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Résumé. Nous introduisons une nouvelle notion d’équivalence de Morita

pour les groupoı̈des difféologiques, généralisant la notion originale pour les

groupoÏdes de Lie. Pour cela, nous développons une théorie des actions de

groupoı̈des difféologiques, fibrés et bi-fibrés. Nous définissons une notion de

fibré principal qui utilise la notion de subduction, généralisant la notion de

fibré principal pour un group(oı̈de) de Lie. Nous disons que deux groupoı̈des

difféologiques sont Morita équivalents si, et seulement si, il existe un fibré

bi-principal entre eux. Utilisant le produit tensoriel de Hilsum-Skandalis,

nous définissons en outre une composition des bi-fibrés difféologiques, et

obtenons une bi-catégorie DiffeolBiBund. Notre principal résultat est le

suivant: un bi-fibré est bi-principal si, et seulement si, il est faiblement in-

versible dans cette bi-catégorie. Ceci généralise un théorème bien connu de

la théorie des groupoı̈des de Lie. Comme application, nous prouvons que les

espaces d’orbites de deux groupoı̈des difféologiques Morita équivalents sont

difféomorphes. Nous montrons également que les propriétés d’un groupoı̈de

difféologique d’être fibrant, et sa catégorie d’actions, sont des invariants de

Morita.

Abstract. We introduce a new notion of Morita equivalence for diffeological

groupoids, generalising the original notion for Lie groupoids. For this we

develop a theory of diffeological groupoid actions, -bundles and -bibundles.

We define a notion of principality for these bundles, which uses the notion

of a subduction, generalising the notion of a Lie group(oid) principal bundle.
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We say two diffeological groupoids are Morita equivalent if and only if there

exists a biprincipal bibundle between them. Using a Hilsum-Skandalis tensor

product, we further define a composition of diffeological bibundles, and ob-

tain a bicategory DiffeolBiBund. Our main result is the following: a bib-

undle is biprincipal if and only if it is weakly invertible in this bicategory.

This generalises a well known theorem from the Lie groupoid theory. As an

application of the framework, we prove that the orbit spaces of two Morita

equivalent diffeological groupoids are diffeomorphic. We also show that the

property of a diffeological groupoid to be fibrating, and its category of ac-

tions, are Morita invariants.

Keywords. Diffeology, Lie groupoids, diffeological groupoids, bibundles,

Hilsum-Skandalis products, Morita equivalence, orbit spaces.

Mathematics Subject Classification (2010). 22Axx, 22A22, 58H05.

1. Introduction

Diffeology originates from the work of J.-M. Souriau [Sou80; Sou84] and his

students [DI83; Don84; Igl85] in the 1980s. The main objects of this the-

ory are diffeological spaces, a type of generalised smooth space that extends

the traditional notion of a smooth manifold. They make for a convenient

framework that deals well with (singular) quotients, function spaces (or oth-

erwise infinite-dimensional objects), fibred products (or otherwise singular

subspaces), and other constructions that lie beyond the realm of classical dif-

ferential topology. As many of these constructions naturally occur in differ-

ential topology and -geometry, and since they cannot be studied with their

standard tools, diffeology has become a useful addition to the geometer’s

toolbox.

Diffeological groupoids have recently garnered attention in the mathem-

atical physics of general relativity [BFW13; Gł19], foliation theory [ASZ19;

GZ19; Mac20], the theory of algebroids [AZ], the theory of (differentiable)

stacks [RV18; WW19], and even in relation to noncommutative geometry

[IZL18; IZP20]. In all but one of these fields (general relativity), the notion

of Morita equivalence is an important one. Yet, as the authors of [GZ19,

p.3] point out: “The theory of Morita equivalence for diffeological group-

oids has not been developed yet.” In the current paper we present one pos-

sible development of such a notion, based on the results of the author’s Mas-
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ter thesis [vdS20]. This development is a generalisation of the theory of

Hilsum-Skandalis bibundles and the Morita equivalence of Lie groupoids,

where many definitions and proofs, and certainly the general idea, extend

quite straightforwardly to the diffeological case. The main exception is that

we need to replace surjective submersions with so-called subductions. This

special type of smooth map is, even on smooth manifolds, slightly weaker

than the notion of a surjective submersion, but it turns out that they still share

enough of their properties so that the entire theory can be developed1. This

development proceeds roughly as follows: based on the notions of actions

and bundles defined in Section 4, we define a diffeological version of a bib-

undle between groupoids (Definition 5.1). These stand in analogy to bimod-

ules for rings, and can be treated as a generalised type of morphism between

groupoids. This gives a bicategory DiffeolBiBund of diffeological group-

oids, bibundles, and biequivariant maps (Theorem 5.17). Using the afore-

mentioned notion of a subduction (Definition 2.16), we define biprincipality

of bibundles, and with this, we obtain a notion of Morita equivalence for dif-

feological groupoids (Definition 5.3). In the bicategory we also get a notion

of equivalence, by way of the weak isomorphisms. A morphism in a bicat-

egory is called weakly invertible if it is invertible up to 2-isomorphism. Two

objects in a bicategory are called weakly isomorphic if there exists a weakly

invertible morphism between them. The main point of this paper is to prove

a Morita theorem for diffeological groupoids, characterising the weakly in-

vertible bibundles, and hence realising Morita equivalence as a particular

instance of weak isomorphism:

Theorem 5.31 (Morita theorem). A diffeological bibundle is weakly invert-

ible if and only if it is biprincipal. In other words, two diffeological group-

oids are Morita equivalent if and only if they are weakly isomorphic in the

bicategory DiffeolBiBund.

A Morita theorem for Lie groupoids has been known in the literature for

some time, see e.g. [Lan01b, Proposition 4.21]. Throughout the paper, we

shall point out some differences between the diffeological- and Lie theories.

The main difference is that, due to technical constraints, a Morita theorem for

Lie groupoids only holds in the restricted setting of left principal bibundles.

1This is essentially due to the fact that the subductions are the strong epimorphisms in

the category of diffeological spaces [BH11, Proposition 5.10].
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The main improvement of Theorem 5.31 over the classical Lie Morita the-

orem, besides the generalisation to diffeology, is therefore that it considers

also a more general class of bibundles. Besides this improvement, with this

paper we hope to contribute a complete account of the basic theory of bib-

undles and Morita equivalence of groupoids, providing detailed proofs and

constructions of most necessary technical results, and culminating in a proof

of the main Theorem 5.31. A brief outline of the contents of the paper is as

follows.

We briefly recall the definition of a diffeology in Section 2. In particular,

we describe the diffeologies of fibred products (pullbacks) and quotients,

since they will be important to describe the smooth structure of the orbit

space and space of composable arrows of a groupoid. We also define and

study the behaviour of subductions, especially in relation to fibred products.

In Section 3 we define diffeological groupoids, and highlight some ex-

amples from the literature.

Sections 4 and 5 contain the main contents of this paper. In them, we

define the notions of smooth groupoid actions and -bundles. For the latter

we give a new notion of principality, generalising the notion of a principal

Lie group(oid) bundle. This leads naturally to the definition of a biprincipal

bibundle, and hence to our definition of Morita equivalence. The remainder

of Section 5 is dedicated to a proof of Theorem 5.31.

In Section 6, we describe some Morita invariants, by generalising some

well-known theorems from the Lie theory. We prove: the property of a dif-

feological groupoid to be fibrating is preserved under our notion of Morita

equivalence; the orbit spaces of two Morita equivalent diffeological group-

oids are diffeomorphic; and the categories of representations of two Morita

equivalent diffeological groupoids are categorically equivalent.

Lastly, in Section 7, we discuss the question of diffeological Morita

equivalence between Lie groupoids. We end the paper with the open Ques-

tion 7.6, and some suggestions for future research.
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for being the supervisor and second reader of his Master thesis, respectively,

and for encouraging him to write the current paper! He also thanks Klaas for

feedback on an earlier version of the paper, and Patrick Iglesias-Zemmour

for email correspondence. Lastly, he thanks the anonymous referee for their

useful and thoughtful feedback, which helped to improve the clarity of the

exposition.

- 180 -



N. VAN DER SCHAAF DIFFEOLOGICAL MORITA EQUIV.

2. Diffeology

One of the main conveniences of diffeology2 is that the category Diffeol of

diffeological spaces and smooth maps (Definition 2.2) is complete, cocom-

plete, (locally) Cartesian closed, and in fact a quasitopos [BH11, Theorem

3.2]. This means that we can perform many categorical constructions that

are unavailable in the category Mnfd of smooth manifolds. From these, the

ones that are important for us are pullbacks and quotients. We discuss both

of these explicitly below. The approach of diffeology has been compared to

other theories of generalised smooth spaces in [Sta11; BIKW17]. For some

historical remarks we refer to [IZ13b; IZ17] and [vdS20, Chapter I]. The

main reference for this section is the textbook [IZ13a] by Iglesias-Zemmour,

in which nearly all of the theory below is already developed.

Definition 2.1. A parametrisation on a set X is a function U → X defined

on an open subset U ⊆ Rm of Euclidean space, for arbitrary m ∈ N≥0. We

denote by Param(X) the set of all parametrisations on X .

The basic idea behind diffeology is that it determines which parametrisa-

tions are ‘smooth’, in such a way that it captures the properties of ordinary

smooth functions on smooth manifolds. The precise definition is as follows:

Definition 2.2 (Axioms of Diffeology). Let X be a set. A diffeology on X
is a collection of parametrisations DX ⊆ Param(X), containing what we

call plots, satisfying the following three axioms:

• (Covering) Every constant parametrisation U → X is a plot.

• (Smooth Compatibility) For every plot α : Uα → X in DX and every

smooth function h : V → Uα between open subsets of Euclidean

space, we have that α ◦ h ∈ DX .

• (Locality) If α : Uα → X is a parametrisation, and (Ui)i∈I an open

cover ofUα such that each restriction α|Ui is a plot ofX , then α ∈ DX .

2The etymology of the word is explained in the afterword to [IZ13a]. Souriau first

used the term “différentiel”, as in ‘differential’ (from the Latin differentia, “difference”).

Through a suggestion by Van Est, the name was later changed to “difféologie,” as in “topo-

logie” (‘topology’, from the Ancient Greek tópos, “place,” and -(o)logy, “study of”). Hence

the term: diffeology.
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A set X , paired with a diffeology: (X,DX), is called a diffeological space.

Although, usually we shall just write X .

A function f : (X,DX) → (Y,DY ) between diffeological spaces is

called smooth if for every plot α ∈ DX of X , the composition f ◦ α ∈ DY

is a plot of Y . The set of all smooth functions between such diffeological

spaces is denoted C∞(X, Y ), and smoothness is preserved by composition.

The category of diffeological spaces and smooth maps is denoted by Diffeol,

and the isomorphisms in this category are called diffeomorphisms.

Example 2.3. Any open subset U ⊆ Rm of Euclidean space, for m ∈ N≥0,

gets a canonical diffeology DU , called the Euclidean diffeology. Its plots

are the parametrisations that are smooth in the ordinary sense of the word.

Similarly, we get a canonical diffeology DM for any smooth manifold M ,

called the manifold diffeology. With respect to these diffeologies, the notion

of smoothness defined in Definition 2.2 agrees with the ordinary one. Hence

the inclusion functor Mnfd →֒ Diffeol is fully faithful, and we can adopt

the previous definition without causing any confusion.

Example 2.4. Any setX carries two canonical diffeologies. First, the largest

diffeology, D•
X := Param(X), called the coarse diffeology, containing all

possible parametrisations. LettingX• denote the diffeological space with the

coarse diffeology, it is easy to see that every function Z → X• is smooth.

On the other hand, the smallest diffeology onX is D◦
X , containing all locally

constant parametrisations. This is called the discrete diffeology. Similar to

the above, we find that every function X◦ → Y is smooth.

Example 2.5. For any two diffeological spaces X and Y , there is a natural

diffeology on the space of smooth functions C∞(X, Y ) called the standard

functional diffeology [IZ13a, Article 1.57]. It is the smallest diffeology that

makes the evaluation map (f, x) 7→ f(x) smooth. With these diffeologies,

Diffeol becomes Cartesian closed.

2.1 Generating families

The Axiom of Locality in Definition 2.2 ensures that the smoothness of

a parametrisation, or of a function between diffeological spaces, can be

checked locally. This allows us to introduce the following notions, which

will help us study interesting constructions, and will often simplify proofs.
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Definition 2.6. Consider a family F ⊆ Param(X) of parametrisations on

X . There exists a smallest diffeology on X that contains F. We denote this

diffeology by 〈F〉, and call it the diffeology generated by F. If DX = 〈F〉, we

say F is a generating family for DX . The elements of F are called generating

plots.

The plots of the diffeology generated by F are characterised as follows:

a parametrisation α : Uα → X is a plot in 〈F〉 if and only if α is locally

either constant, or factors through elements of F. Concretely, this means

that for all t ∈ Uα there exists an open neighbourhood t ∈ V ⊆ Uα such

that α|V is either constant, or of the form α|V = F ◦ h, where F : W → X
is an element in F, and h : V → W is a smooth function between open

subsets of Euclidean space. When the family F is covering, in the sense

that
⋃

F∈F im(F ) = X , then the condition for α|V to be constant becomes

redundant, and the plots in 〈F〉 are locally just of the form α|V = F ◦ h.

The main use of this construction is that we may encounter families of

parametrisations that are not quite diffeologies, but that contain functions

that we nevertheless want to be smooth. On the other hand, calculations

may sometimes be simplified by finding a suitable generating family for a

given diffeology. This simplification lies in the following result, saying that

smoothness has only to be checked on generating plots:

Proposition 2.7. Let f : X → Y be a function between diffeological spaces,

such that DX is generated by some family F. Then f is smooth if and only if

for all F ∈ F we have f ◦ F ∈ DY .

Example 2.8. The wire diffeology (called the spaghetti diffeology by Souriau)

is the diffeology Dwire on R2 generated by C∞(R,R2). The resulting dif-

feological space is not diffeomorphic to the ordinary R2, since the identity

map idR2 : (R2,DR2)→ (R2,Dwire) is not smooth.

Example 2.9. The charts of a smooth atlas on a manifold define a generating

family for the manifold diffeology from Example 2.3. Since a manifold may

have many atlases, this shows that similarly any diffeology may have many

generating families.
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2.2 Quotients

We use the terminology from Section 2.1 to define a natural diffeology on a

quotient X/∼. This question relates to a more general one: given a function

f : X → Y , and a diffeology DX on the domain, what is the smallest

diffeology on Y such that f remains smooth? The following provides an

answer:

Definition 2.10. Let f : X → Y be a function between sets, and let DX

be a diffeology on X . The pushforward diffeology on Y is the diffeology

f∗(DX) := 〈f ◦ DX〉, where f ◦ DX is the family of parametrisations of

the form f ◦ α, for α ∈ DX . The pushforward diffeology is the smallest

diffeology on Y that makes f smooth.

