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Résumé. Nous montrons que le calcul différentiel (sous sa forme usuelle, ou sous la forme
du calcul différentiel topologique) admet un plongement plein et fidèle dans une catégorie de
foncteurs (des foncteurs d’une petite catégorie dite catégorie des algèbres tangentes ancrées
vers des ensembles ancrés). Pour préparer cette approche, nous définissons une nouvelle
version, plus symétrique, du calcul différentiel, où l’application ancre joue un rôle central.

Abstract. We show that differential calculus (in its usual form, or in the general form of
topological differential calculus) can be fully imdedded into a functor category (functors
from a small category of anchored tangent algebras to anchored sets). To prepare this
approach, we define a new, symmetric, presentation of differential calculus, whose main
feature is the central rôle played by the anchor map, which we study in detail.
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Introduction

Differential Calculus is a central ingredient of modern mathematics. While the “working
mathematician” takes this tool for granted, thinking about its conceptual foundations re-
mains a potentially important topic. In the present work, we continue the line of research
started with [BGN04, Be08, BeS14, Be17], and combine it with what Grothendieck once
called the “simple idea of a good functor from rings to sets” (according to W. Lawvere, cf.
n-lab)1. The “simple idea” mentioned by Grothendieck is currently used in algebraic

1Here the quote from the n-lab: “The 1973 Buffalo Colloquium talk by Alexander Grothendieck had
as its main theme that the 1960 definition of scheme ... should be abandoned AS the FUNDAMENTAL
one and replaced by the simple idea of a good functor from rings to sets. The needed restrictions could be
more intuitively and more geometrically stated directly in terms of the topos of such functors, and of course
the ingredients from the “baggage” could be extracted when needed as auxiliary explanations of already
existing objects, rather than being carried always as core elements of the very definition.”
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geometry, and in Lie Theory, where one often considers a real “space” – for instance, a
Lie group G – as set of “real points” GR of a complex Lie group GC. This is a kind of
non-linear analog of the complexification VC = V ⊗R C of a real vector space (or of a
real Lie algebra). Grothendieck’s insight was that this idea of “complexification” should
not be limited to field extensions, but enlarged to more general ring extensions, in order to
incorporate operations belonging to infinitesimal calculus: a K-Lie group G, or a general
K-smooth manifold M , should admit “scalar extensions” MA akin to a hypothetic tensor
product M ⊗K A, for certain K-algebras A. The simplest example of such an extension is
the one by dual numbers,

K[ε] := K[X]/(X2) = K⊕ εK (ε2 = 0), (0.1)

where the nilpotent element ε is the class [X] modulo (X2). Grothendieck, following
ideas of Weil [We53], realized that the tangent bundle TM of a “space” M , which is “de-
fined over K”, could be understood as something like M⊗KK[ε]. This idea has been used
by Demazure and Gabriel in their theory of algebraic groups [DG], in differential calculus
over general base field and rings [Be08], and in the approach to natural operations in dif-
ferential geometry via the so-called Weil functors ([KMS93], cf. also [BeS14]). The most
elaborate and systematic development of these ideas leads to what is called nowadays
synthetic differential geometry (SDG, see [MR91]). The approach to be presented here
pursues the same goals as SDG, but by different means: we keep closer to the idea of gen-
eralizing the algebraic tensor product. In a very direct sense, our problem is to generalize
the algebraic scalar extension VA := V ⊗KA of a K-module V , to more general spacesM ,
like, e.g., manifolds – where we face the problem that such an operation won’t be possible
for all K-algebras A, so we have to single out a good class (good category) of algebras
for which such an extension is possible. Such a class, called the category of (anchored)
tangent algebras, will be defined in this paper. It arises naturally, when questioning the
very shape of differential calculus, instead of taking it for granted. Let us briefly explain
the main ideas.

