CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE ~ VOLUME LXII-2 (2021)
CATEGORIQUES

DIFFEOLOGICAL
MORITA EQUIVALENCE

Nesta VAN DER SCHAAF

Résumé. Nous introduisons une nouvelle notion d’équivalence de Morita
pour les groupoides difféologiques, généralisant la notion originale pour les
groupoldes de Lie. Pour cela, nous développons une théorie des actions de
groupoides difféologiques, fibrés et bi-fibrés. Nous définissons une notion de
fibré principal qui utilise la notion de subduction, généralisant la notion de
fibré principal pour un group(oide) de Lie. Nous disons que deux groupoides
difféologiques sont Morita équivalents si, et seulement si, il existe un fibré
bi-principal entre eux. Utilisant le produit tensoriel de Hilsum-Skandalis,
nous définissons en outre une composition des bi-fibrés difféologiques, et
obtenons une bi-catégorie DiffeolBiBund. Notre principal résultat est le
suivant: un bi-fibré est bi-principal si, et seulement si, il est faiblement in-
versible dans cette bi-catégorie. Ceci généralise un théoreme bien connu de
la théorie des groupoides de Lie. Comme application, nous prouvons que les
espaces d’orbites de deux groupoides difféologiques Morita équivalents sont
difféomorphes. Nous montrons également que les propriétés d’un groupoide
difféologique d’étre fibrant, et sa catégorie d’actions, sont des invariants de
Morita.

Abstract. We introduce a new notion of Morita equivalence for diffeological
groupoids, generalising the original notion for Lie groupoids. For this we
develop a theory of diffeological groupoid actions, -bundles and -bibundles.
We define a notion of principality for these bundles, which uses the notion
of a subduction, generalising the notion of a Lie group(oid) principal bundle.
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N. VAN DER SCHAAF DIFFEOLOGICAL MORITA EQUIV.

We say two diffeological groupoids are Morita equivalent if and only if there
exists a biprincipal bibundle between them. Using a Hilsum-Skandalis tensor
product, we further define a composition of diffeological bibundles, and ob-
tain a bicategory DiffeolBiBund. Our main result is the following: a bib-
undle is biprincipal if and only if it is weakly invertible in this bicategory.
This generalises a well known theorem from the Lie groupoid theory. As an
application of the framework, we prove that the orbit spaces of two Morita
equivalent diffeological groupoids are diffeomorphic. We also show that the
property of a diffeological groupoid to be fibrating, and its category of ac-
tions, are Morita invariants.

Keywords. Diffeology, Lie groupoids, diffeological groupoids, bibundles,
Hilsum-Skandalis products, Morita equivalence, orbit spaces.

Mathematics Subject Classification (2010). 22Axx, 22A22, 5S§HO05.

1. Introduction

Diffeology originates from the work of J.-M. Souriau [Sou80; Sou84] and his
students [DI83; Don84; 1gl85] in the 1980s. The main objects of this the-
ory are diffeological spaces, a type of generalised smooth space that extends
the traditional notion of a smooth manifold. They make for a convenient
framework that deals well with (singular) quotients, function spaces (or oth-
erwise infinite-dimensional objects), fibred products (or otherwise singular
subspaces), and other constructions that lie beyond the realm of classical dif-
ferential topology. As many of these constructions naturally occur in differ-
ential topology and -geometry, and since they cannot be studied with their
standard tools, diffeology has become a useful addition to the geometer’s
toolbox.

Diffeological groupoids have recently garnered attention in the mathem-
atical physics of general relativity [BFW13; G119], foliation theory [ASZ19;
GZ19; Mac20], the theory of algebroids [AZ], the theory of (differentiable)
stacks [RV18; WW19], and even in relation to noncommutative geometry
[IZL18; IZP20]. In all but one of these fields (general relativity), the notion
of Morita equivalence is an important one. Yet, as the authors of [GZ19,
p-3] point out: “The theory of Morita equivalence for diffeological group-
oids has not been developed yet.” In the current paper we present one pos-
sible development of such a notion, based on the results of the author’s Mas-
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ter thesis [vdS20]. This development is a generalisation of the theory of
Hilsum-Skandalis bibundles and the Morita equivalence of Lie groupoids,
where many definitions and proofs, and certainly the general idea, extend
quite straightforwardly to the diffeological case. The main exception is that
we need to replace surjective submersions with so-called subductions. This
special type of smooth map is, even on smooth manifolds, slightly weaker
than the notion of a surjective submersion, but it turns out that they still share
enough of their properties so that the entire theory can be developed'. This
development proceeds roughly as follows: based on the notions of actions
and bundles defined in Section 4, we define a diffeological version of a bib-
undle between groupoids (Definition 5.1). These stand in analogy to bimod-
ules for rings, and can be treated as a generalised type of morphism between
groupoids. This gives a bicategory DiffeolBiBund of diffeological group-
oids, bibundles, and biequivariant maps (Theorem 5.17). Using the afore-
mentioned notion of a subduction (Definition 2.16), we define biprincipality
of bibundles, and with this, we obtain a notion of Morita equivalence for dif-
feological groupoids (Definition 5.3). In the bicategory we also get a notion
of equivalence, by way of the weak isomorphisms. A morphism in a bicat-
egory is called weakly invertible if it is invertible up to 2-isomorphism. Two
objects in a bicategory are called weakly isomorphic if there exists a weakly
invertible morphism between them. The main point of this paper is to prove
a Morita theorem for diffeological groupoids, characterising the weakly in-
vertible bibundles, and hence realising Morita equivalence as a particular
instance of weak isomorphism:

Theorem 5.31 (Morita theorem). A diffeological bibundle is weakly invert-
ible if and only if it is biprincipal. In other words, two diffeological group-
oids are Morita equivalent if and only if they are weakly isomorphic in the
bicategory DiffeolBiBund.

A Morita theorem for Lie groupoids has been known in the literature for
some time, see e.g. [LanO1b, Proposition 4.21]. Throughout the paper, we
shall point out some differences between the diffeological- and Lie theories.
The main difference is that, due to technical constraints, a Morita theorem for
Lie groupoids only holds in the restricted setting of left principal bibundles.

IThis is essentially due to the fact that the subductions are the strong epimorphisms in
the category of diffeological spaces [BH11, Proposition 5.10].
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The main improvement of Theorem 5.31 over the classical Lie Morita the-
orem, besides the generalisation to diffeology, is therefore that it considers
also a more general class of bibundles. Besides this improvement, with this
paper we hope to contribute a complete account of the basic theory of bib-
undles and Morita equivalence of groupoids, providing detailed proofs and
constructions of most necessary technical results, and culminating in a proof
of the main Theorem 5.31. A brief outline of the contents of the paper is as
follows.

We briefly recall the definition of a diffeology in Section 2. In particular,
we describe the diffeologies of fibred products (pullbacks) and quotients,
since they will be important to describe the smooth structure of the orbit
space and space of composable arrows of a groupoid. We also define and
study the behaviour of subductions, especially in relation to fibred products.

In Section 3 we define diffeological groupoids, and highlight some ex-
amples from the literature.

Sections 4 and 5 contain the main contents of this paper. In them, we
define the notions of smooth groupoid actions and -bundles. For the latter
we give a new notion of principality, generalising the notion of a principal
Lie group(oid) bundle. This leads naturally to the definition of a biprincipal
bibundle, and hence to our definition of Morita equivalence. The remainder
of Section 5 is dedicated to a proof of Theorem 5.31.

In Section 6, we describe some Morita invariants, by generalising some
well-known theorems from the Lie theory. We prove: the property of a dif-
feological groupoid to be fibrating is preserved under our notion of Morita
equivalence; the orbit spaces of two Morita equivalent diffeological group-
oids are diffeomorphic; and the categories of representations of two Morita
equivalent diffeological groupoids are categorically equivalent.

Lastly, in Section 7, we discuss the question of diffeological Morita
equivalence between Lie groupoids. We end the paper with the open Ques-
tion 7.6, and some suggestions for future research.
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2. Diffeology

One of the main conveniences of diffeology? is that the category Diffeol of
diffeological spaces and smooth maps (Definition 2.2) is complete, cocom-
plete, (locally) Cartesian closed, and in fact a quasitopos [BH11, Theorem
3.2]. This means that we can perform many categorical constructions that
are unavailable in the category Mnfd of smooth manifolds. From these, the
ones that are important for us are pullbacks and quotients. We discuss both
of these explicitly below. The approach of diffeology has been compared to
other theories of generalised smooth spaces in [Stall; BIKW17]. For some
historical remarks we refer to [IZ13b; 1Z17] and [vdS20, Chapter I]. The
main reference for this section is the textbook [IZ13a] by Iglesias-Zemmour,
in which nearly all of the theory below is already developed.

Definition 2.1. A parametrisation on a set X is a function U — X defined
on an open subset U C R™ of Euclidean space, for arbitrary m € Nxq. We
denote by Param(X) the set of all parametrisations on X.

The basic idea behind diffeology is that it determines which parametrisa-
tions are ‘smooth’, in such a way that it captures the properties of ordinary
smooth functions on smooth manifolds. The precise definition is as follows:

Definition 2.2 (Axioms of Diffeology). Let X be a set. A diffeology on X
is a collection of parametrisations Dy C Param(X), containing what we
call plots, satisfying the following three axioms:

* (Covering) Every constant parametrisation U — X is a plot.

* (Smooth Compatibility) For every plot o : U, — X in Dx and every
smooth function h : 'V — U, between open subsets of Euclidean
space, we have that o h € D.

* (Locality) If o : U, — X is a parametrisation, and (U;);c; an open
cover of U, such that each restriction oy, is a plot of X, then o« € D.

2The etymology of the word is explained in the afterword to [IZ13a]. Souriau first
used the term “différentiel”, as in ‘differential’ (from the Latin differentia, “difference”).
Through a suggestion by Van Est, the name was later changed to “difféologie,” as in “topo-
logie” (‘topology’, from the Ancient Greek tdpos, “place,” and -(0)logy, “study of”’). Hence
the term: diffeology.
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A set X, paired with a diffeology: (X, Dx), is called a diffeological space.
Although, usually we shall just write X.

A function f : (X,Dx) — (Y, Dy) between diffeological spaces is
called smooth if for every plot o € Dy of X, the composition f o o € Dy
is a plot of Y. The set of all smooth functions between such diffeological
spaces is denoted C*>(X,Y'), and smoothness is preserved by composition.
The category of diffeological spaces and smooth maps is denoted by Diffeol,
and the isomorphisms in this category are called diffeomorphisms.

Example 2.3. Any open subset U C R™ of Euclidean space, for m € N,
gets a canonical diffeology Dy, called the Euclidean diffeology. Its plots
are the parametrisations that are smooth in the ordinary sense of the word.
Similarly, we get a canonical diffeology D, for any smooth manifold M,
called the manifold diffeology. With respect to these diffeologies, the notion
of smoothness defined in Definition 2.2 agrees with the ordinary one. Hence
the inclusion functor Mnfd — Diffeol is fully faithful, and we can adopt
the previous definition without causing any confusion.

Example 2.4. Any set X carries two canonical diffeologies. First, the largest
diffeology, D% := Param(X), called the coarse diffeology, containing all
possible parametrisations. Letting X * denote the diffeological space with the
coarse diffeology, it is easy to see that every function Z — X* is smooth.
On the other hand, the smallest diffeology on X is D%, containing all locally
constant parametrisations. This is called the discrete diffeology. Similar to
the above, we find that every function X° — Y is smooth.

Example 2.5. For any two diffeological spaces X and Y, there is a natural
diffeology on the space of smooth functions C*°(X,Y") called the standard
functional diffeology [1Z13a, Article 1.57]. It is the smallest diffeology that
makes the evaluation map (f,z) — f(x) smooth. With these diffeologies,
Diffeol becomes Cartesian closed.

2.1 Generating families

The Axiom of Locality in Definition 2.2 ensures that the smoothness of
a parametrisation, or of a function between diffeological spaces, can be
checked locally. This allows us to introduce the following notions, which
will help us study interesting constructions, and will often simplify proofs.
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Definition 2.6. Consider a family § C Param(X) of parametrisations on
X. There exists a smallest diffeology on X that contains F. We denote this
diffeology by (F), and call it the diffeology generated by F. If Dy = (F), we
say J is a generating family for D x. The elements of I are called generating
plots.

The plots of the diffeology generated by J are characterised as follows:
a parametrisation « : U, — X is a plot in (&) if and only if « is locally
either constant, or factors through elements of F. Concretely, this means
that for all ¢ € U, there exists an open neighbourhood ¢t € V' C U, such
that «|y is either constant, or of the form «|, = F o h, where F': W — X
is an element in J, and A : V — W is a smooth function between open
subsets of Euclidean space. When the family J is covering, in the sense
that | J.5im(F) = X, then the condition for i to be constant becomes
redundant, and the plots in (F) are locally just of the form a|,, = F o h.

The main use of this construction is that we may encounter families of
parametrisations that are not quite diffeologies, but that contain functions
that we nevertheless want to be smooth. On the other hand, calculations
may sometimes be simplified by finding a suitable generating family for a
given diffeology. This simplification lies in the following result, saying that
smoothness has only to be checked on generating plots:

Proposition 2.7. Let f : X — Y be a function between diffeological spaces,
such that D x is generated by some family F. Then f is smooth if and only if
forall F € F we have f o F' € Dy.

Example 2.8. The wire diffeology (called the spaghetti diffeology by Souriau)
is the diffeology Dy on R? generated by C*°(R,R?). The resulting dif-
feological space is not diffeomorphic to the ordinary R?, since the identity
map idge2 : (R?, Dg2) — (R?, Dyire) is not smooth.

Example 2.9. The charts of a smooth atlas on a manifold define a generating
family for the manifold diffeology from Example 2.3. Since a manifold may
have many atlases, this shows that similarly any diffeology may have many
generating families.
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2.2 Quotients

We use the terminology from Section 2.1 to define a natural diffeology on a
quotient X /~. This question relates to a more general one: given a function
f X — Y, and a diffeology Dx on the domain, what is the smallest
diffeology on Y such that f remains smooth? The following provides an
answer:

Definition 2.10. Let f : X — Y be a function between sets, and let D x
be a diffeology on X. The pushforward diffeology on Y is the diffeology
f+(Dx) := (f o Dx), where f o Dx is the family of parametrisations of
the form f o «, for a« € Dyx. The pushforward diffeology is the smallest
diffeology on Y that makes f smooth.

