v1, ..., vn) 7→ v1 ⊗ ... ⊗ vn is in fact
the Eilenberg-Moore structure of the monoid (V,⊗, k). The maximal
law λξX : L(VX) //VLX maps (σ1, ..., σn) to the map LX //V with
constant value

∨
{σ1(z1)⊗ ...⊗σn(zn) | z1, ..., zn ∈ X}, for every set

X .

(3) For Q = DV with V divisible, T = L, and the distributive law and the
map ζ : LV //V as in Example 4.1(3) (which coincides with the map
ξ of (2) above), the now induced map ξ : L(PV) // PV = PQV is
given by

(ξ(σ1, ..., σn))u =
∨

v1⊗...⊗vn=u

σ1
v1
⊗ ...⊗σnvn : u // |σ1|⊗ ...⊗|σn|,

for all σ1, ..., σn ∈ PV, u ∈ V.

(4) The map ξ : PV // V induced by the law δ of Example 4.1(4) has
constant value >.

(5) The map ξ : UV // V induced by the ultrafilter monad and the law β
as in Example 4.1(5) is given by

ξ(z) =
∧
C∈z

∨
C

(which may be written as ξ(z) =
∨
C∈z
∧
C if V is completely dis-

tributive), for every ulltrafilter z on V; it plays a central role in [24].
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While typically maximal monotone distributive laws are rather special
and often allow only for trivial λ-algebras, especially when Q is a quan-
tale (see Remark 8.4(2)), they do lead to interesting categories (λ,Q)−Alg
whenQ is a multi-object quantaloid, including the case whenQ = DV for a
quantale V. We can mention here only the easiest case.

Example 5.11. Consider the maximal law λ = λξ induced by the identity
map ξ = 1PQ0 of Example 5.10(1), for any quantaloid Q and T the identity
monad on Set/Q0. Writing a(x, y) := (py)x for x, y ∈ X and a lax λ-
algebra structure p : X // PX on a set X with array map |−| : X //Q0,
conditions (f), (g) of Definition 4.2 translate to

1|x| ≤ a(x, x), (|y| = |y′| =⇒ a(y′, z) ◦ a(x, y) ≤ a(x, z))

for all x, y, y′, z ∈ X . Since in particular a(y, y) ◦ a(x, x) ≤ a(x, y) when-
ever |x| = |y|, these conditions are equivalent to

(|x| = |y| =⇒ 1|x| ≤ a(x, y)), a(y, z) ◦ a(x, y) ≤ a(x, z)

for all x, y, z ∈ X . Consequently then, (λ,Q)−Alg can be seen as the
full subcategory ofQ−Cat containing thoseQ-categories (X, a) satisfying
1|x| ≤ a(x, y)) for all x, y with the same array. In the case of Q = D[0,∞]
(see Example 2.3(2)), this is the full subcategory of ParMet of those partial
metric spaces (X, a) satisfying the array-invariance condition

a(x, x) = a(y, y) =⇒ a(x, y) = a(x, x)

for all x, y ∈ X .

6. Lax distributive laws of T over PQ versus lax extensions
of T to Q−Rel

In this section we give a precise account of the bijective correspondence be-
tween monotone distributive laws of T over PQ and so-called lax extensions
of T to Q−Rel, i.e., to the Kleisli category of PQ, where T is now again an
arbitrary monad of Set/Q0, i.e., not necessarily a lifting of a Set-monad as
in Section 5.
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Remark 6.1. For future reference, we give a list of identities that will be
used frequently in what follows. In part they have already been used in
Section 3, and they all follow from the discrete presheaf adjunction that in-
duces PQ. For morphisms ϕ : X //7 Y, ψ : Y //7 Z in Q−Rel and
f : X // Y, g : X // Z, h : Z // Y in Set/Q0 one has:

(1) ←−ϕ = ϕ� · yY , ϕ =←−ϕ ◦ ◦ εX , ϕ� = sX · ←−ϕ !, (ϕ�)◦ = εY ◦ ϕ;

(2)
←−−−
ψ ◦ ϕ = ϕ� · ←−ψ , g! · ←−ϕ =

←−−−
ϕ · g◦, ←−−−

h◦ ◦ ϕ =←−ϕ · h;

(3)
←−
f ◦ = yY · f = f! · yX ,

←−
1◦X = yX , 1◦X = y◦X ◦ εX , ←−εX = 1PX .

In what follows, we analyze which of the inequalities required for lax
extensions and distributive laws correspond to each other, starting with the
most general scenario. Hence, initially we consider mere families λX :
TPX // PTX (X ∈ Set/Q0) of maps in Set/Q0, which we will call
(T,Q)-distribution families, and contrast them with families

T̂ϕ : TX //7 TY (ϕ : X //7 Y in Q−Rel),

which we refer to as (T,Q)-extension families. Certainly, a distribution fam-
ily λ = (λX)X determines an extension family

Φ(λ) = T̂ = (T̂ϕ)ϕ with
←−
T̂ϕ := λX · T←−ϕ ,

also visualized by

(ϕ : X //7 Y ) 7→ (T̂ϕ : TX //7 TY )

(←−ϕ : Y // PX) 7→
TY

TPX.
T
←−ϕ ��

TY PTX

←−
T̂ϕ

// PTX

TPX.

??

λX

We see immediately that we may retrieve (λX)X from (T̂ϕ)ϕ, by choosing ϕ
such that←−ϕ = 1PX , which is the case precisely when ϕ = εX : X //7 PX
(the co-unit of the adjunction presented in Section 3). Hence, when assigning
to any extension family T̂ = (T̂ϕ)ϕ the distribution family
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Ψ(T̂ ) = λ = (λX)X rmwith λX :=
←−−
T̂ εX ,

we certainly have ΨΦ(λ) = λ for all distribution families λ. The follow-
ing Proposition clarifies which extension families correspond bijectively to
distribution families. We call an extension family T̂ monotone if it satisfies

∀ϕ, ϕ′ : X //7 Y (ϕ ≤ ϕ′ =⇒ T̂ϕ ≤ T̂ϕ′),

and monotonicity of a lax distribution family is defined as monotonicity for
a lax distributive law in Section 4.