We can now use this to define a natural diffeology on a quotient space:

Definition 2.11. Let X be a diffeological space, and let ∼ be an equival-

ence relation on the set X . We denote the equivalence classes by [x]. The

quotient X/∼ is the collection of all equivalence classes, and comes with a

canonical projection map p : X → X/∼, which sends x 7→ [x]. The quo-

tient diffeology on X/∼ is defined as the pushforward diffeology p∗(DX)
of DX along the canonical projection map. Naturally, with respect to this

diffeology, the canonical projection map becomes smooth.

The quotient diffeology will be used extensively, where the equivalence

relation will often be defined by the orbits of a group(oid) action, or as the

fibres of some smooth surjection. The existence of the quotient diffeology

for arbitrary quotients should be contrasted to the situation for smooth man-

ifolds, where quotients often carry no natural differentiable structure at all,

but where instead one could appeal to the Godement criterion ([Ser65, The-

orem 2, p. 92]). The following is an example of a quotient that does not exist

as a smooth manifold, but whose diffeological structure is still quite rich:

Example 2.12. The irrational torus is the diffeological space defined by the

quotient of R by an additive subgroup: Tθ := R/(Z+ θZ), where θ ∈ R \Q
is an arbitrary irrational number. Equivalently, it can be described as the leaf

space of the Kronecker foliation on the 2-torus with irrational slope. The to-

pology of this quotient contains only the two trivial open sets, yet its quotient
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diffeology is non-trivial3. They were first classified in [DI83], whose result

is (amazingly) directly analogous to the classification of the irrational rota-

tion algebras [Rie81]. This example is treated in detail in [vdS20, Section

2.3].

2.3 Fibred products

The second construction we need is that of fibred products, which are the

pullbacks in the category Diffeol. Recall that if f : X → Z and g : Y → Z
are two functions between sets with a common codomain, then the fibred

product of sets is (up to unique bijection)

X ×f,gZ Y := {(x, y) ∈ X × Y : f(x) = g(y)}.

When each set is equipped with a diffeology, we shall construct a diffeology

on the fibred product in two steps. First we describe a natural diffeology on

the product X × Y , and then show how this descends to a diffeology on the

fibred product as a subset.

Definition 2.13. Let X and Y be two diffeological spaces. The product

diffeology on the Cartesian product X × Y is defined as

DX×Y := 〈DX ×DY 〉,

where DX ×DY is the family of parametrisations of the form α1 × α2, for

α1 ∈ DX and α2 ∈ DY . The plots in DX×Y are exactly the parametrisations

α : Uα → X × Y such that pr1 ◦ α and pr2 ◦ α are plots of X and Y , re-

spectively. We assume that products are always furnished with their product

diffeologies.

It is clear that both projection maps pr1 and pr2 are smooth with respect

to the product diffeology. The smooth functions into X × Y behave exactly

as one would expect, where f : A → X × Y is smooth if and only if the

components f1 = pr1 ◦ f and f2 = pr2 ◦ f are smooth.

Next we define how the diffeology on a set X transfers to any of its

subsets:

3This shows that there are meaningful notions of smooth space that do not rely on the

regnant philosophy of “smooth space = topological space + extra structure.”
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Definition 2.14. Consider a diffeological space X , and an arbitrary subset

A ⊆ X . Let iA : A →֒ X denote the natural inclusion map. The subset

diffeology on A is defined as

DA⊆X := {α ∈ Param(A) : iA ◦ α ∈ DX}.

That is, α is a plot of A if and only if, when seen as a parametrisation of X ,

it is also a plot. We assume that a subset of a diffeological space is always

endowed with its subset diffeology.

Since the fibred product X ×f,gZ Y is a subset of the product X × Y , the

following definition is a natural combination of Definitions 2.13 and 2.14:

Definition 2.15. Let f : X → Z and g : Y → Z be two smooth maps

between diffeological spaces. The fibred product diffeology DX×f,g
Z
Y on the

set X ×f,gZ Y is the subset diffeology it gets from the product diffeology on

X × Y . Concretely:

DX×f,g
Z
Y = {α ∈ DX×Y : f ◦ α1 = g ◦ α2}.

That is, the plots of the fibred product are just plots of X × Y , whose com-

ponents satisfy an extra condition. We assume that all fibred products are

equipped with their fibred product diffeologies.

2.4 Subductions

Subductions are a special class of smooth functions that generalise the notion

of surjective submersion from the theory of smooth manifolds. Since there

is no unambiguous notion of tangent space in diffeology (cf. [CW16]), the

definition looks somewhat different. For (more) detailed proofs of the results

in this section, we refer to [IZ13a, Article 1.46] and surrounding text, and

[vdS20, Section 2.6].

Definition 2.16. A surjective function f : X → Y between diffeological

spaces is called a subduction if f∗(DX) = DY . Note that subductions are

automatically smooth.

In the case that f is a subduction, since it is then particularly a surjection,

the family of parametrisations f ◦DX is covering, and hence the plots of DY
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are all locally of the form f ◦ α, where α ∈ DX . In other words, f is a

subduction if and only if f is smooth and the plots of Y can locally be lifted

along f to plots of X:

Lemma 2.17. Let f : X → Y be a function between diffeological spaces.

Then f is a subduction if and only if the following two conditions are satis-

fied:

1. The function f is smooth.

2. For every plot α : Uα → Y , and any point t ∈ Uα, there exists an

open neighbourhood t ∈ V ⊆ Uα and a plot β : V → X , such that

α|V = f ◦ β.

Since many of the functions we encounter will naturally be smooth already,

the notion of subductiveness is effectively captured by condition (2) in this

lemma. This can also be seen in the following simple example:

Example 2.18. Consider the product X × Y of two diffeological spaces X
and Y . The projection maps pr1 and pr2 are both subductions.

Example 2.19. For a surjective function π : X → B we get an equivalence

relation on X , where two points are identified if and only if they inhabit the

same π-fibre. The equivalence classes are exactly the π-fibres themselves.

We denote the quotient set of this equivalence relation by X/π, and equip it

with the quotient diffeology whenever X is a diffeological space. If π is a

subduction, then there is a diffeomorphism B ∼= X/π [IZ13a, Article 1.52].

For subsequent use, we state here some useful properties of subductions

with respect to composition:

Lemma 2.20. We have the following properties for subductions:

1. If f and g are two subductions, then the composition f ◦ g is a sub-

duction as well.

2. Let f : Y → Z and g : X → Y be two smooth maps such that the

composition f ◦ g is a subduction. Then so is f .

3. Let π : X → B be a subduction, and f : B → Y an arbitrary

function. Then f is smooth if and only if f ◦ π is smooth. In fact, f is

a subduction if and only if f ◦ π is a subduction.
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Proof. (1) This is [IZ13a, Article 1.47].

(2) Assume f : Y → Z and g : X → Y are smooth, such that f ◦ g is a

subduction. Take a plot α : Uα → Z. Since the composition is a subduction,

for every t ∈ Uα we can find an open neighbourhood t ∈ V ⊆ Uα and a

plot β : V → X such that α|V = (f ◦ g) ◦ β. Since g is smooth, we get a

plot g ◦ β ∈ DY , which is a local lift of α along f . The result follows by

Lemma 2.17.

(3) If f is smooth, it follows immediately that f ◦ π is smooth. Suppose

now that f ◦ π is smooth. We need to show that f is smooth. For that,

take a plot α : Uα → B. Since π is a subduction, we can find an open

cover (Vt)t∈Uα of Uα together with a family of plots βt : Vt → X such that

α|Vt = π ◦ βt. It follows that each restriction f ◦α|Vt = f ◦ π ◦ βt is smooth,

and by the Axiom of Locality it follows that f ◦ α ∈ DY , and hence that f
is smooth. The claim about when f is a subduction follows from (2).

We also collect the following noteworthy claim:

Proposition 2.21 ([IZ13a, Article 1.49]). An injective subduction is a dif-

feomorphism.

We recall now some elementary results on the interaction between sub-

ductions and fibred products, as obtained in [vdS20, Section 2.6]. We point

out that if f is a subduction, an arbitrary restriction f |A may no longer be

a subduction. We know from Example 2.18 that the second projection map

pr2 of a product X × Y is a subduction, but it is not always the case that the

restriction of this projection to a fibred product X ×f,gZ Y is a subduction as

well. The following result shows that, to ensure this, it suffices to assume

that f is a subduction:

Lemma 2.22. Let f : X → Z be a subduction, and let g : Y → Z be a

smooth map. Then the restricted projection map

pr2|X×f,g
Z
Y : X ×f,gZ Y −→ Y

is also a subduction. In other words, in Diffeol, subductions are preserved

under pullback.

Proof. Consider a plot α : Uα → Y . By composition, this gives another plot

g ◦ α ∈ DZ . Now, since f is a subduction, for every t ∈ Uα we can find a
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plot β : V → X defined on an open neighbourhood t ∈ V ⊆ Uα such that

g ◦ α|V = f ◦ β. This gives a plot (β, α|V ) : V → X ×Z Y that satisfies

pr2|X×ZY ◦ (β, α|V ) = α|V . The result follows by Lemma 2.17.

The next result shows how two subductions interact with fibred products:

Lemma 2.23. Consider the following two commuting triangles of diffeolo-

gical spaces and smooth maps:

X1 Y1

A

f

r R
and

X2 Y2

A,

g

l L

where both f and g are subductions. Then the map

(f×g)|X1×AX2 : X1×
r,l
A X2 −→ Y1×

R,L
A Y2; (x1, x2) 7−→ (f(x1), g(x2))

is also a subduction.

Proof. Clearly f × g is smooth, so we are left to show that the second con-

dition in Lemma 2.17 is fulfilled. For that, take a plot

(α1, α2) : U −→ Y1 ×
R,L
A Y2,

i.e., we have two plots α1 ∈ DY1 and α2 ∈ DY2 such that R ◦ α1 = L ◦ α2.

Now fix a point t ∈ U in the domain. Then since both f and g are subductive,

we can find two plots β1 : U1 → X1 and β2 : U2 → X2, defined on open

neighbourhoods of t ∈ U , such that α1|U1 = f ◦β1 and α2|U2 = g ◦β2. Now

the plot

(β1|U1∩U2 , β2|U1∩U2) : U1 ∩ U2 −→ X1 ×X2

takes values in the fibred product because

r ◦ β1|U2 = R ◦ f ◦ β1|U2 = R ◦ α1|U1∩U2 = L ◦ α2|U1∩U2 = l ◦ β2|U1 ,

and we see that it lifts (α1, α2)|U1∩U2 along f × g.

By setting A = {∗} to be the one-point space, this lemma gives in par-

ticular that the product f × g of two subductions is again a subduction.

To end this section, we should also mention the existence of the notion

of a local subduction (or strong subduction):
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Definition 2.24. A smooth surjection f : X → Y is called a local subduc-

tion if for each y ∈ Y , each x ∈ f−1({y}), and any pointed plot of the form

α : (Uα, 0) → (Y, y), there exists another pointed plot β : (V, 0) → (X, x),
defined on an open neighbourhood 0 ∈ V ⊆ Uα, such that α|V = f ◦ β.

Compare this to a definition of a subduction, where in general the plot

β does not have to hit the point x in the domain of f . Note also that local

subduction does not mean locally a subduction everywhere.

Proposition 2.25 ([IZ13a, Article 2.16]). The local subductions between

smooth manifolds are exactly the surjective submersions.

Due to the above proposition, the notion of a local subduction will be

of interest when studying Lie groupoids in the framework of diffeological

Morita equivalence we develop below. See Section 7.1.

3. Diffeological Groupoids

We assume that the reader is familiar with the definition of a (Lie) groupoid.

A textbook reference for that theory is [Mac05]. To fix our notation, we give

here an informal description of a set-theoretic groupoid. A groupoid consists

of two sets: G0 and G, together with five structure maps. A groupoid will be

denoted G ⇒ G0, or just G. Here G0 is the set of objects of the groupoid,

and G is the set of arrows. The five structure maps are

1. The source map src : G→ G0,

2. The target map trg : G→ G0,

3. The unit map u : G0 → G, mapping x 7→ idx,

4. The inversion map inv : G→ G, mapping g 7→ g−1,

5. And the composition:

comp : G×src,trg
G0

G −→ G; (g, h) 7→ g ◦ h.

The composition is associative, and the identities and inverses behave as

such. We say G ⇒ G0 is a Lie groupoid if both G and G0 are smooth

manifolds such that the source and target maps are submersions, and each

of the other structure maps are smooth. The definition of a diffeological

groupoid is a straightforward generalisation of this:
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Definition 3.1. A diffeological groupoid is a groupoid internal to the cat-

egory of diffeological spaces. Concretely, this means that it is a groupoid

G ⇒ G0 such that the object space G0 and arrow space G are endowed

with diffeologies that make all of the structure maps smooth.

As diffeology subsumes smooth manifolds, so do diffeological groupoids

capture Lie groupoids. Note the main difference with the definition of a

Lie groupoid is that we put no extra assumptions on the source and target

maps, whereas to make sense of the composition in Lie groupoids we need

G ×src,trg
G0

G to be a smooth manifold, for which it suffices to assume the

source and target maps are submersions. We do, however, have:

Proposition 3.2. The source and target maps of a diffeological groupoid are

subductions.

Proof. The smooth structure map u : G0 → G, sending each object to its

identity arrow, is a global smooth section of the source map, and hence by

Lemma 2.20(2) the source map must be a subduction. Since the inversion

map is a diffeomorphism, it follows that the target map is a subduction as

well.

Definition 3.3. LetG⇒ G0 be a diffeological groupoid. The isotropy group

at x ∈ G0 is the collection Gx consisting of all arrows in G from and to x:

Gx := HomG(x, x) = src−1({x}) ∩ trg−1({x}).

Definition 3.4. Let G ⇒ G0 be a diffeological groupoid. The orbit of an

object x ∈ G0 is defined as

OrbG(x) := {y ∈ G0 : ∃x
g
−→ y} = trg(src−1({x})).

The orbit space of the groupoid is the space G0/G consisting of these orbits.

We furnish the orbit space with the quotient diffeology from Definition 2.11,

so that OrbG : G0 → G0/G is a subduction.