We can now use this to define a natural diffeology on a quotient space:

Definition 2.11. Let X be a diffeological space, and let ~ be an equival-
ence relation on the set X. We denote the equivalence classes by [x]. The
quotient X/~ is the collection of all equivalence classes, and comes with a
canonical projection map p : X — X/~, which sends x +— [z]. The quo-
tient diffeology on X/~ is defined as the pushforward diffeology p.(Dx)
of Dx along the canonical projection map. Naturally, with respect to this
diffeology, the canonical projection map becomes smooth.

The quotient diffeology will be used extensively, where the equivalence
relation will often be defined by the orbits of a group(oid) action, or as the
fibres of some smooth surjection. The existence of the quotient diffeology
for arbitrary quotients should be contrasted to the situation for smooth man-
ifolds, where quotients often carry no natural differentiable structure at all,
but where instead one could appeal to the Godement criterion ([Ser65, The-
orem 2, p. 92]). The following is an example of a quotient that does not exist
as a smooth manifold, but whose diffeological structure is still quite rich:

Example 2.12. The irrational torus is the diffeological space defined by the
quotient of R by an additive subgroup: Tp := R/(Z + 0Z), where § € R\ Q
is an arbitrary irrational number. Equivalently, it can be described as the leaf
space of the Kronecker foliation on the 2-torus with irrational slope. The to-
pology of this quotient contains only the two trivial open sets, yet its quotient
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diffeology is non-trivial®. They were first classified in [DI83], whose result
is (amazingly) directly analogous to the classification of the irrational rota-
tion algebras [Rie81]. This example is treated in detail in [vdS20, Section
2.3].

2.3 Fibred products

The second construction we need is that of fibred products, which are the
pullbacks in the category Diffeol. Recall thatif f : X — Zandg:Y — Z
are two functions between sets with a common codomain, then the fibred
product of sets is (up to unique bijection)

X )PV = {(w,y) € X x Y : f(z) = g(v)}.

When each set is equipped with a diffeology, we shall construct a diffeology
on the fibred product in two steps. First we describe a natural diffeology on
the product X X Y, and then show how this descends to a diffeology on the
fibred product as a subset.

Definition 2.13. Let X and Y be two diffeological spaces. The product
diffeology on the Cartesian product X x Y is defined as

Dxxy 1= (j)x X DY>,

where D x x Dy is the family of parametrisations of the form aq X o, for
a1 € Dy and as € Dy. The plots in D x vy are exactly the parametrisations
a U, = X XY such that pr, o « and pr, o « are plots of X and Y, re-
spectively. We assume that products are always furnished with their product
diffeologies.

It is clear that both projection maps pr; and pr, are smooth with respect
to the product diffeology. The smooth functions into X x Y behave exactly
as one would expect, where f : A — X x Y is smooth if and only if the
components f; = pry o f and fy = pr, o f are smooth.

Next we define how the diffeology on a set X transfers to any of its
subsets:

3This shows that there are meaningful notions of smooth space that do not rely on the
regnant philosophy of “smooth space = topological space + extra structure.”
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Definition 2.14. Consider a diffeological space X, and an arbitrary subset
A C X. Letiy : A — X denote the natural inclusion map. The subset
diffeology on A is defined as

Dacx :={a € Param(A) :igoa € Dx}.

That is, a is a plot of A if and only if, when seen as a parametrisation of X,
it is also a plot. We assume that a subset of a diffeological space is always
endowed with its subset diffeology.

Since the fibred product X x Qg Y is a subset of the product X x Y, the
following definition is a natural combination of Definitions 2.13 and 2.14:

Definition 2.15. Let f : X — Z and g : Y — Z be two smooth maps
between diffeological spaces. The fibred product diffeology D foy ON the

set X xé’g Y is the subset diffeology it gets from the product diffeology on
X xY. Concretely:

@XX,;gY ={a€Dxxy: foa; =goay}.

That is, the plots of the fibred product are just plots of X X Y, whose com-
ponents satisfy an extra condition. We assume that all fibred products are
equipped with their fibred product diffeologies.

2.4 Subductions

Subductions are a special class of smooth functions that generalise the notion
of surjective submersion from the theory of smooth manifolds. Since there
is no unambiguous notion of tangent space in diffeology (cf. [CW16]), the
definition looks somewhat different. For (more) detailed proofs of the results
in this section, we refer to [[Z13a, Article 1.46] and surrounding text, and
[vdS20, Section 2.6].

Definition 2.16. A surjective function f : X — Y between diffeological
spaces is called a subduction if f.(Dx) = Dy. Note that subductions are
automatically smooth.

In the case that f is a subduction, since it is then particularly a surjection,
the family of parametrisations f o D x is covering, and hence the plots of Dy
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are all locally of the form f o a, where @« € Dx. In other words, f is a
subduction if and only if f is smooth and the plots of Y can locally be lifted
along f to plots of X:

Lemma 2.17. Let f : X — Y be a function between diffeological spaces.
Then f is a subduction if and only if the following two conditions are satis-

fied:
1. The function f is smooth.

2. For every plot a : U, — Y, and any point t € U,, there exists an
open neighbourhoodt € V. C U, and a plot 5 : V — X, such that

Oé\v:foﬁ-

Since many of the functions we encounter will naturally be smooth already,
the notion of subductiveness is effectively captured by condition (2) in this
lemma. This can also be seen in the following simple example:

Example 2.18. Consider the product X x Y of two diffeological spaces X
and Y. The projection maps pr; and pr, are both subductions.

Example 2.19. For a surjective function 7 : X — B we get an equivalence
relation on X, where two points are identified if and only if they inhabit the
same 7-fibre. The equivalence classes are exactly the 7-fibres themselves.
We denote the quotient set of this equivalence relation by X /7, and equip it
with the quotient diffeology whenever X is a diffeological space. If 7 is a
subduction, then there is a diffeomorphism B = X /7 [I1Z13a, Article 1.52].

For subsequent use, we state here some useful properties of subductions
with respect to composition:

Lemma 2.20. We have the following properties for subductions:
1. If f and g are two subductions, then the composition f o g is a sub-
duction as well.

2. Let f 1Y — Zand g : X — Y be two smooth maps such that the
composition f o g is a subduction. Then so is f.

3. Let 1 : X — B be a subduction, and f : B — Y an arbitrary
function. Then f is smooth if and only if f o 7 is smooth. In fact, f is
a subduction if and only if f o 7 is a subduction.
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Proof. (1) This is [IZ13a, Article 1.47].

(2) Assume f : Y — Z and g : X — Y are smooth, such that fogisa
subduction. Take a plot o« : U, — Z. Since the composition is a subduction,
for every t € U, we can find an open neighbourhood ¢t € V' C U, and a
plot 5 : V — X such that oy = (f o g) o 5. Since g is smooth, we get a
plot g o B € Dy, which is a local lift of a along f. The result follows by
Lemma 2.17.

(3) If f is smooth, it follows immediately that f o 7 is smooth. Suppose
now that f o 7 is smooth. We need to show that f is smooth. For that,
take a plot  : U, — B. Since 7 is a subduction, we can find an open
cover (V})ieu, of U, together with a family of plots 3, : V; — X such that
aly, = mo f;. It follows that each restriction f o a|y, = f om o 3; is smooth,
and by the Axiom of Locality it follows that f o o € Dy, and hence that f
is smooth. The claim about when f is a subduction follows from (2). 0

We also collect the following noteworthy claim:

Proposition 2.21 ([IZ13a, Article 1.49]). An injective subduction is a dif-
feomorphism.

We recall now some elementary results on the interaction between sub-
ductions and fibred products, as obtained in [vdS20, Section 2.6]. We point
out that if f is a subduction, an arbitrary restriction f|4 may no longer be
a subduction. We know from Example 2.18 that the second projection map
pr, of a product X x Y is a subduction, but it is not always the case that the
restriction of this projection to a fibred product X x’;g Y is a subduction as
well. The following result shows that, to ensure this, it suffices to assume
that f is a subduction:

Lemma 2.22. Let f : X — Z be a subduction, and let g : Y — Z be a
smooth map. Then the restricted projection map

PLyl oy 1 X XZTY — Y

is also a subduction. In other words, in Diffeol, subductions are preserved
under pullback.

Proof. Consider a plot a : U, — Y. By composition, this gives another plot
goa € Dy. Now, since f is a subduction, for every ¢t € U, we can find a
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plot  : V' — X defined on an open neighbourhood t € V' C U, such that
goaly = fof. This gives a plot (5,a|y) : V — X x Y that satisfies
Prylxx,v © (B, aly) = aly. The result follows by Lemma 2.17. O

The next result shows how two subductions interact with fibred products:

Lemma 2.23. Consider the following two commuting triangles of diffeolo-
gical spaces and smooth maps:

X, —I v X, —2— Y,

N N4

where both [ and g are subductions. Then the map

(fX9)|xixaxs : X1 X21X2 — Y1><§’LY2; (w1, 22) — (f(21), g(22))
is also a subduction.

Proof. Clearly f x g is smooth, so we are left to show that the second con-
dition in Lemma 2.17 is fulfilled. For that, take a plot

<a17a2) U — )/1 X,]}L Y27

i.e., we have two plots a; € Dy, and ay € Dy, such that Ro a; = L o ay.
Now fix a point ¢ € U in the domain. Then since both f and g are subductive,
we can find two plots #; : Uy — X; and 35 : Uy — Xs, defined on open
neighbourhoods of ¢ € U, such that oy |y, = f o 4y and as|y, = go f2. Now
the plot

(Biloanvss Belvyrw,) 1 Ur N Uy — X1 X X

takes values in the fibred product because
ro 51‘U2 = RO f o 51‘U2 = RO Ql‘U1ﬂU2 = L < Oé2’U1ﬁU2 == l o ﬁ2|U17
and we see that it lifts (aq, a2)|v, v, along f X g. O

By setting A = {x} to be the one-point space, this lemma gives in par-
ticular that the product f x g of two subductions is again a subduction.

To end this section, we should also mention the existence of the notion
of a local subduction (or strong subduction):
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Definition 2.24. A smooth surjection f : X — Y is called a local subduc-
tion if for eachy € Y, each x € f~'({y}), and any pointed plot of the form
a: (Ua,0) = (Y,y), there exists another pointed plot 5 : (V,0) — (X, z),
defined on an open neighbourhood 0 € V' C U, such that o|y = f o S.

Compare this to a definition of a subduction, where in general the plot
B does not have to hit the point = in the domain of f. Note also that local
subduction does not mean locally a subduction everywhere.

Proposition 2.25 ([IZ13a, Article 2.16]). The local subductions between
smooth manifolds are exactly the surjective submersions.

Due to the above proposition, the notion of a local subduction will be
of interest when studying Lie groupoids in the framework of diffeological
Morita equivalence we develop below. See Section 7.1.

3. Diffeological Groupoids

We assume that the reader is familiar with the definition of a (Lie) groupoid.
A textbook reference for that theory is [Mac05]. To fix our notation, we give
here an informal description of a set-theoretic groupoid. A groupoid consists
of two sets: GGy and G, together with five structure maps. A groupoid will be
denoted G =2 Gy, or just GG. Here G is the set of objects of the groupoid,
and G is the set of arrows. The five structure maps are

The source map src : G — G,
The target map trg : G — G,
The unit map u : Go — G, mapping x — id,,

The inversion map inv : G — G, mapping g — g1,

A e

And the composition:

comp : G ng,trg G — G; (g,h) — goh.

The composition is associative, and the identities and inverses behave as
such. We say G == Gy is a Lie groupoid if both G and G are smooth
manifolds such that the source and target maps are submersions, and each
of the other structure maps are smooth. The definition of a diffeological
groupoid is a straightforward generalisation of this:
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Definition 3.1. A diffeological groupoid is a groupoid internal to the cat-
egory of diffeological spaces. Concretely, this means that it is a groupoid
G = G such that the object space Gy and arrow space G are endowed
with diffeologies that make all of the structure maps smooth.

As diffeology subsumes smooth manifolds, so do diffeological groupoids
capture Lie groupoids. Note the main difference with the definition of a
Lie groupoid is that we put no extra assumptions on the source and target
maps, whereas to make sense of the composition in Lie groupoids we need
G xgg’trg G to be a smooth manifold, for which it suffices to assume the
source and target maps are submersions. We do, however, have:

Proposition 3.2. The source and target maps of a diffeological groupoid are
subductions.

Proof. The smooth structure map u : Gy — G, sending each object to its
identity arrow, is a global smooth section of the source map, and hence by
Lemma 2.20(2) the source map must be a subduction. Since the inversion
map is a diffeomorphism, it follows that the target map is a subduction as
well. [

Definition 3.3. Let G = G be a diffeological groupoid. The isotropy group
at x € Gy is the collection G, consisting of all arrows in G from and to x:

G, = Homg(z,2) = st ({z}) Ntrg ' ({z}).

Definition 3.4. Let G = Gq be a diffeological groupoid. The orbit of an
object x € Gy is defined as

Orbg(z) == {y € Gy : 3z L5 y} = trg(sre ' ({z})).

The orbit space of the groupoid is the space Gy /G consisting of these orbits.
We furnish the orbit space with the quotient diffeology from Definition 2.11,
so that Orbg : Gy — Go/G is a subduction.

The orbit space of a Lie groupoid is not necessarily (canonically) a smooth
manifold. The flexibility of diffeology allows us to study the smooth struc-
ture of orbit spaces of all diffeological groupoids. Below we give some
examples of diffeological groupoids.

-191 -



N. VAN DER SCHAAF DIFFEOLOGICAL MORITA EQUIV.

Example 3.5. Let X be a diffeological space, and let R be an equivalence
relation on X. We define the relation groupoid X xp X = X as follows.
The space of arrows consists of exactly those pairs (z,y) € X x X such
that x Ry. With the composition (z,y) o (y,x) := (z,z), this becomes a
diffeological groupoid. The orbit space X /(X xpg X) is just the quotient
X/R. When X is a smooth manifold, the relation groupoid becomes a Lie
groupoid (even when the quotient is not a smooth manifold).

Example 3.6. Let G = G be a diffeological groupoid. We can then con-
sider the subgroupoid of GG that only consists of elements in isotropy groups:

[G:: UG:):QG

z€GH

This becomes a diffeological groupoid I = Gy called the isotropy group-
oid. This has been studied in [Bos07, Example 2.1.9] in the context of Lie
groupoids. Note that if G = G is a Lie groupoid, then generally /; is not a
submanifold of G, so the isotropy groupoid may no longer be a Lie groupoid.