0.1 Topological differential calculus

In differential calculus we consider maps f whose domain U and codomain U ′ are locally
linear sets – by this we mean U ⊂ V and U ′ ⊂ V ′ are non-empty subsets of linear (or
affine, if one prefers) spaces V and V ′. In this situation, we may define the slope or
difference quotient map: when t, s ∈ K are such that t − s is invertible, we look at the
difference quotient

f [1](v0, v1; t, s) := f
[1]
(t,s)(v0, v1) :=

f(v0 + tv1)− f(v0 + sv1)

t− s
. (0.2)

To speak of topological calculus, we shall assume that V, V ′ are topological vector spaces
or modules over topological fields or rings K, and U,U ′ are open. For the moment, let’s
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consider the “classical case” K = R and V = Rn, V ′ = Rm. Then the following holds
(cf. [BGN04, Be08]): The map f is of class C1 if, and only if, the difference quotient map
f [1] extends continuously to a map defined on the set

U [1] :=
{

(v0, v1; t, s) ∈ V 2 ×K2
∣∣∣ v0 + tv1 ∈ U
v0 + sv1 ∈ U

}
. (0.3)

If this is the case, we denote still by f [1] : U [1] → U ′ the extended map. Then the
differential df of f is given by f [1](v0, v1; 0, 0) = df(v0)v1. Now, these conditions make
perfectly sense for any “good” topological ring K and for maps defined on open locally
linear sets, and thus can serve as definition of differentiability over K – the “topological
differential calculus” thus defined has excellent functorial properties allowing to give a
“purely algebraic” presentation of certain features of usual calculus (see [BGN04, Be11]).
To understand the structure of formulae like (0.2) and (0.3), the following way of talking
turns out to be useful:

• call v = (v0, v1) “space variables”, with v0 the “foot point” and v1 the “direction”
(in which we differentiate),

• call (t, s) “time variables”, and t “target time”, and s “source time”,

• call (t, s) “regular”, or “finite”, if t − s is invertible in K, and “singular” or “in-
finitesimal” else, with t− s = 0 being the “most singular value”,

• call v0 + sv1 the “source”, and v0 + tv1 the “target evaluation point”,

• for fixed (t, s), call α
(
(v0, v1)

)
:= v0 + sv1 the “source map”, and define the “target

map” β
(
(v0, v1)

)
:= v0 + tv1 .

The slogan summarizing topological calculus is: the slope extends continuously (jointly
in space and time variables) from finite to singular times. The notable difference with
[BGN04, Be11] is that here we shall use a pair of time parameters (t, s), instead of a single
parameter t as in loc. cit. Although the expression (0.2) is of course symmetric under
switch of target and source time, it will be important to distinguish “target” and “source”.
The setting of [BGN04, Be11] is gotten by restricting to s = 0 (we call this “target
calculus”); symmetrically, the theory could also be formulated when letting t = 0 (“source
calculus”). But now we can take advantage to define a third calculus, the “symmetric
calculus”, which corresponds to the case t = −s: then v0 = v0+sv1+v0+tv1

2
, so the footpoint

is the midpoint of target and source evaluation point – see Subsection 2.5.2

2 A price has to be paid: one will have to require that 2 be invertible in K. Analysts won’t bother, some
algebraists might...
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0.2 The underlying algebraic structure: anchor

In the second section we shall carve out the algebraic structures underlying topological
differential calculus. As in general groupoid theory, the pair (α, β) given by source and
target will be called anchor map3. We use the same term when considering the pair of
time variables (t, s) as a “frozen parameter” (temporarily considered to be fixed); then we
write (t, s) as lower index – for instance,

U
[1]
(t,s) := {(v0, v1) | (v0, v1; t, s) ∈ U [1]}. (0.4)

For fixed (t, s), we call again anchor the (linear) map sending the space variables v =
(v0, v1) to the pair of evaluation points:

Υ(t,s) : U
[1]
(t,s) → U × U,

(
v0

v1

)
7→
(
x0

x1

)
=

(
1 s
1 t

)(
v0

v1

)
=

(
v0 + sv1

v0 + tv1

)
=

(
α(v)
β(v)

)
.

(0.5)
Of course, a choice is made here: the “first” component of U ×U shall be associated with
“source”, and the “second” with “target”. One of our concerns in the sequel will be to
formalize the levels on which such choices are operated. Anyhow, by direct computation,
the anchor is seen to be invertible if, and only if, t− s is invertible, and then its inverse is
given by

Υ−1
(t,s) : U × U → U

[1]
(t,s),

(
x0

x1

)
7→ 1

t− s

(
t −s
−1 1

)(
x0

x1

)
=

(
tx0−sx1
t−s
x1−x0
t−s

)
. (0.6)

The first component is an affine combination v0 = s
s−tx1 + t

t−sx0, and the second a

“difference quotient”. From this, comparing with (0.2), we see that f [1]
(t,s) is precisely the

second component of the map f {1}(t,s) := Υ−1
(t,s) ◦ (f × f) ◦Υ(t,s), given by

f
{1}
(t,s)

