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Résumé. En utilisant des fibrations convexes de Grothendieck, nous
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1 Introduction and outline
In 2011, Baez, Fritz, and Leinster (BFL) characterized the Shannon entropy
(difference) of finite probability distributions as the only non-vanishing con-
tinuous affine functor FinProb → BR≥0 from finite probability spaces
to non-negative numbers up to an overall non-negative constant [4]. Here,
FinProb is the category of finite sets equipped with probability measures as
objects and probability-preserving functions as morphisms. The codomain
category, BR≥0, is the category consisting of a single object and whose mor-
phisms from that object to itself are all non-negative real numbers equipped
with addition as the composition.

A natural follow-up question is whether the von Neumann (or finite-
dimensional Segal) entropy can be characterized in a similar manner by re-
placing FinProb with NCFinProb, the category of finite quantum (i.e.
non-commutative) probability spaces, consisting of unital finite-dimensional
C∗-algebras equipped with states as objects and state-preserving unital ∗-
homomorphisms as morphisms. Physically, such objects correspond to hy-
brid classical/quantum systems and the morphisms describe deterministic
dynamics, which includes tracing out subsystems. Although this question
was partially explored by Baez and Fritz [2], a suitably similar set of axioms
was never obtained. The present manuscript accomplishes this task.

There are two difficulties with extending BFL’s result to the quantum set-
ting. The first issue is that the difference of von Neumann entropies need not
have a fixed sign. There are state-preserving unital ∗-homomorphisms that
increase the entropy as well as decrease the entropy. The sign of the entropy
difference is closely related to the fact that Landauer’s principle holds for
classical systems [25], but could fail for quantum systems [8, 39]. The root
of the increase stems from the uncertainty principle and entanglement.

Using our axioms, we show that the existence of disintegrations [36]
(called optimal hypotheses in [3]) implies the non-negativity of the entropy
difference. Since disintegrations always exist for finite-dimensional classical
systems, this proves one of the key assumptions of BFL in their functorial
characterization of the Shannon entropy [4].
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The second difficulty when attempting to extend BFL’s work to quan-
tum systems is that the objects of NCFinProb are not convex generated
by any single object in that category. Note that this occurs for FinProb,
where an arbitrary probability space (X, p), with X a finite set and p a prob-
ability measure on X , can be decomposed into a convex sum as (X, p) ∼=⊕

x∈X px1, where 1 is the (essentially) unique probability space consisting
of a single element and px is the probability of x ∈ X . In NCFinProb, a
quantum probability space such as (Mm, ω) cannot be expressed as a convex
combination of lower-dimensional probability spaces. Here, m ∈ N,Mm is
the C∗-algebra of m×m matrices, and ω is a state onMm.

In this manuscript, we simultaneously address both these issues and pro-
vide a functorial characterization of the von Neumann entropy. This is
done by introducing Grothendieck fibrations of convex categories and fi-
bred affine functors. The category NCFinProb forms a fibration over
fdC*-Alg, the category of finite-dimensional unital C∗-algebras and uni-
tal ∗-homomorphisms, by sending each quantum probability space (A, ω) to
the underlying C∗-algebra A. The von Neumann entropy (difference) pro-
vides a functor

NCFinProb BR

fdC*-Alg 1

H //

�� ��
//

, (1.1)

where 1 is the category consisting of a single object and just the identity
morphism, BR is the one-object category whose morphisms consist of all
real numbers with composition rule given by addition, and the left vertical
arrow is the fibration just mentioned.

The fibres of the left and right fibrations in (1.1) are convex categories.
Over each C∗-algebraA on the left, one has the convex set of states S(A) on
A, which is viewed as a discrete convex category. A morphism f : B → A
of C∗-algebras gets lifted to the morphism S(f) : S(A)→ S(B) that acts as
the pullback of states, sending ω to ω ◦ f . On the right, BR is also a convex
category, with convex combinations of real numbers as the convex operation.

This entropy difference functor sends a state ω ∈ S(A) together with
a morphism f : B → A to a real number Hf (ω). Given another state
ξ ∈ S(A) and a number λ ∈ [0, 1], one obtains the inequality

Hf

(
λω + (1− λ)ξ

)
≥ λHf (ω) + (1− λ)Hf (ξ), (1.2)

which is of fundamental importance in quantum information theory. The
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non-negativity of the quantity

χf (λ;ω, ξ) := Hf

(
λω + (1− λ)ξ

)
− λHf (ω)− (1− λ)Hf (ξ) (1.3)

is related to the monotonicity of entropy under partial trace, which is known
to be equivalent to strong subadditivity [46]. A special case of this inequality,
when f :=!A : C→ A is the unique unital ∗-homomorphism intoA, leads to
the fact that mixing always increases entropy. It is actually only this weaker
property that will play a role in our current characterization.

For more general algebras, if ω and ξ have orthogonal supports, and if
f : B → A preserves this orthogonality, then equality in (1.2) is obtained.
This condition, which we call orthogonal affinity, is what replaces the affine
assumption of entropy difference made by BFL. However, orthogonal affin-
ity and (1.2) are not enough to guarantee that HA(ω) := H!A(ω) vanishes on
pure states ω. If one imposes this additional assumption, one can show that
it is no longer necessary to assume χf (λ;ω, ξ) ≥ 0 for all inputs. Instead,
one can demand the simpler assumption that HA(ω) ≥ 0 for all states ω.
In other words, one can replace BFL’s non-negativity assumption for clas-
sical entropy difference with the assumption that HA(ω) ≥ 0 for all states
ω on C∗-algebras A, with equality for pure states. The relationships be-
tween these assumptions will be made precise in the body of the present
manuscript. Our main theorem can then be phrased as follows.

Theorem 1.4 (A functorial characterization of quantum entropy (Theo-
rem 4.26 in body)). Let H : NCFinProb → BR be a continuous and
orthogonally affine fibred functor, as in (1.1), for which HA(ω) ≥ 0 for all
states ω ∈ S(A), with equality on all pure states, for all finite-dimensional
C∗-algebras A. Then there exists a constant c ≥ 0 such that

Hf (ω) = c
(
S(ω)− S(ω ◦ f)

)
for all ∗-homomorphisms B f−→ A of finite-dimensional C∗-algebras and
states ω ∈ S(A).

In this theorem, S(ω) is the von Neumann entropy of ω, which is given
by S(ω) = −tr(ρ log ρ) in the special case when ω = tr(ρ · ) is a state on
Mm represented by a unique density matrix ρ, with tr the (un-normalized)
trace and · signifying the input of the function, i.e. Mm 3 A 7→ tr(ρA).
More generally, when A :=

⊕
x∈XMmx , a state ω on A can be described
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by a collection of states ωx ∈ S(Mmx) and a probability measure p on X
such that ω(Ax) = pxωx(Ax) for Ax ∈ Mmx . In this case, the entropy of ω
is

S(ω) = −
∑
x∈X

px log(px)−
∑
x∈X

pxtr(ρx log ρx). (1.5)

Since all finite-dimensional unital C∗-algebras are of this form (up to iso-
morphism), this specifies the functor H everywhere, since entropy is invari-
ant under isomorphism.

The present manuscript is broken up as follows. We begin by review-
ing states, mutual orthogonality, and entropy in Section 2. In particular, we
provide translations between some operator-algebraic and physical concepts.
Section 3 introduces fiberwise convex structures, fibered functors, and con-
tinuity of fibered functors. Section 4 contains our main result and several
others of potential interest. In particular, we prove that our axioms imply
the non-negativity of Hf (ω) for commutative C∗-algebras by using the fact
that disintegrations exist for morphisms of commutative probability spaces.
More generally, we prove that if a disintegration of (f, ω) exists for an arbi-
trary quantum probability space (A, ω), then Hf (ω) ≥ 0. We also include a
brief historical account of axiomatizations of the von Neumann entropy and
how our characterization compares with some of them.

2 States on finite-dimensional C∗-algebras
In this section, we set up notation and compile several standard facts that will
be used throughout. All C∗-algebras will be unital and finite-dimensional
and all ∗-homomorphisms will be unital unless stated otherwise. We will
work in the Heisenberg picture, as will be explained in Example 2.10. Since
all of our C∗-algebras will be finite-dimensional, they will always be ∗-
isomorphic to direct sums of matrix algebras, so that most of our analysis
will involve only linear algebra. An especially suitable reference includ-
ing more than enough background is Farenick’s linear algebra text [12] (see
Theorem 5.20 and Proposition 5.26 in [12] for the statement regarding all
finite-dimensional C∗-algebras).

Definition 2.1 (Basic definitions). Given a C∗-algebraA, an element a ∈ A
is positive iff there exists an x ∈ A such that a = x∗x. The set of positive
elements inA is denoted byA+.An element a ∈ A is self-adjoint iff a∗ = a.
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An element p ∈ A is a projection iff p∗p = p. The orthogonal complement
of a projection p ∈ A is the element p⊥ := 1A− p (and is also a projection).
Positivity defines a partial order on self-adjoint elements and one writes a ≥
a′ or a′ ≤ a iff a − a′ ∈ A+. Given another C∗-algebra B, a positive map1

B ϕ A is a linear map such that ϕ(B+) ⊆ A+. A weight on a C∗-algebra
A is a positive map A ω C. A weight is called a state iff it is unital. The
set of states on a C∗-algebra A are denoted by S(A).

A non-commutative/quantum probability space is a pair (A, ω) consist-
ing of a C∗-algebra together with a state ω ∈ S(A). A state-preserving map
(a ∗-homomorphism or a positive map) from one non-commutative proba-

bility space (B, ξ) to another (A, ω) is a map B f A such that ξ = ω ◦ f .
A state ω ∈ S(A) is pure iff it cannot be expressed as a non-trivial convex
combination of some pair of distinct states. For the C∗-algebra of m × m
matrices Mm, which is referred to as a matrix algebra, the involution is
the conjugate transpose and is denoted by † instead of ∗. If m = 1, then
M1
∼= C and z is used to denote the complex conjugate of z ∈ C.