Example 3.7. The thin fundamental groupoid (or path groupoid) 1" (M)
of any smooth manifold M is a diffeological groupoid [CLW 16, Proposition
A.25].

Example 3.8. The groupoid of Y-evolutions of a Cauchy surface is a dif-
feological groupoid [G119, Section I1.2.2].

Example 3.9. For any smooth surjection 7 : X — B between diffeological
spaces, the fibres X, := 7 1({b}) get the subset diffeology from X. We
then have a diffeological groupoid G(7) = B called the structure groupoid,
whose space of arrows is defined as

G(r) = | J Diff(X,, X;).

a,beB

Structure groupoids play an important réle in the theory of diffeological fibre
bundles [IZ13a, Chapter 8]. In general, they are too big to be Lie groupoids.
They also generalise the notion of a frame groupoid for a smooth vector
bundle. Related to this, in [vdS20, Section 3.4] structure groupoids are used
to define a notion of smooth linear representations for diffeological group-
oids.
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Example 3.10. If we are given a diffeological space X, the germ group-
oid Germ(X) = X consists of all germs of local diffeomorphisms on X.
Even if X itself is a smooth manifold, this is generally not a Lie groupoid.
Germ groupoids are used in [IZL18; IZP20]. A detailed construction of the
diffeological structure of this groupoid appears in [vdS20, Section 6.1].

4. Diffeological Groupoid Actions and -Bundles

In the following two sections we generalise the theory of Lie groupoid bib-
undles to the diffeological setting. The development we present here (as in
[vdS20, Chapter IV]) is analogous to the development of the Lie version,
save that we need to find a suitable replacement for the notion of a surject-
ive submersion. Some of the proofs from the Lie theory can be performed
almost verbatim in our setting. These proofs already appear in the literature
in various places: [Blo08; dHo12; LanOla; MMOS5], and also in the differ-
ent setting of [MZ15]. We adopt many definitions and proofs from those
sources, and point out how the diffeological theory subtly differs from the
Lie theory. This difference mainly stems from the existence of quotients and
fibred products of diffeological spaces, whereas in the Lie theory more care
has to be taken. Ultimately, this extra care is what leads to a restricted Morita
theorem for Lie groupoids, whereas the diffeological theorem is more gen-
eral. In this section specifically we introduce diffeological groupoid actions
and -bundles, two notions that form the ingredients for the main theory on
bibundles.

4.1 Diffeological groupoid actions

The most basic notion for the upcoming theory is that of a groupoid action.
For diffeological groupoids, the definition is the same as for Lie groupoids:

Definition 4.1. Take a diffeological groupoid G = G, and a diffeological
space X. A smooth left groupoid action of G on X along a smooth map
lx : X = Gy is a smooth function

G xge™ X — X; (9,7) — g =,

satisfying the following three conditions:

-193 -



N. VAN DER SCHAAF DIFFEOLOGICAL MORITA EQUIV.

1. For g € Gand x € X such that src(g) = lx(x) we have
Ix(g - x) = trg(g)-
2. Forevery v € X we have id; () - = .

3. Wehave h - (g-z) = (hog)-x whenever defined, i.e. when
src(g) = lx(x) and the arrows are composable.

The smooth map lx : X — Gy is called the left moment map. In-line, we
denote an action by GAX X. To save space, we may write (g, 1) — gx
instead.

Right actions are defined similarly: a smooth right groupoid action of G
on X along rx : X — Gy is a smooth map

X xgg’trg G — X; (x,9) — xg,

satisfying rx (xg) = src(g), x-id,(z) = @ and (x-g)-h = x-(goh) whenever
defined. Note how the role of the source and target maps are switched with
respect to the definition of a left action. Right actions will be denoted by
X "XAN\G, and r is called the right moment map.

Example 4.2. Any diffeological groupoid G = (G|, acts on its own arrow
space from the left and right by composition, which gives actions GA"8 G
and G *"°N\G that are both defined by (g, h) — g o h.

Definition 4.3. The orbit of a point x € X in the space of an action G* X
is defined as

Orbg(7) := {gz : g € stc™* ({Ix(2)})}.
The quotient space (or orbit space) of the action is defined as the collec-
tion of all orbits, and denoted X /G. With the quotient diffeology, the orbit
projection map Orbg : X — X/G becomes a subduction.

The following gives a notion of morphism between actions:

Definition 4.4. Consider two smooth groupoid actions GAX X and GAY'Y.
A smoothmap ¢ : X — Y is called G-equivariant if lxy = ly oy and it com-
mutes with the actions whenever defined: p(gzr) = gp(z).

Definition 4.5. The (smooth left) action category Act(G = Gy) of a dif-
feological groupoid G = G is the category consisting of smooth left actions
GNIX X as objects, and G-equivariant maps as morphisms. This forms the
analogue of the category of (left) modules from ring theory. We show in
Section 6.3 that the action category is in some sense a Morita invariant.
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4.1.1 The balanced tensor product

We now give an important construction that will later allow us to define the
composition of bibundles.

Construction 4.6. Consider a diffeological groupoid H = H,, with a smooth
left action HA"Y and a smooth right action X "X~ H. On the fibred
product X XTH);’ZY Y we define the following smooth right H-action. The
moment map is R := rx o pI‘1|X><H0y =lyo pr2|XXHOy, and the action is

given by:
(XX V)i H — X Ys () h) o (b i)

It is clear that this action is also smooth, and we call it the diagonal H-
action. The balanced tensor product is the diffeological space defined as the
orbit space of this smooth groupoid action:

Xap = (X xghy) /0

The orbit of a pair of points (z,y) in the balanced tensor product will be
denoted r ® y. Whenever we encounter a term of the formz®y € X ®yz Y,
we assume that it is well defined, i.e. rx(z) = ly(y). The terminology is
explained by the following useful identity:

th®y=1z® hy.

In the literature on Lie groupoids, this space is sometimes called the Hilsum-
Skandalis tensor product, named after a construction appearing in [HS87].

We note that this marks the first difference with the development of the
Lie theory of bibundles and Morita equivalence. There, the balanced tensor
product can only be defined when both X XTH)E’ZY Y and the quotient by the
diagonal H-action are smooth manifolds. This is usually only done after
(bi)bundles are defined, and some principality conditions are presupposed.
The principality then exactly ensures the existence of canonical differenti-
able structures on the fibred product and quotient. Here, the flexibility of
diffeology allows us to define the balanced tensor product in an earlier stage
of the development, and we do so to demonstrate this conceptual difference.
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4.2 Diffeological groupoid bundles

A groupoid bundle is a smooth map, whose domain carries a groupoid action,
such that the fibres of the map are preserved by this action:

Definition 4.7. A smooth left diffeological groupoid bundle is a smooth left
groupoid action GAX X together with a G-invariant smooth map w : X — B.
We denote such bundles by GAX X 5 B, and also call them (left) G-
bundles. Right bundles are defined similarly, and denoted B < X "™X~\G.

The next definition gives a notion of morphism between bundles:

Definition 4.8. Tuke two left G-bundles GAX X =5 Band GAYY 25 B
over the same base. A GG-bundle morphism is a G-equivariant smooth map
¢ : X — Y such that mx = my o . We make a similar definition for right
bundles.

In order to define Morita equivalence, we need to define a notion of when
a bundle is principal. For Lie groupoid bundles, these generalise the ordin-
ary notion of smooth principal bundles of Lie groups and manifolds. That
definition involves the notion of a surjective submersion. As we have men-
tioned, this notion needs to be generalised to diffeology. Proposition 2.25
suggests that we could take local subductions, since they directly generalise
the surjective submersions. However, it turns out that subductions behave
sufficiently like submersions for the theory to work. The following defini-
tion then generalises the fact that the underlying bundle of a principal Lie
groupoid bundle has to be a submersion:

Definition 4.9. A diffeological groupoid bundle GANX X 5 B is called
subductive if the underlying map © : X — B is a subduction.

The following generalises the fact that the action of a principal Lie group-
oid bundle has to be free and transitive on the fibres:

Definition 4.10. A diffeological groupoid bundle GAX X 5 B is called
pre-principal if the action map Ag : G xggle X — X x3" X mapping
(g9, ) — (gz, x) is a diffeomorphism.

Combining these two:

-196 -



N. VAN DER SCHAAF DIFFEOLOGICAL MORITA EQUIV.

Definition 4.11. A diffeological groupoid bundle is called principal if it is
both subductive and pre-principal.

This definition serves as our generalisation of principal Lie groupoid
bundles, cf. [Blo08, Definition 2.10] and [dHo12, Section 3.6]. Clearly
any principal Lie groupoid bundle in the sense described in those references
is also a principal diffeological groupoid bundle. Note that in the Lie theory,
most constructions (such as the balanced tensor product) depend on the sub-
mersiveness of the underlying bundle map, so it makes little sense to define
pre-principality for Lie groupoids. However, as we have already seen, in
the diffeological case these constructions can be carried out more generally,
and this will allow us to see what parts of the development of the theory de-
pend on either the subductiveness or pre-principality of the bundles, rather
than on full principality. In our development of the theory, some proofs can
therefore be performed separately, whereas in the Lie theory they have to be
performed at once. We hope this makes for clearer exposition.

Note also that when a bundle G X 5 B is pre-principal, the action
map induces a diffeomorphism X /7 = X/G, and when the bundle is sub-
ductive, Example 2.19 gives a diffeomorphism B = X/m. For a principal
bundle we therefore have B = X /G.

Example 4.12. The action of any diffeological groupoid G = G on its

own arrow space (Example 4.2) forms a bundle GA"¢G — Gy. From
Proposition 3.2 it follows that this bundle is principal.

4.2.1 The division map of a pre-principal bundle

The material in this section is similar to [Blo08, Section 3.1] for Lie group-
oids. If a bundle G X 5 B is pre-principal, the fact that the action
map is bijective gives that the action GAX X has to be free, and transitive
on the 7w-fibres. This means that for every two points z,y € X such that
m(x) = w(y), there exists a unique arrow g € G such that gy = z. We
denote this arrow by (x,y)¢, and the map (-, )¢ is called the division map*:

“The notational resemblance to an inner-product is not accidental. The division map
plays a very similar role to the inner product of a Hilbert C*-module. For more on this
analogy, see [Blo08, Section 3].
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Definition 4.13. Let GA'X X 5 B be a pre-principal G-bundle, and let A
denote its action map. Then the division map associated to this bundle is the
smooth map

. s Ag sre,lx prl‘GXGOX
(he: X X5 X — 26 G xselx a.
) B Go

We summarise some algebraic properties of the division map that will be
used in our proofs throughout later sections. The proofs are straightforward,
and use the uniqueness property described above.

Proposition 4.14. Let GAX X 5 B be a pre-principal G-bundle. Its divi-
sion map (-, )¢ satisfies the following properties:

1. The source and targets are src({(x1,T2)q) = lx(2)
and trg({x1, x2)q) = lx(z1).
2. The inverses are given by (x1,13)g" = (2, 71)c-
3. Forevery x € X we have (x,x)q = id; (2
4. Whenever well-defined, we have (gx1,x2)c = g o (X1, T2)¢-
Proposition 4.15. Let ¢ : X —> Y be a bundle morphism between two pre-
principal G-bundles GAX X =5 B and GAYY =5 B. Denoting the

division maps of these bundles respectively by (-, )& and (-, )%, we have for
all x1, x5 € X in the same mx-fibre that:

(9517372% = (p(1), <P(~”C2)>g-

Proof. Observe that (p(x1), p(x9))% is the unique arrow that satisfies
(p(x1), p(z )>Gg0(x2) = ¢(z1). However, by G-equivariance we get
o(xy) = gp( (w1, 09) 5o ) (w1, 19) & (22), from which the claim immedi-
ately follows. U

4.2.2 Invertibility of G-bundle morphisms

We now prove a result that generalises the fact that morphisms between prin-
cipal Lie group bundles are always diffeomorphisms. In our case we shall
do the proof in two separate lemmas.
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Lemma 4.16. Consider a G-bundle morphism ¢ : X — Y between a pre-
principal bundle GAX X ™% B and a bundle GAYY 5% B whose un-
derlying action GAY'Y is free. Then  is injective.

Proof. Since GAX X ™% B is pre-principal, we get a smooth division map
(-,-)&. To start the proof, suppose that we have two points z;, 75 € X
satisfying ¢ (z1) = p(22). Since ¢ preserves the fibres, we get that

wx(z1) = Ty 0 p(x1) = Ty 0 p(12) = Tx(22).

Hence the pair (1, x2) defines an element in X x g X, so we get an arrow
(m1,79)5 € G, satisfying (x1, 7o) g wo = x;. If we apply ¢ to this equation
and use its G-equivariance, we get (1) = (x1, Z2)o ©(z2). However, by
assumption, ¢(z;) = o(r3) and the action GAY Y is free, so we must have
that (z1, 22) is the identity arrow at ly o ¢(z2) = Ix(x2). Hence we get the
desired result:

T = <IL‘1,[E2>§I’2 = ile(IQ)J:Q = T9. OJ

Lemma 4.17. Consider a G-bundle morphism ¢ : X — Y from a subduct-
ive bundle GAY X ™55 B 1o a pre-principal bundle GAYY =5 B. Then
@ is a subduction.