(
v0

v1

)
=

(
tf(v0+sv1)−sf(v0+tv1)

t−s
f(v0+tv1)−f(v0+sv1)

t−s

)
. (0.7)

The big advantage is that f {1}(t,s) depends functorially on f : the “chain rule” simply reads

(g ◦ f)
{1}
(t,s) = g

{1}
(t,s) ◦ f

{1}
(t,s). Now we can reformulate the property of being C1

K (Lemma
1.2): The map f : U → U ′ is of class C1

K if, and only if, for all (t, s) ∈ K2 there
exists a continuous map f {1}(t,s) : U

{1}
(t,s) → (U ′)

{1}
(t,s), jointly continuous also in the parameter

(t, s) ∈ K2, such that

Υ(t,s) ◦ f {1}(t,s) = (f × f) ◦Υ(t,s) :
U(t,s)

f
{1}
(t,s)−→ U ′(t,s)

Υ ↓ ↓ Υ

U × U f×f−→ U × U

(0.8)

3 This map is indeed the anchor map of a groupoid structure, see Subsection 4.2.
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In a nutshell, this diagram contains the essential ingredients needed for our approach: our
aim is to translate diagram (0.8) into a “categorical” formulation, so that it will make
sense in an abstract setting, not requiring topology any more. In a first step, we generalize
this diagram at higher order n ∈ N (Theorem 1.8): indeed, differentiability at order n is
characterized by a diagram of the same kind, replacing f {1}(t,s), etc., by higher order maps

f
{n}
(t,s), etc., where (t, s) = (t1, . . . , tn; s1, . . . , sn) ∈ K2n. Technically, we work with 2n-

fold direct products, which have to be indexed by elements A of the n-hypercube P(n)
(power set of n = {1, . . . , n}).

0.3 The simple idea of a good functor from rings to sets

In order to formalize the idea that the extended domains and maps (U
{n}
(t,s), f

{n}
(t,s)) are scalar

extensions (U ⊗K A, f ⊗K A), we look at the case U = K. From functoriality, it follows
that the spaces K{n}(t,s) are in fact K-algebras, which can easily be identified,

1. in terms of polynomial rings: they are polynomial algebras K[X1, . . . , Xn], quo-
tiented by the relations (Xi − ti)(Xi − si) = 0, for i = 1, . . . , n,

2. in terms of tensor products: they are n-fold tensor products of “first order algebras”
K(t1,s1) ⊗ . . .⊗K(tn,sn).

The second item shows that the collection of these algebras Kn
(t,s) forms a small monoidal

category with respect to the tensor product, where we define morphisms to be given by
left or right multiplications coming from the monoid structure. This is the category talgK
of K-tangent algebras. Every such algebra admits an anchor morphism Υn

(t,s) : Kn
(t,s) →

KP(n) to the cube algebra which is a direct product of copies of K, indexed by the n-
hypercube P(n). We compute an explicit formula describing Υn

(t,s) (Theorem 2.8). This
anchor morphism is an isomorphism if, and only if, (t, s) is regular, and we give an
explicit formula for the inverse morphism (Theorem 2.9).

Now, the “simple idea of a good functor from rings to sets” is to view “K-smooth
spaces” as functors M from the category talgK to the category of sets, satisfying certain
conditions specified in Subsection 3.5, and “K-smooth maps” as certain natural transfor-
mations between functors M and M ′, behaving in all respects like a family of “algebraic
scalar extensions” f ⊗K idKn

(t,s)
. Indeed, in the framework of topological differential cal-

culus, for a smooth map f : M →M ′, the family fn
(t,s) satisfies these conditions, and thus

“topological calculus” imbeds into “categorical calculus”.
In order to fully justify such a functorial approach to differential calculus, one usually

requires in SDG that the model be well-adapted, that is, that we obtain a full and faithful
imbedding of a “usual” category of differential calculus into the “functorial” one. We
show that, for our setting, this is indeed the case (Theorem 3.11). The proof is much
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easier than the one of analogs in SDG, because, in essence, the whole setting is designed
for such a theorem to hold: it is merely the translation of Theorem 1.8 into a more abstract
language.