Example 2.2 (Density matrices, states, and expectation values). Self-
adjointness and positive semidefiniteness of an m × m matrix coincides
with the C∗-algebraic definition of positivity onMm. Every state ω onMm

can be expressed as ω = tr(ρ · ) for some unique density matrix ρ ∈ Mm,
which is a positive matrix such that tr(ρ) = 1. Here, and everywhere else in
this manuscript, tr denotes the un-normalized trace.

When A :=
⊕

x∈XMmx , with X a finite set and mx ∈ N, a state ω on
A can be described by a collection of states ωx ∈ S(Mmx) and a probability
measure p on X such that ω(Ax) = pxωx(Ax) for Ax ∈ Mmx [36, Sec-
tion 5]. Here, and elsewhere in the manuscript, px is used to denote the prob-
ability of x with respect to p. Since each state ωx corresponds to a density
matrix ρx ∈Mmx , ω can equivalently be expressed as ω(Ax) = pxtr(ρxAx)
for Ax ∈Mmx . We will also use all of the following notations

ω ≡
∑
x∈X

pxωx ≡
∑
x∈X

pxtr(ρx · )

to indicate the same state. In this way, states encode the data of families of
1Motivated by stochastic Gelfand–duality [16,35], ∗-homomorphisms are always drawn

with straight arrows→, while linear maps between algebras are drawn with squiggly arrows
// , in order to distinguish between deterministic maps and stochastic maps.
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expectation values. Since every C∗-algebraA is isomorphic to a finite direct
sum of matrix algebras, this is a full description of states on C∗-algebras.

The usefulness of using C∗-algebras as opposed to just matrix algebras
is to allow for a combination of classical and quantum setups, such as mea-
surement. Furthermore, direct sums of matrix algebras are used in describing
superselection sectors [38, 53], while ensembles, preparations, instruments,
etc. are all naturally described by positive maps between certain C∗-algebras
that are not just matrix algebras [37, Section 4].

Lemma 2.3 (The support of a weight). Associated to every weight ω on a
C∗-algebra A is a projection Pω ∈ A satisfying

ω(PωA) = ω(APω) = ω(PωAPω) = ω(A) ∀ A ∈ A

and such that Pω ≤ Q for every other projection Q satisfying this condition
(with Q replacing Pω).

Definition 2.4 (Supports and mutually orthogonal weights). The projection
Pω in Lemma 2.3 is called the support of ω. Two weights ω, ξ on a finite-
dimensional C∗-algebra A are mutually orthogonal, written ω ⊥ ξ, iff any
of the following equivalent conditions hold.2

1. If for any weight χ on A such that χ ≤ ω and χ ≤ ξ, then χ = 0.

2. PωPξ = 0 (which implies PωPξ = PξPω).

A ∗-homomorphism B f−→ A preserves the mutual orthogonality ω ⊥ ξ iff
(ω ◦ f) ⊥ (ξ ◦ f).

Lemma 2.5 (The image of a support). Let B f−→ A be a ∗-homomorphism
and let A ω C be a state. Then f(P⊥ω◦f ) ≤ P⊥ω and f(Pω◦f ) ≥ Pω.

Proof. The first inequality follows from the fact that f sends projections to
projections and f(Nω◦f ) ⊆ Nω [36, Section 3], where

Nξ := {A ∈ A : ξ(A∗A) = 0} (2.6)

denotes the nullspace associated to a state ξ. The two inequalities are equiv-
alent because

f(Pω◦f ) = f(1B − P⊥ω◦f ) = f(1B)− f(P⊥ω◦f )

= 1A − f(P⊥ω◦f ) = f(P⊥ω◦f )
⊥ ≥ Pω,

(2.7)

2For the thermodynamic meaning of mutual orthogonality of states, see [38, Section 2].
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where the last inequality used f(P⊥ω◦f ) ≤ P⊥ω . A similar calculation shows
the converse. �

Example 2.8 (External convex sums for finite probability spaces). Let
X,X ′, Y, Y ′ be finite sets, let p and q be probability measures on X and
Y , respectively, and let X

φ−→ X ′ and Y
ψ−→ Y ′ be two functions. Let

λp⊕ (1− λ)q denote the probability measure on X q Y (the disjoint union)
given by

(λp⊕ (1− λ)q)z :=

{
λpz if z ∈ X
(1− λ)qz if z ∈ Y

.

Set A := CX and B := CY to be the C∗-algebras of functions on X and
Y , and similarly A′ := CX′ and B′ := CY ′ . Let ω and ξ be the states on A
and B associated to p and q, i.e. ω(A) =

∑
x∈X pxA(x) for all A ∈ CX (and

similarly for ξ and q). Let A′ f−→ A and B′ g−→ B be the ∗-homomorphisms
associated to φ and ψ via pullback. Namely, if A′ ∈ CX′ is a function on
X ′, then f(A′) := A′ ◦ φ. The disjoint union function X q Y φqψ−−→ X ′ q Y ′
corresponds to the direct sum ∗-homomorphism

CX′qY ′ ∼= A′ ⊕ B′ f⊕g−−→ A⊕ B ∼= CXqY .

Let ω̃ and ξ̃ denote the states on A ⊕ B given by ω̃(A ⊕ B) := ω(A) and
ξ̃(A ⊕ B) := ξ(B) for all A ∈ A and B ∈ B. From these definitions, the
state on A⊕ B associated to λp⊕ (1− λ)q is λω̃ + (1− λ)ξ̃. Furthermore,
ω̃ ⊥ ξ̃ holds and f ⊕ g preserves ω̃ ⊥ ξ̃. This construction of convex sums
is one of the main ingredients in BFL’s characterization of entropy [4].

Notation 2.9 (Internal direct sum). Letm ∈ N, Y a finite set, {ny}y∈Y a col-
lection of natural numbers satisfying m =

∑
y∈Y ny, and {By ∈ Mny}y∈Y

a collection of matrices. Given an ordering of the elements of Y , set

�
y∈Y

By :=

B1 0
. . .

0 B|Y |

 ≡ diag(B1, . . . , B|Y |) ∈Mm.

This notation will be frequently used, sometimes without explicitly stating
that an order has been chosen.3

3This is not to be confused with the (external) direct sum
⊕

y∈Y By ∈
⊕

y∈Y Mny
,

which does not use an ordering on Y and, more importantly, is an element of a different
(non-isomorphic) algebra.
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Example 2.10 (The partial trace). Working with unital ∗-homomorphisms
between C∗-algebras corresponds to the Heisenberg picture description of
quantum mechanics, as opposed to the more commonly used Schrödinger
picture in the quantum information theory community. The relationship be-
tween the two goes roughly as follows.

If B = Mn, A = Mm, and B f−→ A is a ∗-homomorphism, then there
exists a p ∈ N such that m = pn and a unitary U ∈ Mm such that f =
AdU ◦ g, where AdU(A) := UAU † for all A ∈ A, and where g is

B 3 B 7→ g(B) := 1p ⊗B

(cf. [1], [52, Lecture 10]). The adjoint, g∗, of g with respect to the Hilbert–
Schmidt or Frobenius inner product on the vector space of linear maps be-
tween A and B is given by

A ∼=Mp ⊗Mn 3 A⊗B 7→ g∗(A⊗B) = tr(A)B.

It is often written as trMp and is called the partial trace (see [36, Section 3]
or [32, Section 2.4.3] for more details). The adjoint of f is g∗ ◦ AdU† .

Lemma 2.11 (The partial trace on direct sums). Let B :=
⊕

y∈Y Mny

f−→⊕
x∈XMmx =: A be a ∗-homomorphism and let ω =

∑
x∈X pxtr(ρx · ) be

a state on A (cf. Example 2.2). Then the following facts hold.

1. There exists a collection {cxy} of non-negative numbers, with cxy
called the multiplicity of the factor Mny inside Mmx associated to
f , such that mx =

∑
y∈Y cxyny for all x ∈ X .

2. There exist unitaries Ux ∈Mmx such that f is of the form

⊕
y∈Y

Mny 3
⊕
y∈Y

By
f7−→
⊕
x∈X

Ux

(
�
y∈Y

diag(

cyx times︷ ︸︸ ︷
By, · · · , By)

)
U †x.

3. The pullback state ξ := ω ◦ f can be expressed as

ξ =
∑
y∈Y

qytr(σy · ), where qyσy =
∑
x∈X

pxf
∗
xy(ρx) ∀ y ∈ Y

and f ∗xy denotes the (Hilbert–Schmidt) adjoint of fxy :Mny →Mmx ,
which is the component of f mapping between the factors as indicated.
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Proof. See [13, Sections 1.1.2 and 1.1.3], [12, Theorem 5.6], and [37,
Lemma 6.7]. �

Lemma 2.12 (∗-isomorphisms preserve mutual orthogonality). Let B f−→ A
be a ∗-isomorphism and let ω, ξ be any two states onA. Then ω ⊥ ξ implies
(ω ◦ f) ⊥ (ξ ◦ f). Furthermore, ζ ∈ S(A) is pure if and only if ζ ◦ f is pure.