The orbit space of a Lie groupoid is not necessarily (canonically) a smooth

manifold. The flexibility of diffeology allows us to study the smooth struc-

ture of orbit spaces of all diffeological groupoids. Below we give some

examples of diffeological groupoids.
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Example 3.5. Let X be a diffeological space, and let R be an equivalence

relation on X . We define the relation groupoid X ×R X ⇒ X as follows.

The space of arrows consists of exactly those pairs (x, y) ∈ X × X such

that xRy. With the composition (z, y) ◦ (y, x) := (z, x), this becomes a

diffeological groupoid. The orbit space X/(X ×R X) is just the quotient

X/R. When X is a smooth manifold, the relation groupoid becomes a Lie

groupoid (even when the quotient is not a smooth manifold).

Example 3.6. Let G ⇒ G0 be a diffeological groupoid. We can then con-

sider the subgroupoid of G that only consists of elements in isotropy groups:

IG :=
⋃

x∈G0

Gx ⊆ G.

This becomes a diffeological groupoid IG ⇒ G0 called the isotropy group-

oid. This has been studied in [Bos07, Example 2.1.9] in the context of Lie

groupoids. Note that if G⇒ G0 is a Lie groupoid, then generally IG is not a

submanifold ofG, so the isotropy groupoid may no longer be a Lie groupoid.

Example 3.7. The thin fundamental groupoid (or path groupoid) Πthin(M)
of any smooth manifold M is a diffeological groupoid [CLW16, Proposition

A.25].

Example 3.8. The groupoid of Σ-evolutions of a Cauchy surface is a dif-

feological groupoid [Gł19, Section II.2.2].

Example 3.9. For any smooth surjection π : X → B between diffeological

spaces, the fibres Xb := π−1({b}) get the subset diffeology from X . We

then have a diffeological groupoid G(π) ⇒ B called the structure groupoid,

whose space of arrows is defined as

G(π) :=
⋃

a,b∈B

Diff(Xa, Xb).

Structure groupoids play an important rôle in the theory of diffeological fibre

bundles [IZ13a, Chapter 8]. In general, they are too big to be Lie groupoids.

They also generalise the notion of a frame groupoid for a smooth vector

bundle. Related to this, in [vdS20, Section 3.4] structure groupoids are used

to define a notion of smooth linear representations for diffeological group-

oids.
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Example 3.10. If we are given a diffeological space X , the germ group-

oid Germ(X) ⇒ X consists of all germs of local diffeomorphisms on X .

Even if X itself is a smooth manifold, this is generally not a Lie groupoid.

Germ groupoids are used in [IZL18; IZP20]. A detailed construction of the

diffeological structure of this groupoid appears in [vdS20, Section 6.1].

4. Diffeological Groupoid Actions and -Bundles

In the following two sections we generalise the theory of Lie groupoid bib-

undles to the diffeological setting. The development we present here (as in

[vdS20, Chapter IV]) is analogous to the development of the Lie version,

save that we need to find a suitable replacement for the notion of a surject-

ive submersion. Some of the proofs from the Lie theory can be performed

almost verbatim in our setting. These proofs already appear in the literature

in various places: [Blo08; dHo12; Lan01a; MM05], and also in the differ-

ent setting of [MZ15]. We adopt many definitions and proofs from those

sources, and point out how the diffeological theory subtly differs from the

Lie theory. This difference mainly stems from the existence of quotients and

fibred products of diffeological spaces, whereas in the Lie theory more care

has to be taken. Ultimately, this extra care is what leads to a restricted Morita

theorem for Lie groupoids, whereas the diffeological theorem is more gen-

eral. In this section specifically we introduce diffeological groupoid actions

and -bundles, two notions that form the ingredients for the main theory on

bibundles.

4.1 Diffeological groupoid actions

The most basic notion for the upcoming theory is that of a groupoid action.

For diffeological groupoids, the definition is the same as for Lie groupoids:

Definition 4.1. Take a diffeological groupoid G ⇒ G0, and a diffeological

space X . A smooth left groupoid action of G on X along a smooth map

lX : X → G0 is a smooth function

G×src,lX
G0

X −→ X; (g, x) 7−→ g · x,

satisfying the following three conditions:
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1. For g ∈ G and x ∈ X such that src(g) = lX(x) we have

lX(g · x) = trg(g).

2. For every x ∈ X we have idlX(x) · x = x.

3. We have h · (g · x) = (h ◦ g) · x whenever defined, i.e. when

src(g) = lX(x) and the arrows are composable.

The smooth map lX : X → G0 is called the left moment map. In-line, we

denote an action by GylXX . To save space, we may write (g, x) 7→ gx
instead.

Right actions are defined similarly: a smooth right groupoid action of G
on X along rX : X → G0 is a smooth map

X ×rX ,trgG0
G −→ X; (x, g) 7−→ xg,

satisfying rX(xg) = src(g), x·idrX(x) = x and (x·g)·h = x·(g◦h) whenever

defined. Note how the rôle of the source and target maps are switched with

respect to the definition of a left action. Right actions will be denoted by

X rXxG, and rX is called the right moment map.

Example 4.2. Any diffeological groupoid G ⇒ G0 acts on its own arrow

space from the left and right by composition, which gives actions GytrgG
and G srcxG that are both defined by (g, h) 7→ g ◦ h.

Definition 4.3. The orbit of a point x ∈ X in the space of an actionGylXX
is defined as

OrbG(x) := {gx : g ∈ src−1({lX(x)})}.

The quotient space (or orbit space) of the action is defined as the collec-

tion of all orbits, and denoted X/G. With the quotient diffeology, the orbit

projection map OrbG : X → X/G becomes a subduction.

The following gives a notion of morphism between actions:

Definition 4.4. Consider two smooth groupoid actionsGylXX andGylY Y .

A smooth map ϕ : X → Y is called G-equivariant if lX = lY ◦ϕ and it com-

mutes with the actions whenever defined: ϕ(gx) = gϕ(x).

Definition 4.5. The (smooth left) action category Act(G ⇒ G0) of a dif-

feological groupoidG⇒ G0 is the category consisting of smooth left actions

GylXX as objects, and G-equivariant maps as morphisms. This forms the

analogue of the category of (left) modules from ring theory. We show in

Section 6.3 that the action category is in some sense a Morita invariant.
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4.1.1 The balanced tensor product

We now give an important construction that will later allow us to define the

composition of bibundles.

Construction 4.6. Consider a diffeological groupoidH ⇒ H0, with a smooth

left action HylY Y and a smooth right action X rXxH . On the fibred

product X ×rX ,lYH0
Y we define the following smooth right H-action. The

moment map is R := rX ◦ pr1|X×H0
Y = lY ◦ pr2|X×H0

Y , and the action is

given by:

(

X ×rX ,lYH0
Y
)

×R,trgH0
H −→ X×rX ,lYH0

Y ; ((x, y), h) 7−→ (x ·h, h−1 ·y).

It is clear that this action is also smooth, and we call it the diagonal H-

action. The balanced tensor product is the diffeological space defined as the

orbit space of this smooth groupoid action:

X ⊗H Y :=
(

X ×rX ,lYH0
Y
)

/H.

The orbit of a pair of points (x, y) in the balanced tensor product will be

denoted x⊗y. Whenever we encounter a term of the form x⊗y ∈ X⊗H Y ,

we assume that it is well defined, i.e. rX(x) = lY (y). The terminology is

explained by the following useful identity:

xh⊗ y = x⊗ hy.

In the literature on Lie groupoids, this space is sometimes called the Hilsum-

Skandalis tensor product, named after a construction appearing in [HS87].

We note that this marks the first difference with the development of the

Lie theory of bibundles and Morita equivalence. There, the balanced tensor

product can only be defined when both X ×rX ,lYH0
Y and the quotient by the

diagonal H-action are smooth manifolds. This is usually only done after

(bi)bundles are defined, and some principality conditions are presupposed.

The principality then exactly ensures the existence of canonical differenti-

able structures on the fibred product and quotient. Here, the flexibility of

diffeology allows us to define the balanced tensor product in an earlier stage

of the development, and we do so to demonstrate this conceptual difference.
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4.2 Diffeological groupoid bundles

A groupoid bundle is a smooth map, whose domain carries a groupoid action,

such that the fibres of the map are preserved by this action:

Definition 4.7. A smooth left diffeological groupoid bundle is a smooth left

groupoid actionGylXX together with aG-invariant smooth map π : X → B.

We denote such bundles by GylXX
π
−→ B, and also call them (left) G-

bundles. Right bundles are defined similarly, and denoted B
π
←− X rXxG.

The next definition gives a notion of morphism between bundles:

Definition 4.8. Take two leftG-bundlesGylXX
πX−→ B andGylY Y

πY−→ B
over the same base. A G-bundle morphism is a G-equivariant smooth map

ϕ : X → Y such that πX = πY ◦ ϕ. We make a similar definition for right

bundles.

In order to define Morita equivalence, we need to define a notion of when

a bundle is principal. For Lie groupoid bundles, these generalise the ordin-

ary notion of smooth principal bundles of Lie groups and manifolds. That

definition involves the notion of a surjective submersion. As we have men-

tioned, this notion needs to be generalised to diffeology. Proposition 2.25

suggests that we could take local subductions, since they directly generalise

the surjective submersions. However, it turns out that subductions behave

sufficiently like submersions for the theory to work. The following defini-

tion then generalises the fact that the underlying bundle of a principal Lie

groupoid bundle has to be a submersion:

Definition 4.9. A diffeological groupoid bundle GylXX
π
−→ B is called

subductive if the underlying map π : X → B is a subduction.

The following generalises the fact that the action of a principal Lie group-

oid bundle has to be free and transitive on the fibres:

Definition 4.10. A diffeological groupoid bundle GylXX
π
−→ B is called

pre-principal if the action map AG : G ×src,lX
G0

X → X ×π,πB X mapping

(g, x) 7→ (gx, x) is a diffeomorphism.

Combining these two:
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Definition 4.11. A diffeological groupoid bundle is called principal if it is

both subductive and pre-principal.

This definition serves as our generalisation of principal Lie groupoid

bundles, cf. [Blo08, Definition 2.10] and [dHo12, Section 3.6]. Clearly

any principal Lie groupoid bundle in the sense described in those references

is also a principal diffeological groupoid bundle. Note that in the Lie theory,

most constructions (such as the balanced tensor product) depend on the sub-

mersiveness of the underlying bundle map, so it makes little sense to define

pre-principality for Lie groupoids. However, as we have already seen, in

the diffeological case these constructions can be carried out more generally,

and this will allow us to see what parts of the development of the theory de-

pend on either the subductiveness or pre-principality of the bundles, rather

than on full principality. In our development of the theory, some proofs can

therefore be performed separately, whereas in the Lie theory they have to be

performed at once. We hope this makes for clearer exposition.

Note also that when a bundle GylXX
π
−→ B is pre-principal, the action

map induces a diffeomorphism X/π ∼= X/G, and when the bundle is sub-

ductive, Example 2.19 gives a diffeomorphism B ∼= X/π. For a principal

bundle we therefore have B ∼= X/G.

Example 4.12. The action of any diffeological groupoid G ⇒ G0 on its

own arrow space (Example 4.2) forms a bundle GytrgG
src
−→ G0. From

Proposition 3.2 it follows that this bundle is principal.

4.2.1 The division map of a pre-principal bundle

The material in this section is similar to [Blo08, Section 3.1] for Lie group-

oids. If a bundle GylXX
π
−→ B is pre-principal, the fact that the action

map is bijective gives that the action GylXX has to be free, and transitive

on the π-fibres. This means that for every two points x, y ∈ X such that

π(x) = π(y), there exists a unique arrow g ∈ G such that gy = x. We

denote this arrow by 〈x, y〉G, and the map 〈·, ·〉G is called the division map4:

4The notational resemblance to an inner-product is not accidental. The division map

plays a very similar rôle to the inner product of a Hilbert C∗-module. For more on this

analogy, see [Blo08, Section 3].
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Definition 4.13. Let GylXX
π
−→ B be a pre-principal G-bundle, and let AG

denote its action map. Then the division map associated to this bundle is the

smooth map

〈·, ·〉G : X ×π,πB X
A−1
G−−−−−−→ G×src,lX

G0
X

pr1|G×G0
X

−−−−−−−−−−→ G.

We summarise some algebraic properties of the division map that will be

used in our proofs throughout later sections. The proofs are straightforward,

and use the uniqueness property described above.

Proposition 4.14. Let GylXX
π
−→ B be a pre-principal G-bundle. Its divi-

sion map 〈·, ·〉G satisfies the following properties:

1. The source and targets are src(〈x1, x2〉G) = lX(x2)
and trg(〈x1, x2〉G) = lX(x1).

2. The inverses are given by 〈x1, x2〉
−1
G = 〈x2, x1〉G.

3. For every x ∈ X we have 〈x, x〉G = idlX(x).

4. Whenever well-defined, we have 〈gx1, x2〉G = g ◦ 〈x1, x2〉G.

Proposition 4.15. Let ϕ : X → Y be a bundle morphism between two pre-

principal G-bundles GylXX
πX−→ B and GylY Y

πY−→ B. Denoting the

division maps of these bundles respectively by 〈·, ·〉XG and 〈·, ·〉YG, we have for

all x1, x2 ∈ X in the same πX-fibre that:

〈x1, x2〉
X
G = 〈ϕ(x1), ϕ(x2)〉

Y
G.

Proof. Observe that 〈ϕ(x1), ϕ(x2)〉
Y
G is the unique arrow that satisfies

〈ϕ(x1), ϕ(x2)〉
Y
Gϕ(x2) = ϕ(x1). However, by G-equivariance we get

ϕ(x1) = ϕ
(

〈x1, x2〉
X
Gx2

)

= 〈x1, x2〉
X
Gϕ(x2), from which the claim immedi-

ately follows.

4.2.2 Invertibility of G-bundle morphisms

We now prove a result that generalises the fact that morphisms between prin-

cipal Lie group bundles are always diffeomorphisms. In our case we shall

do the proof in two separate lemmas.
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Lemma 4.16. Consider a G-bundle morphism ϕ : X → Y between a pre-

principal bundle GylXX
πX−→ B and a bundle GylY Y

πY−→ B whose un-

derlying action GylY Y is free. Then ϕ is injective.

Proof. Since GylXX
πX−→ B is pre-principal, we get a smooth division map

〈·, ·〉XG . To start the proof, suppose that we have two points x1, x2 ∈ X
satisfying ϕ(x1) = ϕ(x2). Since ϕ preserves the fibres, we get that

πX(x1) = πY ◦ ϕ(x1) = πY ◦ ϕ(x2) = πX(x2).