Proposition 6.2. Φ and Ψ establish a bijective correspondence between all
(T,Q)-distribution families and those (T,Q)-extension families T̂ = (T̂ϕ)ϕ
which satisfy the left-op-whiskering condition

(0) T̂ (h◦ ◦ ϕ) = (Th)◦ ◦ T̂ϕ
for all ϕ : X //7 Y inQ−Rel, h : Z //Y in Set/Q0. The correspondence
restricts to a bijective correspondence between the conglomerate (T,Q)−
DIS of all monotone distribution families and the conglomerate (T,Q)−
EXT of all monotone extension families satisfying (0).

Proof. For a distribution family λ and T̂ := Φ(λ), let us first verify the
identity (0), using the definition of T̂ and Remark 6.1(2):
←−−−−−−−
(Th)◦ ◦ T̂ϕ =

←−
T̂ϕ · Th = λX · T←−ϕ · Th = λX · T (

←−−−
h◦ ◦ ϕ) =

←−−−−−−
T̂ (h◦ ◦ ϕ).

Monotonicity of T̂ follows trivially from the corresponding property of λ.
Next, for any extension family T̂ satisfying (0), we must show ΦΨ(T̂ ) =

T̂ . Indeed, with λ := Ψ(T̂ ), the definition of Φ(λ) and Remark 6.1(1) give

←−−−−−−−
(ΦΨ(T̂ ))ϕ = λX · T←−ϕ =

←−−
T̂ εX · T←−ϕ = (T̂ εX)� · yTPX · T←−ϕ

= (T̂ εX)� · ((T←−ϕ )◦)� · yTY = (T̂ (←−ϕ ◦ ◦ εX))� · yTY
= (T̂ϕ)� · yTY =

←−
T̂ϕ.

That monotonicity of λ follows from the monotonicity of T̂ and (0) is
clear once one has observed that

λX · Tf =
←−−
T̂ εX · Tf =

←−−−−−−−−
(Tf)◦ · T̂ εX =

←−−−−−−
T̂ (f ◦ · εX)
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for all f : Y // PX in Set/Q0.

Before pursuing the bijective correspondence further, let us contrast con-
dition (0) with some other natural conditions for an extension family, as
follows.

Proposition 6.3. Let the monotone extension family T̂ satisfy T̂ψ ◦ T̂ϕ ≤
T̂ (ψ◦ϕ) for all ϕ, ψ ∈ Q−Rel. Then the following conditions are equivalent
when universally quantified over the variables occurring in them (with maps
f : X // Y, h : Z // Y over Q0):

(i) 1◦TX ≤ T̂ (1◦X), T̂ (h◦ ◦ ϕ) = (Th)◦ ◦ T̂ϕ;

(ii) 1◦TX ≤ T̂ (1◦X), T̂ (ψ ◦ f◦) = T̂ψ ◦ (Tf)◦;

(iii) (Tf)◦ ≤ T̂ (f ◦), (Tf)◦ ≤ T̂ (f◦).

Proof. (i) ⇒ (iii) The hypotheses, the adjunction f◦ a f ◦, and the mono-
tonicity give

1◦TX ≤ T̂ (1◦X) ≤ T̂ (f ◦ ◦ f◦) = (Tf)◦ ◦ T̂ (f◦),

so that (Tf)◦ ≤ T̂ (f◦) follows with the adjunction (Tf)◦ a (Tf)◦. Further-
more,

(Tf)◦ = (Tf)◦ ◦ 1TY ≤ (Tf)◦ ◦ T̂ (1◦Y ) = T̂ (f ◦ ◦ 1◦Y ) = T̂ (f ◦).

(iii)⇒ (i) One uses (iii) and the general hypotheses on T̂ to obtain:
(Th)◦ ◦ T̂ϕ ≤ T̂ (h◦) ◦ T̂ϕ ≤ T̂ (h◦ ◦ ϕ)

≤ (Th)◦ ◦ (Th)◦ ◦ T̂ (h◦ ◦ ϕ) ≤ (Th)◦ ◦ T̂ (h◦) ◦ T̂ (h◦ ◦ ϕ)

≤ (Th)◦ ◦ T̂ (h◦ ◦ h◦ ◦ ϕ) ≤ (Th)◦ ◦ T̂ϕ.
(i)⇔ (ii): One proceeds analogously to (i)⇔ (iii).

In what follows we compare the conditions on λ ∈ (T,Q)−DIS en-
countered in Section 4 with some relevant conditions on the related family
T̂ ∈ (T,Q)−EXT under the correspondence of Proposition 6.2, so that
T̂ = Φ(λ), λ = Ψ(T̂ ), all to be read as universally quantified over all new
variables (ϕ : X //7 Y, ψ : Y //7 Z, f : X // Y, g : Y //X) occurring
in them.
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(a)

TPY PTY
λY

//

TPX

TPY

T (f!)

��

TPX PTX
λX // PTX

PTY

(Tf)!

� �

≤ (1) T̂ψ ◦ (Tg)◦ ≤ T̂ (ψ ◦ g◦)

(b)
TPX PTX

λX
//

TX

TPX

T yX

��

TX

PTX

yTX

��≥ (2) 1◦TX ≤ T̂ (1◦X)

(2’) (Tf)◦ ≤ T̂ (f ◦)

(c)

TPX PTX
λX

//

TPPX

TPX

T sX
��

TPPX PPTXPPTX

PTX

sTX

��

TPPX PTPX
λPX // PTPX PPTX

(λX)!
//

≥ (3) T̂ψ ◦ T̂ϕ ≤ T̂ (ψ ◦ ϕ)

(3’) (T̂ϕ)� ·
←−−
T̂ εY ≤

←−−
T̂ εX · Tϕ�

(d)
TPX PTX

λX
//

PX

TPX

ePX

��

PX

PTX

(eX)!