Proof. If Pω and Pξ are the supports of ω and ξ, respectively, then the claim
will follow if we prove f−1(Pω) and f−1(Pξ) are the supports of ω ◦ f and
ξ ◦ f , respectively, because

f−1(Pω)f−1(Pξ) = f−1(PωPξ) = f−1(0) = 0. (2.13)

It suffices to focus on ω. First, note that f−1(Pω) is a projection since f−1 is
a ∗-homomorphism. Furthermore,

(ω ◦ f)
(
f−1(Pω)B

)
= ω

(
Pωf(B)

)
= ω

(
f(B)

)
= (ω ◦ f)(B) (2.14)

for all B ∈ B, which proves that f−1(Pω) satisfies the first condition of
a support for ω ◦ f in Lemma 2.3. Suppose that Q is another projection
satisfying (ω ◦ f)(QB) = (ω ◦ f)(B) for all B ∈ B. Then f(Q) satisfies

ω
(
f(Q)A

)
= (ω ◦ f)

(
Qf−1(A)

)
= (ω ◦ f)

(
f−1(A)

)
= ω(A) (2.15)

for all A ∈ A. Hence, since Pω is the minimal such projection, Pω ≤ f(Q).
Since ∗-homomorphisms preserve the ≤ order structure, f−1(Pω) ≤ Q. �

Example 2.16 (Channels that do not preserve orthogonality). There are
many examples of ∗-homomorphisms B → A that do not always preserve
mutual orthogonality. A simple example is !C2 : C → C2, where every pair
of mutually orthogonal states gets pulled back to 1. A non-classical example
is the ∗-homomorphismM2 →M2 ⊗M2, sending B to B ⊗ 12, and any
two density matrices on C2 ⊗ C2 corresponding to any two orthogonal Bell
states [32, Section 2.3]. In either case, the pullback state is 1

2
tr.

Lemma 2.17 (Overlapping states remain overlapping under evolution). Let
B f−→ A be ∗-homomorphism and let ω, ξ be two states on A that are not
mutually orthogonal. Then ω ◦f and ξ ◦f are also not mutually orthogonal.
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Proof. Suppose, to the contrary, that Pω◦fPξ◦f = 0. Then

0 = f(0) = f(Pω◦fPξ◦f ) = f(Pω◦f )f(Pξ◦f ). (2.18)

But, by Lemma 2.5, f(Pω◦f ) ≥ Pω and f(Pξ◦f ) ≥ Pξ so that their product
cannot vanish by the assumption PωPξ 6= 0. This is a contradiction. �

Physics 2.19 (Evolving states with overlapping supports). The interpretation
of Lemma 2.17 is that if two states have overlapping supports, then no quan-
tum operation will ever completely separate them. In contrast, Lemma 2.12
says that reversible dynamics (such as unitary evolution) cannot mix states.

Now that we have defined the objects and morphisms of interest, we can
define entropy and its generalizations to matrix algebras and C∗-algebras.

Definition 2.20 (Shannon, von Neumann, and Segal entropy). Let ω be a
state on A as in Example 2.2. The Segal entropy of ω is the non-negative
number

SSe(ω) := SSh(p) +
∑
x∈X

pxSvN(ρx),

where SSh(p) := −
∑

x∈X px log(px) is the Shannon entropy of a proba-
bility measure p on X and SvN(ρ) := −tr

(
ρ log ρ

)
is the von Neumann

entropy of a density matrix ρ on Cn. The convention 0 log 0 := 0 is used.
On occasion, the letter S will exclusively be used to refer to any of these

three entropies, using the input to distinguish which formula should be used.
As such, entropy will refer to any of these three, while quantum entropy
will refer to either SSe or SvN.4

We recall the following useful fact about the entropy of convex combi-
nations.

Lemma 2.21 (Concavity inequalities for entropy). Let {ρx}x∈X be a collec-
tion of density matrices on a Hilbert space indexed by a finite set X . Then

∑
x∈X

pxSvN(ρx) ≤ SvN

(∑
x∈X

pxρx

)
≤ SSh(p) +

∑
x∈X

pxSvN(ρx)

4The Segal entropy was actually defined much more generally for certain
infinite-dimensional systems [41]. The Segal entropy also equals SSe(ω) =
−
∑

x∈X tr
(
pxρx log(pxρx)

)
.
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for any probability distribution p on X . Furthermore, the second inequality
becomes an equality if and only if ρx ⊥ ρx′ for all distinct x, x′ ∈ X such
that px 6= 0 and px′ 6= 0.

Proof. The first inequality is the concavity of the von Neumann entropy.
Proofs of these claims can be found in [32, Theorem 11.8 (4)] as well [27,
Corollary pg 247] and [28, Equation (2.2)]. �

We now come to our main definition for the entropy change along a mor-
phism.

Definition 2.22 (The entropy change along a morphism). Let B f−→ A be
a ∗-homomorphism of C∗-algebras and let ω be a state on A. The entropy
change of ω along f is the number

Sf (ω) := SSe(ω)− SSe(ω ◦ f).

The following lemma contains a crucial observation that distinguishes
the entropy change along a morphism between commutative versus non-
commutative C∗-algebras.

Lemma 2.23 (The entropy change along certain morphisms). Recall the no-
tation from Definition 2.22.

1. If f is a ∗-isomorphism, then Sf (ω) = 0 for all states ω ∈ S(A).

2. IfA andB are commutativeC∗-algebras, then Sf (ω) ≥ 0 for all states

ω ∈ S(A) and ∗-homomorphisms B f−→ A.

3. IfA is not commutative and f is not a ∗-isomorphism, then there exists
a state ω ∈ S(A) such that Sf (ω) < 0.5

Proof. you found me!

1. Let A,B, ω, f , and ξ be as in Example 2.2. Since f is a ∗-
isomorphism, there exists a bijection X

φ−→ Y and a collection of
unitaries Ux ∈Mmx such that

mx = nφ(x) and pxUxρxU
†
x = qφ(x)σφ(x) ∀ x ∈ X (2.24)

by Lemma 2.11. The claim Sf (ω) = 0 then follows from the func-
tional calculus and Definition 2.20.

5If B is not commutative, then a ∗-homomorphism B → A does not exist if A is com-
mutative.
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2. Since every commutative finite-dimensional C∗-algebra is isomorphic
to functions on a finite set as described in Example 2.8, the Segal en-
tropy becomes the Shannon entropy. If p and q are the probability
measures on X and Y corresponding to ω and ω ◦f , respectively, then

Sf (ω) = SSe(ω)− SSe(ω ◦ f) = SSh(p)− SSh(q), (2.25)

which is shown to be non-negative in [4] (see Proposition 4.7 for a
more general and abstract proof using disintegrations).

3. If A is not commutative, then it has some matrix algebra Mm as a
factor with m > 1. Let ρ be a rank 1 density matrix in A with support
in Mm (so that ρ is a pure state). Let A be a self-adjoint m × m
matrix that does not commute with ρ (such a matrix necessarily exists
because the center ofMm consists of multiples of the identity). Let
σ(A) denote the spectrum of A. Let B := Cσ(A) f−→ A send eλ, the
function on σ(A) whose value at λ is 1 and is 0 elsewhere, to Pλ in
Mm, the projection onto the λ-eigenspace. Then ω ◦ f is not a pure
state, in the sense that the associated measure on σ(A) is not a Dirac
measure. Thus, the entropy change is Sf (ω) = SSe(ω)−SSe(ω ◦ f) =
0− SSe(ω ◦ f) < 0. �

Item 2 in Lemma 2.23 was used as an axiom by BFL to characterize the
entropy change in the classical setting. Since it fails when one includes non-
commutative C∗-algebras, we will have to replace this axiom with one that
more accurately reflects the properties of entropy in quantum mechanics.

Physics 2.26 (Negative conditional entropy). As another example illustrat-
ing the validity of item 3 in Lemma 2.23 using only matrix algebras, take
ω on M2 ⊗M2

∼= M4 to be a Bell state and let M2
f−→ M2 ⊗M2 be

the inclusion into one of the factors. Then Sf (ω) = − log(2) (cf. Exam-

ple 2.16). More generally, set A := Mm, B := Mn, A f−→ A ⊗ B the
standard inclusion, and ω = tr(ρAB · ), where ρAB is a density matrix in
A ⊗ B with marginals ρA := trB(ρAB) and ρB := trA(ρAB) (cf. Exam-
ple 2.10). Then the entropy difference Sf (ω) = SvN(ρAB)− SvN(ρA) is the
quantum conditional entropy, which, if negative, necessarily implies that
ρAB is entangled (see near Equation (21) in [23]). The example we chose
in the proof of Lemma 2.23 is meant to illustrate that entanglement is not
necessary for Sf (ω) to be negative.
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Physics 2.27 (Information loss or gain and Landauer’s principle). In [4],
BFL interpreted the non-negative entropy difference between commutative
algebras as information loss. Indeed, a state-preserving ∗-homomorphism
between commutative probability spaces corresponds to a probability-
preserving map of finite sets equipped with probabilities. Such a map may
identify points in an irreversible manner (in the sense that a probability-
preserving inverse need not exist). When two points get identified, the
corresponding probabilities add (cf. Definition 4.6) and there is a decrease
in entropy. This is closely related to Landauer’s principle [25], which states
that erasure (information loss) entails the dissipation of energy (in the form
of heat) into the environment.

For non-commutative probability spaces, i.e. quantum systems, informa-
tion and work can be gained in certain situations, violating Landauer’s prin-
ciple. The information can be later used for state merging protocols [21, 22]
or the corresponding energy can be used to do thermodynamic work [8]. A
precise reformulation of the principle has been recently stated and proved in
the case of finite-dimensional matrix algebras [39].

We now end this section with a summary of the categories that will be
used throughout.

Notation 2.28 (Categories used in this work). In all categories that follow,
except the very last one, the composition rule will be function composition.

1. FinSet is the category whose objects are finite sets and whose mor-
phisms are functions.

2. FinProb is the category whose objects are finite probability spaces,
which are pairs (X, p), with X a finite set and p a probability measure
on X . A morphism from (X, p) to (Y, q) is a probability-preserving
function, i.e. a function X

φ−→ Y such that qy =
∑

x∈φ−1({y}) px for all
y ∈ Y , where φ−1({y}) := {x ∈ X : φ(x) = y}.