Hence the pair (x1, x2) defines an element in X ×B X , so we get an arrow

〈x1, x2〉
X
G ∈ G, satisfying 〈x1, x2〉

X
Gx2 = x1. If we apply ϕ to this equation

and use its G-equivariance, we get ϕ(x1) = 〈x1, x2〉
X
Gϕ(x2). However, by

assumption, ϕ(x1) = ϕ(x2) and the action GylY Y is free, so we must have

that 〈x1, x2〉
X
G is the identity arrow at lY ◦ϕ(x2) = lX(x2). Hence we get the

desired result:

x1 = 〈x1, x2〉
X
Gx2 = idlX(x2)x2 = x2.

Lemma 4.17. Consider a G-bundle morphism ϕ : X → Y from a subduct-

ive bundle GylXX
πX−→ B to a pre-principal bundle GylY Y

πY−→ B. Then

ϕ is a subduction.

Proof. Denote the smooth division map of GylY Y
πY−→ B by 〈·, ·〉YG. Then

ϕ and 〈·, ·〉YG combine into a smooth map

ψ : X ×πX ,πYB Y −→ X; (x, y) 7−→ 〈y, ϕ(x)〉YGx.

Note that this is well defined because if πX(x) = πY (y), then πY ◦ ϕ(x) =
πY (y) as well, and moreover lY ◦ ϕ(x) = lX(x), showing that the action on

the right hand side is allowed. The G-equivariance of ϕ then gives

ϕ ◦ ψ = pr2|X×BY
.

Since πX is a subduction, so is pr2|X×BY by Lemma 2.22, and by Lemma 2.20(2)

it follows ϕ is a subduction.

Proposition 4.18. Any bundle morphism from a principal groupoid bundle

to a pre-principal groupoid bundle is a diffeomorphism. In particular, both

must then be principal.
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Proof. By Lemma 4.17 any such bundle morphism is a subduction, and since

in particular the underlying action of a pre-principal bundle is free, it must

also be injective by Lemma 4.16. The result follows by Proposition 2.21.

That the second bundle is principal too follows from the fact that a bundle

map preserves the fibres, so the projection of the second bundle can be writ-

ten as the composition of a diffeomorphism and a subduction.

5. Diffeological Bibundles and Morita Equivalence

This section contains the main definition of this paper: the notion of a bi-

principal bibundle, which immediately gives our definition of Morita equi-

valence. The definition of groupoid bibundles for diffeology are a straight-

forward adaptation of the definition in the Lie case:

Definition 5.1. Let G ⇒ G0 and H ⇒ H0 be two diffeological groupoids.

A diffeological (G,H)-bibundle consists of a smooth left action GylXX
and a smooth right action X rXxH such that the left moment map lX is H-

invariant and the right moment map rX is G-invariant, and moreover such

that the actions commute: (g ·x) ·h = g ·(x ·h), whenever defined. We draw:

G X H

G0 H0,

y

lX rX

x

and denote them by GylXX rXxH in-line. Underlying each bibundle are

two groupoid bundles: the left underlying G-bundle GylXX
rX−→ H0 and

the right underlying H-bundle G0
lX←− X rXxH . It is the properties of these

underlying bundles that will determine the behaviour of the bundle itself.

Definition 5.2. Consider a diffeological bibundle GylXX rXxH . We say

this bibundle is left pre-principal if the left underlying bundleGylXX
rX−→ H0

is pre-principal. We say it is right pre-principal if the right underlying bundle

G0
lX←− X rXxH is pre-principal. We make similar definitions for sub-

ductiveness and principality. Notice that, in this convention, if a bibundle

- 200 -



N. VAN DER SCHAAF DIFFEOLOGICAL MORITA EQUIV.

GylXX rXxH is left subductive, then its right moment map rX is a sub-

duction (and vice versa)5.

We now have the main definition of this theory:

Definition 5.3. A diffeological bibundle is called:

1. pre-biprincipal if it is both left- and right pre-principal6;

2. bisubductive if it is both left- and right subductive;

3. biprincipal if it is both left- and right principal.

Two diffeological groupoids G and H are called Morita equivalent if there

exists a biprincipal bibundle between them, and in that case we write

G ≃ME H .

Compare this to the original definition [MRW87, Definition 2.1] of equi-

valence for locally compact Hausdorff groupoids. We will prove in Corol-

lary 5.23 that Morita equivalence forms a genuine equivalence relation.

Example 5.4. Since submersions between manifolds are subductions with

respect to the manifold diffeologies, we see that if two Lie groupoidsG⇒ G0

and H ⇒ H0 are Morita equivalent in the Lie sense (e.g. [CM18, Definition

2.15]), then they are Morita equivalent in the diffeological sense. We remark

on the converse question in Section 7.1.

In fact, many elementary examples of Morita equivalences between Lie

groupoids generalise straightforwardly to analogously defined diffeological

groupoids. We refer to [vdS20, Section 4.3] for some of these examples. For

us, the most important one is:

Example 5.5. Consider a diffeological groupoid G ⇒ G0. There exists

a canonical (G,G)-bibundle structure on the space of arrows G, which is

called the identity bibundle. The actions are just the composition in G itself,

5Note: [dHo12, Section 4.6] defines this differently, where “[a] bundle is left (resp.

right) principal if only the right (resp. left) underlying bundle is so.” We suspect this may

be a typo, since it apparently conflicts with their use of terminology in the proof of [dHo12,

Theorem 4.6.3]. We stick to the terminology defined above, where left principality pertains

to the left underlying bundle.
6The prefixes bi- and pre- commute: “bi-(pre-principal) = pre-(biprincipal)”.
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as in Example 4.2. Note that the identity bibundle is always biprincipal,

because the action map has a smooth inverse (g1, g2) 7→ (g1 ◦ g
−1
2 , g2). This

proves that any diffeological groupoid is Morita equivalent to itself, through

the identity bibundle GytrgG srcxG.

Construction 5.6. Consider a diffeological bibundle GylXX rXxH . The

opposite bibundle Hyl
XX r

XxG is defined as follows. The underlying dif-

feological space does not change, X := X , but the moment maps switch,

meaning that lX := rX and rX := lX , and the actions are defined as follows:

HyrXX; h · x := xh−1,

X lXxG; x · g := g−1x.

Here the actions on the right-hand sides are the original actions of the bib-

undle. It is easy to see that performing this operation twice gives the original

bibundle back. It is also important to note that for all properties defined

in Definition 5.2, taking the opposite merely switches the words ‘left’ and

‘right’.

The following extends Proposition 4.14(4):

Lemma 5.7. Consider a left pre-principal bibundle GylXX rXxH , and

also the opposite G-action X lXxG. Then, whenever defined, we have:

〈x1, x2g〉G = 〈x1, x2〉G ◦ g.

Proof. This follows directly from Proposition 4.14 and the definition of the

opposite action:

〈x1, x2g〉G = 〈x1, g
−1x2〉G =

(

g−1 ◦ 〈x2, x1〉G
)−1

= 〈x1, x2〉G ◦ g.

5.1 Induced actions

A bibundle G y X x H allows us to transfer a groupoid action H y Y
to a groupoid action G y X ⊗H Y . This is called the induced action,

and, together with the balanced tensor product, will be crucial to define the

composition of bibundles. The idea is that G acts on the first component of

X ⊗H Y .
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Construction 5.8. Consider a diffeological bibundle GylXX rXxH , and a

smooth actionHylY Y . We construct a smooth leftG-action on the balanced

tensor product X ⊗H Y . The left moment map is defined as

LX : X ⊗H Y −→ G0; x⊗ y 7−→ lX(x).

This is well defined because lX isH-invariant, and smooth by Lemma 2.20(3).

For an arrow g ∈ G with src(g) = LX(x⊗ y) = lX(x), define the action as:

GyLXX ⊗H Y ; g · (x⊗ y) := (gx)⊗ y.

Note that the right hand side is well defined because rX is G-invariant and

the G- and H-actions commute, so rX(gx) = lY (y) and the expression does

not change if we replace x⊗y by xh⊗h−1y for arbitrary h ∈ H . Since there

can be no confusion, we will drop all parentheses and write gx ⊗ y instead.

That the action is smooth follows because (g, (x, y)) 7→ (gx, y) is smooth

(on the appropriate domains) and by another application of Lemma 2.20(3).

Hence we obtain the induced action GyLXX ⊗H Y .

Now suppose that we are given a smoothH-equivariant map ϕ : Y1 → Y2
between two smooth actions Hyl1Y1 and Hyl2Y2. We define a map

idX ⊗ ϕ : X ⊗H Y1 −→ X ⊗H Y2; x⊗ y 7−→ x⊗ ϕ(y).

The underlying map X ×H0 Y1 → X ×H0 Y2 : (x, y) 7→ (x, ϕ(y)) is

clearly smooth. Then by composition of the projection onto X ⊗H Y2 and

Lemma 2.20(3), we find idX ⊗ ϕ is smooth. Moreover, it is G-equivariant:

idX ⊗ ϕ(gx⊗ y) = gx⊗ ϕ(y) = g (idX ⊗ ϕ(x⊗ y)) .

Definition 5.9. A diffeological bibundle GylXX rXxH defines an induced

action functor:

X ⊗H − : Act(H ⇒ H0) −→ Act(G⇒ G0),
(

HylY Y
)

7−→
(

GyLXX ⊗H Y
)

,

ϕ 7−→ idX ⊗ ϕ.

sending each smooth left H-action
(

HylY Y
)

7→
(

GyLXX ⊗H Y
)

and

each H-invariant map ϕ 7→ idX ⊗ ϕ. We will use this functor in Section 6.3.
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5.2 The bicategory of diffeological groupoids and -bibundles

Combining the balanced tensor product (Construction 4.6) and the induced

action of a bibundle (Construction 5.8), we can define a notion of composi-

tion for diffeological bibundles, and thereby obtain a new sort of category of

diffeological groupoids7. Specifically, in Theorem 5.17 we will see that we

obtain a bicategory DiffeolBiBund. A bicategory is like a category where

the axioms of composition hold merely up to canonical 2-isomorphism. For

the precise definition we refer to e.g. [Mac71; Lac10]. The point of this

section is to give precise definitions for this bicategorical structure, with the

first ingredient being the following:

Definition 5.10. Let GylXX rXxH and GylY Y rYxH be two bibundles

between the same two diffeological groupoids. A smooth map ϕ : X → Y is

called a bibundle morphism if it is a bundle morphism between both under-

lying bundles. We also say that ϕ is biequivariant. Concretely, this means

that the following diagram commutes:

X H0

G0 Y,

lX
ϕ

rX

lY

rY that is:
lX = lY ◦ ϕ,

rX = rY ◦ ϕ,

and that ϕ is equivariant with respect to both actions. These will be the 2-

morphisms in DiffeolBiBund. The isomorphisms of bibundles are exactly

the diffeomorphic biequivariant maps. These will be the 2-isomorphisms in

DiffeolBiBund.

The composition of bibundles is defined as follows:

Construction 5.11. Consider two diffeological bibundles GylXX rXxH
and HylY Y rYxK. We shall define on X ⊗H Y a (G,K)-bibundle struc-

ture using the induced actions from Construction 5.8. On the left we take

the induced G-action along LX : X ⊗H Y → G0, which we recall maps

x⊗ y 7→ lX(x), defined by

GyLXX ⊗H Y ; g(x⊗ y) := (gx)⊗ y.

7The most straightforward way to obtain a (2-)category of diffeological groupoids is to

consider the smooth functors and smooth natural transformations. We will not be studying

this category in the current paper.
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Analogous to Construction 5.8, swapping left actions for right actions, we

get an induced K-action on the right along RY : X ⊗H Y → K0, which

maps x⊗ y 7→ rY (y), given by

X ⊗H Y
RYxK; (x⊗ y)k := x⊗ (yk).

It is easy to see that these two actions form a bibundleGyLXX⊗HY
RYxK,

which we also call the balanced tensor product.

From this construction we can see that the composition of bibundles will

not be strictly associative, and this is where the bicategorical structure be-

comes important. The following two propositions characterise the compos-

itional structure of the balanced tensor product up to biequivariant diffeo-

morphism. The first of these shows that the identity bibundle (Example 5.5)

is a weak identity:

Proposition 5.12. Let GylXX rXxH be a diffeological bibundle. Then

there are biequivariant diffeomorphisms

GyLGG⊗G X
RXxH

GylXX rXxH

ϕ and

GyLXX ⊗H H
RHxH

GylXX rXxH.

Proof. The idea of the proof is briefly sketched on [Blo08, p.8]. The map

ϕ : G⊗GX → X is defined by the action: g⊗ x 7→ gx. This map is clearly

well defined, and by an easy application of Lemma 2.20(3) also smooth.

Further note that ϕ intertwines the left moment maps:

lX ◦ ϕ(g ⊗ x) = lX(gx) = trg(g) = LG(g ⊗ x),

and similarly we find it intertwines the right moment maps. Associativity

of the G-action and the fact that it commutes with the H-action directly

ensure that ϕ is biequivariant. Moreover, we claim that the smooth map

ψ : X → G⊗G X defined by x 7→ idlX(x) ⊗ x is the inverse of ϕ. It follows

easily that ϕ◦ψ = idX , and the other side follows from the defining property

of the balanced tensor product:

ψ ◦ ϕ(g ⊗ x) = ψ(gx) = idlX(gx) ⊗ gx = (idtrg(g) ◦ g)⊗ x = g ⊗ x.

It follows from an analogous argument that the identity bibundle of H acts

like a weak right inverse.
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The second proposition shows that the balanced tensor product is associ-

ative up to canonical biequivariant diffeomorphism:

Proposition 5.13. LetGylXX rXxH ,HylY Y rYxH ′, andH ′ylZ Z rZxK
be diffeological bibundles. Then there exists a biequivariant diffeomorphism

GyLX⊗HY (X ⊗H Y )⊗H′ Z RZxK

GyLXX ⊗H (Y ⊗H′ Z) RY⊗
H′ZxK,

A A : (x⊗ y)⊗ z 7−→ x⊗ (y⊗ z).

Proof. That the map A is smooth follows by Lemma 2.20(3), because the

corresponding underlying map ((x, y), z) 7→ (x, (y, z)) is a diffeomorphism.

The inverse of this diffeomorphism on the underlying fibred product induces

exactly the smooth inverse of A, showing that A is a diffeomorphism. Fur-

thermore, it is easy to check that A is biequivariant.

Combining Propositions 5.12 and 5.13 gives that the balanced tensor

product of bibundles does indeed behave like the composition in a bicat-

egory. Next to the composition of arrows in a bicategory, we also need to

describe the compositional structure of the 2-arrows. The following element-

ary result says that the ordinary vertical composition of biequivariant maps

is again biequivariant:

Proposition 5.14. Consider two biequivariant smooth maps:

GylXX rYxH

GylY Y rYxH

GylZ Z rZxH.