��≥ (4) ϕ ◦ e◦X ≤ e◦Y ◦ T̂ϕ

(e)
TPX PTX

λX
//

TTPX

TPX

mPX

��

TTPX PTTXPTTX

PTX

(mX)!
��

TTPX TPTX
TλX // TPTX PTTX

λTX //

≥ (5) T̂ T̂ϕ ◦m◦X ≤ m◦Y ◦ T̂ϕ

Proposition 6.4. Let λ ∈ (T,Q)−DIS and T̂ ∈ (T,Q)−EXT be related
under the correspondence of Proposition 6.2, so that T̂ = Φ(λ), λ = Ψ(T̂ ).
Then: (a) ⇔ (1), (b) ⇔ (2) ⇔ (2′), (a)&(c) ⇒ (3) ⇔ (3′) ⇒
(c), (2′)&(3)⇒ (a), (d)⇔ (4), (e)⇔ (5),
and in each of these implications or equivalences one may replace the in-
equality sign by an equality sign on both sides of the implication or equiva-
lence sign.

Proof. (a)⇒(1): The hypothesis (a) and Remark 6.1 give←−−−−−−−
T̂ψ ◦ (Tg)◦ = (Tg)! ·

←−
T̂ψ = (Tg)! · λX · T

←−
ψ ≤ λZ · T (g! ·

←−
ψ )

= λZ · T ((g◦)� · ←−ψ ) =
←−−−−−−
T̂ (ψ ◦ g◦),
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with equality holding when equality holds in (a).
(1)⇒(a): The hypotheses (0), (1), the naturality of ε and the repeated

application of Remark 6.1 give the inequality (a), with equality holding when
equality holds in (1):

(Tf)! · λX = ((Tf)◦)� ·
←−−
T̂ εX =

←−−−−−−−−
T̂εX · (Tf)◦

≤
←−−−−−−−
T̂ (εX ◦ f ◦) =

←−−−−−−−−
T̂ ((f!)

◦ ◦ εY =
←−−−−−−−−−−
(T (f!))

◦ ◦ T̂ εY
=
←−−
T̂ εY · T (f!) = λY · T (f!).

(b)⇒ (2′):
←−−−
T̂ (f ◦) = λY · T

←−
f ◦ = λY · T yY · Tf ≥ yTY · Tf =

←−−−
(Tf)◦.

(2′) ⇒(2)⇒(b): Consider f = 1X and use the same steps as in (b)⇒
(2′). Trivially then, equality holds in (b) if, and only if, equality holds in (2),
or (2′).

(a)&(c)⇒ (3′): With λ := Ψ(T̂ ), inequality (3′) follows from (a) and
(c) and Remark 6.1, with equality holding if it holds in both (a) and (c), as
follows:

λX · T (ϕ�) = λX · T sX · T (←−ϕ !) ≥ sTX · (λX)! · λPY · T (←−ϕ !)

≥ sTX · (λX)! · (T←−ϕ )! · λY = sTX · (
←−
T̂ϕ)! · λY

= (T̂ϕ)� · λY .
(3′) ⇒(c): Inequality (c) follows when one puts ϕ = εX in (3′), with

equality holding when it holds in (3′):
λX · T sX = λX · T (ε�X)

≥ (T̂ εX)� · λPX = sTX · (
←−−
T̂ εX)! · λPX = sTX · (λX)! · λPX .

(3′) ⇒(3): With λX =
←−−
T̂ εX one obtains (3) from (3’) and Remark 6.1,

as follows:←−−−−−
T̂ψ ◦ T̂ϕ = (T̂ϕ)� ·

←−
T̂ψ = (T̂ϕ)� · λY · T

←−
ψ

≤ λX · Tϕ� · T
←−
ψ = λX · T (

←−−−
ψ ◦ ϕ) =

←−−−−−
T̂ (ψ ◦ ϕ).

(3)⇒ (3′): One exploits the naturality of ε and (3) (putting ψ = εY ) to
obtain:

(T̂ϕ)� ·
←−−
T̂ εY =

←−−−−−−
T̂ εY ◦ T̂ϕ ≤

←−−−−−−
T̂ (εY ◦ ϕ)

=
←−−−−−−−−−
T̂ ((ϕ�)◦ ◦ εX) =

←−−−−−−−−−
(Tϕ�)◦ ◦ T̂ εX =

←−−
T̂ εX · Tϕ�,

with equality holding precisely when equality holds in (3).

(2′)&(3)⇒(1): T̂ϕ ◦ (Tg)◦ ≤ T̂ϕ ◦ T̂ (g◦) ≤ T̂ (ϕ ◦ g◦).
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(d) ⇐⇒ (4): We show “ ⇒ ”; the implication “ ⇐ ” follows similarly,
with ϕ = εX :←−−−−

ϕ ◦ e◦X = (eX)! · ←−ϕ ≤ λX · ePX · ←−ϕ
= λX · T←−ϕ · eY =

←−
T̂ϕ · eY = (T̂ϕ)� · ←−e◦Y =

←−−−−−
e◦Y ◦ T̂ϕ.

(e) ⇐⇒ (5): Since again “ ⇐ ” follows by putting ϕ = εX , we show
only “⇒ ”:←−−−−−−−

T̂ T̂ϕ ◦m◦X = (mX)! ·
←−−
T̂ T̂ϕ = (mX)! · λTX · T

←−−−
(T̂ϕ)

= (mX)! · λTX · TλX · TT←−ϕ ≤ λX ·mPX · TT←−ϕ
= λX · T←−ϕ ·mY =

←−
T̂ϕ ·mY = (T̂ϕ)� · ←−m◦Y

=
←−−−−−
m◦Y ◦ T̂ϕ.

A lax extension T̂ of the monad T to Q−Rel is a monotone (T,Q)-
extension family satisfying conditions (0), (2)-(5) for all ϕ : X //7 Y, ψ :
Y //7 Z in Q−Rel and h : Z // Y in Set/Q0, i.e., a left-whiskering lax
functor T̂ : Q−Rel //Q−Rel that coincides with T on objects and makes
e◦ : T̂ //7 1Set/Q0 and m◦ : T̂ //7 T̂ T̂ lax natural transformations. We
have proved in Propositions 6.2, 6.3 and 6.4 the following theorem (which
corrects and considerably generalizes Exercise III.1.I in [26]):

Theorem 6.5. There is a bijective correspondence between the monotone
distributive laws of the monad T over PQ and the lax extensions T̂ of T toQ−
Rel. These lax extensions are equivalently described as monotone (T,Q)-
extension families T̂ satisfying the following inequalities (for all f, ϕ, ψ as
above):

1. (Tf)◦ ≤ T̂ (f◦),

2. (Tf)◦ ≤ T̂ (f ◦),

3. (= (3)) T̂ψ ◦ T̂ϕ ≤ T̂(ψ ◦ ϕ),

4. (eY )◦ ◦ ϕ ≤ T̂ϕ ◦ (eX)◦,

5. (mY )◦ ◦ T̂ T̂ϕ ≤ T̂ϕ ◦ (mX)◦.