3. fdC*-Alg is the category whose objects are (finite-dimensional uni-
tal) C∗-algebras and morphisms are (unital) ∗-homomorphisms.

4. NCFinProb is the category whose objects are (finite-dimensional)
non-commutative probability spaces and whose morphisms are state-
preserving (unital) ∗-homomorphisms.
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5. BR (BR≥0) is the category consisting of a single object and whose
morphisms from that object to itself are all real numbers (non-negative
real numers) equipped with addition as the composition rule.

Finally, here are some additional categorical notations and terminologies that
will be used. Given two categories C and D, let C ×D denote their cartesian
product. Let C × D γ−→ D × C be the functor that swaps the two inputs. Let
C ∆−→ C×C be the diagonal functor sending an object x to (x, x) and similarly
for morphisms. There are two projection functors, denoted by C × D π1−→ C
and C × D π2−→ D.

3 Fibrations and local convex structures
Fibrations provide a convenient setting to formulate the notion of entropy
change as a functor. Non-commutative probability spaces form a discrete
fibration over C∗-algebras and the real numbers viewed as a one-object cate-
gory form an ordinary (Grothendieck) fibration over the trivial category. The
fibre over each algebra is the space of states, which has a convex structure.
Since real numbers have a convex structure as well, one can make sense
of convexity, concavity, or affinity of the functor that computes the entropy
change along a morphism of non-commutative probability spaces. The ref-
erences for fibrations that we follow include [20, 29, 30].

Definition 3.1 (Discrete fibration). A functor E π−→ X is a discrete fibration
iff for each morphism x

f−→ y in X and for each object v in E such that
π(v) = y, there exists a unique morphism u

β−→ v such that π(β) = f . A
morphism u

β−→ v such that π(β) = f is called a lift of f .

Example 3.2 (The discrete fibration of non-commutative probability
spaces). The functor π : NCFinProb → fdC*-Alg, which sends (A, ω)

to A and (B, ξ) f−→ (A, ω) to B f−→ A, is a discrete fibration. Indeed, given
ω ∈ S(A) and B f−→ A, the unique lift is f itself together with the state on B
given by ξ = ω◦f . Similarly, the functor FinProbop → FinSetop sending
a probability space (X, p) to X and a probability-preserving function to the
underlying function between sets is a discrete fibration.
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Definition 3.3 (Cartesian morphisms and fibrations). Let E and X be two
categories and let E π−→ X be a functor. A morphism u

β−→ v in E is cartesian
iff for any morphism x

f−→ π(u) in X and any morphism w
γ−→ v in E such

that π(β) ◦ f = π(γ), there exists a unique morphism w
α−→ u in E such

that π(α) = f and β ◦ α = γ. Let Ex be the subcategory of E consisting
of the objects u in E such that π(u) = x and π(β) = idx for all morphisms
u

β−→ v with π(u) = x = π(v). The category Ex is called the fibre of π
over x and the morphisms in Ex are called vertical morphisms of π over x.
Given a morphism x

f−→ y in X and an object v in Ey, a cartesian lifting of f
with target v is a cartesian morphism u

β−→ v such that π(β) = f . A functor
π : E → X is a fibration iff for any morphism x

f−→ y in X and an object v
in Ey, a cartesian lifting exists. When π is a fibration, X is called the base. A
fibration for which a cartesian lifting has been chosen for every pair (f, v),
with f a morphism in X and v an object in Ey, is called a cloven fibration.

Lemma 3.4 (The reindexing functor). Let E π−→ X be a cloven fibration and
let f ∗(v)

fv−→ v be the choice of cartesian lifting of x
f−→ y with target v.

These data determine a canonical functor Ex
f∗←− Ey sending v to f ∗(v). For

each vertical morphism w
κ−→ v in Ey, let f ∗(w)

f∗(κ)−−−→ f ∗(v) be the unique
morphism in Ex obtained by the universal property of fv being cartesian.
Then f ∗ defines a functor, called the reindexing functor associated to f .

Proof. This is a standard fact that follows from the uniqueness in the univer-
sal property of cartesian morphisms. The details are left as an exercise. �

To incorporate convex structures on our main examples, we define (strict)
convex categories, affine functors, and fibrewise convex structures on fibra-
tions. The following definition of a convex object is an internalization of the
algebraic definition of a convex space [14, 15, 18, 19, 31, 42, 43, 50].

Definition 3.5 (Convex category). Given two numbers λ, µ ∈ [0, 1] set

λxµ := λµ and λyµ :=

{
λ(1−µ)
1−λµ if λµ 6= 1

arbitrary if λ = µ = 1
,

where “arbitrary” means that one can assign any value to the quantity. A con-
vex category (or more generally a convex object in some cartesian monoidal
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category) is a category C (object) together with a family of functors Fλ :
C × C → C (morphisms) indexed by λ ∈ [0, 1] such that

C × C C

F0

""

π2

<< ,

C

C × C

C

∆
DD

Fλ

��

idC
//

,

C × C C × C

C

γ //

Fλ
��

F1−λ
��

, and

C × C × C C × C

C × C C

Fµ×idC //

idC×Fλyµ
��

Fλ
��

Fλxµ
//

commute for all λ, µ ∈ [0, 1] (see Definition 2.28 for notation). The notation
λx+ (1− λ)y := Fλ(x, y) will be implemented on occasion.

Example 3.6 (Examples of convex categories). hello!

(a) Every convex set is a convex category when viewed as a discrete cate-
gory. In particular, S(A), the set of states on a C∗-algebraA, is a convex
category.

(b) The convex combination of real numbers turns BR into a convex cate-
gory. If R≥0 := {r ∈ R : r ≥ 0}, then BR≥0 is also a convex category.

Note, however, that the convex categories of BFL [4] are not examples of
Definition 3.5 (cf. Remark 3.24).

Definition 3.7 (Affine functors). An affine functor from one convex cate-
gory (C, {Fλ}) to another one (D, {Gλ}) is a functor S : C → D such that

C × C D ×D

C D

S×S //

Fλ
��

S
//

Gλ
��

commutes for all λ ∈ [0, 1].

Example 3.8 (The pullback of states is an affine functor). Let B f−→ A be a ∗-
homomorphism between C∗-algebras. Then the pullback S(A)

S(f)−−→ S(B),
sending ω to ω ◦ f , is an affine functor (cf. Example 3.6 (a)) since(
λω+(1−λ)ξ

)
◦f = λ(ω◦f)+(1−λ)(ξ◦f) ∀ λ ∈ [0, 1], ω, ξ ∈ S(A).
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Example 3.9 (Entropy is almost affine). Given B f−→ A, the assignment

S(A)
Sf−→ BR sending ω to Sf (ω) from Definition 2.22 is not affine. How-

ever, the inequality

Sf
(
λω + (1− λ)ξ

)
≥ λSf (ω) + (1− λ)Sf (ξ)

holds as a corollary of the work of Lieb and Ruskai [26, Theorem 1] and
Lindblad [28, Lemma 3]. Nevertheless, and more importantly for our char-
acterization theorem, equality does hold when ω ⊥ ξ and (ω ◦ f) ⊥ (ξ ◦ f).
The proof of this will be given in Proposition 3.19.

Definition 3.10 (Fibrewise convex structures). A fibrewise convex structure
on a fibration E π−→ X is a cloven fibration where each fibre is a convex
category and each reindexing functor Ex

f∗←− Ey (as described in Lemma 3.4)
is an affine functor. A cloven fibration equipped with a fibrewise convex
structure is called a fibrewise convex fibration.

Example 3.11 (Examples of fibrewise convex structures). hello!

(a) The discrete fibration NCFinProb → fdC*-Alg has S(A) as the
fibre over each C∗-algebra A. The set of states S(A) on a C∗-algebra
A has a natural convex structure. Furthermore, each ∗-homomorphism

B f−→ A has the pullback S(B)
S(f)←−− S(A) as its reindexing functor.

This functor is affine, as discussed in Example 3.8.

(b) By a similar argument, FinProbop → FinSetop has a natural fibrewise
convex structure coming from the convex combination of probability
measures and the fact that the pushforward of measures is linear. The
fibre over a finite set X is isomorphic to the standard simplex ∆|X|−1 :={

(p1, . . . , p|X|) ∈ R|X|≥0 :
∑|X|

i=1 pi = 1
}

.

(c) The fibration BR→ 1 has a convex structure on the only fiber BR over
the single object in the base, as described in Example 3.6.

Definition 3.12 (Morphisms of fibrations). Let E π−→ X and F ρ−→ Y be
fibrations. A fibred functor6 from π to ρ is a pair of functors E Φ−→ F and

6Our terminology differs from that of [30], who use ‘functor’ when the base category is
fixed (φ = id) and ‘1-cell’ for when the base category changes.
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X φ−→ Y such that
E F

X Y

Φ //

π
��

φ
//

ρ
��

commutes and such that Φ(β) is cartesian for every cartesian β.

Remark 3.13 (Fibrewise convex structures as internal convex objects). One
can equivalently define a fibrewise convex structure as an internal convex
object in the category of fibrations over a fixed based, analogous to the fibre-
wise monoidal structure in [30, Section 3.1].