ϕ

ψ

Then the composition ψ ◦ ϕ : X → Z is also biequivariant.

Next to vertical composition, a bicategory should also allow for hori-

zontal composition of 2-arrows. Again, the construction of this composition

follows the Lie groupoid theory:
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Construction 5.15. Consider the following situation of four bibundles and

two biequivariant maps:

GylXX rXxH

GylY Y rYxH

ϕ and

HylP P rPxK

HylQQ rQxK.

ψ

The goal will be to construct a biequivariant map

GyLXX ⊗H P
RPxK

GyLY Y ⊗H Q
RQxK,

ϕ⊗ψ

called the horizontal composition of ϕ and ψ. The most obvious choice for

the underlying function is the following:

ϕ× ψ|X×HP
: X ×rX ,lPH P −→ Y ×

rY ,lQ
H Q.

The biequivariance of ϕ and ψ ensures that the image of this function indeed

lands in the fibred product Y ×
rY ,lQ
H Q, showing it is well defined and smooth.

Projecting down to the balanced tensor products, we define:

ϕ⊗ ψ : X ⊗H P −→ Y ⊗H Q; x⊗ p 7−→ ϕ(x)⊗ ψ(p).

To show that this will again form a 2-arrow in DiffeolBiBund, we have

the following counterpart to Proposition 5.14:

Proposition 5.16. The map ϕ ⊗ ψ : X ⊗H P → Y ⊗H Q from Construc-

tion 5.15 is a well-defined smooth biequivariant map of diffeological bib-

undles.

Proof. We start by showing that ϕ ⊗ ψ is a well-defined function on the

balanced tensor products. For that, take an element x ⊗ p ∈ X ⊗H P , and

take an arbitrary arrow h ∈ H with trg(h) = rX(x) = lP (p), such that

x⊗ p = xh⊗ h−1p. Using the fact that both ϕ and ψ are biequivariant, and
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the defining relation of the balanced tensor product Y ⊗H Q, we calculate:

ϕ⊗ ψ(xh⊗ h−1p) := ϕ(xh)⊗ ψ(h−1p)

= ϕ(x)h⊗ h−1ψ(p)

= ϕ(x)⊗ ψ(p)

=: ϕ⊗ ψ(x⊗ p),

showing that ϕ ⊗ ψ is indeed well defined. Next, observe that we have the

following commutative diagram of functions:

X ×rX ,lPH P Y ×
rY ,lQ
H Q

X ⊗H P Y ⊗H Q,

ϕ×ψ|X×HP

ϕ⊗ψ

where the vertical arrows are the canonical projections. It follows immedi-

ately from Lemma 2.20(3) that ϕ⊗ ψ is also smooth.

Lastly, we show that ϕ ⊗ ψ is biequivariant with respect to the G- and

K-actions. An easy calculation using the biequivariance of ϕ shows that

LY ◦ (ϕ⊗ ψ)(x⊗ p) = LY (ϕ(x)⊗ ψ(p))

= lY ◦ ϕ(x)

= lX(x)

= LX(x⊗ p),

and similarly we find RQ ◦ (ϕ⊗ψ) = RP . Moreover, ϕ⊗ψ commutes with

the left G-actions:

ϕ⊗ ψ (g · (x⊗ p)) = ϕ⊗ ψ ((gx)⊗ p)

= ϕ(gx)⊗ ψ(p)

= (gϕ(x))⊗ ψ(p)

= g · (ϕ(x)⊗ ψ(p))

= g · (ϕ⊗ ψ(x⊗ p)),

and we similarly find that it commutes with the right K-actions. We have

thus proved that ϕ⊗ ψ defines a smooth biequivariant map, as desired.
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We have now described all bicategorical ingredients for DiffeolBiBund,

and so it remains to check that they do indeed satisfy the axioms of a bicat-

egory. The proof of this is directly analogous to the one for the Lie theory,

which is explained in [Blo08, Proposition 2.12], and we therefore leave out

the details.

Theorem 5.17. There is a bicategory DiffeolBiBund consisting of dif-

feological groupoids as objects, diffeological bibundles as morphisms with

balanced tensor product as composition, and biequivariant smooth maps as

2-morphisms.

Proof idea. Note that the way in which we have the defined the bicategorical

structure of DiffeolBiBund is a direct generalisation of the Lie groupoid

theory (in the sense that, when restricted to Lie groupoids, it is the exact

same). Furthermore, that the axioms of a bicategory hold for Lie groupoids

([Blo08, Proposition 2.12]) is not dependent on the (left or right) principality

of the bibundles (save for the fact that this is needed to ensure the existence

of the balanced tensor product), but is rather a property of the underlying

functions. Given the results in this section, it is therefore clear that those

proofs generalise directly to the diffeological setting.

As we remarked in Section 4.1, the balanced tensor product for Lie

groupoids can only be constructed for left (or right) principal bibundles.

This means that in the Lie theory, the category of bibundles only consists

of the left (or right) principal bibundles, since otherwise the composition

cannot be defined. For diffeology we obtain a bicategory of all bibundles.

5.3 Properties of bibundles under composition and isomorphism

We study how the properties of diffeological bibundles defined in Defini-

tion 5.2 are preserved under the balanced tensor product and biequivariant

diffeomorphism. These results will be crucial in characterising the weakly

invertible bibundles. First we show that left subductive and left pre-principal

bibundles are closed under composition.

Proposition 5.18. The balanced tensor product preserves left subductive-

ness.
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Proof. Consider the balanced tensor product GyLXX ⊗H Y
RYxK of two

left subductive bibundles GylXX rXxH and HylY Y rYxK. We need to

show that the right moment map RY : X ⊗H Y → K0 is a subduction. But,

note that it fits into the following commutative diagram:

X ×rX ,lYH0
Y X ⊗H Y

Y K0.

π

pr2|X×H0
Y RY

rY

Here π is the canonical quotient projection. The restricted projection pr2|X×H0
Y

is a subduction by Lemma 2.22, since rX is a subduction. Moreover, rY is a

subduction, so the bottom part of the diagram is a subduction. It follows by

Lemma 2.20(3) that RY is a subduction.

Note that, even though RY only explicitly depends on the moment map

rY , the proof still depends on the subductiveness of rX as well.

To prove that the balanced tensor product of two left pre-principal bib-

undles is again left pre-principal, we need the following lemma, describing

how the division map interacts with the bibundle structure, extending the list

in Proposition 4.14 on the algebraic properties of the division map.

Lemma 5.19. Let GylXX rXxH be a left pre-principal bibundle, and de-

note its division map by 〈·, ·〉G. Then, whenever defined:

〈x1, x2h〉G = 〈x1h
−1, x2〉G, or equivalently: 〈x1h, x2h〉G = 〈x1, x2〉G.

Proof. The arrow 〈x1h, x2h〉G ∈ G is the unique one that sends x2h to x1h.

Now, since the actions commute, we can multiply both of these terms from

the right by h−1, which gives the equation 〈x1h, x2h〉Xx2 = x1, and this

immediately gives our result.

Proposition 5.20. The balanced tensor product preserves left pre-principality.

Proof. To start the proof, take two left pre-principal bibundles, with our

usual notation: GylXX rXxH and HylY Y rYxK. Denote their division

maps by 〈·, ·〉XG and 〈·, ·〉YH , respectively. Using these, we will construct a
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smooth inverse of the action map of the balanced tensor product. Let us

denote the action map of the balanced tensor product by

Φ : G×src,LX
G0

(X ⊗H Y ) −→ (X ⊗H Y )×RY ,RYK0
(X ⊗H Y ) ,

mapping (g, x ⊗ y) 7→ (gx ⊗ y, x ⊗ y). After some calculations (which we

describe below), we propose the following map as an inverse for Φ:

Ψ : (X ⊗H Y )×RY ,RYK0
(X ⊗H Y ) −→ G×src,LX

G0
(X ⊗H Y ) ;

(x1 ⊗ y1, x2 ⊗ y2) 7−→
(

〈

x1〈y1, y2〉
Y
H , x2

〉X

G
, x2 ⊗ y2

)

.

It is straightforward to check that every action and division occurring in this

expression is well defined. We need to check that Ψ is independent on the

representations of x1 ⊗ y1 and x2 ⊗ y2. Only the first component Ψ1 of

Ψ could be dependent on the representations, so we focus there. Suppose

we have two arrows h1, h2 ∈ H satisfying trg(hi) = rX(xi) = lY (yi), so

that xihi ⊗ h−1
i yi = xi ⊗ yi. For the division of y2 and y1 we then use

Proposition 4.14 to get:

〈h−1
1 y1, h

−1
2 y2〉

Y
H = h−1

1 ◦ 〈y1, h
−1
2 y2〉

Y
H

= h−1
1 ◦

(

h−1
2 ◦ 〈y2, y1〉

Y
H

)−1

= h−1
1 ◦ 〈y1, y2〉

Y
H ◦ h2.

Then, using this and Lemma 5.19, we get:

Ψ1(x1h1 ⊗ h
−1
1 y1, x2h2 ⊗ h

−1
2 y2) =

〈

x1h1〈h
−1
1 y1, h

−1
2 y2〉

Y
H , x2h2

〉X

G

=
〈

(x1h1)
(

h−1
1 ◦ 〈y1, y2〉

Y
H ◦ h2

)

, x2h2
〉X

G

= 〈(x1〈y1, y2〉)h2, x2h2〉
X
G

=
〈

x1〈y1, y2〉
Y
H , x2

〉X

G
.

Since the second component of Ψ is, by construction, independent on the

representation, it follows that Ψ is a well-defined function. We now need to

show that Ψ is smooth. The second component is clearly smooth, because it

is just the projection onto the second component of the fibred product. That

the other component is smooth follows from Lemmas 2.20 and 2.23. Writing

ψ : ((x1, y1), (x2, y2)) 7−→ 〈x1〈y1, y2〉
Y
H , x2〉

X
G
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and π : X ×rX ,lYH0
Y → X ⊗H Y for the canonical projection, we get a

commutative diagram

(

X ×rX ,lYH0
Y
)

×rY ,rYK0

(

X ×rX ,lYH0
Y
)

G.

(X ⊗H Y )×RY ,RYK0
(X ⊗H Y )

(π×π)|dom(ψ)

ψ

Ψ1

Here we temporarily use the notation rY := rY ◦ pr2|X×H0
Y , which satis-

fies RY ◦ π = rY . Therefore by Lemma 2.23 the left arrow in this dia-

gram is a subduction. Since the map ψ is evidently smooth, it follows by

Lemma 2.20(3) that the first component Ψ1, and hence Ψ itself, must be

smooth.

Thus, we are left to show that Ψ is an inverse for Φ. That Ψ is a right

inverse for Φ now follows by simple calculation using Proposition 4.14

and Lemma 5.19:

Ψ ◦ Φ(g, x⊗ y) = Ψ(gx⊗ y, x⊗ y)

=
(

〈gx〈y, y〉YH , x〉
X
G , x⊗ y

)

=
(

g ◦ 〈x, x〉XG , x⊗ y
)

= (g, x⊗ y).

For the other direction, we calculate:

Φ ◦Ψ(x1 ⊗ y1, x2 ⊗ y2) = Φ
(

〈

x1〈y1, y2〉
Y
H , x2

〉X

G
, x2 ⊗ y2

)

=
(

〈

x1〈y1, y2〉
Y
H , x2

〉X

G
x2 ⊗ y2, x2 ⊗ y2

)

=
(

x1〈y1, y2〉
Y
H ⊗ y2, x2 ⊗ y2

)

=
(

x1 ⊗ 〈y1, y2〉
Y
Hy2, x2 ⊗ y2

)

= (x1 ⊗ y1, x2 ⊗ y2) .

Here in the second to last step we use the properties of the balanced tensor

product to move the arrow 〈y1, y2〉
Y
H over the tensor symbol. Hence we con-

clude that Φ is a diffeomorphism, which proves that GyLXX ⊗H Y
RYxK

is a left pre-principal bibundle.
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Next we show that left subductiveness and left pre-principality are also

preserved under biequivariant diffeomorphism.

Proposition 5.21. Left pre-principality is preserved by biequivariant diffeo-

morphism.

Proof. Suppose that ϕ : X → Y is a biequivariant diffeomorphism from a

left pre-principal bibundle GylXX rXxH to another diffeological bibundle

GylY Y rYxH . Denote their left action maps by AX and AY , respectively.

The following square commutes because of biequivariance:

G×src,lX
G0

X X ×rX ,rXH0
X

G×src,lY
G0

Y Y ×rY ,rYH0
Y.

(idG×ϕ)|G×G0
X

AX

(ϕ×ϕ)|X×H0
X

AY

It is easy to see that both vertical maps are diffeomorphisms. Hence it fol-

lows AY must be a diffeomorphism as well.

Proposition 5.22. Left subductiveness is preserved by biequivariant diffeo-

morphism.

Proof. Suppose that ϕ : X → Y is a biequivariant diffeomorphism from

a left subductive bibundle GylXX rXxH to GylY Y rYxH . That the first

bundle is left subductive means that rX is a subduction, but since ϕ inter-

twines the moment maps, it follows immediately that rY = rX ◦ ϕ
−1 is a

subduction as well.

Of course, these four propositions all hold for their respective ‘right’

versions as well. This can be proved formally, without repeating the work,

by using opposite bibundles.

Corollary 5.23. Morita equivalence defines an equivalence relation between

diffeological groupoids.

Proof. Morita equivalence is reflexive by the existence of identity bibundles,

which are always biprincipal (Example 5.5). It is also easy to check that

the opposite bibundle (Construction 5.6) of a biprincipal bibundle is again

biprincipal, showing that Morita equivalence is symmetric. Transitivity fol-

lows directly from Propositions 5.18 and 5.20 and their opposite versions.

- 213 -



N. VAN DER SCHAAF DIFFEOLOGICAL MORITA EQUIV.

5.4 Weak invertibility of diffeological bibundles

In this section we prove the main Morita Theorem 5.31. As we explained

in the Introduction, in the bicategory of diffeological groupoids we get a

notion of weak isomorphism. Let us describe these explicitly: a bibundle

G y X x H is weakly invertible if and only if there exists a second bib-

undle H y Y x G, such that X ⊗H Y is biequivariantly diffeomorphic to

G and Y ⊗G X is biequivariantly diffeomorphic to H . The Morita theorem

says that such a weak inverse exists if and only if the bibundle is biprincipal.