For a lax extension T̂ of the monad T to Q−!Rel we can now define:
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Definition 6.6. A (T,Q)-category (X,α) is a set X over Q0 equipped with
a Q-relation α : X //7 TX satisfying the lax unit and multiplication laws

1◦X ≤ e◦X ◦ α, T̂α ◦ α ≤ m◦X ◦ α.

A (T,Q)-functor f : (X,α) // (Y, β) must satisfy

α ◦ f ◦ ≤ (Tf)◦ ◦ β.

Hence, the structure of a (T,Q)-category (X,α) consists of a family of Q-
morphisms α(x, x) : |x|X // |x|TX (x ∈ X, x ∈ TX), subject to the condi-
tions

1|x| ≤ α(x, eXx), T̂ α(y,Z) ◦ α(x, y) ≤ α(x,mXZ),

for all x ∈ X, y ∈ TX,Z ∈ TTX . The (T,Q)-functoriality condition for f
reads in pointwise form as

α(x, y) ≤ β(fx, Tf(y))

for all x ∈ X, y ∈ TX . The emerging category is denoted by

(T,Q)−Cat;

only if there is the danger of ambiguity will we write (T, T̂ ,Q)−Cat to stress
the dependency on the chosen extension T̂ .

Remark 6.7. When Q is a commutative quantale V, then the structure of a
(T,V)-category (X,α) may be given equivalently by a V-relation TX //7 X,
and the notion takes on the familiar meaning (as presented in [26]). How-
ever, it is important to note that, because of the switch in direction of the
V-relation α : X //7 TX (as a lax coalgebra structure) to a lax algebra
structure TX //7 X as in [26], (T, T̂ ,V)−Cat defined here actually be-
comes (T,V, Ť )−Cat as defined in [26], III.1, with Ťϕ := (T̂ (ϕ◦))◦ and
ϕ◦ : Y //7 X, ϕ◦(y, x) = ϕ(x, y), for all V-relations ϕ : X //7 Y, x ∈
X, y ∈ Y (see Exercise III.1.J in [26]).

Before presenting further examples, let us point out that (T,Q)-categories
and (T,Q)-functors are just disguised lax λ-algebras with their lax homo-
morphisms, since Q-relations α : X //7 TX are in bijective correspon-
dence with Set/Q0-morphisms p : TX // PX under the adjunction of
Section 3.
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Proposition 6.8. When λ and T, T̂ are related by the correspondence of
Theorem 6.5, then there is a (natural) isomorphism

(λ,Q)−Alg ∼= (T, T̂ ,Q)−Cat

of categories which commutes with the underlying Set/Q0-functor.

Proof. Given a (T,Q)-category structure α on X , repeated applications of
the rules of Remark 6.1 confirm that←−α makes X a lax λ-algebra:

←−α · eX =
←−−−−
e◦X ◦ α ≥

←−
1◦X = yX ,

←−α ·mX =
←−−−−
m◦X ◦ α ≥

←−−−−
T̂α ◦ α = α� ·

←−̂
Tα = sX · ←−α ! · λX · T←−α .

Conversely, given a lax λ-algebra structure p on X , putting α := p◦ · εX one
has←−α = p, and the same computational steps as above show

←−−−
e◦X · α ≥

←−
1◦X

and
←−−−
m◦x · α ≥

←−−−−
T̂α · α, so that α is a (T,Q)-category structure on X .

A (T,Q)-functor f : (X,α) // (Y, β) gives a lax λ-homomorphism
f : (X,←−α ) // (Y,

←−
β ), since

f! · ←−α =
←−−−
α ◦ f ◦ ≤ ←−−−−−−(Tf)◦ ◦ β =

←−
β · Tf,

and conversely.

Example 6.9. (1) Let T be a Set-monad with a lax extension T̃ to Rel =
2−Rel that we now wish to extend further to D2−Rel. As in Propo-
sition 5.1, we first consider a T-algebra structure ζ : T2 // 2, which
then allows us to consider T as a monad on Set/2, the category of
sets X with a given subset A (see Example 2.3(2)). Of course, one
now wishes to compute T (X,A) as the pair (TX, TA). Since the ar-
ray function ofX is the characteristic function cA ofA, this is possible
precisely when the Set-functor T satisfies the pullback transformation
condition

X 2cA
//

A

X
��

A 1// 1

2

>
��

y
=⇒

y· ·

TX T2
TcA

//

TA

TX
��

TA T1// T1

T2T2 2,
ζ
//

T1

T2

T1 1// 1

2,

>
��
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and this condition certainly holds when T is taut (i.e., preserves pull-
backs of monomorphisms) and ζ−11 = T1. Since a morphism ϕ :
(X,A) //7 (Y,B) (where A ⊆ X,B ⊆ Y ) in D2−Rel is completely
determined by the restricted relation ϕrest : A //7 B, one may now
declare x to be T̂ϕ-related to y if, and only if, x ∈ TA, y ∈ TB and x
is T̃ϕ-related to y, to obtain a lax extension of T to D2−Rel.

With T̃ and the T-algebra structure ζ on 2 given such that ζ−11 =
T1, the objects (X,A, α) of the category (T, T̂ ,D2)−Cat may be
described as setsX with a subsetA such that (A,α) ∈ (T, T̃ , 2)−Cat;
morphisms f : (X,A, α) // (Y,B, β) are maps f : X // Y with
f−1B = A whose restrictions A // B are (T, 2)-functors. The list
monad L (with ζ : L2 // 2 given by ∧) and the ultrafilter monad U
both satisfy our hypotheses, and (T, T̂ ,D2)−Cat then describes the
categories of ParMulOrd and ParTop of partial multi-ordered sets
and partial topological spaces, respectively.