Briefly, a convex object E π−→ X in the category of fibrations over a fixed
based X provides the data of a family of fibred functors Fλ : E ×π E → E
with a fixed based, where E ×π E is the (strict) pullback. The functors Fλ
define a convex category structure for every fibre Ex. In addition, they also
provide an assignment on morphisms since a pair (t

α−→ u, v
β−→ w) over

x
f−→ y gets sent to

λt+ (1− λ)v
λα+(1−λ)β≡Fλ(α,β)−−−−−−−−−−−−→ λu+ (1− λ)w

over x
f−→ y. This assignment guarantees that the associated reindexing

functor Ex
f∗←− Ey from Lemma 3.4 can be chosen to be affine as in Def-

inition 3.10. Indeed, if one chooses cartesian liftings f ∗(u)
fu−→ u and

f ∗(v)
fv−→ v of u and v over x

f−→ y, respectively, then

λf ∗(u) + (1− λ)f ∗(v)
λfu+(1−λ)fv−−−−−−−→ λu+ (1− λ)v

can be taken as the lift of λu+ (1− λ)v over f .
For example, in the fibrewise convex fibration NCFinProb →

fdC*-Alg, if (B, η)
g−→ (A, ω) and (B, ζ)

h−→ (A, ξ) are two morphisms
over B f−→ A, then g = h = f and their convex combination, λg+ (1− λ)h,
is just f . In the fibrewise convex fibration BR→ 1, the convex combination
of objects in the fibre is trivial, while the convex combination of morphisms
(elements in R) is the usual convex combination of real numbers.
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Definition 3.14 (Convergence in NCFinProb). A sequence N 3 n 7→(
(Bn, ξn)

fn−→ (An, ωn)
)

converges to (A, ξ) f−→ (B, ω) in the category
NCFinProb iff there exists an N ∈ N such that An = A, Bn = B, fn = f
for all n ∈ N, limn→∞ ωn = ω, and limn→∞ ξn = ξ, where the last two
limits are with respect to the standard topologies on the state spaces S(A)
and S(B), respectively.

Remark 3.15 (Justifying the definition of convergence of sequences in
NCFinProb). The definition of convergence of a sequence of morphisms
in NCFinProb is motivated by the one in FinProb from [4, page 4].
However, some justification regarding why the morphisms are assumed to
stabilize, i.e. are equal after some N ∈ N, is needed.

In the case of FinProb, a sequence (Xn, pn)
fn−→ (Yn, qn) converges

to (X, p)
f−→ (Y, q) iff the sets Xn, Yn and the underlying set functions fn

stabilize after a finite natural number in the sequence and limn→∞ pn = p and
limn→∞ qn = q. The sets must stabilize because their associated simplices
of probability distributions are distinct and the cardinality of the set dictates
which simplex one is using for the space of probability distributions. The
functions must stabilize because the set of functions between two finite sets
is also a finite set, which has the discrete topology. However, the probability
distributions pn on X and qn on Y may continue to vary as long as they
converge to p and q in the topology associated with the simplices ∆|X|−1 and
∆|Y |−1.

In the case of C∗-algebras, the collection hom(B,A) of (unital) ∗-
homomorphisms from B to A is not just a discrete set since the collection
of unitary matrices has a non-trivial topology. Nevertheless, one can
assume the fn eventually stabilize. To see this, it suffices to assume
A =

⊕
x∈XMmx and B =

⊕
y∈Y Mny for some finite sets X and Y and

mx, ny ∈ N. In this case, a ∗-homomorphism B f−→ A is described by
its multiplicities and by a unitary as in Lemma 2.11. The multiplicities
entail the constraint mx =

∑
y∈Y cxyny, but there could be several such

multiplicities satisfying these constraints. Indeed, if

sx :=

∣∣∣∣∣
{
Y 3 y 7→ cxy ∈ Z≥0 : mx =

∑
y∈Y

cxyny

}∣∣∣∣∣
denotes the number of such solutions, then the number of connected com-
ponents in hom(B,A) is s :=

∏
x∈X sx (for example, if B = Mn is a
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matrix algebra, there is only one such component). Hence, a sequence of
∗-homomorphisms converging to another one must necessarily have multi-
plicities that stabilize. Within such a component, since ω ◦ f = (ω ◦AdU) ◦
(AdU† ◦ f) for every unitary U , one can always choose f to be of the form⊕

y∈Y

Mny 3
⊕
y∈Y

By 7→
⊕
x∈X

(
�
y∈Y

1cyx ⊗By

)
by conjugating with some appropriate unitary U (cf. Lemma 2.11). This
unitary can then be transferred to the state.

Therefore, it suffices to assume the algebras and ∗-homomorphisms sta-
bilize in a convergent sequence, but not necessarily the states.

Definition 3.16 (Continuous fibred functors). A continuous fibred functor
from NCFinProb → fdC*-Alg to BR → 1 is a fibred functor H such
that to every sequence N 3 n 7→

(
(Bn, ξn)

fn−→ (An, ωn)
)

converging to

(A, ξ) f−→ (B, ω) in the category NCFinProb,

lim
n→∞

H
(

(Bn, ξn)
fn−→ (An, ωn)

)
= H

(
(B, ξ) f−→ (A, ω)

)
,

where the convergence is for a sequence of real numbers.

Notation 3.17 (The function Hf : S(A) → R). For a fibred functor H :
NCFinProb→ BR, set

Hf (ω) := H
(

(B, ξ) f−→ (A, ω)
)

for the image of H along a morphism f in NCFinProb. For a fixed ∗-
homomorphism B f−→ A, this defines a function Hf : S(A)→ R.

The next definition is the appropriate quantum generalization of the affin-
ity condition used by BFL in their characterization of Shannon entropy [4].
Why this is so will be explained towards the end of this section as well as
Proposition 4.13 and Remark 4.20.

Definition 3.18 (Orthogonally affine fibred functor). A fibred functor H
from NCFinProb → fdC*-Alg to BR → 1 is orthogonally affine iff
to each pair of C∗-algebras B andA, each pair of mutually orthogonal states
ω, ξ ∈ S(A), and each ∗-homomorphism B f−→ A such that (ω◦f) ⊥ (ξ◦f),

Hf

(
λω + (1− λ)ξ

)
= λHf (ω) + (1− λ)Hf (ξ) ∀ λ ∈ [0, 1].
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Proposition 3.19 (Entropy difference is continuous and orthogonally affine).
The entropy change functor from Definition 2.22 is a continuous and orthog-
onally affine fibred functor. In fact, if for anyC∗-algebraA and any pair ω, ξ
of mutually orthogonal states on A, a ∗-homomorphism B f−→ A preserves
the orthogonality ω ⊥ ξ if and only if

Sf
(
λω + (1− λ)ξ

)
= λSf (ω) + (1− λ)Sf (ξ) ∀ λ ∈ [0, 1].

Before proving this, we introduce a shorthand for the deviation from Sf
being affine on the states ω and ξ. The name for this deviation is motivated
by [32, Section 12.1.1].

Definition 3.20 (The Holevo information change along a morphism). The
Holevo information change along a ∗-homomorphism B f−→ A associated
to ω, ξ ∈ S(A) and λ ∈ [0, 1] is the number

χf (λ;ω, ξ) := Sf
(
λω + (1− λ)ξ

)
− λSf (ω)− (1− λ)Sf (ξ).

Proposition 3.19 says, in particular, that this deviation vanishes when
ω ⊥ ξ and (ω ◦ f) ⊥ (ξ ◦ f).

Proof of Proposition 3.19. Continuity of the entropy change follows from
continuity of the von Neumann entropy [32, Section 11.3], [11]. To prove
the statement regarding orthogonal affinity, suppose ω ⊥ ξ. Let ω′ := ω ◦ f
and ξ′ := ξ ◦ f . If f preserves the mutual orthogonality, then ω′ ⊥ ξ′ and

χf (λ;ω, ξ) = S
(
λω + (1− λ)ξ

)
− S

(
λω′ + (1− λ)ξ′

)
− λSf (ω)− (1− λ)Sf (ξ)

Lem 2.21
===== S(λ, 1− λ) + λS(ω) + (1− λ)S(ξ)

− S(λ, 1− λ)− λS(ω′)− (1− λ)S(ξ′)

− λSf (ω)− (1− λ)Sf (ξ)

= 0,

(3.21)

where S(λ, 1 − λ) is the Shannon entropy of the probability (λ, 1 − λ) on
a two element set. Conversely, suppose χf (λ;ω, ξ) = 0. Since ω ⊥ ξ, a
similar calculation gives

0 = χf (λ;ω, ξ)
Lem 2.21
==== S(λ, 1−λ) + λS(ω′) + (1−λ)S(ξ′)− S

(
λω′+(1−λ)ξ′

)
,

(3.22)

which gives ω′ ⊥ ξ′ by the ‘only if’ part of Lemma 2.21. �

- 110 -



A. PARZYGNAT FUNCTORIAL VON NEUMANN ENTROPY

In the last part of this section, we recall the convex combinations and
affine functors introduced by BFL [4]. By the next section, we will have
enough facts to relate BFL’s definition to ours.

Definition 3.23 (An external convex structure on FinProb). For every λ ∈
[0, 1], define the convex sum Fλ on objects of FinProb by

λ(X, p)⊕ (1− λ)(Y, q) :=
(
X q Y, λp⊕ (1− λ)q

)
,

where λp⊕(1−λ)q is defined in Example 2.8. The convex sum of morphisms
(X, p)

φ−→ (X ′, p′) and (Y, q)
ψ−→ (Y ′, q′) is defined to be the disjoint union

φq ψ as in Example 2.8. The collection of functors {Fλ}λ∈[0,1] is called the
external convex structure on FinProb.

The motivation for calling this an external convex structure comes from
the distinction between internal and external monoidal fibrations [30, Sec-
tion 3.1], as will be explained shortly.

Remark 3.24 (The external convex structure on FinProb does not give a
convex category). FinProb with this family of functors is not a convex cat-
egory in the sense of Definition 3.5. It is, however, a weak convex category
(called a convex category in [34, Chapter 4]).

A completely analogous definition can be made for the fibration
NCFinProb→ fdC*-Alg using the (external) direct sum of C∗-algebras.