Let us recall the corresponding statement in the Lie theory: a (say) left prin-

cipal bibundle has a left principal weak inverse if and only if it is biprincipal

[Lan01b, Proposition 4.21]. Here both the original bibundle and its weak

inverse have to be left principal, since everything takes place in a bicategory

of Lie groupoids and left principal bibundles. According to Theorem 5.17

we get a bicategory of arbitrary bibundles, and the question of weak invert-

ibility becomes a slightly more general one, since we do not start out with

a bibundle that is already left principal. Instead we have to infer left prin-

cipality from bare weak invertibility, where neither the weak inverse may be

assumed to be left principal.

One direction of the claim in the main theorem is relatively straightfor-

ward, and is the same as for Lie groupoids:

Proposition 5.24. Let GylXX rXxH be a biprincipal bibundle. Then its

opposite bundle HyrXX lXxG is a weak inverse.

Proof. We construct biequivariant diffeomorphisms

GyLXX ⊗H X
R
XxG

GytrgG srcxG,

ϕG and

HyL
XX ⊗G X

RXxH

HytrgH srcxH.

ϕH

Since the original bundle is pre-biprincipal, we have a division map 〈·, ·〉G :
X ×rX ,rXH0

X → G. We define a new function

ϕG : X ⊗H X −→ G; x1 ⊗ x2 7−→ 〈x1, x2〉G.

This is independent on the representation of the tensor product by Lemma 5.19,

and smooth by Lemma 2.20(3) since ϕG ◦ π = 〈·, ·〉G, where π is the ca-

nonical projection onto the balanced tensor product. We check that ϕG is
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biequivariant. It is easy to check that ϕG intertwines the moment maps, for

example:

src ◦ ϕG(x1 ⊗ x2) = src (〈x1, x2〉G) = lX(x2) = RX(x1 ⊗ x2).

The left G-equivariance of ϕG follows directly out of Proposition 4.14, and

the right G-equivariance follows from Lemma 5.7. Hence ϕG is a genuine

bibundle morphism.

Since the original bundle is biprincipal, so is its opposite, and therefore

by Propositions 5.18 and 5.20 it follows that both balanced tensor products

are also biprincipal. Therefore ϕG is in particular a leftG-equivariant bundle

morphism from a principal bundleGyLXX⊗HX
R
X−−→ G0 to a pre-principal

bundle GytrgG
src
−→ G0, and hence a diffeomorphism by Proposition 4.18.

This proves that the opposite bibundle is a weak right inverse. Note that we

already need full biprincipality of the original bibundle for this. To prove

that it is also a weak left inverse we make an analogous construction for ϕH ,

which we leave to the reader.

The rest of this section will be dedicated to proving the converse of this

claim, i.e., that a weakly invertible bibundle is biprincipal. First let us remark

that by imitating a result from the Lie theory, we can obtain a partial result

in this direction. Let us denote by DiffeolBiBundLP the bicategory of

diffeological groupoids and left principal bibundles. Note that by Section 5.3

left principality is preserved by the balanced tensor product, so this indeed

forms a subcategory.

Theorem 5.25. A left principal diffeological bibundle has a left principal

weak inverse if and only if it is biprincipal. That is, the weakly invertible

bibundles in DiffeolBiBundLP are exactly the biprincipal ones.

Proof. This follows by combining Proposition 5.24 with an adaptation of an

argument from the Lie groupoid theory as in [MM05, Proposition 2.9]. A

more detailed proof (for diffeological groupoids) is in [vdS20, Proposition

4.61].

This theorem is the most direct analogue of [Lan01b, Proposition 4.21]

in the setting of diffeology. Our main theorem will be a further general-

isation of this, which says that the same claim holds in the larger bicategory
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DiffeolBiBund of all bibundles. We break the proof down in several steps,

starting with the implication of bisubductiveness:

Proposition 5.26. A weakly invertible diffeological bibundle is bisubductive.

Proof. Suppose we have a bibundle GylXX rXxH that admits a weak in-

verseHylY Y rYxG. Let us denote the included biequivariant diffeomorph-

isms by ϕG : X ⊗H Y → G and ϕH : Y ⊗G X → H , as usual. Since the

identity bibundles of G and H are both biprincipal, it follows by Proposi-

tion 5.22 that the moment maps LX , RX , LY and RY are all subductions.

Together with the original moment maps, we get four commutative squares,

each of the form:

X ×rX ,lYH0
Y X ⊗H Y

X G0.

pr1|X×H0
Y

π

LX

lX

Here π : X ×rX ,lYH0
Y → X ⊗H Y is the quotient map of the diagonal H-

action. By Lemma 2.20(3) it follows that, since LX is a subduction, so is

the composition lX ◦ pr1|X×H0
Y , and in turn by Lemma 2.20(2) it follows

lX is a subduction. In a similar fashion we find that rX , lY and rY are all

subductions as well.

This proposition gets us halfway to proving that weakly invertible bib-

undles are biprincipal. To prove that they are pre-biprincipal, it is enough

to construct smooth division maps. We will give this construction below

(Construction 5.29), which follows from a careful reverse engineering of the

division map of a pre-principal bundle. Recall from Proposition 5.20 that

the smooth inverse of the action map contains the information of both the

G-division map and the H-division map. Specifically, the first component

of the inverse is of the form 〈x1〈y1, y2〉
Y
H , x2〉

X
G , in which if we set y1 = y2,

we simply reobtain the G-division map 〈x1, x2〉
X
G . The question is if this

“reobtaining” can be done in a smooth way. This is not so obvious at first.

Namely, if we vary (x1, x2) smoothly within X ×rX ,rXH0
X , can we guaran-

tee that y1 and y2 vary smoothly with it, while still retaining the equalities

rX(xi) = lY (yi) and y1 = y2? The elaborate Construction 5.29 proves that
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this can indeed be done. An essential part of our argument will be supplied

by the following two lemmas.

Lemma 5.27. When GylXX rXxH is a weakly invertible bibundle, admit-

ting a weak inverse HylY Y rYxG, then all four actions are free.

Proof. This follows from an argument that is used in the proof of [Blo08,

Proposition 3.23]. Suppose we have an arrow h ∈ H and a point y ∈ Y such

that hy = y. By Proposition 5.26 it follows that in particular lX is surjective,

so we can find x ∈ X such that y ⊗ x ∈ Y ⊗G X . Then

h(y ⊗ x) = (hy)⊗ x = y ⊗ x.

But by Proposition 5.21 the bundle HyLY Y ⊗G X
RX−−→ G0, which is

equivariantly diffeomorphic to the identity bundle on H , is pre-principal.

So, the left action H y Y ⊗GX is free, and hence h = idLY (y⊗x) = idlY (y),

proving thatH y Y is also free. That the three other actions are free follows

analogously.

Lemma 5.28. Let X rXxH and HylY Y be smooth actions, so that we can

form the balanced tensor product X ⊗H Y . Suppose that H y Y is free.

Then x1 ⊗ y = x2 ⊗ y if and only if x1 = x2. Similarly, if X x H is free,

then x⊗ y1 = x⊗ y2 if and only if y1 = y2.

Proof. If x1 = x2 to begin with, the implication is trivial. Suppose therefore

that x1⊗y = x2⊗y, which means that there exists an arrow h ∈ H such that

(x1h
−1, hy) = (x2, y). In particular hy = y, which, because the action on Y

is free, implies h = idlY (y), and it follows that x1 = x1id
−1
lY (y) = x2.

We shall now describe how the division map arises from local data:

Construction 5.29. For this construction to work, we start with a diffeolo-

gical bibundle GylXX rXxH , admitting a weak inverse HylY Y rYxG.

Then consider a pointed plot α : (Uα, 0) → (X ×rX ,rXH0
X, (x1, x2)). We

split α into the components (α1, α2), which in turn give two pointed plots

αi : (Uα, 0) → (X, xi) satisfying rX ◦ α1 = rX ◦ α2 : Uα → H0. This

equation gives a plot of H0, and since by Proposition 5.26 the moment

map lY : Y → H0 is a subduction, for every t ∈ Uα we can find a plot

β : V → Y , defined on an open neighbourhood t ∈ V ⊆ Uα, such
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that rX ◦ αi|V = lY ◦ β. From this equation it follows that the smooth

maps (αi|V , β) : V → X ×rX ,lYH0
Y define two plots of the underlying space

of the balanced tensor product. Applying the canonical quotient projec-

tion map π : X ×rX ,lYH0
Y → X ⊗H Y , we thus get two full-fledged plots

s 7→ αi|V (s)⊗ β(s) of the balanced tensor product. We combine these two

plots to define yet another smooth map:

Ωα|V := (π ◦ (α1|V , β) , π ◦ (α2|V , β)) : V −→ (X ⊗H Y )×RY ,RYG0
(X ⊗H Y ) .

Note that Ωα|V lands in the right codomain because

RY ◦ π ◦ (αi|V , β) = rY ◦ β,

irrespective of i ∈ {1, 2}. We also note that the codomain of Ωα|V is exactly

the domain of the inverse Ψ = (Ψ1,Ψ2) of the action map of the balanced

tensor productGyLXX⊗HY
RY−−→ H0 (given explicitly in Proposition 5.20).

In particular we then get a smooth map

Ψ1 ◦ Ω
α|V : V

Ωα|V
−−−−−−→ (X ⊗H Y )×RY ,RYG0

(X ⊗H Y )
Ψ1−−−−−→ G.

We now extend this map to the entire domain Uα, and show that it is inde-

pendent on the choice of plot β. For that, pick two points t, t ∈ Uα, so that by

subductiveness of the left moment map lY we can find two plots, β : V → Y
and β : V → Y , defined on open neighbourhoods of t and t, respectively,

such that rX ◦ αi|V = lY ◦ β and rX ◦ αi|V = lY ◦ β. Following the above

construction, we get two smooth maps:

Ωα|V : s 7−→ (α1|V (s)⊗ β(s), α2|V (s)⊗ β(s)) ,

Ω
α
|V : s 7−→

(

α1|V (s)⊗ β(s), α2|V (s)⊗ β(s)
)

.

We now remark an important characterisation of Ψ, as a consequence of

it being a diffeomorphism and inverse to the action map. Namely, when

evaluated, Ψ1(x1 ⊗ y1, x2 ⊗ y2) is the unique arrow g ∈ G satisfying the

equation gx2 ⊗ y2 = x1 ⊗ y1. Therefore, Ψ1 ◦ Ω
α|V (s) ∈ G is the unique

arrow such that

[Ψ1 ◦ Ω
α|V (s)] · (α2|V (s)⊗ β(s)) = α1|V (s)⊗ β(s).
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By Lemma 5.27 all of the four actions of the original bibundles are free.

Consequently, applying Lemma 5.28, since the second component in each

term is just β(s), this means that Ψ1 ◦Ω
α|V (s) is the unique arrow in G such

that

Ψ1 ◦ Ω
α|V (s) · α2|V (s) = α1|V (s),

where the tensor with β(s) can be removed. But, for exactly the same reas-

ons, if we take s ∈ V ∩ V , then Ψ1 ◦ Ω
α
|V (s) ∈ G is also the unique arrow

such that

Ψ1 ◦ Ω
α
|V ∩V (s) · α2|V ∩V (s) = α1|V ∩V (s),

proving that

Ψ1 ◦ Ω
α|V ∩V = Ψ1 ◦ Ω

α
|V ∩V .

This shows that on the overlaps V ∩V the map Ψ1◦Ω
α|V ∩V does not depend

on the plots β and β. This allows us to extend Ψ1 ◦ Ω
α|V , in a well-defined

way, to the entire domain of Uα. We do this as follows. For every t ∈ Uα
there exists a plot βt : Vt → Y , defined on an open neighbourhood Vt ∋ t,
such that rX ◦ αi|Vt = lY ◦ βt. Clearly, this gives an open cover (Vt)t∈Uα of

Uα. For t ∈ Uα we then set Ψ1 ◦ Ω
α(t) := Ψ1 ◦ Ω

α|Vt(t). Hence we get a

well-defined function Ψ1 ◦ Ω
α : Uα → G, which is smooth by the Axiom of

Locality.

The main observation now is that, as the plot α is centred at (x1, x2), we

get that Ψ1 ◦Ω
α(0) is the unique arrow in G such that Ψ1 ◦Ω

α(0) · x2 = x1.
This is exactly the property that characterises the division 〈x1, x2〉G!

Proposition 5.30. A weakly invertible diffeological bibundle is pre-biprincipal.

Proof. The bulk of the work has been done in Construction 5.29. Start with

a diffeological bibundle GylXX rXxH and a weak inverse HylY Y rYxG.

We shall define a smooth division map 〈·, ·〉G for the left G-action. For

(x1, x2) ∈ X×
rX ,rX
H0

X , we know by the Axiom of Covering that the constant

map const(x1,x2) : R → X ×rX ,rXH0
X is a plot centred at (x1, x2). We use

the shorthand Ψ1 ◦ Ω
(x1,x2) to denote the map Ψ1 ◦ Ω

α defined by the plot

α = const(x1,x2), and then write:

〈x1, x2〉G := Ψ1 ◦ Ω
(x1,x2)(0).
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That just leaves us to show that this map is smooth. For that, take an arbitrary

plot α : Uα → X ×rX ,rXH0
X of the fibred product. We need to show that

〈·, ·〉G ◦ α is a plot of G. For any t ∈ Uα, we have that

〈α1(t), α2(t)〉G = Ψ1 ◦ Ω
α(t)(0)

is the unique arrow in G such that

Ψ1 ◦ Ω
α(t)(0) · const2α(t)(0) = const1α(t)(0),

where consti denotes the ith component of the constant plot. But then

constiα(t)(0) = αi(t), and we already know that Ψ1 ◦ Ω
α(t) ∈ G is the

unique arrow that sends α2(t) to α1(t), so we have:

Ψ1 ◦ Ω
α(t)(0) = Ψ1 ◦ Ω

α(t), which means 〈·, ·〉G ◦ α = Ψ1 ◦ Ω
α.

But the right hand side Ψ1 ◦ Ω
α : Uα → G is a plot of G as per Construc-

tion 5.29, proving that the map 〈·, ·〉G is smooth. It is quite evident from its

construction that it satisfies exactly the properties of a division map, and it

is now easy to verify that

(

〈·, ·〉G, pr2|X×H0
X

)

: X ×rX ,rXH0
X −→ G×src,lX

G0
X

is a smooth inverse of the action map (see Section 4.2.1). The fact that

it lands in the right codomain, i.e., src(〈x1, x2〉G) = lX(x2), follows from

the properties of Ψ as the inverse of the action map of the balanced tensor

product. Therefore GylXX
rX−→ H0 is a pre-principal bundle. An analogous

argument will show that G0
lY←− X rXxH is also pre-principal, and hence

we have proved the claim.