Proof. Denote the smooth division map of GAY Y ™% B by (-, -)%. Then
¢ and (-, -)& combine into a smooth map

VX XETY = X5 (2,y) — {y, o(2)) G

Note that this is well defined because if 7x(z) = 7y (y), then my o p(x) =
7y (y) as well, and moreover ly o p(x) = lx(z), showing that the action on
the right hand side is allowed. The G-equivariance of ¢ then gives

poth= pr2|X><BY'

Since 7y is a subduction, so is pry|x x ;v by Lemma 2.22, and by Lemma 2.20(2)
it follows ¢ is a subduction. [

Proposition 4.18. Any bundle morphism from a principal groupoid bundle
to a pre-principal groupoid bundle is a diffeomorphism. In particular, both
must then be principal.
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Proof. By Lemma 4.17 any such bundle morphism is a subduction, and since
in particular the underlying action of a pre-principal bundle is free, it must
also be injective by Lemma 4.16. The result follows by Proposition 2.21.
That the second bundle is principal too follows from the fact that a bundle
map preserves the fibres, so the projection of the second bundle can be writ-
ten as the composition of a diffeomorphism and a subduction. [

5. Diffeological Bibundles and Morita Equivalence

This section contains the main definition of this paper: the notion of a bi-
principal bibundle, which immediately gives our definition of Morita equi-
valence. The definition of groupoid bibundles for diffeology are a straight-
forward adaptation of the definition in the Lie case:

Definition 5.1. Let G = Gy and H = H, be two diffeological groupoids.
A diffeological (G, H)-bibundle consists of a smooth left action GA* X
and a smooth right action X "X\H such that the left moment map lx is H-
invariant and the right moment map rx is G-invariant, and moreover such
that the actions commute: (g-x)-h = g-(x-h), whenever defined. We draw:

G~ X  H

VAN

H07

and denote them by GAX X "X ~H in-line. Underlying each bibundle are
two groupoid bundles: the left underlying G-bundle GAX X 5 Hy and

the right underlying H-bundle G & XX AH. It is the properties of these
underlying bundles that will determine the behaviour of the bundle itself.

Definition 5.2. Consider a diffeological bibundle GAX X "™X~H. We say
this bibundle is left pre-principal if the left underlying bundle GA* X =5 H,
is pre-principal. We say it is right pre-principal if the right underlying bundle
Gy & X TxAH s pre-principal. We make similar definitions for sub-
ductiveness and principality. Notice that, in this convention, if a bibundle
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GAIX X ™ ~H is left subductive, then its right moment map rx is a sub-
duction (and vice versa).

We now have the main definition of this theory:
Definition 5.3. A diffeological bibundle is called:

1. pre-biprincipal if it is both left- and right pre-principal®;
2. bisubductive if it is both left- and right subductive;
3. biprincipal if it is both left- and right principal.

Two diffeological groupoids G and H are called Morita equivalent if there
exists a biprincipal bibundle between them, and in that case we write

Compare this to the original definition [MRW87, Definition 2.1] of equi-
valence for locally compact Hausdorft groupoids. We will prove in Corol-
lary 5.23 that Morita equivalence forms a genuine equivalence relation.

Example 5.4. Since submersions between manifolds are subductions with
respect to the manifold diffeologies, we see that if two Lie groupoids G = G
and H = H, are Morita equivalent in the Lie sense (e.g. [CM18, Definition
2.15]), then they are Morita equivalent in the diffeological sense. We remark
on the converse question in Section 7.1.

In fact, many elementary examples of Morita equivalences between Lie
groupoids generalise straightforwardly to analogously defined diffeological
groupoids. We refer to [vdS20, Section 4.3] for some of these examples. For
us, the most important one is:

Example 5.5. Consider a diffeological groupoid G = G,. There exists
a canonical (G, G)-bibundle structure on the space of arrows G, which is
called the identity bibundle. The actions are just the composition in G itself,

SNote: [dHol2, Section 4.6] defines this differently, where “[a] bundle is left (resp.
right) principal if only the right (resp. left) underlying bundle is so.” We suspect this may
be a typo, since it apparently conflicts with their use of terminology in the proof of [dHo12,
Theorem 4.6.3]. We stick to the terminology defined above, where left principality pertains
to the left underlying bundle.

The prefixes bi- and pre- commute: “bi-(pre-principal) = pre-(biprincipal)”.
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as in Example 4.2. Note that the identity bibundle is always biprincipal,
because the action map has a smooth inverse (g1, g2) = (g1 © g5 ', g2). This
proves that any diffeological groupoid is Morita equivalent to itself, through
the identity bibundle G"8 G *"\G.

Construction 5.6. Consider a diffeological bibundle G X "X~ H. The
opposite bibundle H % X "<~ is defined as follows. The underlying dif-
feological space does not change, X := X, but the moment maps switch,
meaning that [5; := rx and 7 := [x, and the actions are defined as follows:

HAXX; h-x:=ah™!,
X xXAG; T-g:=g 'x.

Here the actions on the right-hand sides are the original actions of the bib-
undle. It is easy to see that performing this operation twice gives the original
bibundle back. It is also important to note that for all properties defined
in Definition 5.2, taking the opposite merely switches the words ‘left’ and
‘right’.

The following extends Proposition 4.14(4):

Lemma 5.7. Consider a left pre-principal bibundle GAX X "™X~H, and
also the opposite G-action X 'X\G. Then, whenever defined, we have:

(331, $29>G = <5171, 5172>G °g.

Proof. This follows directly from Proposition 4.14 and the definition of the
opposite action:

(x1,729)c = (21,9 'w2)e = (97" 0 (2, 11)g) = (w1, @2)gog. O

5.1 Induced actions

A bibundle G ~ X »~ H allows us to transfer a groupoid action H ~ Y
to a groupoid action G ~ X ®py Y. This is called the induced action,
and, together with the balanced tensor product, will be crucial to define the
composition of bibundles. The idea is that G acts on the first component of
X®yY.
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Construction 5.8. Consider a diffeological bibundle GAX X "™ ~H, and a
smooth action H~!' Y. We construct a smooth left G-action on the balanced
tensor product X ®p Y. The left moment map is defined as

Lx : X®pgY — Go; r®y+— Ix(z).

This is well defined because [ x is H-invariant, and smooth by Lemma 2.20(3).
For an arrow g € G with src(g) = Lx(x ® y) = [x(x), define the action as:

GAXX@pY; g (x®@y):=(92)®y.

Note that the right hand side is well defined because ry is G-invariant and
the G- and H-actions commute, so rx(gz) = ly (y) and the expression does
not change if we replace x @y by xh® h~'y for arbitrary h € H. Since there
can be no confusion, we will drop all parentheses and write gr ® y instead.
That the action is smooth follows because (g, (x,y)) — (gz,y) is smooth
(on the appropriate domains) and by another application of Lemma 2.20(3).
Hence we obtain the induced action GA** X @y Y.

Now suppose that we are given a smooth /7-equivariantmap ¢ : Y7 — Y5
between two smooth actions H~!'Y] and H~2Y,. We define a map

dy @ ¢: X @y Y — X @y Yo; TRY— T ®e(y).

The underlying map X Xy, Y1 — X xXpy, Yo : (z,y) — (z,0(y)) is
clearly smooth. Then by composition of the projection onto X ®y Y, and
Lemma 2.20(3), we find idx ® ¢ is smooth. Moreover, it is G-equivariant:

idx ® p(gr @y) =gz @ ¢(y) = g (idx @ p(z ®@y)).

Definition 5.9. A diffeological bibundle G* X "™ ~H defines an induced
action functor:

X Ry — ACt(H = Ho) — ACt(G = Go),
(HAYY) — (G X @y Y),

sending each smooth left H-action (HK\JY Y) > (GmLXX Qn Y) and
each H-invariant map ¢ — idx ® . We will use this functor in Section 6.3.
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5.2 The bicategory of diffeological groupoids and -bibundles

Combining the balanced tensor product (Construction 4.6) and the induced
action of a bibundle (Construction 5.8), we can define a notion of composi-
tion for diffeological bibundles, and thereby obtain a new sort of category of
diffeological groupoids’. Specifically, in Theorem 5.17 we will see that we
obtain a bicategory DiffeolBiBund. A bicategory is like a category where
the axioms of composition hold merely up to canonical 2-isomorphism. For
the precise definition we refer to e.g. [Mac71; Lacl0]. The point of this
section is to give precise definitions for this bicategorical structure, with the
first ingredient being the following:

Definition 5.10. Let GAX X "™X~H and GAY'Y "YAH be two bibundles
between the same two diffeological groupoids. A smooth map ¢ : X — Y is
called a bibundle morphism if it is a bundle morphism between both under-
lying bundles. We also say that o is biequivariant. Concretely, this means
that the following diagram commutes:

X X5 H,

Ix =ly oy,
le \ T that is: x=wey
'x =Ty 0,

G()<—Y

and that ¢ is equivariant with respect to both actions. These will be the 2-
morphisms in DiffeolBiBund. The isomorphisms of bibundles are exactly
the diffeomorphic biequivariant maps. These will be the 2-isomorphisms in
DiffeolBiBund.

The composition of bibundles is defined as follows:

Construction 5.11. Consider two diffeological bibundles GAX X "™~ H
and HAYY ™K. We shall define on X ®p Y a (G, K)-bibundle struc-
ture using the induced actions from Construction 5.8. On the left we take
the induced G-action along Ly : X ®y Y — Gy, which we recall maps
T ®y +— lx(z), defined by

G X epY;  gleoy) = (gr) @y

"The most straightforward way to obtain a (2-)category of diffeological groupoids is to
consider the smooth functors and smooth natural transformations. We will not be studying
this category in the current paper.
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Analogous to Construction 5.8, swapping left actions for right actions, we
get an induced K-action on the right along Ry : X ®y Y — K;, which
maps £ ® y — 1y (y), given by

X opY™AK; (x @Yk =2 ® (yk).

It is easy to see that these two actions form a bibundle G X@pY B K,
which we also call the balanced tensor product.

From this construction we can see that the composition of bibundles will
not be strictly associative, and this is where the bicategorical structure be-
comes important. The following two propositions characterise the compos-
itional structure of the balanced tensor product up to biequivariant diffeo-
morphism. The first of these shows that the identity bibundle (Example 5.5)
is a weak identity:

Proposition 5.12. Let GAX X "™X~H be a diffeological bibundle. Then
there are biequivariant diffeomorphisms

GG @g X BxnH G X @y H o AH
ﬂw and ﬂ
GNX X "X ~H G X ™x~H.

Proof. The idea of the proof is briefly sketched on [BloOS8, p.8]. The map
¢ G®g X — X is defined by the action: g ® x +— gx. This map is clearly
well defined, and by an easy application of Lemma 2.20(3) also smooth.
Further note that ¢ intertwines the left moment maps:

Ixop(g®a)=Ix(gr) = trg(g) = La(g ® x),

and similarly we find it intertwines the right moment maps. Associativity
of the G-action and the fact that it commutes with the H-action directly
ensure that ( is biequivariant. Moreover, we claim that the smooth map
Y : X — G ®¢g X defined by x — id;, () ® x is the inverse of . It follows
easily that oo = idx, and the other side follows from the defining property
of the balanced tensor product:

Yop(g®x)=1(9x) = idiy (4) ® 92 = (idirg) 0 9) ® T = g @ .

It follows from an analogous argument that the identity bibundle of H acts
like a weak right inverse. [
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The second proposition shows that the balanced tensor product is associ-
ative up to canonical biequivariant diffeomorphism:

Proposition 5.13. Let GAX X "™XAH, HAY Y ™Y ~H', and H'~* Z "2~ K
be diffeological bibundles. Then there exists a biequivariant diffeomorphism

GmLX@HY (X R H Y) Rp ZRZf\K
ﬂA A: (zRyY)Rzr— 2 (Y 2).

GAX X @y (Y @ Z) ™enwZAK,

Proof. That the map A is smooth follows by Lemma 2.20(3), because the
corresponding underlying map ((x,y), z) — (z, (y, 2)) is a diffeomorphism.
The inverse of this diffeomorphism on the underlying fibred product induces
exactly the smooth inverse of A, showing that A is a diffeomorphism. Fur-
thermore, it is easy to check that A is biequivariant. [

Combining Propositions 5.12 and 5.13 gives that the balanced tensor
product of bibundles does indeed behave like the composition in a bicat-
egory. Next to the composition of arrows in a bicategory, we also need to
describe the compositional structure of the 2-arrows. The following element-
ary result says that the ordinary vertical composition of biequivariant maps
is again biequivariant:

Proposition 5.14. Consider two biequivariant smooth maps:

GAX XY AH
ﬂso
GAYY ™ AH
1%

G2z Z72~H.

Then the composition 1\ o p : X — Z is also biequivariant.

Next to vertical composition, a bicategory should also allow for hori-
zontal composition of 2-arrows. Again, the construction of this composition
follows the Lie groupoid theory:
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Construction 5.15. Consider the following situation of four bibundles and
two biequivariant maps:

GAx X ™X~H HAP PP AK
ﬂ(p and ﬂ¢
GAYY ™Y AH HAleQrenK.

The goal will be to construct a biequivariant map

G X @y PRPAK

ﬂp®¢

GAYY @y Q FenK,

called the horizontal composition of ¢ and ). The most obvious choice for
the underlying function is the following:

[
X Plyy,pt X xolr p Ly e Q.

The biequivariance of ¢ and v ensures that the image of this function indeed
lands in the fibred product Y xg’lQ @, showing it is well defined and smooth.
Projecting down to the balanced tensor products, we define:

0V : X@g P —Y ®yQ; T ®@p— @(r) @Y(p).

To show that this will again form a 2-arrow in DiffeolBiBund, we have
the following counterpart to Proposition 5.14:

Proposition 5.16. The map p @ ) : X g P — Y ®py Q from Construc-
tion 5.15 is a well-defined smooth biequivariant map of diffeological bib-
undles.

Proof. We start by showing that ¢ ® 1 is a well-defined function on the
balanced tensor products. For that, take an element + ® p € X ®py P, and
take an arbitrary arrow h € H with trg(h) = rx(z) = [p(p), such that
T ® p = vh ® h~!p. Using the fact that both ¢ and 1) are biequivariant, and
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the defining relation of the balanced tensor product Y ® g (), we calculate:

P @ P(zh @ h™'p) == p(zh) @ Y(h™"p)
= o(z)h @ h™'4(p)
= p(z) @ Y(p)
= p®@Y(r ®p),

showing that ¢ ® 1) is indeed well defined. Next, observe that we have the
following commutative diagram of functions:

<P><w|X><HP

X xmle p Y x'?Q
_
X®HP ey Y®HQ7

where the vertical arrows are the canonical projections. It follows immedi-
ately from Lemma 2.20(3) that ¢ ® 1) is also smooth.

Lastly, we show that ¢ ® v is biequivariant with respect to the G- and
K-actions. An easy calculation using the biequivariance of ¢ shows that

Ly o(p@¢)(x®p) = Ly (p(z) @Y (p))
=ly o p(x)
= Ix(z)
= Lx(z ®p),

and similarly we find R o (¢ ® ¢) = Rp. Moreover, ¢ ® 1) commutes with
the left G-actions:

pRY(g-(z®p) =p@Y((gr) ®p)
= ¢(gz) @ Y(p)
= (9¢(z)) ® ¥(p)
=g (p(z) @ ¥(p))
=g (p @YD),

and we similarly find that it commutes with the right K -actions. We have
thus proved that ¢ ® 1) defines a smooth biequivariant map, as desired. [
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We have now described all bicategorical ingredients for DiffeolBiBund,
and so it remains to check that they do indeed satisfy the axioms of a bicat-
egory. The proof of this is directly analogous to the one for the Lie theory,
which is explained in [BloO8, Proposition 2.12], and we therefore leave out
the details.