Definition 3.25 (An external convex structure on NCFinProb). For ev-
ery λ ∈ [0, 1], define the convex sum Fλ on objects of NCFinProb by
λ(A, ω) ⊕ (1 − λ)(B, ξ) :=

(
A ⊕ B, λω ⊕ (1 − λ)ξ

)
, where

(
λω ⊕ (1 −

λ)ξ
)
(A⊕ B) := λω(A) + (1− λ)ξ(B) for all A ∈ A, B ∈ B. The convex

sum of morphisms is the direct sum.

This convex structure on NCFinProb restricts to the one on FinProb
on the subcategory of commutative C∗-algebras since CXqY ∼= CX ⊕ CY .

Definition 3.26 (Externally affine functor). A functor H : NCFinProb→
BR is externally affine iff

H
(
λf ⊕ (1− λ)g

)
= λH(f) + (1− λ)H(g)

for all morphisms f, g in NCFinProb and all λ ∈ [0, 1].
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Example 3.27 (Examples of externally affine functors). you found me!

(a) The difference of Shannon entropies studied by BFL [4] is a continuous
externally affine functor FinProb→ BR. In fact, it is characterized as
the unique one whose image always lands in BR≥0 (cf. Theorem 3.28).

(b) An example of a continuous externally affine functor S : NCFinProb→
BR is the difference of Segal entropies from Definition 2.22.

(c) If f : (B, ξ) f−→ (A, ω) is as in Lemma 2.11, then Kf (ω) := S(p) −
S(q), the difference of the Shannon entropies associated to the proba-
bility distributions, defines a continuous externally affine functor K :
NCFinProb→ BR.

Notice that both K and S agree with the Shannon entropy difference on the
subcategory of commutative algebras, yet they are not proportional.7

For reference, we recall BFL’s characterization theorem [4].

Theorem 3.28 (BFL’s functorial characterization of the Shannon entropy).
If H : FinProb → BR≥0 is a continuous externally affine functor, then
there exists a constant c ≥ 0 such that Hφ(p) = c

(
S(p) − S(q)

)
for every

probability-preserving function (X, p)
φ−→ (Y, q).

Without reference to the entropy formulas from Definition 2.22, we will
relate internal and external affinity in Proposition 4.13 after developing some
general results.

4 Characterizing entropy
This section contains our main result, Theorem 4.26, which is a functorial
characterization of the entropy difference in the non-commutative setting.
Continuity and orthogonal affinity alone are not quite enough to characterize
the von Neumann entropy difference, though they come quite close. By

7The existence of these two distinct continuous (externally) affine functors illustrates
that continuous affine functors NCFinProb → BR are not characterized by their values
on FinProbop (when viewed as a subcategory of NCFinProb). In particular, this condi-
tion does not characterize the von Neumann entropy difference. This answers a question of
John Baez in the negative [2] (see specifically the original post as well as the post on June
7, 2011 at 8:12 AM).
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Lemma 2.23, we cannot assume that Sf (ω) ≥ 0 for all ∗-homomorphisms
f and states ω on the codomain of f , since this inequality fails for non-
commutative C∗-algebras.

We propose a close replacement, namely SA(ω) ≥ 0 for all states ω ∈
S(A), with equality on pure states, for all C∗-algebras A. While this may
sound quite different, this assumption is a consequence of BFL’s assumption
Sf (ω) ≥ 0 on commutative C∗-algebras. Furthermore, in Proposition 4.7,
we prove that the non-negativity of entropy difference for commutative C∗-
algebras is a consequence of the fact that state-preserving ∗-homomorphisms
between commutative C∗-algebras always have disintegrations. More gen-
erally, we show that the existence of disintegrations (with non-commutative
probability spaces included) implies the non-negativity of entropy differ-
ence.

Notation 4.1 (!A and HA). If A is a C∗-algebra, then C !A−→ A will always
refer to the unique (unital) ∗-homomorphism. If H : NCFinProb → BR
is a functor, set HA := H!A . Also, FinProbop will be viewed as the full
subcategory of NCFinProb consisting of commutative probability spaces.

Lemma 4.2 (H is a coboundary). Given any ∗-homomorphism B f−→ A and
a state A ω C, any functor H : NCFinProb→ BR satisfies

Hf (ω) = HA(ω)−HB(ω ◦ f).

Proof. This follows from C being an initial object in fdC*-Alg. �

Lemma 4.3 (Non-negativity of Hf implies vanishing of HA on pure states).
Let H : FinProbop → BR be a functor satisfying Hf (ω) ≥ 0 for all ω ∈
S(A) and ∗-homomorphisms B f−→ A between commutative C∗-algebras.

1. If f has a left or right inverse, then Hf (ω) = 0 for all ω ∈ S(A).

2. HA(ω) ≥ 0 for all states ω ∈ S(A), with equality on all pure states.

Proof. you found me!

1. Suppose f has a right inverseA g−→ B. Then functoriality ofH implies
0 = HidA(ω) = Hg(ω ◦f)+Hf (ω) by Lemma 4.2. Since each term is
non-negative by assumption, Hf (ω) ≥ 0. A similar calculation proves
the same inequality if f has a left inverse.
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2. First, HA(ω) = H!A(ω) ≥ 0 by assumption. By invariance of H
under ∗-isomorphisms, it suffices to takeA = CX , with X a finite set.
Any pure state ξ on CX is necessarily supported on some x ∈ X . Let
CX πx−→ C be the projection onto that component. Then πx pulls the

unique state 1 on C back to ξ on CX and the composite C
!CX−−→ CX πx−→

C equals idC. Thus, HCX (ξ) = 0 by the first item. �

A partial converse to Lemma 4.3 will illustrate that our axioms for en-
tropy change imply those of BFL. We first prove a lemma about invariance
under ∗-isomorphisms given our axioms. The proof is quite different from
the one in Lemma 4.3, and it uses the convex structure in a crucial way.

Lemma 4.4 (H is invariant under ∗-isomorphisms). Suppose H :
NCFinProb → BR is an orthogonally affine fibred functor for which
HA(ξ) = 0 for all pure states ξ on A and all C∗-algebras A. If B f−→ A is a
∗-isomorphism, then Hf (ω) = 0 for all ω ∈ S(A).

Proof. Let ω be a state on A. Then there exists a convex decomposition
ω =

∑
x∈X pxωx of ω in terms of mutually orthogonal pure states ωx and a

nowhere-vanishing probability measure p on some finite set X . Thus,

Hf (ω)
Lem 2.12

======
Defn 3.18

∑
x∈X

pxHf (ωx)

Lem 4.2
=====

∑
x∈X

px

(
HA(ωx)−HB(ωx ◦ f)

)
= 0

(4.5)

since ωx ◦ f is pure by Lemma 2.12. �

Definition 4.6 (Disintegrations on finite probability spaces). you found me!
Let (X, p) and (Y, q) be probability spaces and
let φ : X → Y be a probability-preserving func-
tion, i.e. q = φ ◦ p. A disintegration of (φ, p, q)
(or simply of φ if p and q are clear from context)

is a stochastic map Y
ψ

X such that

{•}

X Y

p

��

q

��

ψ
oo

and

X

YY

ψ

ZZ
φ

��

idY
oo

q

,

X

Y

φ ψ
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the latter diagram signifying commutativity q-a.e.8 Here, a stochastic map
Y

ψ
X associates to each y ∈ Y a probability measure ψy on X . Com-

position of stochastic maps is defined via the Chapman–Kolmogorov equa-
tion [35, Section 2].

The main fact we will use about disintegrations on finite probability
spaces is that they always exist [36, Section 2].

Proposition 4.7 (Positivity of entropy difference on commutative
C∗-algebras). Suppose H : NCFinProb → BR is an orthogonally
affine fibred functor for which HA(ω) ≥ 0 for all states ω ∈ S(A), with
equality on all pure states, for all C∗-algebras A. Then for commu-
tative C∗-algebras A and B, Hf (ω) ≥ 0 for all states ω ∈ A and all

∗-homomorphisms B f−→ A.

Proof. By invariance of H for ∗-isomorphisms (Lemma 4.4), it suffices to
assume B = CY and A = CX for finite sets X and Y . In this case, let ω
be represented by a probability measure p on X , let X

φ−→ Y be the function
associated to B f−→ A, and let q := φ ◦ p be the pushforward measure corre-
sponding to ω ◦ f =: ξ (cf. Example 2.8). Every such probability measure is
decomposed as q =

∑
y∈Y qyδy, where δy is the Dirac delta measure at y de-

fined by δy(y′) ≡ δyy′ , which is 1 if y′ = y and 0 otherwise. This expresses
q as a convex sum of mutually orthogonal measures since δy ⊥ δy′ for all
y 6= y′. Set

Nq := {y ∈ Y : qy = 0} (4.8)

and let Y
ψ

X be a disintegration of (φ, p, q). Then p also decomposes as

p =
∑
y∈Y

qyψy ≡
∑

y∈Y \Nq

qyψy, (4.9)

where the set of probability measures {ψy}y∈Y \Nq are mutually orthogonal
because ψy is a measure supported on f−1({y}). Furthermore, φ preserves
the mutual orthogonality of these measures

(φ ◦ ψy) ⊥ (φ ◦ ψy′) ∀ y 6= y′ ∈ Y \Nq, (4.10)

8The cartoon depicts probability measures as collections of water droplets with total
volume 1. The map φ combines water droplets and preserves the volume [17], while the
disintegration ψ splits the water droplets back into their original sizes.
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since φ◦ψy = δy for all y ∈ Y \Nq. Setting ωy to be the state corresponding
to ψy gives

Hf (ω)
(4.9)

=== Hf

 ∑
y∈Y \Nq

qyωy

 (4.10)
======

Defn 3.18

∑
y∈Y \Nq

qyHf (ωy)

Lem 4.2
=====

∑
y∈Y \Nq

qy

(
HA(ωy)−HB(ωy ◦ f︸ ︷︷ ︸

δy

)
)

=
∑

y∈Y \Nq

qyHA(ωy) ≥ 0.