We can now prove our main theorem:

Theorem 5.31. A bibundle is weakly invertible in DiffeolBiBund if and

only if it is biprincipal. That means: two diffeological groupoids are Morita

equivalent if and only if they are equivalent in DiffeolBiBund.

Proof. One of the implications is just Proposition 5.24. The other now fol-

lows from a combination of Propositions 5.26 and 5.30.
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This significantly generalises [Lan01b, Proposition 4.21], not only in that

we have a generalisation to a diffeological setting, but also in that it considers

a more general type of bibundle. It justifies the bicategory DiffeolBiBund

as being the appropriate setting for Morita equivalence of diffeological group-

oids. It also shows that the assumptions of left principality of the Lie group-

oid bibundles appear to be more like technical necessities for getting a well

defined bicategory of Lie groupoids and bibundles, rather than being mean-

ingful assumptions on the underlying smooth structure of the bibundles. In

Section 7.1 we discuss other aspects of diffeological Morita equivalence

between Lie groupoids. A possible category of fractions approach to Morita

equivalence of diffeological groupoids is discussed in [vdS20, Chapter V].

6. Some Morita Invariants

In theories of Morita equivalence, there are often interesting properties that

are naturally Morita invariant. In this section we discuss some results that

generalise several well known Morita invariants of Lie groupoids to the dif-

feological setting. These include: invariance of the orbit spaces (Defini-

tion 3.4), of being fibrating (Definition 6.2), and of the action categories

(Definition 4.5). The proofs are taken from [vdS20, Chapter IV].

6.1 Invariance of orbit spaces

It is a well known result that if two Lie groupoids G⇒ G0 and H ⇒ H0 are

Morita equivalent (in the Lie groupoid sense), then there is a homeomorphism

between their orbit spaces G0/G and H0/H , see e.g. [CM18, Lemma 1]. In

fact, it turns out that the orbit spaces are even diffeologically diffeomorphic

[Wat20, Theorem 3.8]8. The following theorem extends this result further

from Lie groupoids to arbitrary diffeological groupoids. The construction of

the underlying function is the same as for the Lie groupoid case, which is

sketched in the proof of [CM18, Lemma 1], and which we describe below in

detail.

8The author thanks the anonymous referee for bringing this result to his attention. We

should also like to note that several other variants of this statement hold, namely in the

settings of differentiable- and subcartesian spaces, as proved in [CM18].
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Theorem 6.1. If G⇒ G0 and H ⇒ H0 are two Morita equivalent diffeolo-

gical groupoids, then there is a diffeomorphism G0/G ∼= H0/H between

their orbit spaces.

Proof. Let GylXX rXxH be the bibundle instantiating the Morita equival-

ence. Our first task will be to construct a function Φ : G0/G → H0/H
between the orbit spaces. The idea is to lift a point a ∈ G0 of the base of

the groupoid to its lX-fibre, which by right principality is just an H-orbit in

X , and then to project this orbit down to the other base H0 along the right

moment map rX . The fact that the bundle is biprincipal ensures that this can

be done in a consistent fashion.

We are dealing with four actions here, so we need to slightly modify

our notation to avoid confusion. If a ∈ G0 is an object in the groupoid G,

we shall denote its orbit by OrbG0(a), which, as usual, is just the set of all

points a′ ∈ G0 such that there exists an arrow g : a → a′ in G. Similarly,

for b ∈ H0 we write OrbH0(b). On the other hand, we have two actions on

X , for whose orbits we use the standard notations OrbG(x) and OrbH(x),
where x ∈ X .

Now, start with a point a ∈ G0, and consider its fibre l−1
X (a) in X .

Since the bibundle is right subductive, the map lX is surjective, so this

fibre is non-empty and we can find a point xa ∈ l−1
X (a). We claim that

the expression OrbH0 ◦ rX(xa) is independent on the choice of the point

xa in the fibre. For that, take another point x′a ∈ l−1
X (a). This gives the

equation lX(xa) = lX(x
′
a), and since the bibundle is right pre-principal, we

get a unique arrow h ∈ H such that x′a = xah. From the definition of a

right groupoid action, this in turn gives the equations rX(x
′
a) = src(h)

and rX(xa) = trg(h), which proves the claim. To summarise, whenever

xa, x
′
a ∈ l

−1
X (a) are two points in the same lX-fibre, then we have:

OrbH0 ◦ rX(xa) = OrbH0 ◦ rX(x
′
a). (1)

Next we want to show that neither is this expression dependent on the point

a ∈ G0, but rather on its orbit OrbG0(a). For this, take another point

b ∈ OrbG0(a), so there exists some arrow g : a → b in G. Pick then x ∈
l−1
X (a) and y ∈ l−1

X (b). This means that src(g) = lX(x) and trg(g) = lX(y),
which means that if we let g act on the point x we get a point gx ∈ l−1

X (b),
in the same lX-fibre as y. Then using equation (1) applied to gx and y, and

- 222 -



N. VAN DER SCHAAF DIFFEOLOGICAL MORITA EQUIV.

the G-invariance of the right moment map rX , we immediately get:

OrbH0 ◦ rX(x) = OrbH0 ◦ rX(gx) = OrbH0 ◦ rX(y).

Using this, we can now conclude that there is a well-defined function

Φ : G0/G −→ H0/H; OrbG0(a) 7−→ OrbH0 ◦ rX(xa),

that is neither dependent on the point a in the orbit OrbG0(a), nor on the

choice of the point xa ∈ l
−1
X (a) in the fibre. Note that this function exists by

virtue of right subductivity (and the Axiom of Choice), which ensures that

the left moment map lX is a surjection (and for each a there exists an xa).
Either by replacingGylXX rXxH by its opposite bibundle, or by switch-

ing the words ‘left’ and ‘right’, the above argument analogously gives a func-

tion going the other way:

Ψ : H0/H −→ G0/G; OrbH0(b) 7−→ OrbG0 ◦ lX(yb),

where now yb ∈ r
−1
X (b) is some point in the fibre of the right moment map

rX . We claim that Φ and Ψ are mutual inverses. To see this, pick a point

a ∈ G0, a point xa ∈ l
−1
X (a), a point yrX(xa) ∈ r

−1
X (rX(xa)). Then we can

write

Ψ ◦ Φ (OrbG0(a)) = Ψ (OrbH0(rX(xa))) = OrbG0

(

lX(yrX(xa))
)

.

We also have, by choice, the equation rX(xa) = rX(yrX(xa)), so by left

pre-principality there exists an arrow g ∈ G such that gxa = yrX(xa). By

definition of a left groupoid action, this then further gives

src(g) = lX(xa) = a and trg(g) = lX(yrX(xa)).

This proves that the right-hand side of the previous equation is equal to

OrbG0

(

lX(yrX(xa))
)

= OrbG0(a),

which gives Ψ ◦ Φ = idG0/G. Through a similar argument, using right pre-

principality, we obtain that Φ ◦Ψ = idH0/H .

To finish the proof, it suffices to prove that both Φ and Ψ are smooth.

Again, due to the symmetry of the situation, we shall only prove that Φ is
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smooth. The proof for Ψ will follow analogously. Since OrbG0 is a subduc-

tion, to prove that Φ is smooth it suffices by Lemma 2.20(3) to prove that

Φ ◦ OrbG0 is smooth. Since the left moment map lX is a surjection, using

the Axiom of Choice we pick a section σ : G0 → X , which replaces our

earlier notation of σ(a) =: xa. From the way Φ is defined, we see that we

get a commutative diagram:

G0 X H0

G0/G H0/H.

OrbG0

σ rX

OrbH0

Φ

We are therefore to show that OrbH0 ◦ rX ◦ σ is smooth. For this, pick a plot

α : Uα → G0 of the base space. By right subductivity, the left moment map

lX is a subduction, so locally α|V = lX ◦β, where β is some plot ofX . Now,

note that, for all t ∈ V , both the points β(t) and σ ◦ lX ◦ β(t) are elements

of the fibre l−1
X (lX ◦ β(t)). Therefore, by equation (1) we get:

OrbH0 ◦ rX ◦ σ ◦ α|V = OrbH0 ◦ rX ◦ σ ◦ lX ◦ β = OrbH0 ◦ rX ◦ β.

The right-hand side of this equation is clearly smooth (and no longer de-

pendent on the choice of section σ). By the Axiom of Locality for G0, it

follows that OrbH0 ◦ rX ◦ σ ◦ α is globally smooth, and since the plot α was

arbitrary, this proves that Φ ◦ OrbG0 is smooth. Hence, Φ is smooth. After

an analogous argument that shows Ψ is smooth, the desired diffeomorphism

between the orbit spaces follows.

Note that in the proof of [Wat20, Theorem 3.8], instead of a global

(not necessarily smooth) section σ : G0 → X of the left moment map

lX : X → G0, they use the fact that lX is a surjective submersion to find

a local smooth section. Our proof shows that it is not necessary for σ to be

smooth, highlighting another difference between the rôle of surjective sub-

mersions and subductions9.

6.2 Invariance of fibration

The theory of diffeological (principal) fibre bundles is shown in [IZ13a,

Chapter 8] to be fully captured by the following notion:

9We thank the anonymous referee for pointing out this difference between the proofs.
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Definition 6.2. A diffeological groupoid G ⇒ G0 is called fibrating (or a

fibration groupoid) if the characteristic map (trg, src) : G → G0 × G0 is a

subduction.

This leads to a theory of diffeological fibre bundles that is able to treat the

standard smooth locally trivial (principal) fibre bundles of smooth manifolds,

but also bundles that are not (and could not meaningfully be) locally trivial.

It is then natural to ask if this property of diffeological groupoids is invariant

under Morita equivalence. The following theorem proves that this is the

case:

Theorem 6.3. Let G ⇒ G0 and H ⇒ H0 be two Morita equivalent dif-

feological groupoids. Then G ⇒ G0 is fibrating if and only if H ⇒ H0 is

fibrating.

Proof. Because Morita equivalence is an equivalence relation, it suffices to

prove that if G ⇒ G0 is fibrating, then so is H ⇒ H0. Denoting the

characteristic maps of these groupoids by χG = (trgG, srcG) and χH =
(trgH , srcH), assume that G is fibrating, so that χG is a subduction. Our

goal is to show χH is also a subduction.

To begin with, take an arbitrary plot α = (α1, α2) : Uα → H0 ×H0, and

fix an element t ∈ Uα. We thus need to find a plot Φ : W → H , defined

on an open neighbourhood t ∈ W ⊆ Uα, such that α|W = χH ◦ Φ. Morita

equivalence yields a biprincipal bibundle GylXX rXxH . To construct the

plot Φ, we use almost all of the structure of this bibundle.

The right moment map rX : X → H0 is a subduction, so for each of

the components αi of α we get a plot βi : Ui → X , defined on an open

neighbourhood t ∈ Ui ⊆ Uα, such that αi|Ui = rX ◦βi. Define U := U1∩U2,

which is another open neighbourhood of t ∈ Uα, and introduce the notation

β := (β1|U , β2|U) : U −→ X ×X.

Composing with the left moment map lX : X → G0, we get (lX × lX) ◦ β :
U → G0 × G0. It is here that we use that G ⇒ G0 is fibrating. Because

of that, we can find an open neighbourhood t ∈ V ⊆ U ⊆ Uα and a plot

Ω : V → G such that

χG ◦ Ω = (lX × lX) ◦ β|V . (2)
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This means that trgG ◦ Ω = lX ◦ β1|V and srcG ◦ Ω = lX ◦ β2|V . Let

ϕG : X ⊗H X → G be the biequivariant diffeomorphism from Proposition 5.24.

Using the plot Ω we just obtained, we get another plotϕ−1
G ◦ Ω : V → X ⊗H X .

Now, since the canonical projection πH : X ×rX ,rXH0
X → X ⊗H X of

the diagonal H-action is a subduction, we can find an open neighbourhood

t ∈ W ⊆ V and a plot ω : W → X ×rX ,rXH0
X such that

πH ◦ ω = ϕ−1
G ◦ Ω|W . (3)

Note that the plot ω decomposes into its components ω1, ω2 : W → X ,

which satisfy rX ◦ ω1 = rX ◦ ω2. Using the biequivariance of ϕG and the

defining relation LX ◦ πH = lX ◦ pr1|X×H0
X we find:

lX ◦ β1|W = trgG ◦ Ω|W

= LX ◦ ϕ
−1
G ◦ Ω|W

= LX ◦ πH ◦ ω

= lX ◦ pr1|X×H0
X ◦ ω

= lX ◦ ω1,

where the first equality follows from the equation (2), and the third one from

(3). Similarly, we find lX ◦ β2|W = lX ◦ ω2. These two equalities give two

well-defined plots, one for each i ∈ {1, 2}, given by

βi|W⊗ωi := πG◦(βi|W , ωi) : W
(βi|W ,ωi)

−−−−−−−−−→ X×lX ,lXG0
X

πG−−−−−→ X⊗GX,

where πG : X×lX ,lXG0
X → X⊗GX is the canonical projection of the diagonal

G-action. We can now apply the biequivariant diffeomorphism ϕH : X ⊗G
X ⇒ H from Proposition 5.24 to get two plots in H . It is from these

two plots that we will create Φ. Here it is absolutely essential that we have

constructed the plot ω such that rX ◦ ω1 = rX ◦ ω2, because that means that

the sources of these two plots in H will be equal, and hence they can be

composed if we first invert one of them component-wise. To see this, use the

biequivariance of ϕH to calculate

srcH ◦ ϕH ◦ (βi|W ⊗ ωi) = RX ◦ (βi|W ⊗ ωi)

= rX ◦ pr2|X×G0
X ◦ (βi|W , ωi)

= rX ◦ ωi,
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and similarly:

trgH ◦ ϕH ◦ (βi|W ⊗ ωi) = LX ◦ (βi|W ⊗ ωi)

= rX ◦ pr1|X×G0
X ◦ (βi|W , ωi)

= rX ◦ βi|W

= αi|W .

Of course, if we switch βi|W⊗ωi to ωi⊗βi|W , which is defined in the obvious

way, then the right-hand sides of the above two equations will switch. So,

for every s ∈ W , the expression ϕH (ω2(s)⊗ β2(s)) is an arrow in H from

rX ◦ β2(s) = α2(s) to rX ◦ ω2(s), and ϕH (β1(s)⊗ ω1(s)) is an arrow from

rX ◦ω1(s) = rX ◦ω2(s) to rX ◦β1(s) = α1(s), which can hence be composed

to give an arrow from α2(s) to α1(s). This is exactly the kind of arrow we

want. Therefore, for every s ∈ W , we get a commutative triangle in the

groupoid H , which defines for us the plot Φ : W → H:

α2(s) α1(s)

rX ◦ ω1(s).