(2) Expanding on Examples 4.1(2),(3) and Example 4.3(2), with L laxly
extended to D[0,∞]−Rel, one obtains as (L,D[0,∞])−Cat the cate-
gory ParMulMet of partial multi-metric spaces; its objects X may be
described as sets carrying a distance function a : LX ×X // [0,∞]
(see Remark 6.7), subject to the conditions

max(
n∑
i=1

a(xi, xi), a(y, y)) ≤ a((x1, ..., xn)y),

a((x1,1, . . . , x1,n1︸ ︷︷ ︸
x1

, . . . , xm,1, . . . , xm,nm︸ ︷︷ ︸
xm

), z)

≤
( m∑
i=1

a(xi, yi)− a(yi, yi)
)

+ a((y1, . . . , ym), z);

their morphisms f : (X, a) // (Y, b) must satisfy

b(f(x), f(x)) = a(x, x),
b((f(x1), . . . , f(xn)), f(y)) ≤ a((x1, . . . , xn), y)

for all x, x1, ..., xn, y ∈ X .
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7. Algebraic functors, change-of-base functors

Here we consider the standard types of functors arising from a variation in
the two parameters defining the categories (λ,Q)−Alg ∼= (T, T̂ ,Q)−Cat,
which have been discussed earlier, in the quantale-monad-enriched case (see
[14, 26]) as well as for T in more general settings (see [11]), but not in the
current monad-quantaloid-enriched context, which does require some extra
pecautions.

Let us first consider two monads T = (T,m, e), S = (S, n, d) on
Set/Q0, both monotonely distributing over PQ, via the monotone distribu-
tive laws λ, κ, respectively; equivalently, both coming equipped with lax
extensions T̂ and Ŝ to Q−Rel, respectively. An algebraic morphism

h : (T, T̂ ) //7 (S, Ŝ)

of lax extensions is a family ofQ-relations hX : TX //7 SX (X ∈ Set/Q0),
satisfying the following conditions for all f : X // Y in Set/Q0, ϕ :
X //7 Y, α : X //7 TX in Q−Rel:

a. hX ◦ (Tf)◦ ≤ (Sf)◦ ◦ hY , (lax naturality)
b. e◦X ≤ d◦X ◦ hX , (lax unit law)
c. ŜhX ◦ hTX ◦m◦X ≤ n◦X ◦ hX , (lax multiplication law)
d. Ŝϕ ◦ hX ≤ hY ◦ T̂ϕ, (lax compatability)
e. Ŝ(hX ◦ α) ≤ ŜhX ◦ Ŝα. (strictness at h)

Note that, because of the lax functoriality of Ŝ, “≤” in condition e actu-
ally amounts to “=”. Putting now τX :=

←−
hX and exploiting Remark 6.1, we

may equivalently call a family of Set/Q0-morphisms τX : SX // PQTX
(with X running through Set/Q0) an algebraic morphism τ : κ // λ
of monotone distributive laws if the following conditions hold for all f :
X // Y, g : Y // PQX, p : TX // PQX in Set/Q0:
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a′. (Tf)! · τX ≤ τY · Sf ; (lax naturality)
b′. yTX · eX ≤ τX · dX ; (lax unit law)
c′. (mX)! · sTTX · (τTX)! · κTX · SτX ≤ τX · nX ; (lax mult. law)
d′. sTX · (τX)! · κX · Sg ≤ sTX · (λX)! · (Tg)! · τY ; (lax compatibility)
e′. κX · SsX · S(p!) · SτX ≤ sSX · (κX)! · (Sp)! · κTX · SτX . (strictness at p)

A routine calculation shows:

Proposition 7.1. Every algebraic morphism h : (T, T̂ ) // (S, Ŝ) of lax
extensions induces the algebraic functor

Ah : (T, T̂ ,Q)−Cat // (S, Ŝ,Q)−Cat, (X,α) 7→ (X, hX ◦ α).

When h is equivalently described as an algebraic morphism τ : κ //λ, then
Ah is equivalently described as the algebraic functor

Aτ : (λ,Q)−Alg // (κ,Q)−Alg, (X, p) 7→ (X, νX · p! · τX).

Considering S and Ŝ identical or, equivalently, κ = 1P, with the algebraic
morphism hX = e◦X or, equivalently, τX = yTX · eX , one obtains:

Corollary 7.2. For every monad T on Set/Q0 with lax extension T̂ and
corresponding monotone distributive law λ, there is an algebraic functor

A : (T,Q)−Cat //Q−Cat, (X,α) 7→ (X, e◦X ◦ α)

that is equivalently described by

A : (λ,Q)−Alg //Q−Cat, (X, p) 7→ (X, p · eX).

Example 7.3. (See [34].) For the powerset monad P = P2 and the ultrafilter
monad U with their monotone distributive laws δ and β over PV of Example
4.1(4),(5) and their corresponding lax extensions P̂ and U to V−Rel, where
V = (V,⊗, k) is a commutative and completely distributive quantale, the
algebraic morphism h with hX : UX //7 PX, hX(x, A) = k if A ∈ x ∈
UX , and hX(x, A) = ⊥ else, induces the algebraic functor

(U,V)−Cat // (P,V)−Cat ∼= V−Cls,

which actually takes values in V−Top and facilitates the isomorphism of
categories (U,V)−Cat ∼= V−Top already mentioned in equivalent form in
Example 4.3(4).
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In order to describe change-of-base functors in the general setting of this
paper, let us now consider a lax homomorphism ϑ : Q //R of quantaloids,
so that we have a lax natural transformation ϑ : Bϑ0PQ // PRBϑ0 (see
the end of Section 3), and a Set-monad T = (T,m, e) which, according
to Proposition 5.1, has been lifted to Set/Q0 and Set/R0 via T-algebra
structures ζ : TQ0

// Q0 and η : TR0
// R0, respectively, such that

ϑ0 : Q0
// R0 is a T-homomorphism. The liftings of T to Set/Q0 and

Set/R0 commute with the “discrete change-of-base functor” Bϑ0 , that is:
Bϑ0T = TBϑ0 , Bϑ0e = eBϑ0 , Bϑ0m = mBϑ0 . (These provisions are, of
course, trivially satisfied when Q andR are quantales.)