Theorem 5.17. There is a bicategory DiffeolBiBund consisting of dif-
feological groupoids as objects, diffeological bibundles as morphisms with
balanced tensor product as composition, and biequivariant smooth maps as
2-morphisms.

Proofidea. Note that the way in which we have the defined the bicategorical
structure of DiffeolBiBund is a direct generalisation of the Lie groupoid
theory (in the sense that, when restricted to Lie groupoids, it is the exact
same). Furthermore, that the axioms of a bicategory hold for Lie groupoids
([Blo08, Proposition 2.12]) is not dependent on the (left or right) principality
of the bibundles (save for the fact that this is needed to ensure the existence
of the balanced tensor product), but is rather a property of the underlying
functions. Given the results in this section, it is therefore clear that those
proofs generalise directly to the diffeological setting. [

As we remarked in Section 4.1, the balanced tensor product for Lie
groupoids can only be constructed for left (or right) principal bibundles.
This means that in the Lie theory, the category of bibundles only consists
of the left (or right) principal bibundles, since otherwise the composition
cannot be defined. For diffeology we obtain a bicategory of all bibundles.

5.3 Properties of bibundles under composition and isomorphism

We study how the properties of diffeological bibundles defined in Defini-
tion 5.2 are preserved under the balanced tensor product and biequivariant
diffeomorphism. These results will be crucial in characterising the weakly
invertible bibundles. First we show that left subductive and left pre-principal
bibundles are closed under composition.

Proposition 5.18. The balanced tensor product preserves left subductive-
ness.
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Proof. Consider the balanced tensor product G X @y Y B¥ A K of two
left subductive bibundles GAX X "X~ H and HAY Y VA K. We need to
show that the right moment map Ry : X ®py Y — K| is a subduction. But,
note that it fits into the following commutative diagram:

XXEYY " XogY

prlexHOYl lRY

Yr—y>K0

Here 7 is the canonical quotient projection. The restricted projection pry| x « 1y Y
is a subduction by Lemma 2.22, since rx is a subduction. Moreover, ry is a
subduction, so the bottom part of the diagram is a subduction. It follows by
Lemma 2.20(3) that Ry is a subduction. ]

Note that, even though Ry only explicitly depends on the moment map
ry, the proof still depends on the subductiveness of rx as well.

To prove that the balanced tensor product of two left pre-principal bib-
undles is again left pre-principal, we need the following lemma, describing
how the division map interacts with the bibundle structure, extending the list
in Proposition 4.14 on the algebraic properties of the division map.

Lemma 5.19. Let G X "™X~\H be a left pre-principal bibundle, and de-
note its division map by (-, -)c. Then, whenever defined:

(x1,22h)g = <I1h71,$2>g, or equivalently: (x1h,zoh)e = (21, 22)¢.

Proof. The arrow (z1h, zoh)¢ € G is the unique one that sends z5h to 1 h.
Now, since the actions commute, we can multiply both of these terms from
the right by 2!, which gives the equation (z1h, r9h)xz2 = x1, and this
immediately gives our result. ]

Proposition 5.20. The balanced tensor product preserves left pre-principality.

Proof. To start the proof, take two left pre-principal bibundles, with our
usual notation: GAX X "X ~H and HAY Y "™V~ K. Denote their division
maps by (-, )& and (-, )Y, respectively. Using these, we will construct a
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smooth inverse of the action map of the balanced tensor product. Let us
denote the action map of the balanced tensor product by

DG XM (X @pY) — (XopY) <™ (X oY),

mapping (¢, ® y) — (gx ® y,x ® y). After some calculations (which we
describe below), we propose the following map as an inverse for ®:

U (XopY) <™ (XepY) — G x5 (X o Y);
(1 @ y1, 22 @ y2) — ((21(y1, y2) 1> T2 . ;T2 QY2 ) -
G

It is straightforward to check that every action and division occurring in this
expression is well defined. We need to check that W is independent on the
representations of z; ® y; and x5 ® ys. Only the first component ¥, of
U could be dependent on the representations, so we focus there. Suppose
we have two arrows hq, he € H satisfying trg(h;) = rx(z;) = ly(y;), so
that x;h; ® h; Yy, = x; ® y;. For the division of y, and y; we then use
Proposition 4.14 to get:

(hi'yr hy 'yo)fr = hi' o (1, ha 'ye)

= hy'o (hy' o (Y2, y1) 1)
= hl_l © <yl, y2>§ o hy.

-1

Then, using this and Lemma 5.19, we get:

Uy (z1hy ® hl_ly1, Toho ® h;lyg) = <:E1h1<h1_1y1, hQ_Iyg)E, x2h2>)G(
= ((w1hy) (A" o (g1, ya) )1 © ha) w2y
= ((x1<y1,y2>)h27:r2h2>§
X
= <$1<y17y2>é>372>6~ .

Since the second component of W is, by construction, independent on the
representation, it follows that W is a well-defined function. We now need to
show that W is smooth. The second component is clearly smooth, because it
is just the projection onto the second component of the fibred product. That
the other component is smooth follows from Lemmas 2.20 and 2.23. Writing

¢ : (($17y1)7 (;Eg,yg)) — <x1<ylay2>§7‘r2>g
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and ™ : X x’lj;’ly Y — X ®p Y for the canonical projection, we get a
commutative diagram

(0™ Y) < (YY) I
(WXW”dom(w)J/
(X @pY) <™ (X ®yY) /wl

Here we temporarily use the notation 7y := 7y o pry|xx 1Yo which satis-
fies Ry o™ = Ty. Therefore by Lemma 2.23 the left arrow in this dia-
gram is a subduction. Since the map ¢/ is evidently smooth, it follows by
Lemma 2.20(3) that the first component W, and hence W itself, must be
smooth.

Thus, we are left to show that U is an inverse for ®. That ¥ is a right
inverse for ® now follows by simple calculation using Proposition 4.14
and Lemma 5.19:

G.

Vod(g,z@y)="V(grQy,rQY)
= ((92(y, v) 3, 1), 2 ® y)
— (go <x,x)é§,x®y)
= (g, z®y).

For the other direction, we calculate:
X
PoW(r1 @Y1, 22 @Y2) = P (<x1(y1,yz>§ 902>G 1 T2 @ y2>

be
= <<x1<y1, Y2) 11 T2) gy T2 @ Y, Ty @ yz)

= (21(y1, y2) 11 © Y2, 72 ® yo)
= (21 ® (Y1, y2) Y2, T2 @ Ya)
= (71 @ Y1, 12 Q@ Y2) .

Here in the second to last step we use the properties of the balanced tensor
product to move the arrow (y;, y2)¥; over the tensor symbol. Hence we con-
clude that ® is a diffeomorphism, which proves that GA** X @5 Y BY A K
is a left pre-principal bibundle. [
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Next we show that left subductiveness and left pre-principality are also
preserved under biequivariant diffeomorphism.

Proposition 5.21. Left pre-principality is preserved by biequivariant diffeo-
morphism.

Proof. Suppose that ¢ : X — Y is a biequivariant diffeomorphism from a
left pre-principal bibundle GAX X "X~ H to another diffeological bibundle
GNAY Y ™~ H. Denote their left action maps by Ax and Ay, respectively.
The following square commutes because of biequivariance:

A
G X X X, X XX X
0 0
(dox o, | l«pwnx%x
src,ly rYy,ry
G xg, Y i Y xpg Y.

It is easy to see that both vertical maps are diffeomorphisms. Hence it fol-
lows Ay must be a diffeomorphism as well. O

Proposition 5.22. Left subductiveness is preserved by biequivariant diffeo-
morphism.

Proof. Suppose that ¢ : X — Y is a biequivariant diffeomorphism from
a left subductive bibundle GAX X "X H to GAY Y "™~ H. That the first
bundle is left subductive means that ry is a subduction, but since ¢ inter-
twines the moment maps, it follows immediately that ry = rx o ¢ !is a
subduction as well. ]

Of course, these four propositions all hold for their respective ‘right’
versions as well. This can be proved formally, without repeating the work,
by using opposite bibundles.

Corollary 5.23. Morita equivalence defines an equivalence relation between
diffeological groupoids.

Proof. Morita equivalence is reflexive by the existence of identity bibundles,
which are always biprincipal (Example 5.5). It is also easy to check that
the opposite bibundle (Construction 5.6) of a biprincipal bibundle is again
biprincipal, showing that Morita equivalence is symmetric. Transitivity fol-
lows directly from Propositions 5.18 and 5.20 and their opposite versions.

]
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5.4 Weak invertibility of diffeological bibundles

In this section we prove the main Morita Theorem 5.31. As we explained
in the Introduction, in the bicategory of diffeological groupoids we get a
notion of weak isomorphism. Let us describe these explicitly: a bibundle
G ~ X ~ H is weakly invertible if and only if there exists a second bib-
undle H ~ Y G, such that X ®p Y is biequivariantly diffeomorphic to
G and Y ®¢ X is biequivariantly diffeomorphic to H. The Morita theorem
says that such a weak inverse exists if and only if the bibundle is biprincipal.
Let us recall the corresponding statement in the Lie theory: a (say) left prin-
cipal bibundle has a left principal weak inverse if and only if it is biprincipal
[LanO1b, Proposition 4.21]. Here both the original bibundle and its weak
inverse have to be left principal, since everything takes place in a bicategory
of Lie groupoids and left principal bibundles. According to Theorem 5.17
we get a bicategory of arbitrary bibundles, and the question of weak invert-
ibility becomes a slightly more general one, since we do not start out with
a bibundle that is already left principal. Instead we have to infer left prin-
cipality from bare weak invertibility, where neither the weak inverse may be
assumed to be left principal.

One direction of the claim in the main theorem is relatively straightfor-
ward, and is the same as for Lie groupoids:

Proposition 5.24. Let gr\le X"™X~\H be a biprincipal bibundle. Then its
opposite bundle H~'X X X AG is a weak inverse.

Proof. We construct biequivariant diffeomorphisms

G X @y X BxnG HA'%X @q X Bx~H
@Gﬂ and LPHH
GGG, HA"8 HA~H.

Since the original bundle is pre-biprincipal, we have a division map (-,9¢q:
X X" X — G. We define a new function

oo X op X — G, T ® 1y > (T1,T2)q.

This is independent on the representation of the tensor product by Lemma 5.19,
and smooth by Lemma 2.20(3) since ¢ o m = (-, ), where 7 is the ca-
nonical projection onto the balanced tensor product. We check that (g is
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biequivariant. It is easy to check that (¢ intertwines the moment maps, for
example:

src o (T ® x9) = sre ((z1,9)¢) = Ix(x2) = Ry (21 @ x3).

The left G-equivariance of ¢ follows directly out of Proposition 4.14, and
the right G-equivariance follows from Lemma 5.7. Hence (¢ is a genuine
bibundle morphism.

Since the original bundle is biprincipal, so is its opposite, and therefore
by Propositions 5.18 and 5.20 it follows that both balanced tensor products
are also biprincipal. Therefore  is in particular a left G-equivariant bundle

morphism from a principal bundle G~** X @ 5 X Rl> G to a pre-principal
bundle GG % Gy, and hence a diffeomorphism by Proposition 4.18.
This proves that the opposite bibundle is a weak right inverse. Note that we
already need full biprincipality of the original bibundle for this. To prove
that it is also a weak left inverse we make an analogous construction for ¢y,
which we leave to the reader. ]

The rest of this section will be dedicated to proving the converse of this
claim, i.e., that a weakly invertible bibundle is biprincipal. First let us remark
that by imitating a result from the Lie theory, we can obtain a partial result
in this direction. Let us denote by DiffeolBiBundp the bicategory of
diffeological groupoids and left principal bibundles. Note that by Section 5.3
left principality is preserved by the balanced tensor product, so this indeed
forms a subcategory.

Theorem 5.25. A left principal diffeological bibundle has a left principal
weak inverse if and only if it is biprincipal. That is, the weakly invertible
bibundles in DiffeolBiBundyp are exactly the biprincipal ones.

Proof. This follows by combining Proposition 5.24 with an adaptation of an
argument from the Lie groupoid theory as in [MMOS, Proposition 2.9]. A
more detailed proof (for diffeological groupoids) is in [vdS20, Proposition
4.61]. ]

This theorem is the most direct analogue of [Lan01b, Proposition 4.21]
in the setting of diffeology. Our main theorem will be a further general-
isation of this, which says that the same claim holds in the larger bicategory
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DiffeolBiBund of all bibundles. We break the proof down in several steps,
starting with the implication of bisubductiveness:

Proposition 5.26. A weakly invertible diffeological bibundle is bisubductive.

Proof. Suppose we have a bibundle GA* X "X~ H that admits a weak in-
verse HAY Y " AG. Let us denote the included biequivariant diffeomorph-
ismsby pg : X ®y Y — Gand gy : Y ®5 X — H, as usual. Since the
identity bibundles of G and H are both biprincipal, it follows by Proposi-
tion 5.22 that the moment maps Ly, Rx, Ly and Ry are all subductions.
Together with the original moment maps, we get four commutative squares,
each of the form:

XXEYy s XopY

PHJXXHOYl le

XTGO

Here 7 : X x’;};’ly Y — X ®p Y is the quotient map of the diagonal H-
action. By Lemma 2.20(3) it follows that, since Lx is a subduction, so is
the composition Iy o pr;|xx Y and in turn by Lemma 2.20(2) it follows
lx is a subduction. In a similar fashion we find that ry, {y and ry are all
subductions as well. ]

This proposition gets us halfway to proving that weakly invertible bib-
undles are biprincipal. To prove that they are pre-biprincipal, it is enough
to construct smooth division maps. We will give this construction below
(Construction 5.29), which follows from a careful reverse engineering of the
division map of a pre-principal bundle. Recall from Proposition 5.20 that
the smooth inverse of the action map contains the information of both the
(G-division map and the H-division map. Specifically, the first component
of the inverse is of the form (z,(y1,y2) Y, 72)&, in which if we set y; = s,
we simply reobtain the G-division map (1, 73)&. The question is if this
“reobtaining” can be done in a smooth way. This is not so obvious at first.
Namely, if we vary (1, x2) smoothly within X XTH);’TX X, can we guaran-
tee that y; and y, vary smoothly with it, while still retaining the equalities
rx(z;) = ly(y;) and y; = y2? The elaborate Construction 5.29 proves that

-216 -



N. VAN DER SCHAAF DIFFEOLOGICAL MORITA EQUIV.

this can indeed be done. An essential part of our argument will be supplied
by the following two lemmas.