ϕH(ω2(s)⊗β2(s))

Φ(s)

ϕH(β1(s)⊗ω1(s))

The map Φ is clearly smooth, because inversion and multiplication in H are

smooth. Hence we have defined the plot Φ, and by the above diagram it is

clear that it satisfies

χH ◦ Φ = (trgH ◦ Φ, srcH ◦ Φ) = α|W .

Thus we may at last conclude that χH is a subduction, and hence thatH ⇒ H0

is also fibrating.

6.3 Invariance of representations

In the Morita theory of rings, it holds that two rings are Morita equivalent if

and only if their categories of modules are equivalent. For groupoids, even

discrete ones, this is no longer an “if and only if” proposition, but merely an

“only if”. Nevertheless, it is known that the result transfers to Lie groupoids

as well [Lan01a, Theorem 6.6], and here we shall prove that it transfers also

to diffeology.
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Theorem 6.4. Suppose that G ⇒ G0 and H ⇒ H0 are Morita equivalent

diffeological groupoids. Then the action categories Act(G ⇒ G0) and

Act(H ⇒ H0) are categorically equivalent.

Proof. If G ⇒ G0 and H ⇒ H0 are Morita equivalent, there exists a bi-

principal bibundle GylXX rXxH . Recall from Definition 4.5 the notion of

action categories and from Definition 5.9 that of induced action functors. We

claim that

X ⊗H − : Act(H ⇒ H0) −→ Act(G⇒ G0),

X ⊗G − : Act(G⇒ G0) −→ Act(H ⇒ H0)

are mutually inverse functors up to natural isomorphism. To see this, take a

left H action HylY Y . Then
(

X ⊗G −
)

◦ (X ⊗H −) [HylY Y ] =
(

X ⊗G −
) [

GyLXX ⊗H Y
]

= HyL
X

(

X ⊗G (X ⊗H Y )
)

.

Therefore, we need to construct a natural biequivariant diffeomorphism

µY : X ⊗G (X ⊗H Y ) −→ Y.

For this, we collect the biequivariant diffeomorphisms from Propositions 5.12,

5.13 and 5.24. Let us denote them by

AY : X ⊗G (X ⊗H Y ) −→
(

X ⊗G X
)

⊗H Y,

ϕH : X ⊗G X −→ H,

MY : H ⊗H Y −→ Y,

describing the association up to isomorphism, the division map of the bib-

undle, and the left action H y Y , respectively. We then define

µY :=MY ◦ (ϕH ⊗ idY ) ◦ AY .

Note that (ϕH ⊗ idY ) is still a biequivariant diffeomorphism. The naturality

square of the natural transformation µ :
(

X ⊗G −
)

◦ (X ⊗H −)⇒ idAct(H)

then becomes:

X ⊗G (X ⊗H Y ) Y

X ⊗G (X ⊗H Z) Z,

µY

id
X
⊗(idX◦ϕ) ϕ

µZ
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where ϕ : Y → Z is an H-equivariant smooth map. It follows from the

structure of these maps that the naturality square commutes. The top right

corner of the diagram becomes:

ϕ ◦ µY (x1 ⊗ (x2 ⊗ y)) = ϕ ◦MY ◦ (ϕH ⊗ idY ) ◦ AY (x1 ⊗ (x2 ⊗ y))

= ϕ ◦MY ◦ (ϕH ⊗ idY ) ((x1 ⊗ x2)⊗ y)

= ϕ ◦MY (ϕH(x1 ⊗ x2)⊗ y)

= ϕ (ϕH(x1 ⊗ x2)y)

= ϕH(x1 ⊗ x2)ϕ(y),

where the very last step follows from H-equivariance of ϕ. Following a

similar calculation, the bottom left corner evaluates as

µZ ◦ (idX ⊗ (idX ⊗ ϕ)) =MZ ◦ (ϕH ⊗ idZ) ◦ AZ ◦ (idX ⊗ (idX ⊗ ϕ))

=MZ ◦ (ϕH ⊗ idZ) ◦ ((idX ⊗ idX)⊗ ϕ)

=MZ ◦ (ϕH ⊗ ϕ),

which, when evaluated, gives exactly the same as the above expression for

the top right corner. This proves that µ is natural, and since every of its com-

ponents is an H-equivariant diffeomorphism, it follows that µ is a natural

isomorphism. The fact that the composition (X ⊗H −) ◦
(

X ⊗G −
)

is nat-

urally isomorphic to idAct(G) follows from an analogous argument. Hence

the categories Act(G ⇒ G0) and Act(H ⇒ H0) are equivalent, as was to

be shown.

7. Discussion and Suggestions for Future Research

7.1 Diffeological bibundles between Lie groupoids

As we saw in Example 5.4, if two Lie groupoids are Lie Morita equivalent

(i.e. Morita equivalent in the Lie groupoid sense [CM18, Definition 2.15]),

then they are also diffeologically Morita equivalent. This is simply due to the

fact that surjective submersions between smooth manifolds are in particular

also subductions, and hence a Lie principal groupoid bundle is also diffeolo-

gically principal. But, what if G⇒ G0 and H ⇒ H0 are two Lie groupoids,

such that there exists a diffeological biprincipal bibundle GylXX rXxH
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between them. What does that say about the Lie Morita equivalence of G
and H? This still remains an open question (Question 7.6). In this section

we discuss some related results, which also pertain to our choice of subduc-

tions over local subductions for the development of the general theory. A

slightly more detailed discussion is in [vdS20, Section 4.4.3]. In light of

Proposition 2.25, the source and target maps of a Lie groupoid are local sub-

ductions (cf. Proposition 3.2), and we can therefore introduce the following

class of diffeological groupoids:

Definition 7.1. We say a diffeological groupoid G⇒ G0 is locally subduct-

ive if its source and target maps are local subductions10. Clearly, every Lie

groupoid is a locally subductive diffeological groupoid.

Looking at the structure of the proofs in Sections 4 and 5, it appears as

if they can be generalised to a setting where we replace all subductions by

local subductions. In doing so, we would get a theory of locally subduct-

ive groupoids, locally subductive groupoid bundles, and the corresponding

notions for bibundles and Morita equivalence, which, as it appears, would

follow the same story as we have so far presented. An upside to that frame-

work would be that it directly returns the original theory of Morita equival-

ence for Lie groupoids, once we restrict our diffeological spaces to smooth

manifolds. In this section we shall prove that, even in the slightly more gen-

eral setting of Section 5, the diffeological bibundle theory reduces to the Lie

groupoid theory in the correct way. We do this by proving that the moment

maps of a biprincipal bibundle between locally subductive groupoids have

to be local subductions as well (Lemma 7.3). In hindsight, this provides

more justification for our choice of starting with subductions instead of local

subductions. One consequence of this choice is that it allows for groupoid

bundles that are truly pseudo-bundles, in the sense of [Per16]. The notion of

pseudo-bundles seems to be the correct notion in the setting of diffeology to

generalise all bundle constructions on manifolds, at least if we want to treat

(internal) tangent bundles as such (see [CW16]). There exists diffeological

spaces whose internal tangent bundle is not a local subduction [CW16, Ex-

ample 3.17]. If we had defined principality of a groupoid bundle to include

10It would be tempting to call such groupoids “diffeological Lie groupoids,” but this

would conflict with earlier established terminology of so-called diffeological Lie groups in

[IZ13a, Article 7.1] and [Les03; Mag18].
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local subductiveness, these examples would not be treatable by our theory

of Morita equivalence.

Lemma 7.2. LetGylXX rXxH be a diffeological bibundle, whereH ⇒ H0

is a locally subductive groupoid. Then the canonical quotient projection map

πH : X ×rX ,rXH0
X → X ⊗H X is a local subduction.

Proof. Let α : (Uα, 0) → (X ⊗H X, x1 ⊗ x2) be a pointed plot of the

balanced tensor product. Since πH is already a subduction, we can find a

plot β : V → X ×H0 X , defined on an open neighbourhood 0 ∈ V ⊆ Uα
of the origin, such that α|V = πH ◦ β. This plot decomposes into two plots

β1, β2 ∈ DX on X , satisfying rX ◦ β1 = rX ◦ β2. We use the notation α|V =
β1⊗ β2. In particular, we get an equality x1⊗ x2 = β1(0)⊗ β2(0) inside the

balanced tensor product, which means that we can find an arrow h ∈ H such

that βi(0) = xih. The target must be trg(h) = rX(x1) = rX(x2). This arrow

allows us to write a pointed plot rX ◦ βi : (V, 0) → (H0, trg(h
−1)), so that

now we can use that H ⇒ H0 is locally subductive. Since the target map of

H is a local subduction, we can find a pointed plot Ω : (W, 0) → (H, h−1)
such that rX ◦ βi|W = trgH ◦ Ω. This relation means that, for every t ∈ W ,

we have a well-defined action βi(t) ·Ω(t) ∈ X . Hence we get a pointed plot

Ψ : (W, 0) −→ (X ×rX ,rXH0
X, (x1, x2)); t 7−→ (β1(t)Ω(t), β2(t)Ω(t)) .

It then follows by the definition of the balanced tensor product that

πH ◦Ψ(t) = β1|W (t)Ω(t)⊗ β2|W (t)Ω(t) = β1|W (t)⊗ β2|W (t) = α|W (t),

proving that πH is a local subduction.

Lemma 7.3. If GylXX rXxH is a biprincipal bibundle between locally

subductive groupoids, then the moment maps lX and rX are local subduc-

tions as well.

Proof. If the bibundle GylXX rXxH is biprincipal, we get two biequivari-

ant diffeomorphisms ϕG : X ⊗H X → G and ϕH : X ⊗G X → H (Pro-

position 5.24). It follows that the local subductivity of the source and target

maps of G and H transfer to the four moment maps of the balanced tensor

products. For example, the left moment map LX : X ⊗H X → G0 can
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be written as LX = trgG ◦ ϕG, where the right hand side is clearly a local

subduction. We know as well that LX fits into a commutative square with

the original moment map lX :

X ×rX ,rXH0
X X ⊗H X

X G0.

πH

pr1|X×H0
X LX

lX

Since local subductions compose, and since by Lemma 7.2 the projection πH
is a local subduction, we find that the upper right corner LX ◦ πH must be a

local subduction. Hence the composition lX ◦ pr1|X×H0
X is a local subduc-

tion, which by an argument that is analogous to the proof of Lemma 2.20(2)

gives the local subductiveness of lX . That the right moment map rX is a

local subduction follows from a similar argument.

The lemma suggests that, if we refine our notion of principality to some-

thing we might call pure-principality, by passing from subductions to local

subductions, then biprincipality between locally subductive groupoids means

the same thing as this new notion of pure-principality. Let us make this pre-

cise.

Definition 7.4. Two diffeological groupoids are called purely Morita equi-

valent if there exists a biprincipal bibundle between them, such that the two

underlying moment maps are local subductions.

Clearly, pure Morita equivalence implies ordinary Morita equivalence in

the sense of Definition 5.3, since local subductions are, in particular, sub-

ductions. The question is if the converse implication holds as well. We have

a partial answer, since Lemma 7.3 can now be restated as follows:

Proposition 7.5. Two locally subductive groupoids are Morita equivalent if

and only if they are purely Morita equivalent.

Especially in light of the existence of subductions that are not local sub-

ductions (see e.g. [IZ13a, Exercise 61, p.60]), and the fact that the proof of

Lemma 7.3 relies so heavily on the assumption that the groupoids are loc-

ally subductive, it seems that the ordinary diffeological Morita equivalence
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of Definition 5.3 is not equivalent to pure-Morita equivalence in general.

We do not, however, know of an explicit counter-example. This discussion

leaves us an open question:

Question 7.6. Does diffeological Morita equivalence reduce to Lie Morita

equivalence on Lie groupoids? That is to ask, if two Lie groupoids are dif-

feologically Morita equivalent, are they also Lie Morita equivalent?

If two Lie groupoidsG andH are diffeologically Morita equivalent, then

there exists a diffeological biprincipal bibundle GylXX rXxH , where X is

a diffeological space. A positive answer to Question 7.6 could consist of a

proof thatX is in fact a smooth manifold. SinceG andH are both manifolds,

it follows that X ⊗H X and X ⊗G X are also manifolds. We do not know

if this is sufficient to imply that X itself has to be a manifold. One sugges-

tion is to use [IZ13a, Article 4.6], which gives a characterisation for when

a quotient of a diffeological space by an equivalence relation is a smooth

manifold. Since the balanced tensor products are quotients of diffeological

spaces, one may try to use this result to obtain a special family of plots for

their underlying fibred products. This could potentially be used to define an

atlas on X .

7.2 Directions for future research

We list here some possible directions for future research. These are also

proposed at the end of [vdS20, Section 1.2.3].

• Finding an answer to the open Question 7.6 about diffeological Morita

equivalence between Lie groupoids.

• The construction of a theory of bibundles for a more general frame-

work of generalised smooth spaces. One possibility is to look at the

generalised spaces of [BH11, Definition 4.11] (subsuming diffeology),

or even to look at arbitrary classes of sheaves. What is the rela-

tion between our theory of Morita equivalence and the discussion in

[MZ15]? A theory of principal bibundles seems to exist in a general

setting for groupoids in∞-toposes: [nL18].

• What is the precise relation between differentiable stacks and diffeolo-

gical groupoids (cf. [WW19])? Using our notion of Morita equi-

- 233 -



N. VAN DER SCHAAF DIFFEOLOGICAL MORITA EQUIV.

valence, what types of objects are “diffeological stacks” (i.e., Morita

equivalence classes of diffeological groupoids)?

• Can the Hausdorff Morita equivalence for holonomy groupoids of sin-

gular foliations introduced in [GZ19] be understood as a Morita equi-

valence between diffeological groupoids?

• Can the bridge between diffeology and noncommutative geometry that

is being built in [Ber16; IZL18; ASZ19; IZP20] be strengthened by

our theory of Morita equivalence? Morita equivalence of Lie group-

oids is already an important concept in relation to noncommutative

geometry, especially for the theory of groupoid C∗-algebras. Can this

link be extended to the diffeological setting, possibly through a theory

of groupoid C∗-algebras for (a large class of) diffeological groupoids?

If such a theory exists, what is the relation between Morita equivalence

of diffeological groupoids and the Morita equivalence of their group-

oid C∗-algebras? Is Morita equivalence preserved just like in the Lie

case?
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