(4.11)

The last line holds becauseHB vanishes on pure states and by the assumption
that HA is always non-negative. �

Proposition 4.7 shows that our axioms imply the (seemingly strong) ax-
iom of non-negativity for entropy difference used by BFL in their functorial
characterization of Shannon entropy (Theorem 3.28). Combining this fact
with Lemma 4.3 suggests that it is reasonable to replace the BFL axiom of
non-negativity for entropy difference by non-negativity of HA and equal-
ity to zero on pure states. In fact, a corollary of Proposition 4.7 and BFL’s
characterization is an alternative functorial characterization of Shannon en-
tropy that does not explicitly use the non-negativity for entropy difference
assumption. However, we still need one more important fact to show that
our notion for a functor being orthogonally affine is equivalent to BFL’s no-
tion of a functor being externally affine on finite probability spaces (Propo-
sition 4.13). We will then use this towards building the final fact used in our
characterization theorem.

Lemma 4.12 (Invariance under adjoining zero). Let H : NCFinProb →
BR be an orthogonally affine fibred functor for which HA(ω) ≥ 0 for all
states ω ∈ S(A), with equality on all pure states, for all C∗-algebras A.
Let A and B be C∗-algebras and let π : A ⊕ B � A be the projection.
Then Hπ(ω) = 0 for all ω ∈ S(A). In particular, if X and Y are finite
sets and ι : X ↪→ X q Y is the inclusion with associated ∗-homomorphism
π : CXqY � CX , then Hπ(ω) = 0 for all states ω ∈ S(CX).

Proof. The proof is similar to that of Lemma 4.4 since ωx ◦ π is pure when-
ever ωx is. �
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Proposition 4.13 (External versus orthogonal affinity). Let H :
FinProbop → BR be a fibred functor for which HA(ω) ≥ 0 for all
states ω ∈ S(A), with equality on all pure states, for all commutative
C∗-algebras A. Then H is orthogonally affine if and only if H is externally
affine.

Proof. (⇒) Suppose H is orthogonally affine. The external convex sum of
(CX′ , ω′)

f−→ (CX , ω) and (CY ′ , ξ′)
g−→ (CY , ξ) defines a morphism(

CX′qY ′ , λω̃′ + (1− λ)ξ̃′
)

k:=f⊕g−−−−→
(
CXqY , λω̃ + (1− λ)ξ̃

)
, (4.14)

where the tildes denote the states as viewed on the direct sum (cf. Ex-
ample 2.8). In particular, (CX ⊕ CY , ω̃)

πX−→ (CX , ω) is a morphism in
NCFinProb for example. Furthermore,

ω̃ ◦ k = ω̃′, ξ̃ ◦ k = ξ̃′, ω̃ ⊥ ξ̃, and ω̃′ ⊥ ξ̃′, (4.15)

which says that f ⊕ g preserves the orthogonality of ω̃ and ξ̃. Since H is
orthogonally affine,

H(k) ≡ Hf⊕g

(
λω̃ + (1− λ)ξ̃

)
Defn 3.18
===== λHf⊕g

(
ω̃
)

+ (1− λ)Hf⊕g
(
ξ̃
)

Lem 4.2
==== λ

(
HCXqY

(
ω̃
)
−HCX′qY ′

(
ω̃′
))

+ (1− λ)
(
HCXqY

(
ξ̃
)
−HCX′qY ′

(
ξ̃′
))

Lem 4.12
==== λ

(
HCX (ω)−HCX′ (ω

′)
)

+ (1−λ)
(
HCY (ξ)−HCY ′ (ξ

′)
)

Lem 4.2
==== λHf (ω) + (1− λ)Hg (ξ) ≡ λH(f) + (1− λ)H(g).

(4.16)

(⇐) Suppose H is externally affine. Let p, q be probability measures on X
and let p′, q′ be probability measures on X ′. Let X

φ−→ X ′ be a function that
preserves both pairs of probability measures, i.e. φ ◦ p = p′ and φ ◦ q = q′.
Suppose p ⊥ q as well as p′ ⊥ q′. In what follows, we will first show that
there exist morphisms (A, p�A)

ψ−→ (A′, p′�A′) and (B, q�B)
η−→ (B′, q′�B′) such

that λψ ⊕ (1 − λ)η = φ. Let Sr denote the support of r ∈ {p, q, p′, q′}
(viewed as a subset of X or X ′ depending on the subscript). By assumption,
Sp ∩ Sq = ∅ and Sp′ ∩ Sq′ = ∅. Furthermore, φ can be visualized as
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X

X ′

φ

? ?

•

•
•

•

•
•

︸ ︷︷ ︸
A

A′︷ ︸︸ ︷
︸ ︷︷ ︸

B

B′︷ ︸︸ ︷ψ η

Legend
∈ Sp
∈ Sq

• ∈ X \ (Sp ∪ Sq)

∈ Sp′
∈ Sq′

? ∈ X ′ \ (Sp′ ∪ Sq′)

where the indicated sets are defined by

A′ := Sp′ , B′ := Sq′ ∪
(
X \ (Sp′ ∪ Sq′)

)
,

A := φ−1(A′), B := φ−1(B′),
(4.17)

and the functions A
ψ−→ A′ and B

η−→ B′ are defined by restricting φ to A
andB, respectively. If we also define the probability measures p�A, q�B, p′�A′ ,

and q′�B′ on A,B,A′, and B′, respectively, then (A, p�A)
ψ−→ (A′, p′�A′) and

(B, q�B)
η−→ (B′, q′�B′) are morphisms in FinProb and most importantly,

λ


(
A, p�A

)
(
A′, p′�A′

)ψ

��

⊕(1−λ)


(
B, q�B

)
(
B′, q′�B′

)η

��

 =

(
X,λp+ (1− λ)q

)
(
X ′, λp′ + (1− λ)q′

)φ

��
. (4.18)

Thus,

Hφ

(
λp+ (1− λ)q

)
≡ H

(
λψ ⊕ (1− λ)η

)
Defn 3.26
===== λH(ψ) + (1− λ)H(η)

= λ
(

1H(ψ) + 0H(η)
)

+ (1− λ)
(

0H(ψ) + 1H(η)
)

Defn 3.26
===== λH(1ψ ⊕ 0η) + (1− λ)H(0ψ ⊕ 1η)

≡ λHφ(p) + (1− λ)Hφ(q),

(4.19)

which completes the proof. �
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Remark 4.20 (External affinity ignores the internal structure of quantum
states). The objects of FinProb are convex generated by the single object
1, which is the (essentially) unique probability space consisting of a single
element. Indeed, an arbitrary finite probability space (X, p) can be decom-
posed into an external convex sum as (X, p) ∼=

⊕
x∈X px1. However, in

NCFinProb, a non-commutative probability space such as (Mm, ω) can-
not be expressed as an external convex combination of lower-dimensional
probability spaces. Therefore, the statement “if H is externally affine (on all
C∗-algebras), then H is orthogonally affine” is false.9 Example 3.27 (c) is
a counter-example because it is not orthogonally affine. This, together with
Proposition 4.13 provides some motivation for our choice of defining convex
structures internally on the fibres over C∗-algebras.

Corollary 4.21 (Characterizing the Shannon entropy on commutative
C∗-algebras). Suppose H : NCFinProb → BR is a continuous orthog-
onally affine fibred functor for which HA(ω) ≥ 0 for all states ω ∈ S(A),
with equality on all pure states, for all C∗-algebras A. Then there exists a
constant c ≥ 0 such that Hf = cSf for all ∗-homomorphisms f between
commutative C∗-algebras.

Proof. Continuity and functoriality are already assumed. Non-negativity of
Hf (ω) for all states ω and ∗-homomorphisms between commutative C∗-
algebras was proved in Proposition 4.7. Finally, the notion of affine orthog-
onality of H is equivalent to external affinity for commutative C∗-algebras
by Proposition 4.13. By BFL’s characterization theorem (Theorem 3.28), H
is the functor giving the difference of entropies on the subcategory of com-
mutative probability spaces up to an overall non-negative constant. �

The orthogonally affine assumption for all C∗-algebras will provide the
last fact needed to prove our characterization theorem.

Lemma 4.22 (Affine orthogonality determines entropy). Let H :
NCFinProb → BR be a continuous and orthogonally affine fibred
functor for which HA(ω) ≥ 0 for all states ω ∈ S(A), with equality on
all pure states, for all C∗-algebras A. If ω is any state on A, then there
exists a constant c ≥ 0 (independent of the algebras and states) such that
HA(ω) = cS(ω).