Lemma 5.27. When G X "X~ H is a weakly invertible bibundle, admit-
ting a weak inverse HAY'Y " A\G, then all four actions are free.

Proof. This follows from an argument that is used in the proof of [Blo08,
Proposition 3.23]. Suppose we have an arrow h € H and a pointy € Y such
that hy = y. By Proposition 5.26 it follows that in particular [ x is surjective,
sowe can find z € X suchthaty ® x € Y ®¢ X. Then

hy®zx)=(hy) @z =y z.

But by Proposition 5.21 the bundle HAMY @¢ X 5 Gy, which is
equivariantly diffeomorphic to the identity bundle on H, is pre-principal.
So, the left action H ~ Y ®¢g X is free, and hence h = idp (yea) = idsy, ()
proving that I ~ Y is also free. That the three other actions are free follows
analogously. 0

Lemma 5.28. Let X "X~H and H~Y'Y be smooth actions, so that we can
form the balanced tensor product X @y Y. Suppose that H ~ Y is free.
Then v1 ® y = v ® y if and only if x1 = xo. Similarly, if X « H is free,
then * @ y1 = = ® Yy if and only if y1 = 1.

Proof. If x1 = x5 to begin with, the implication is trivial. Suppose therefore
that r1 ® y = x5 ®y, which means that there exists an arrow A € H such that
(x1h™1, hy) = (x9,y). In particular hy = y, which, because the action on Y’
is free, implies h = idy, (), and it follows that 7, = xlidl_yl(y) = Io. O

We shall now describe how the division map arises from local data:

Construction 5.29. For this construction to work, we start with a diffeolo-
gical bibundle G X "X~ H, admitting a weak inverse HAYY ™V AG.
Then consider a pointed plot o : (U,,0) — (X x50"™* X, (x1,22)). We
split « into the components (o, ap), which in turn give two pointed plots
a; : (Uy,0) = (X, ;) satisfying ry oy = rx o g : U, — Hy. This
equation gives a plot of Hy, and since by Proposition 5.26 the moment
map ly : Y — Hj is a subduction, for every ¢ € U, we can find a plot
B : V. — Y, defined on an open neighbourhood t € V C U,, such
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that rx o a;|y = [y o 8. From this equation it follows that the smooth
maps (o;|v,5):V = X xTH’;’lY Y define two plots of the underlying space
of the balanced tensor product. Applying the canonical quotient projec-
tion map 7w : X x?j;’ly Y - X ®pyY, we thus get two full-fledged plots
s +— a;|y(s) ® B(s) of the balanced tensor product. We combine these two
plots to define yet another smooth map:

Qly = (mo(aulv,B),mo (aaly,B)) 1 V — (X @y V)x& "™ (X @y Y).
Note that 2“|y, lands in the right codomain because

Ry omo (aylv,B) =71y o f,

irrespective of i € {1,2}. We also note that the codomain of 2| is exactly
the domain of the inverse U = (W, ¥5) of the action map of the balanced

tensor product GAEX X @, Y 25 H, (given explicitly in Proposition 5.20).
In particular we then get a smooth map

U000y V — sy (X @y V) x By

(X®pY) L) G.
We now extend this map to the entire domain U,,, and show that it is inde-
pendent on the choice of plot /3. For that, pick two points ¢, t € U,, so that by
subductiveness of the left moment map /y- we can find two plots, 5 : V — Y
and 3 : V — Y, defined on open neighbourhoods of ¢ and #, respectively,
such that rx o |y = ly o fand rx o ay|yr = Iy © B Following the above
construction, we get two smooth maps:

Q% s > (ufv(s) ® B(s), azlv(s) @ B(s)),

Dz s 0= (aualp(s) @ B(s), azly(s) ® B(s)) -
We now remark an important characterisation of W, as a consequence of
it being a diffeomorphism and inverse to the action map. Namely, when
evaluated, V(21 ® y1, T2 ® yo) is the unique arrow g € G satisfying the

equation gxs ® yo = x1 ® y;. Therefore, ¥; o Q| (s) € G is the unique
arrow such that

(W10 Q% v (s)] - (zlv(s) © B(5)) = culv(s) @ B(s)-
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By Lemma 5.27 all of the four actions of the original bibundles are free.
Consequently, applying Lemma 5.28, since the second component in each
term is just 3(s), this means that U; o 2|/ (s) is the unique arrow in G such
that

\I’l (¢] Qa|v(8) . a2|v(8) = Oél|v(5),

where the tensor with 3(s) can be removed. But, for exactly the same reas-
ons, if we take s € V NV, then ¥, 0 Q"|t+(s) € G is also the unique arrow
such that

Uy 0 0%y (5) - calyap(s) = aalyap(s),

proving that _
V10 Q%ynp =V10Q |y

This shows that on the overlaps V' NV the map ¥, 0 Q°|,, - does not depend
on the plots 5 and /5. This allows us to extend ¥; o Q%|y, in a well-defined
way, to the entire domain of U,. We do this as follows. For every ¢t € U,
there exists a plot 3; : V; — Y, defined on an open neighbourhood V; > t,
such that rx o o]y, = ly o ;. Clearly, this gives an open cover (V;);cp, of
U,. Fort € U, we then set W1 o Q%(t) := ¥y o Q%y,(¢). Hence we get a
well-defined function ¥, o Q* : U, — G, which is smooth by the Axiom of
Locality.

The main observation now is that, as the plot « is centred at (1, x2), we
get that ¥, 0 Q%(0) is the unique arrow in G such that Uy 0 Q*(0) - xg = ;.
This is exactly the property that characterises the division (z1, x2)g!

Proposition 5.30. A weakly invertible diffeological bibundle is pre-biprincipal.

Proof. The bulk of the work has been done in Construction 5.29. Start with
a diffeological bibundle GA!X X "X~ H and a weak inverse HAY Y ™V AG.
We shall define a smooth division map (-, ) for the left G-action. For
(z1,29) € X x7"* X, we know by the Axiom of Covering that the constant
map const(y, z,) : R — X x5~ X is a plot centred at (xy, ;). We use
the shorthand ¥, o Q(*1:72) to denote the map ¥, o Q® defined by the plot
a = const(,, ., and then write:

<ZE17:L‘2>G =W, 0 Q($1,$2)<0)
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That just leaves us to show that this map is smooth. For that, take an arbitrary
plot a : Uy, — X x3" X of the fibred product. We need to show that
(-,-)g oais aplot of G. For any t € U,, we have that

(a1 (1), o (t)) e = Ty 0 Q°D(0)
is the unique arrow in GG such that
Ty 0 Q0(0) - consti(t)(()) = consti(t)(O),

where const’ denotes the ith component of the constant plot. But then
constg(t)(()) = «;(t), and we already know that Wy o Q*(t) € G is the
unique arrow that sends aw (%) to a4 (t), so we have:

Ty 0 Q¥O(0) = Wy 0 Q(1), which means (,)goa=T; 00"

But the right hand side ¥, o Q“ : U, — G is a plot of G as per Construc-
tion 5.29, proving that the map (-, -) is smooth. It is quite evident from its
construction that it satisfies exactly the properties of a division map, and it
1s now easy to verify that

(<'7 '>G7pr2|X><HOX) : X XE;’TX X — G ng,lx X

is a smooth inverse of the action map (see Section 4.2.1). The fact that
it lands in the right codomain, i.e., src({(z1,z2)¢) = lx(x2), follows from
the properties of W as the inverse of the action map of the balanced tensor
product. Therefore G X %5 Hy is a pre-principal bundle. An analogous

argument will show that G & X TXAH is also pre-principal, and hence
we have proved the claim. 0

We can now prove our main theorem:

Theorem 5.31. A bibundle is weakly invertible in DiffeolBiBund if and
only if it is biprincipal. That means: two diffeological groupoids are Morita
equivalent if and only if they are equivalent in DiffeolBiBund.

Proof. One of the implications is just Proposition 5.24. The other now fol-
lows from a combination of Propositions 5.26 and 5.30. [
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This significantly generalises [LanO1b, Proposition 4.21], not only in that
we have a generalisation to a diffeological setting, but also in that it considers
a more general type of bibundle. It justifies the bicategory DiffeolBiBund
as being the appropriate setting for Morita equivalence of diffeological group-
oids. It also shows that the assumptions of left principality of the Lie group-
oid bibundles appear to be more like technical necessities for getting a well
defined bicategory of Lie groupoids and bibundles, rather than being mean-
ingful assumptions on the underlying smooth structure of the bibundles. In
Section 7.1 we discuss other aspects of diffeological Morita equivalence
between Lie groupoids. A possible category of fractions approach to Morita
equivalence of diffeological groupoids is discussed in [vdS20, Chapter V].

6. Some Morita Invariants

In theories of Morita equivalence, there are often interesting properties that
are naturally Morita invariant. In this section we discuss some results that
generalise several well known Morita invariants of Lie groupoids to the dif-
feological setting. These include: invariance of the orbit spaces (Defini-
tion 3.4), of being fibrating (Definition 6.2), and of the action categories
(Definition 4.5). The proofs are taken from [vdS20, Chapter IV].

6.1 Invariance of orbit spaces

It is a well known result that if two Lie groupoids G = Gy and H = H, are
Morita equivalent (in the Lie groupoid sense), then there is a homeomorphism
between their orbit spaces G,/G and Hy/H, see e.g. [CM18, Lemma 1]. In
fact, it turns out that the orbit spaces are even diffeologically diffeomorphic
[Wat20, Theorem 3.8]%. The following theorem extends this result further
from Lie groupoids to arbitrary diffeological groupoids. The construction of
the underlying function is the same as for the Lie groupoid case, which is
sketched in the proof of [CM18, Lemma 1], and which we describe below in
detail.

8The author thanks the anonymous referee for bringing this result to his attention. We
should also like to note that several other variants of this statement hold, namely in the
settings of differentiable- and subcartesian spaces, as proved in [CM18].
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Theorem 6.1. If G = Gy and H = H, are two Morita equivalent diffeolo-
gical groupoids, then there is a diffeomorphism Gy/G = Hy/H between
their orbit spaces.

Proof. Let GAX X "~ H be the bibundle instantiating the Morita equival-
ence. Our first task will be to construct a function ¢ : Go/G — Hy/H
between the orbit spaces. The idea is to lift a point a € G of the base of
the groupoid to its [ x-fibre, which by right principality is just an H-orbit in
X, and then to project this orbit down to the other base H, along the right
moment map ry. The fact that the bundle is biprincipal ensures that this can
be done in a consistent fashion.

We are dealing with four actions here, so we need to slightly modify
our notation to avoid confusion. If a € G is an object in the groupoid G,
we shall denote its orbit by Orbg,(a), which, as usual, is just the set of all
points a’ € Gy such that there exists an arrow g : @ — a' in G. Similarly,
for b € Hy we write Orbg,(b). On the other hand, we have two actions on
X, for whose orbits we use the standard notations Orbg(z) and Orby (),
where x € X.

Now, start with a point @ € Gy, and consider its fibre I3'(a) in X.
Since the bibundle is right subductive, the map [y is surjective, so this
fibre is non-empty and we can find a point ¥, € [y'(a). We claim that
the expression Orby, o rx(z,) is independent on the choice of the point
x, in the fibre. For that, take another point 2/, € I3'(a). This gives the
equation [y (z,) = lx(z/,), and since the bibundle is right pre-principal, we
get a unique arrow h € H such that 2/, = x,h. From the definition of a
right groupoid action, this in turn gives the equations rx(z!) = src(h)
and rx(z,) = trg(h), which proves the claim. To summarise, whenever
T4, 7 € I (a) are two points in the same [ x-fibre, then we have:

Orby, o rx(z4) = Orbg, o rx (). (1)

Next we want to show that neither is this expression dependent on the point
a € G, but rather on its orbit Orbg,(a). For this, take another point
b € Orbg,(a), so there exists some arrow ¢ : a — bin G. Pick then z €
Ix'(a) and y € I (b). This means that src(g) = lx(z) and trg(g) = Ix(y),
which means that if we let g act on the point = we get a point gz € I (b),
in the same [x-fibre as y. Then using equation (1) applied to gz and ¥, and
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the G-invariance of the right moment map rx, we immediately get:
Orbpy, orx(x) = Orbg, o rx(gx) = Orby, o rx(y).
Using this, we can now conclude that there is a well-defined function
®:Gy/G— Hy/H, Orbg,(a) — Orby, orx(z,),

that is neither dependent on the point a in the orbit Orbg,(a), nor on the
choice of the point x, € I5'(a) in the fibre. Note that this function exists by
virtue of right subductivity (and the Axiom of Choice), which ensures that
the left moment map [y is a surjection (and for each a there exists an x,).

Either by replacing G* X "X~ H by its opposite bibundle, or by switch-
ing the words ‘left” and ‘right’, the above argument analogously gives a func-
tion going the other way:

V: Hy/H — Gy/G; Orby, (b) — Orbg, o Ix(ys),

where now y, € 75" (b) is some point in the fibre of the right moment map
rx. We claim that ® and ¥ are mutual inverses. To see this, pick a point
a € Gy, apoint z, € I (a), a point Y,y (z,) € 7y (rx(24)). Then we can
write

U o @ (Orbg,(a)) = ¥ (Orby, (rx(7a))) = Orbe, (Ix (Yrx () -

We also have, by choice, the equation rx(2,) = 7x(Yry(z,))> SO by left
pre-principality there exists an arrow g € G such that gz, = Y,y (2,)- By
definition of a left groupoid action, this then further gives

SI‘C(g) = lX(xa) =a and trg(g) = lX(yT’X(CCa))'

This proves that the right-hand side of the previous equation is equal to

OrbGo (ZX (er (ma))) = OrbGo ((I),

which gives ¥ o ® = idg, /. Through a similar argument, using right pre-
principality, we obtain that ® o ¥ = idp, /5.