Extendinging now Bϑ0 to a functor B̃ϑ : Q−Rel // R−Rel by
(B̃ϑϕ)(x, y) = ϑ(ϕ(x, y)) and considering lax extensions T̂ , Ť of T to Q−
Rel,R−Rel, respectively, we call ϑ compatible with T̂ , Ť if

Ť B̃ϑϕ ≤ B̃ϑT̂ϕ (?)

for all ϕ : X //7 Y in Q−Rel. (Note that the two R-relations in (?) are
comparable since Bϑ0T = TBϑ0 .) If we describe the two lax extensions
T̂ , Ť equivalently by the monotone distributive laws λ, κ, respectively, using
the natural lax natural transformation ϑ : Bϑ0PQ // PRBϑ0 (see the end of

Section 3) and the easily verified rule
←−−
B̃ϑϕ = ϑX · Bϑ0

←−ϕ , we see that (?)
may equivalently be formulated as

κBϑ0 · Tϑ ≤ ϑT ·Bϑ0λ (??).

Now we can state the following proposition, which one may prove using
lax extensions and transcribing the known proof for the quantale case (see
[26], III.3.5); alternatively, one may proceed by using the monotone distribu-
tive laws and the lax monad inequalities of ϑ as stated at the end of Section
3.

Proposition 7.4. Under hypothesis (?) one obtains the change-of-base func-
tor

Bϑ : (T, T̂ ,Q)−Cat // (T, Ť ,R)−Cat, (X,α) 7→ (Bϑ0X, B̃ϑα).

Under hypothesis (??) this functor is equivalently described as

Bϑ : (λ,Q)−Alg // (κ,R)−Alg, (X, p) 7→ (Bϑ0X,ϑX ·Bϑ0p).
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Example 7.5. For a commutative and (for simplicity) divisible quantale V,
we consider the lax extensions of the list monad L to V−Rel and DV−Rel
induced by the monotone distributive laws of Example 4.1(2),(3), which we
may both denote by L̂. In fact, for ϕ : X //7 Y and xi ∈ X, yj ∈ Y one has

L̂ϕ((x1, ..., xn), (y1, ..., ym)) = ϕ(x1, y1)⊗ ...⊗ ϕ(xm, ym) if m = n,

to be interpreted as an arrow |x1| ⊗ ... ⊗ |xn| // |y1| ⊗ ... ⊗ |yn| in the
DV-case, and the value is ⊥ otherwise. For the homomorphism ι : V //DV
and its retractions δ, γ as described in Section 2, one sees that B̃ι embeds
V−Rel fully into DV−Rel, providing every set with the constant ar-
ray function with value k, while its retractions B̃δ and B̃γ are given by
B̃δϕ(x, y) = |y| ↘ ϕ(x, y) and B̃γϕ(x, y) = ϕ(x, y) ↙ |x|. Since the
compatability condition (?) holds for all, ι, δ and γ (strictly so for ι), as
“liftings” of the corresponding functors mentioned in Section 2, one obtains
the full embedding Bι : (L,V)−Cat // (L,DV)−Cat and its retractions
Bδ, Bγ , which we describe explicitly here only in the case V = [0,∞] using
the notation of Example 6.9(2):

Bδ, Bγ : ParMultMet //MulMet

Bδ : (X, a) 7→ (X, aδ), aδ((x1, ..., xn), y) = a((x1, ..., xn), y)−
n∑
i=1

a(xi, xi),

Bγ : (X, a) 7→ (X, aγ), aγ((x1, ..., xn), y) = a((x1, ..., xn), y)− a(y, y).

The full reflective embedding EV : DV−Cat // V−Cat/V of Section
2 may be “lifted” along the algebraic functors (L,DV)−Cat // DV−Cat
and (L,V)−Cat/V // V−Cat/V to obtain a full reflective embedding

E = EL,V : (L,DV)−Cat // (L,V)−Cat/V,

which we briefly describe next, always assuming that V be commutative and
divisible. First, in accordance with the general setting of III.5.3 of [26],
we combine the monoid structure of V with its internal hom and regard V
as an (L,V)-category (V, h) with h : LV //7 V (see Remark 6.7) given by
h((v1, ..., vn), u) = (v1⊗...⊗vn)↙ u. NowE provides an (L,DV)-category
(X, a) with the (L,V)-category structure d defined by d((x1, ..., xn), y) =
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a((x1, ..., xn), , y) ↙ a(y, y) and considers it an (L,V)-category over V via
tx = a(x, x). Conversely, the reflector provides an (L,V)-category (X, d)
that comes equipped with an (L,V)-functor t : X // V, with the (L,DV)-
category structure a defined by a((x1, ..., xn), y) = d((x1, ..., xn), y)⊗ ty.

In the case V = [0,∞] the functor E becomes an isomorphism of cate-
gories, so that in the notation of Example 6.9(2) one has

ParMulMet ∼= MulMet/[0,∞].

Therefore, just as described in Section 2 in the “non-multi” case, the standard
construction of a right adjoint to the functor

Σ : MulMet/[0,∞] //MulMet

therefore gives a right adjoint to Bγ : ParMulMet //MulMet.

8. Comparison with Hofmann’s topological theories

In [24], for a Set-monad T = (T,m, e) and a commutative quantale V =
((V,⊗, k), Hofmann considers maps ξ : TV // V satisfying the following
conditions:

1. 1V ≤ ξ · eV, ξ · Tξ ≤ ξ ·mV;
2*. k · ζ ≤ ξ · Tk, ⊗ · (ξ × ξ) · can ≤ ξ · T (⊗);
3. ∀f, g : Y // V in Set (f ≤ g ⇒ ξ · Tf ≤ ξ · Tg);
4. ξX(σ) := ξ · Tσ (σ ∈ PVX = VX) gives a nat. transf. PV → PVT .

Here k and ⊗ are considered as maps 1 //V and V×V //V, respectively;
can : T (V×V) //TV×TV is the canonical map with components Tπ1, Tπ2,
where π1, π2 are product projections, and (in accordance with the notation
introduced in Proposition 5.1) ζ : T1 //1 is the unique map onto a singleton
set 1. Note that Hofmann [24] combined conditions 3 and 4 to a single ax-
iom; however, the separation as given above (and in [16]) is easily seen to be
equivalent with Hofmann’s combined axiom and will make the comparison
with the conditions of Definition 5.4 more transparent.