9Although the converse is still true, as can be seen by a minor modification of the proof
of the (⇒) direction in Proposition 4.13.
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Proof. By invariance of H under ∗-isomorphisms (Lemma 4.4), it suffices
to assume ω is a state as in Example 2.2. Let Np := {x ∈ X : px = 0} be
the nullspace of p. For each x ∈ X \ Np, decompose ωx into a convex sum
ωx =

∑
y∈Yx ψyxωyx of pure states ωyx ∈ S(Mmx), where {ψyx}y∈Yx defines

a nowhere-vanishing probability measure on a finite set Yx whose cardinality

equals the rank of the support of ωx. Thus, X \Np
ψ ∐

x∈X\Np Yx defines
a stochastic map. Let Pyx ∈ Mmx denote the one-dimensional projection
associated to the pure state ωyx. If Px denotes the support of ωx, then Px =∑

y∈Yx Pyx for all x ∈ X \ Np. Set B :=
(⊕

x∈X\Np C
Yx
)
⊕ C{•}, where

C{•} ∼= C, and •merely serves as a label to distinguish it from the rest of the
algebra. Define a ∗-homomorphism B f−→ A by

CYx 3 ey
f7−→

 ⊕
x′∈X\{x}

0

⊕ Pyx and

C{•} 3 e•
f7−→

 ⊕
x∈X\Np

(1mx − Px)

⊕⊕
x∈Np

1mx ,

(4.23)

where the first case expresses Pyx as an element of B (with 0’s on all factors
other thanMmx). Then f is a (unital) ∗-homomorphism that preserves the
orthogonality of all the ωyx states with y ∈ Yx and x ∈ X \Np (by viewing
all the ωyx as states on A via Lemma 4.12). Therefore,

HA(ω)−HB(ω ◦ f) = Hf (ω) =
∑

x∈X\N

∑
y∈Yx

pxψyxHf (ωyx)

=
∑

x∈X\N

∑
y∈Yx

pxψyx
(
HA(ωyx)−HB(ωyx ◦ f)

)
= 0

(4.24)

because ωyx and ωyx ◦ f are pure states.
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Consequently,

HA(ω)
(4.24)
=== HB(ω ◦ f)

Cor 4.21
====− c

∑
x∈X\Np

∑
y∈Yx

pxψyx log(pxψyx) for some c ≥ 0

= −c
∑

x∈X\Np

∑
y∈Yx

ψyx︸ ︷︷ ︸
1

px log(px)− c
∑

x∈X\Np

px
∑
y∈Yx

ψyx log(ψyx)

= c

(
S(p) +

∑
x∈X

pxS(ωx)

)
,

(4.25)

where the last equality follows from the definition of the Shannon entropy
for the S(p) term and Lemma 2.21 for the S(ωx) term. �

Theorem 4.26 (A functorial characterization of quantum entropy). Let H :
NCFinProb→ BR be a continuous and orthogonally affine fibred functor
for which HA(ω) ≥ 0 for all states ω ∈ S(A), with equality on all pure
states, for all C∗-algebras A. Then there exists a constant c ≥ 0 such that

Hf (ω) = c
(
S(ω)− S(ω ◦ f)

)
for all morphisms B f−→ A of C∗-algebras and states ω ∈ S(A).

Proof. Since Hf (ω) = HA(ω) − HB(ω ◦ f) by Lemma 4.2, Lemmas 4.4
and 4.22 show this equals the entropy difference up to the same constant
c. �

It is interesting that the notion of a disintegration was used in the proof
of Proposition 4.7. Note that in the category of states on (finite-dimensional)
C∗-algebras and state-preserving ∗-homomorphisms, disintegrations do not
always exist [36]. Nevertheless, when they exist, they imply Hf (ω) ≥ 0, as
the following proposition shows. Since the definition of a non-commutative
disintegration is not needed anywhere else in this work, the reader is referred
to [36] for definitions and other facts assumed in the proof.

Proposition 4.27 (If a disintegration for (f, ω, ω◦f) exists, then Sf (ω) ≥ 0).
Let B f−→ A be a ∗-homomorphism andA ω C a state onA. If (f, ω, ω◦f)
has a disintegration, then Sf (ω) ≥ 0.
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Proof. By isomorphism invariance of S, it suffices to consider the case
whereA,B, ω, f , and ξ are as in Lemma 2.11 (without the unitaries Ux). Let
Np ⊂ X andNq ⊂ Y be the nullspaces of p and q, respectively. Assume that
a disintegration of (f, ω, ξ) exists. By the non-commutative disintegration
theorem [36], for each x ∈ X and y ∈ Y there exist non-negative matrices
τyx ∈Mcxy such that

tr

(∑
x∈X

τyx

)
= 1 ∀ y ∈ Y \Nq

and pxρx =�
y∈Y

τyx ⊗ qyσy ∀ x ∈ X.
(4.28)

One more fact that will be needed is the equality

(C ⊗D) log(C ⊗D) = C log(C)⊗D + C ⊗D log(D) (4.29)

for all non-negative square matrices C,D (possibly of different sizes). Com-
puting SA(ω) first gives

SA(ω)
Defn 2.20
===== −

∑
x∈X

tr
(
pxρx log(pxρx)

)
(4.28)

==== −
∑
x∈X

tr

 �
y∈Y \Nq

(τyx ⊗ qyσy) log

 �
y′∈Y \Nq

τy′x ⊗ qy′σy′


= −

∑
x∈X

∑
y∈Y \Nq

tr
(
(τyx ⊗ qyσy) log(τyx ⊗ qyσy)

)
(4.29)

==== −
∑
x∈X

∑
y∈Y \Nq

tr
(
τyx log(τyx)⊗ qyσy + τyx ⊗ qyσy log(qyσy)

)
(4.28)

====
∑

y∈Y \Nq

qyS

(
�
x∈X

τyx

)
+ SB(ξ),

(4.30)

where �x∈X τyx is viewed as a density matrix on Msx , where
sx :=

∑
y∈Y \Nq cyx. Thus,

Sf (ω) = SA(ω)− SB(ξ) =
∑

y∈Y \Nq

qyS

(
�
x∈X

τyx

)
≥ 0. (4.31)

�
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Remark 4.32 (Having a disintegration is not necessary for Sf (ω) ≥ 0). If
Sf (ω) ≥ 0, it is not necessary that a disintegration of (f, ω, ω ◦ f) exists. A
counter-example is the inclusionM2 →M2⊗M2, which sendsB ∈M2 to
12⊗B, and the density matrix ρ = diag(p1, p2, p3, p4),where p1, p2, p3, p4 ≥
0 satisfy p1 + p2 + p3 + p4 = 1, p1 + p3 > 0, and p2 + p4 > 0. Then

Sf (ω) = −p1 log

(
p1

p1 + p3

)
− p2 log

(
p2

p2 + p4

)
− p3 log

(
p3

p1 + p3

)
− p4 log

(
p4

p2 + p4

)
≥ 0,

while a disintegration exists if and only if p1p4 = p2p3 [36, Section 4].

Remark 4.33 (A brief history and comparison of axiomatizations of quan-
tum entropy). Quantum entropy and its variants were often built upon the
classical versions, whose many axiomatizations are reviewed in Csiszar’s
survey [7]. In 1932, von Neumann obtained a phenomelogical characteri-
zation of entropy [49, Chapter V. Section 2]. In 1968, Ingarden and Kos-
sakowski characterized the von Neumann entropy using dimensional partial
Boolean rings of projections in Hilbert space [24]. In 1974, Ochs provided
a characterization using partial isometric invariance, additivity, subadditiv-
ity, and continuity (plus some additional technical axioms) [33]. In 1975,
Thirring [44] characterized the von Neumann entropy using axioms closely
related to those implemented by Fadeev in his characterization of the Shan-
non entropy [9, 10], the latter of which was simplified by Renyi [40].10

Thirring’s characterization is most closely related to ours and it is worth
taking the time to spell out his assumptions, which read as follows.

(i) S(ρ) is a continuous function of the eigenvalues of ρ;

(ii) S(1
2
12) = log 2;

(iii) If H =
⊕N

n=1Hn is a direct sum of Hilbert spaces and if
ρ =

⊕N
n=1 pnρn is a weighted direct sum of density matrices,

where {pn}n∈{1,...,N} is a probability distribution on {1, . . . , N}, then
S(ρ) = S(p) +

∑N
n=1 pnS(ρn), where p is viewed as a diagonal matrix

on CN with entries given by the pn.
10Thirring’s statement and proof can be found in [45, (2.2.4) pages 58–61]. However, it

seems that the first written account of his proof in English appears in Wehrl’s review [51,
pages 238–239].
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There are actually several implicitly hidden assumptions within these three.
For example, the dependence on eigenvalues means S(ρ) = S(UρU †) for all
unitaries U , i.e. S(ρ) is invariant under ∗-isomorphisms. The second item is
merely a normalization condition, which we have ignored (it specifies the
constant c). The third item is close to our orthogonally affine assumption.
However, an implicit assumption is made, which can be expressed as saying
that S(ρn) is equal to S(0 ⊕ · · · ⊕ ρn ⊕ · · · 0), i.e. S is invariant under the
non-unital inclusion of one matrix algebra into a direct sum. This is closely
related to Och’s partial isometry invariance assumption. In our characteriza-
tion, we obtain this property as well as invariance under ∗-isomorphisms as
a consequence of our axioms.

Two other characterizations of the von Neumann entropy have appeared
recently. The first is the topos-theoretic one of Constantin and Döring, which
is based on how different commutative subalgebras, called contexts, of a
fixed C∗-algebra determine its structure [6]. A context may be thought of as
probing a quantum system by measurements of an observable and sending
any state to the probability measure on the associated set of eigenvalues—in
other words, it is a ∗-homomorphism. The collection of all contexts forms a
category via inclusion and one can define measures associated to this cate-
gory via compatible families of probability measures on the contexts without
defining a state on the embedding algebra. They then classify the quantum
entropy by assuming the form of entropy on the subcategory of commuta-
tive algebras and minimizing over all contexts. One difference between our
assumptions for characterizing the von Neumann entropy is that we do not
assume the formula for the Shannon entropy, nor do we assume that commu-
tative algebras play any special role, which are singled out by the existence
of disintegrations for all state-preserving *-homomorphisms. On the other
hand, their characterization emphasizes the physically intuitive operational
importance of classical systems for determining the entropy.

Finally, there has also been an abstract characterization of the von Neu-
mann entropy by homological information structures introduced by Baudot
and Bennequin (cf. Theorem 3 page 3290 and Theorem 4 page 3313 of [5]),
which are further developed by Vigneaux [47, 48]. They seek to understand
information quantities more generally. It is not yet clear to us how our meth-
ods are related.
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