To finish the proof, it suffices to prove that both ® and ¥ are smooth.
Again, due to the symmetry of the situation, we shall only prove that P is
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smooth. The proof for ¥ will follow analogously. Since Orbg, is a subduc-
tion, to prove that ® is smooth it suffices by Lemma 2.20(3) to prove that
® o Orbg, is smooth. Since the left moment map [x is a surjection, using
the Axiom of Choice we pick a section o : GGy — X, which replaces our
earlier notation of o(a) =: x,. From the way & is defined, we see that we
get a commutative diagram:

.
Gy —2— X ~ - H,

Orbgol lOrbHO

GO/G > Ho/H

(3]

We are therefore to show that Orby, o 7x o o is smooth. For this, pick a plot
a : U, — G of the base space. By right subductivity, the left moment map
[x is a subduction, so locally a|y, = [x o 5, where (3 is some plot of X. Now,
note that, for all ¢ € V, both the points 5(t) and o o [x o ((t) are elements
of the fibre ' (Ix o 3(t)). Therefore, by equation (1) we get:

Orby, orx oo oaly = Orby,orxocolyof = Orby, orxof.

The right-hand side of this equation is clearly smooth (and no longer de-
pendent on the choice of section o). By the Axiom of Locality for G, it
follows that Orby, o 7x o 0 o a is globally smooth, and since the plot o was
arbitrary, this proves that ® o Orbg, is smooth. Hence, ® is smooth. After
an analogous argument that shows ¥ is smooth, the desired diffeomorphism
between the orbit spaces follows. 0

Note that in the proof of [Wat20, Theorem 3.8], instead of a global
(not necessarily smooth) section ¢ : Gy — X of the left moment map
lx : X = Gy, they use the fact that [x is a surjective submersion to find
a local smooth section. Our proof shows that it is not necessary for o to be
smooth, highlighting another difference between the role of surjective sub-
mersions and subductions’.

6.2 Invariance of fibration

The theory of diffeological (principal) fibre bundles is shown in [IZ13a,
Chapter 8] to be fully captured by the following notion:

9We thank the anonymous referee for pointing out this difference between the proofs.
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Definition 6.2. A diffeological groupoid G = G| is called fibrating (or a
fibration groupoid) if the characteristic map (trg,src) : G — Gy X Gy is a
subduction.

This leads to a theory of diffeological fibre bundles that is able to treat the
standard smooth locally trivial (principal) fibre bundles of smooth manifolds,
but also bundles that are not (and could not meaningfully be) locally trivial.
It is then natural to ask if this property of diffeological groupoids is invariant
under Morita equivalence. The following theorem proves that this is the
case:

Theorem 6.3. Let G = Gy and H = H, be two Morita equivalent dif-
feological groupoids. Then G = G is fibrating if and only if H = H, is
fibrating.

Proof. Because Morita equivalence is an equivalence relation, it suffices to
prove that if G = G is fibrating, then so is H = H,. Denoting the
characteristic maps of these groupoids by x¢ = (trgg,srcg) and xg =
(trgy,srcy), assume that G is fibrating, so that x¢ is a subduction. Our
goal is to show y is also a subduction.

To begin with, take an arbitrary plot o« = (a4, an) : U, — Hp X Hy, and
fix an element ¢ € U,. We thus need to find a plot ® : W — H, defined
on an open neighbourhood ¢t € W C U, such that a|y = xy o . Morita
equivalence yields a biprincipal bibundle GAX X "X ~H. To construct the
plot ®, we use almost all of the structure of this bibundle.

The right moment map rxy : X — Hj is a subduction, so for each of
the components «; of o we get a plot 3; : U; — X, defined on an open
neighbourhood t € U; C U, such that o;|y, = rxof;. Define U := U;NUx,
which is another open neighbourhood of ¢ € U, and introduce the notation

B = (bilv, Balv) : U — X x X.

Composing with the left moment map [y : X — Go, we get (Ix X Ix) o f:
U — Gy x Gp. It is here that we use that G = () is fibrating. Because
of that, we can find an open neighbourhood t € V' C U C U, and a plot
2 : V — G such that

XGOQ:(ZXXZX)06|V. 2)
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This means that trg, o Q@ = [x o 1]y and srcg o = Ix o Bo|y. Let
va : X @5 X — G be the biequivariant diffeomorphism from Proposition 5.24.
Using the plot § we just obtained, we get another plot p;' 0 Q: V — X @y X.
Now, since the canonical projection wp : X X;};’TX X = X @y X of
the diagonal H-action is a subduction, we can find an open neighbourhood
teW CVandaplotw: W — X x7¥"™ X such that

WHow:gp(_;lomW. 3)

Note that the plot w decomposes into its components wy,wy : W — X,
which satisfy rx o wy = rx o we. Using the biequivariance of ¢ and the
defining relation Lx o my = lx o pry |XxH)Y we find:

C

Ix o Bilw = trgg o Qlw
= Lx o g o Qlw
=Lxomgow
=lxo pf1|XxHOY ow
= lx owy,
where the first equality follows from the equation (2), and the third one from

(3). Similarly, we find Ix o |y = lx o we. These two equalities give two
well-defined plots, one for each i € {1, 2}, given by

/81|W®CL)Z = 7TGO<6i|W7wi) W (/Bl‘w—7u)2)> YXZC};O’IXX L 7®GX;
where g : X X léfo’lx X — X®¢X is the canonical projection of the diagonal
G-action. We can now apply the biequivariant diffeomorphism ¢z : X ®¢
X = H from Proposition 5.24 to get two plots in H. It is from these
two plots that we will create . Here it is absolutely essential that we have
constructed the plot w such that rx o w; = rx o w,, because that means that
the sources of these two plots in A will be equal, and hence they can be
composed if we first invert one of them component-wise. To see this, use the
biequivariance of ¢y to calculate

srey o o o (Bilw ® wi) = Rx o (Bilw ® w;)
= T'x O Pylx, x © (Bilw,wi)

=Tx ow;,
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and similarly:

trgy o o (Bilw @ wi) = Lx o (Bilw ® wi)
=Trxo prl‘YxGoX o (Bilw,wi)
=71x o Bilw
= ilw.

Of course, if we switch f3; | @w; to w; ®5;|w, which is defined in the obvious
way, then the right-hand sides of the above two equations will switch. So,
for every s € W, the expression ¢ (ws(s) ® fa(s)) is an arrow in H from
rx 0 [a(8) = aa(s) to rx ows(s), and wy (1(s) @ wi(s)) is an arrow from
rxowi(s) = rxows(s)toryxofi(s) = ai(s), which can hence be composed
to give an arrow from an(s) to vy (s). This is exactly the kind of arrow we
want. Therefore, for every s € W, we get a commutative triangle in the
groupoid H, which defines for us the plot & : W — H:

as(s) . > aq(s)

e (w2(s)©B2(s)) 4(51(5)@)%(8))

rx o wi(s).

The map & is clearly smooth, because inversion and multiplication in H are
smooth. Hence we have defined the plot ®, and by the above diagram it is
clear that it satisfies

X o P = (trgy o ®,srecy o P) = afw.

Thus we may at last conclude that x  is a subduction, and hence that H = H|
is also fibrating. [

6.3 Invariance of representations

In the Morita theory of rings, it holds that two rings are Morita equivalent if
and only if their categories of modules are equivalent. For groupoids, even
discrete ones, this is no longer an “if and only if”” proposition, but merely an
“only if”. Nevertheless, it is known that the result transfers to Lie groupoids
as well [LanOla, Theorem 6.6], and here we shall prove that it transfers also
to diffeology.
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Theorem 6.4. Suppose that G = Gy and H = H, are Morita equivalent
diffeological groupoids. Then the action categories Act(G = G,) and
Act(H = H,) are categorically equivalent.

Proof. It G = Gy and H = H, are Morita equivalent, there exists a bi-
principal bibundle GA!X X "X~ H. Recall from Definition 4.5 the notion of
action categories and from Definition 5.9 that of induced action functors. We
claim that

X ®y —: Act(H = Hy) — Act(G = Gy),
X ®c —: Act(G = Gy) — Act(H = Hy)

are mutually inverse functors up to natural isomorphism. To see this, take a
left H action H~Y'Y. Then

(X 06 —) o (X @n—) [HAYY] = (X @ —) [GA* X @5 Y]

= HA'Y (X @ (X @ Y)).

Therefore, we need to construct a natural biequivariant diffeomorphism
py X @¢ (X @y Y) — Y.

For this, we collect the biequivariant diffeomorphisms from Propositions 5.12,
5.13 and 5.24. Let us denote them by

Ay : X @c (X @pY) — (X ®c X) @ Y,
o X ®c X — H,
My :H®ygY — Y,
describing the association up to isomorphism, the division map of the bib-
undle, and the left action H ~ Y, respectively. We then define
py == My o (pyg ®@idy) o Ay.

Note that (¢ ® idy ) is still a biequivariant diffeomorphism. The naturality
square of the natural transformation s : (X Ra —) o(X®y—)=id Act(H)
then becomes:

X®¢(XopY) —2 =Y
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where ¢ : Y — Z is an H-equivariant smooth map. It follows from the
structure of these maps that the naturality square commutes. The top right
corner of the diagram becomes:

popy (11 ® (12 ®y)) =¢po My o (pg ®idy) o Ay (11 ® (12 @ y))
=@ o My o (pg ®idy) (21 ® 12) ®Y)
=@ o My (pu(r1 ® 12) @ Y)
= ¢ (pr (11 ® 22)Y)
= (1 @ 22)p(y),

where the very last step follows from H-equivariance of ¢. Following a
similar calculation, the bottom left corner evaluates as

piz o (idx ® (idx ® ¢)) = Mz o (py ®idz) 0 Az o (idx ® (idx ® ¢))
= Mz o (pn ®idz) o ((idx ®idx) @ ¢)
= Mz o (on @),

which, when evaluated, gives exactly the same as the above expression for
the top right corner. This proves that 4 is natural, and since every of its com-
ponents is an H-equivariant diffeomorphism, it follows that x is a natural
isomorphism. The fact that the composition (X ®py —) o (X ®¢ —) is nat-
urally isomorphic to idact(e) follows from an analogous argument. Hence
the categories Act(G = Gy) and Act(H = H,) are equivalent, as was to
be shown. [

7. Discussion and Suggestions for Future Research

7.1 Diffeological bibundles between Lie groupoids

As we saw in Example 5.4, if two Lie groupoids are Lie Morita equivalent
(i.e. Morita equivalent in the Lie groupoid sense [CM 18, Definition 2.15]),
then they are also diffeologically Morita equivalent. This is simply due to the
fact that surjective submersions between smooth manifolds are in particular
also subductions, and hence a Lie principal groupoid bundle is also diffeolo-
gically principal. But, what if G = Gy and H = H are two Lie groupoids,
such that there exists a diffeological biprincipal bibundle G X "X~ H
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between them. What does that say about the Lie Morita equivalence of G
and H? This still remains an open question (Question 7.6). In this section
we discuss some related results, which also pertain to our choice of subduc-
tions over local subductions for the development of the general theory. A
slightly more detailed discussion is in [vdS20, Section 4.4.3]. In light of
Proposition 2.25, the source and target maps of a Lie groupoid are local sub-
ductions (cf. Proposition 3.2), and we can therefore introduce the following
class of diffeological groupoids:

Definition 7.1. We say a diffeological groupoid G = G, is locally subduct-
ive if its source and target maps are local subductions'®. Clearly, every Lie
groupoid is a locally subductive diffeological groupoid.

Looking at the structure of the proofs in Sections 4 and 5, it appears as
if they can be generalised to a setting where we replace all subductions by
local subductions. In doing so, we would get a theory of locally subduct-
ive groupoids, locally subductive groupoid bundles, and the corresponding
notions for bibundles and Morita equivalence, which, as it appears, would
follow the same story as we have so far presented. An upside to that frame-
work would be that it directly returns the original theory of Morita equival-
ence for Lie groupoids, once we restrict our diffeological spaces to smooth
manifolds. In this section we shall prove that, even in the slightly more gen-
eral setting of Section 5, the diffeological bibundle theory reduces to the Lie
groupoid theory in the correct way. We do this by proving that the moment
maps of a biprincipal bibundle between locally subductive groupoids have
to be local subductions as well (Lemma 7.3). In hindsight, this provides
more justification for our choice of starting with subductions instead of local
subductions. One consequence of this choice is that it allows for groupoid
bundles that are truly pseudo-bundles, in the sense of [Per16]. The notion of
pseudo-bundles seems to be the correct notion in the setting of diffeology to
generalise all bundle constructions on manifolds, at least if we want to treat
(internal) tangent bundles as such (see [CW16]). There exists diffeological
spaces whose internal tangent bundle is not a local subduction [CW 16, Ex-
ample 3.17]. If we had defined principality of a groupoid bundle to include

10t would be tempting to call such groupoids “diffeological Lie groupoids,” but this
would conflict with earlier established terminology of so-called diffeological Lie groups in
[IZ13a, Article 7.1] and [Les03; Mag18].

- 230 -



N. VAN DER SCHAAF DIFFEOLOGICAL MORITA EQUIV.

local subductiveness, these examples would not be treatable by our theory
of Morita equivalence.

Lemma 7.2. Let GAX X "X~ H be a diffeological bibundle, where H = H,
is a locally subductive groupoid. Then the canonical quotient projection map
T X X" X — X ®p X is a local subduction.

Proof. Let a : (U,,0) — (X ®y X, 71 ® x5) be a pointed plot of the
balanced tensor product. Since 7y is already a subduction, we can find a
plot 3 : V — X xp, X, defined on an open neighbourhood 0 € V' C U,
of the origin, such that «|,; = 7y o 5. This plot decomposes into two plots
B1, B2 € Dx on X, satisfying ry o 81 = rx o 5. We use the notation «|y =
f1 ® [y. In particular, we get an equality x; ® x5 = 51(0) ® 52(0) inside the
balanced tensor product, which means that we can find an arrow h € H such
that 3;(0) = x;h. The target must be trg(h) = rx (1) = rx(x2). This arrow
allows us to write a pointed plot rx o 3; : (V,0) — (Hy, trg(h™!)), so that
now we can use that I = H, is locally subductive. Since the target map of
H is a local subduction, we can find a pointed plot Q : (W,0) — (H,h™!)
such that rx o ;|w = trgy o Q. This relation means that, for every t € W,
we have a well-defined action ;(t) - 2(t) € X. Hence we get a pointed plot

U (W,0) — (X xp"™ X, (1, 22)); t— (B1(t)Q1), B2(1)21)) .
It then follows by the definition of the balanced tensor product that

w0 U(t) = Pilw ()2E) @ Balw (1)) = Bulw (1) @ Polw (t) = alw (),
proving that 7y is a local subduction. [

Lemma 7.3. If GA!X X "X~ H is a biprincipal bibundle between locally
subductive groupoids, then the moment maps lx and rx are local subduc-
tions as well.