Let us now compare these conditions with conditions 0–3 for a topologi-
cal theory as given in Definition 5.4, in the case thatQ = V is a commutative
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quantale. First we give a direct comparison of condition 2* with condition 2
of Definition 5.4 which, in the current context, reads as follows:

2. y1 · ζ ≤ ξ · T y1, s1 · θ ≤ ξ · T s1;

here ζ : T1 // 1 is trivial, and θ = ξ! · (ζ · Tt)! · ξ · T (t!), for t : V // 1.
Indeed, the latter condition implies the former, as we show first.

Proposition 8.1. Every map ξ : TV // V satisfying Condition 2 satisfies
Condition 2*.

Proof. Since k = y1, the first inequality of Condition 2 actually coincides
with the first inequality of Condition 2*. The crucial ingredient to comparing
the second inequalities in both conditions is the map

χ : V×V //PVV = VV, χ(u, v)(w) = u⊗(yVv)(w) =

{
u if w = v,
⊥ else

}
,

since, as one easily verifies, s1 · χ = ⊗. It now suffices to show

(∗) χ · (ξ × ξ) · can ≤ θ · Tχ;

indeed, one can then conclude from s1 · θ ≤ ξ · T s1 the desired inequality, as
follows:

⊗· (ξ× ξ) · can = s1 ·χ · (ξ× ξ) · can ≤ s1 · θ ·Tχ ≤ ξ ·T s1 ·Tχ = ξ ·T (⊗).

In order to check (∗), let w ∈ T (V × V) and z ∈ V. On one hand, with
x := Tπ1(w), y := Tπ2(w), one obtains

(χ · (ξ × ξ) · can(w))(z) = χ(ξ(x), ξ(y))(z) =

{
ξ(x) if z = ξ(y),
⊥ else

}
,

and on the other, with z := Tχ(w), and since t! · χ = π1, one obtains
(θ · Tχ(w))(z) = (ξ! · (ζ · Tt)! · ξ · T (t!)(z))(z)

=
∨

a∈TV,ξ(a)=z((ζ · Tt)! · ξ · T (t!)(z))(z)

=
∨

a∈TV,ξ(a)=z ξ(T (t!)(z))

=

{
ξ(x) if ∃ a ∈ TV (ξ(a) = z)
⊥ else

}
,

which shows (∗).
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Next we will show that, in the presence of conditions 1, 3, 4, conditions
2 and 2* become equivalent, provided that the Set-functor T of T satisfies
the Beck-Chevalley condition (BC), that is: if T transforms (weak) pullback
diagrams in Set into weak pullback diagrams (see [24, 26]). Note that the
Set-functors of both L and U satisfy BC.

Calling a topological theory ξ (as defined in Definition 5.4) natural if ξ
satisfies condition 4 above, we can show:

Theorem 8.2. For a commutative quantale V and a Set-monad T with T
satisfying the Beck-Chevalley condition, the natural topological theories for
T and V are characterized as the maps ξ satisfying Hofmann’s conditions 1,
2*, 3, 4.

Proof. From Proposition 8.1 we know that every natural topological the-
ory satisfies Hofmann’s conditions. Conversely, having ξ satisfying Hof-
mann’s conditions, since T satisfies BC, one can define the induced lax Barr-
Hofmann extension Tξ of T, as given in Definition 3.4 of [24]:

(Tξϕ)(x, y) =
∨
{ξ·(T |ϕ|)(w) | w ∈ T (X×Y ), Tπ1(w) = x, Tπ2(w) = y}, (†)

for all V-relations ϕ : X //7 Y, x ∈ TX, y ∈ TY , with |ϕ| : X × Y // V
denoting the map giving the values of ϕ. Let λ := Ψ(Tξ) be the correspond-
ing monotone distributive law (see Theorem 6.5), and ξ = ξλ the induced
topological theory (see Proposition 5.2), i.e.,

ξ = ζ! · λ1 = ζ! ·
←−−
Tξε1,

with ε1 : 1 //7 V the counit at 1 of the discrete presheaf adjunction. Since
|ε1| : 1 × V // V and π2 : 1 × V // V may both be identified with the
identity map on V, this formula gives, for all a ∈ TV,

ξ(a) =
∨
{(Tξε1)(b, a) | b ∈ T1}

=
∨
{ξ(w) | w ∈ TV, Tπ2(w) = a} = ξ(a),

Consequently, since ξ is induced by a monotone distributive law, ξ = ξ is a
topological theory, with naturality given by hypothesis.

In [16] we showed that, when T satisfies BC, the assignment ξ 7→ Tξ of
(†) defines a bijective correspondence between the maps ξ satisfying condi-
tions 1, 2*, 3, 4 and those lax extensions T̂ of T that are
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• left-whiskering, that is: T̂ (g◦ ◦ ϕ) = (Tg)◦ ◦ T̂ϕ for all V-relations
ϕ : X //7 Y and maps g : Y // Z; and

• algebraic, that is: T̂ϕ(x, y) =∨
{T̂ (ϕ1)(b,w) | b ∈ T1,w ∈ T (X×Y ), Tπ1(w) = x, Tπ2(w) = y},

for all V-relations ϕ : X //7 Y ; here ϕ1 has the same values as ϕ but
is considered as a V-relation 1 //7 X × Y .

(The proof of this characterization is easily reconstructed by following the
proof of Theorem 8.5 below.) We therefore obtain with Theorem 8.2:

Corollary 8.3. Under the hypotheses of Theorem 8.2, the assignment ξ 7→
Tξ of (†) defines a bijective correspondence between the natural topological
theories for T and V and the left-whiskering and algebraic lax extensions of
T to V−Rel.

The following chart summarizes the correspondences described in this
paper; up-directed vertical arrows are full embeddings:

monotone
distributive laws

maximal monotone
distributive laws

topological
theories

natural
topological

theories

left-whiskering
algebraic lax

monad extensions

lax monad
extensions

`Cor. 5.7

∼
Φ

Ψ

Thm. 6.5

∼
Cor. 5.9

∼
Cor. 8.3
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Caution is needed when reading this chart as a diagram, as it commutes
only in a limited way. The following remark and theorem shed light on this
cautionary note.

Remark 8.4. (1) The proof of Theorem 8.2 shows that, starting with a
natural topological theory and, under the provisions of Theorem 8.2 on
V and T, chasing it counterclockwise all around the chart, one arrives
at the same topological theory.

(2) However, under the assumptions of Theorem 8.2 on V and T, chas-
ing a natural topological theory ξ upwards on the two possible paths
one obtains very different types of lax monad extensions; their typical
properties appear to be almost disjoint. Most remarkably, assigning to
ξ the maximal monotone distributive law λξ and then the lax monad
extension T̂ = Φ(λξ), one observes easily that, for ϕ : X //7 Y, x ∈
TX, y ∈ TY and a : X // 1,

T̂ϕ(x, y) = ξ(T (a! · ←−ϕ )(y))

does not depend on x ! But also the other path up (ξ 7→ Tξ) leads to
quite special monad extensions, since being left-whiskering and alge-
braic are restrictive properties which, for example, exclude all exten-
sions T̂ that fail to satisfy the symmetry condition T̂ (ϕ◦) = (T̂ϕ)◦ (see
Remark 6.7), in particular the important extensions first considereded
by Seal [49]. In fact, in the following theorem we give a context in
which Tξ is described as minimal among extension families inducing
ξ.

For a commutative quantale V and a Set-monad T = (T,m, e), contin-
uing to use the notations ζ : T1 // 1 and ϕ1 : 1 //7 X × Y whenever
ϕ : X //7 Y in V−Rel, let us call an extension family T̂ = (T̂ϕ)ϕ (see
Section 6) admissible if, for all ϕ,

(T̂ϕ)1 ≥ (canX,Y )◦ ◦ T̂ (ϕ1) ◦ ζ◦,

and algebraic, if “ ≥ ” may always be replaced by “=”; here canX,Y :
T (X × Y ) // TX × TY is the canonical map. (Note that this definition of
algebraicity is just an element-free rendering of the definition given above in
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a narrower context.) Denoting by (T,V)−EXTadm the conglomerate of all
admissible, left-op-whiskering and monotone extension families of T (see
Proposition 6.2), one has a monotone map

Ξ : (T,V)−EXTadm
// {ξ ∈ Set(TV,V) | ξmonotone}

T̂ 7→ ζ! ·
←−−
T̂ ε1 =

←−−−−−
T̂ ε1 ◦ ζ◦,

with monotonicity of arbitrary maps TV // V to be understood as in con-
dition 3 above, and with their order given pointwise as in V. The following
Theorem shows that this map is an order embedding and has a right adjoint,
given by

ξ 7→ Tξ, with (Tξϕ)1 = (canX,Y )◦ ◦ (T |ϕ|)◦ ◦ ξ◦ ◦ ε1

and |ϕ| =
←−
ϕ1 : X × Y //V as used in (†); in fact, the formula above is just

an element-free rendering of the formula (†) of Theorem 8.2.

Theorem 8.5. Let T : Set //Set satisfy BC, V be a commutative quantale
and the map ξ : TV //V be monotone. Then Tξ is the least of all admissible,
left-op-whiskering and monotone extension families T̂ with Ξ(T̂ ) = ξ.

Proof. First we verify that Tξ is left-op-whiskering, so that it satisfies condi-
tion (0) of Proposition 6.2. Indeed, for ϕ : X //7 Y and h : Z // Y , with
|h◦ ◦ ϕ| = |ϕ| · (1X × h) one obtains

(Tξ(h
◦ ◦ ϕ))1 = (canX,Z)◦ ◦ (T |h◦ ◦ ϕ|)◦ ◦ ξ◦ ◦ ε1

= (canX,Z)◦ ◦ (T (1× h))◦ ◦ (T |ϕ|)◦ ◦ ξ◦ ◦ ε1.
Since the satisfaction of BC by T forces

(canX,Z)◦ ◦ (T (1× h))◦ = (1TX × Th)◦ ◦ (canX,Y )◦

(see Proposition 1.4.3 of [16]), the previous identity gives (Tξ(h
◦ ◦ ϕ))1 =

((Th)◦ ◦ Tξϕ)1, as desired.
For admissibility of Tξ, first an easy inspection shows ξ◦ ◦ε1 = Tξε1 ◦ζ◦.

Since Tξ is left-op-whiskering, this identity and ϕ1 = |ϕ|◦◦ε1 in fact confirm
even its algebraicity:

(Tξϕ)1 = (canX,Y )◦ ◦ (T |ϕ|)◦ ◦ Tξε1 ◦ ζ◦
= (canX,Y )◦ ◦ Tξ(|ϕ|◦ ◦ ε1) ◦ ζ◦ = (canX,Y )◦ ◦ Tξ(ϕ1) ◦ ζ◦.
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For an arbitrary admissible, left-op-whiskering and monotone T̂ with
Ξ(T̂ ) = ξ, we first use the left-op-whiskering property to obtain T̂ (ϕ1) =
(T |ϕ|)◦ ◦ T̂ ε1 and then

←−−−−−−−
T̂ (ϕ1) ◦ ζ◦ = ζ! ·

←−−−
T̂ (ϕ1) = ζ! ·

←−−
T̂ ε1 · T |ϕ| = ξ · T |ϕ|.

Consequently, the admissibility of T̂ gives the desired inequality

(Tξϕ)1 = (canX,Y )◦ ◦ (T |ϕ|)◦ ◦ ξ◦ ◦ ε1
= (canX,Y )◦ ◦ (

←−−−−−−−
T̂ (ϕ1) ◦ ζ◦)◦ ◦ ε1

= (canX,Y )◦ ◦ T̂ (ϕ1) ◦ ζ◦ ≤ (T̂ϕ)1,

which confirms the minimality of Tξ.
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1981.

[63] R.J. Wood. Ordered sets via adjunction. In: Categorical Foundations
(edited by M.C. Pedicchio and W. Tholen), pp. 5–47, Cambridge Uni-
versity Press, 2004.

[64] D. Zhang. Tower extensions of topological constructs. Commenta-
tiones Mathematicae Universitatis Carolinae, 41(1):41-51, 2000.

Walter Tholen
Department of Mathematics and Statistics
York University
4700 Keele Street
Toronto (Ontario) M3J 1P3 (Canada)
tholen@mathstat.yorku.ca

- 364 -