Proof. If the bibundle GA!X X "\ H is biprincipal, we get two biequivari-
ant diffeomorphisms ¢ : X @y X — G and vy : X ®¢ X — H (Pro-
position 5.24). It follows that the local subductivity of the source and target
maps of G and H transfer to the four moment maps of the balanced tensor
products. For example, the left moment map Lx : X ®y X — Gy can
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be written as Lx = trg., o ¢, where the right hand side is clearly a local
subduction. We know as well that Lx fits into a commutative square with
the original moment map [x:

X X;{);ﬂ"xy L X@HY

I”ﬂXxHOYl le

X — G,
Ix

Since local subductions compose, and since by Lemma 7.2 the projection 7y
is a local subduction, we find that the upper right corner Ly o my must be a
local subduction. Hence the composition [x o pr| X, X is a local subduc-
tion, which by an argument that is analogous to the proof of Lemma 2.20(2)
gives the local subductiveness of [x. That the right moment map rx is a
local subduction follows from a similar argument. 0

The lemma suggests that, if we refine our notion of principality to some-
thing we might call pure-principality, by passing from subductions to local
subductions, then biprincipality between locally subductive groupoids means
the same thing as this new notion of pure-principality. Let us make this pre-
cise.

Definition 7.4. Two diffeological groupoids are called purely Morita equi-
valent if there exists a biprincipal bibundle between them, such that the two
underlying moment maps are local subductions.

Clearly, pure Morita equivalence implies ordinary Morita equivalence in
the sense of Definition 5.3, since local subductions are, in particular, sub-
ductions. The question is if the converse implication holds as well. We have
a partial answer, since Lemma 7.3 can now be restated as follows:

Proposition 7.5. Two locally subductive groupoids are Morita equivalent if
and only if they are purely Morita equivalent.

Especially in light of the existence of subductions that are not local sub-
ductions (see e.g. [IZ13a, Exercise 61, p.60]), and the fact that the proof of
Lemma 7.3 relies so heavily on the assumption that the groupoids are loc-
ally subductive, it seems that the ordinary diffeological Morita equivalence
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of Definition 5.3 is not equivalent to pure-Morita equivalence in general.
We do not, however, know of an explicit counter-example. This discussion
leaves us an open question:

Question 7.6. Does diffeological Morita equivalence reduce to Lie Morita
equivalence on Lie groupoids? That is to ask, if two Lie groupoids are dif-
feologically Morita equivalent, are they also Lie Morita equivalent?

If two Lie groupoids G and H are diffeologically Morita equivalent, then
there exists a diffeological biprincipal bibundle GAX X "X ~H, where X is
a diffeological space. A positive answer to Question 7.6 could consist of a
proof that X is in fact a smooth manifold. Since GG and H are both manifolds,
it follows that X @y X and X ®¢ X are also manifolds. We do not know
if this is sufficient to imply that X itself has to be a manifold. One sugges-
tion is to use [IZ13a, Article 4.6], which gives a characterisation for when
a quotient of a diffeological space by an equivalence relation is a smooth
manifold. Since the balanced tensor products are quotients of diffeological
spaces, one may try to use this result to obtain a special family of plots for
their underlying fibred products. This could potentially be used to define an
atlas on X.

7.2 Directions for future research

We list here some possible directions for future research. These are also
proposed at the end of [vdS20, Section 1.2.3].

* Finding an answer to the open Question 7.6 about diffeological Morita
equivalence between Lie groupoids.

* The construction of a theory of bibundles for a more general frame-
work of generalised smooth spaces. One possibility is to look at the
generalised spaces of [BH11, Definition 4.11] (subsuming diffeology),
or even to look at arbitrary classes of sheaves. What is the rela-
tion between our theory of Morita equivalence and the discussion in
[MZ15]? A theory of principal bibundles seems to exist in a general
setting for groupoids in co-toposes: [nL18].

* What is the precise relation between differentiable stacks and diffeolo-
gical groupoids (cf. [WW19])? Using our notion of Morita equi-
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valence, what types of objects are “diffeological stacks” (i.e., Morita
equivalence classes of diffeological groupoids)?

* Can the Hausdorff Morita equivalence for holonomy groupoids of sin-
gular foliations introduced in [GZ19] be understood as a Morita equi-
valence between diffeological groupoids?

* Can the bridge between diffeology and noncommutative geometry that
is being built in [Berl6; IZL18; ASZ19; IZP20] be strengthened by
our theory of Morita equivalence? Morita equivalence of Lie group-
oids is already an important concept in relation to noncommutative
geometry, especially for the theory of groupoid C*-algebras. Can this
link be extended to the diffeological setting, possibly through a theory
of groupoid C*-algebras for (a large class of) diffeological groupoids?
If such a theory exists, what is the relation between Morita equivalence
of diffeological groupoids and the Morita equivalence of their group-
oid C*-algebras? Is Morita equivalence preserved just like in the Lie
case?

References

[ASZ19] I. Androulidakis, G. Skandalis and M. Zambon. Diffeological
groupoids and their C*-algebras. Lecture slides, https: //
indico.math.cnrs.fr/event/3571/contributions/
1977 /attachments/2341/2854/Androulidakis.
pdf. 2019.

[AZ] I. Androulidakis and M. Zambon. Integration of Singular Sub-
algebroids. In preparation.

[BH11] J. Baez and A. Hoffnung. “Convenient categories of smooth
spaces”. In: Transactions of the American Mathematical Soci-
ety 363.11 (2011), pp. 5789-5825.

[BIKW17] A. Batubenge, P. Iglesias-Zemmour, Y. Karshon and J. Watts.
Diffeological, Frolicher, and Differential Spaces. 2017. arXiv:
1712.04576 [math.DG].

-234 -



N. VAN DER SCHAAF DIFFEOLOGICAL MORITA EQUIV.

[Ber16]

[Blo08]

[BFW13]

[Bos07]

[CW16]

[CLW16]

[CM18]

[dHo12]

[Don8&4]

[DI&3]

[GZ19]

P. Bertozzini. Spectral Geometries for Some Diffeologies. Lec-
ture slides, http://bcc.impan.pl/16Index—-SIII/
uploads/Bertozzini_slides.pdf. 2016.

C. Blohmann. “Stacky Lie groups”. In: Int. Math. Res. Not.
(2008), Art. ID rnn 082, 51.

C. Blohmann, M. C. B. Fernandes and A. Weinstein. “Group-
oid symmetry and constraints in general relativity”. In: Com-

munications in Contemporary Mathematics 15.01 (2013), pp. 125—
161.

R. D. Bos. “Groupoids in Geometric Quantization”. PhD thesis.
Radboud University Nijmegen, 2007.

J. Christensen and E Wu. “Tangent spaces and tangent bundles
for diffeological spaces”. In: Cah. Topol. Géom. Différ. Catég.
LVII (2016).

B. Collier, E. Lerman and S. Wolbert. “Parallel transport on
principal bundles over stacks”. In: Journal of Geometry and
Physics 107 (2016), pp. 187-213.

M. Crainic and J. N. Mestre. “Orbispaces as differentiable strat-
ified spaces”. In: Letters in mathematical physics 108.3 (2018),
pp- 805-859.

M. L. del Hoyo. Lie Groupoids and Differentiable Stacks. Dec.
2012. arXiv: 1212.6714 [math.DG].

P. Donato. “Revétements et groupe fondamental des espaces
différentiels homogenes”. PhD thesis. Université de Provence,
Marseille, 1984.

P. Donato and P. Iglesias. “Exemple de groupes différentiels:
flots irrationnels sur le tore”. In: CPT-83/P-1524 (1983). http:
//math.huji.ac.il/~piz/documents/EDGDFISLT.
pdf.

A. Garmendia and M. Zambon. “Hausdorff Morita equivalence
of singular foliations”. In: Annals of Global Analysis and Geo-
metry 55.1 (2019), pp. 99-132.

-235-



N. VAN DER SCHAAF DIFFEOLOGICAL MORITA EQUIV.

[GH19] J. Gtowacki. “Groupoid Symmetry and Constraints Bracket of
General Relativity Revisited”. Master thesis, https: //www.
math.ru.nl/~landsman/Jan2019.pdf.2019.

[HS87] M. Hilsum and G. Skandalis. “Morphismes K -orientés d’espaces
de feuilles et fonctorialité en théorie de Kasparov (d’apres une
conjecture d’A. Connes)”. In: Annales scientifiques de I’Ecole
normale supérieure. Vol. 20. 3. 1987, pp. 325-390.

[Ig185] P. Iglesias. “Fibrations difféologiques et homotopie”. PhD thesis.
Université de Provence, Marseille, 1985.

[1Z13a] P. Iglesias-Zemmour. Diffeology. Vol. 185. American Mathem-
atical Soc., 2013.

[1Z13b] P. Iglesias-Zemmour. The Beginning of Diffeological Spaces.
Blog post, http://math.huji.ac.il/~piz/documents/
DBlog—Rmk-TBODS.pdf. 2013.

[1Z17] P. Iglesias-Zemmour. An Introduction to Diffeology. http :
//math.huji.ac.il/~piz/documents/AITD.pdf.
2017.

[IZL18] P. Iglesias-Zemmour and J.-P. Laffineur. “Noncommutative geo-

metry and diffeology: The case of orbifolds”. In: Journal of
Noncommutative Geometry 12.4 (2018), pp. 1551-1572.

[1ZP20] P. Iglesias-Zemmour and E. Prato. Quasifolds, Diffeology and
Noncommutative Geometry. May 2020. arXiv: 2005.09283
[math.DG].

[Lac10] S. Lack. “A 2-categories companion”. In: Towards higher cat-
egories. Springer, 2010, pp. 105-191.

[LanOla]  N. P. Landsman. “Bicategories of operator algebras and Pois-
son manifolds”. In: Mathematical physics in mathematics and
physics. Vol. 30. Fields Inst. Commun. Amer. Math. Soc., 2001,
pp- 271-286.

[LanO1b]  N. P. Landsman. “Quantized reduction as a tensor product”. In:
Quantization of singular symplectic quotients. Springer, 2001,
pp- 137-180.

- 236 -



N. VAN DER SCHAAF DIFFEOLOGICAL MORITA EQUIV.

[Les03]

[Mac71]

[Mac20]

[MacO5]

[Magl8]

[MZ15]

[MMO5]

[MRW&7]

[nL18]

[Perl6]

[Rie81]

[RV18]

J. Leslie. “On a diffeological group realization of certain gen-
eralized symmetrizable Kac-Moody Lie algebras”. In: Journal
of Lie Theory 13.2 (2003), pp. 427-442.

S. Mac Lane. Categories for the working mathematician. Second
Edition (1998). Vol. 5. Graduate Texts in Mathematics. Springer-
Verlag, 1971.

L. E. MacDonald. The holonomy groupoids of singularly foli-
ated bundles. June 2020. arXiv: 2006.14271 [math.DG].

K. C. H. Mackenzie. General theory of Lie groupoids and Lie
algebroids. Vol. 213. Cambridge University Press, 2005.

J.-P. Magnot. “The group of diffeomorphisms of a non-compact
manifold is not regular”. In: Demonstratio Mathematica 51.1
(2018), pp. 8-16.

R. Meyer and C. Zhu. “Groupoids in Categories with Pretopo-
logy”. In: Theory & Applications of Categories 30.55 (2015).

I. Moerdijk and J. Mr€un. “Lie groupoids, sheaves and co-
homology”. In: Poisson geometry, deformation quantisation and
group representations. Vol. 323. London Math. Soc. Lecture
Note Ser. Cambridge Univ. Press, Cambridge, 2005, pp. 145—
272.

P. S. Muhly, J. N. Renault and D. P. Williams. “Equivalence and
isomorphism for groupoid C*-algebras”. In: Journal of Oper-
ator Theory (1987), pp. 3-22.

nlLab. Bibundle. https://ncatlab.org/nlab/show/
bibundle, (version: 2018-07-3). 2018.

E. Pervova. “Diffeological vector pseudo-bundles”. In: Topo-
logy and its Applications 202 (2016), pp. 269-300.

M. A. Rieffel. “C*-algebras associated with irrational rotations”.
In: Pacific Journal of Mathematics 93.2 (1981), pp. 415-429.

D. M. Roberts and R. F. Vozzo. “Smooth loop stacks of dif-
ferentiable stacks and gerbes”. In: Cah. Topol. Géom. Différ.
Catég. LI1X-2 (2018), pp. 95-141.

- 237 -



N. VAN DER SCHAAF DIFFEOLOGICAL MORITA EQUIV.

[Ser65] J.-P. Serre. “Lie groups and Lie algebras”. In: Lecture Notes in
Math 1500 (1965).

[Sou80] J.-M. Souriau. “Groupes différentiels”. In: Differential geomet-
rical methods in mathematical physics. Springer, 1980, pp. 91—
128.

[Sou84] J.-M. Souriau. “Groupes différentiels et physique mathématique”.
In: Group Theoretical Methods in Physics. Springer, 1984, pp. 511-
513.

[Stall] A. Stacey. “Comparative smootheology”. In: Theory and Ap-
plications of Categories 25.4 (2011), pp. 64—117.

[vdS20] N. van der Schaaf. “Diffeology, Groupoids & Morita Equival-
ence”. Master Thesis, https : / /www . math . ru.nl/
~landsman/NestaM.pdf. 2020.

[Wat20] J. Watts. The Orbit Space and Basic Forms of a Proper Lie
Groupoid. May 2020. arXiv: 1309.3001v4 [math.DG].

[WW19] J. Watts and S. Wolbert. Diffeological Coarse Moduli Spaces of
Stacks over Manifolds.2019. arXiv: 1406.1392 [math.DG].

Nesta van der Schaaf

School of Informatics
University of Edinburgh

10 Crichton St, Newington
Edinburgh EH8 9AB (Scotland)
n.schaaf@ed.ac.uk

- 238 -