0.4 Further topics

The aim of this work is to lay the basic framework for a purely categorical approach to
calculus over general (commutative) base rings. In Section 4 we briefly indicate further
questions and topics to be studied in this context: to study natural transformations in
the sense of [KMS93], we have to introduce further morphisms in our categories, and
in particular those arising via the natural (higher order) groupoid structure that exists on
the algebras Kn

(t,s). Very likely, a good understanding requires to understand also the full
iteration procedure, and not only the restricted one used here, so to include, for instance,
also the simplicial calculus from [Be13]. Finally, we conjecture that, replacing the usual
braiding of tensor products by the braiding defining the graded tensor product, the present
approach will also turn out to be useful in a categorical approach to super-calculus.

Acknowledgment. Part of these results should have been presented at the CIMPA spring
school “Lie groupoids and algebroids”, which had to be cancelled due to the Covid-19
crisis. We thank the organisers for their work, and we hope that the school will take place
soon after the end of this crisis. We also thank Alain Genestier for helpful discussions and
the referee for his careful reading and useful comments on the manuscript.

Notation. We write N = {1, 2, . . .} and N0 = N ∪ {0}, and let n = {1, 2, . . . , n}. Cat-
egories are denoted in boldface characters: small letters for small categories, such as
talgK, and capital letters for large categories, such as Sets (category of sets). The letter
Fn stands for “functor category”, so Fn(c,Sets) = Setsc is the category of (covariant)
functors from a (small) category c to Sets. Throughout, K is a commutative base ring
with unit 1.

1. Topological differential calculus

In differential calculus, one usually is mostly interested in the morphisms, that is, in maps
of class Cn. However, let us first say some words about the objects:

1.1 Locally linear sets, and the anchor

A locally linear set is a pair (U, V ), where V is a K-module, and U ⊂ V a non-empty
subset. We define the set U [1] by (0.3), and the (full) anchor by

Υ : U [1] → (U ×K)2, (v0, v1; t, s) 7→ (v0 + sv1, s; v0 + tv1, t). (1.1)
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When time parameters (t, s) ∈ K2 are fixed, we define U(t,s) := U
[1]
(t,s) := U

{1}
(t,s) by (0.4),

and the (restricted) anchor

Υ(t,s) := Υ
{1}
(t,s) : U

[1]
(t,s) → U × U (1.2)

is given by restricting the map Υ defined above, i.e., it is given by (0.5). Direct com-
putation shows that Υ(t,s) is invertible iff s − t is invertible in K, with inverse given by
(0.6). Note that (U

[1]
(t,s), V

2) is again a locally linear set, and hence the construction can be
iterated, with some new parameter (t2, s2), and so on. Explicit formulae, describing this,
will be given later (restricted iteration, Def. 1.5).

1.2 The topological setting

In the remainder of this section we assume that K is a good topological ring (i.e., a
topological ring whose unit group K× is open and dense, and inversion is a continuous
map), that all K-modules are topological modules, and that all locally linear sets (U, V ),
(U ′, V ′), . . . are open inclusions.

Definition 1.1. We say that f : U → V ′ is of class CK
1 if the slope given by (0.2) extends

to a continuous map f [1] : U [1] → V ′. We then define, for all (x, v) ∈ U × V ,

df(x)v := ∂vf(x) := f [1](x, v; 0, 0).

Remark 1.1. Letting s = 0, the preceding definition clearly implies that f is of class C1
K

in the sense of [BGN04] or [Be08]. Conversely, the map denoted here by f [1] can be
expressed by the one denoted f [1] in loc. cit., and hence the C1

K-notions used there are
equivalent to the one given above. We call the calculus obtained by restricting to s = 0
target calculus. Recall from [BGN04] that, in the real or complex finite dimensional case
this definition is equivalent to all usual ones, and in the infinite dimensional locally convex
case it is equivalent to Keller’s definition of differentiability.

Lemma 1.2. For a map f : U → U ′, the following are equivalent:

1. f is C1
K,

2. for all (t, s) ∈ K2, there exists a (unique) map f(t,s) = f
{1}
(t,s) : U(t,s) → U ′(t,s), such

that

(a) the map U [1] → (U ′)[1], (x, v; t, s) 7→ f(t,s)(x, v) is continuous,

(b) for all (t, s) ∈ K2,

Υ(t,s) ◦ f {1}(t,s) = (f × f) ◦Υ(t,s) :
U(t,s)

f(t,s)−→ U ′(t,s)
Υ ↓ ↓ Υ

U × U f×f−→ U ′ × U ′
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Proof. As we have already seen, when t − s is invertible in K, then f(t,s) is necessarily
given by (0.7). Since its second component is the slope f [1], existence of f(t,s), jointly con-
tinuous in (x, v; t, s), implies existence of a continuous extension of the slope, whence (2)
⇒ (1). To prove the converse, assume (1) and write f(t,s)(x, v) = (w0, w1) with (w0, w1)
given by (0.7). Assumption (1) means that w1 = w1(x, v; t, s) admits a continuous exten-
sion. Let us show that w0 = w0(x, v; t, s) also admits a continuous extension. To see this,
let x0 := f(x+ sv) and x1 := f(x+ tv). Then x0 = w0 + sw1, x1 = w0 + tw1, whence

w0 = x1 − tw1 = f(x+ tv)− tf [1](x, v; t, s),

showing that w0(x, v) extends continuously for all (t, s) if so does f [1](x, v; t, s).

Example 1.1. If f : V → V ′ is linear and continuous, then direct computation using (0.7)
shows that f(t,s)(v0, v1) = (f(v0), f(v1)), so f is C1

K.

Remark 1.2. Letting v1 = 0 in (0.7), we always get f(t,s)(v0, 0) = (f(v0), 0). In diagram-
matic form, the map f itself imbeds into f(t,s): we define the imbedding

ι(t,s) : U → U(t,s), v0 7→ (v0, 0) (1.3)

then the computation just mentioned shows that f(t,s) ◦ ι(t,s) = ι(t,s) ◦ f :

U(t,s)

f(t,s)−→ U ′(t,s)
ι ↑ ↑ ι
U

f−→ U

(1.4)

Note that Υ ◦ ι is the diagonal imbedding ∆ : U → U × U , x 7→ (x, x).

In this setting, the usual rules of first order calculus hold (chain rule, product rule,
linearity of first differential) – for a systematic exposition we refer to [BGN04, Be08,
Be11]. Most important for our purposes is the Chain Rule, which we write in functorial
form

∀(t, s) ∈ K2 : (g ◦ f)(t,s) = g(t,s) ◦ f(t,s). (1.5)

This follows easily from Lemma 1.2: for invertible t− s, we have functoriality (g × g) ◦
(f × f) = (g ◦ f)× (g ◦ f), and for general (t, s), it follows “by density”.

1.3 Full versus restricted iteration

Higher order differentiability is defined by iterating first order differentiability. However,
there are various ways of doing so, and it is important to distinguish them. In [BGN04],
f is defined to be of class C2

K if it is C1 and if f [1] also is C1, so that we can define
f [2] := (f [1])[1], etc.:
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Definition 1.3 (Full iteration). We say that f is of class Cn
K if: f is of class C1

K, and f [1] is
of class Cn−1

K . In this case we let f [n] := (f [1])[n−1].

Remark 1.3. In the real or complex finite dimensional case this is equivalent to the usual
definitions (see [BGN04, Be11]). However, since full iteration repeats the procedure for
all variables together, the number of variables exploses, and it is hard to get control over
the structure of the maps f [n] (see [Be15b]). To reduce the number of variables, in re-
stricted iteration we consider in each step time variables to be frozen, and take difference
quotients only with respect to space variables.

Notation. For each k ∈ N, we denote by an upper index {k} a copy of the procedure {1}
that has been defined above. An upper index {i, j} (i < j) indicates a double application
of the procedure (first {i}, then {j}), etc. E.g., an upper index n := {1, . . . , n} indicates
that we first apply {1}, then {2}, etc., and finally {n}.

To abbreviate, in the sequel, we let (t, s) = (t1, . . . , tn; s1, . . . , sn) ∈ K2n.

Definition 1.4 (Restricted iterated domain). For U ⊂ V , define Un
(t,s) ⊂ V n

(t,s) by

Un
(t,s) := U

{1,...,n}
(t,s) := (. . . (U

{1}
t1,s1)

{2}
(t2,s2)) . . .)

{n}
(tn,sn) = (U

{1}
(t1,s1))

{2,...,n}
(t2,...,tn,s2,...,sn).

Note that V(ti,si)
∼= V 2, so V n

(t,s)
∼= V (2n).

Definition 1.5 (Restricted iteration). A map f : U → U ′ is called of class CK,n if: it is
of class C1

K, and, for all (t1, s1) ∈ K2, the map f {1}(t1,s1) is of class CK,n−1. In this case we
define inductively

fn
(t,s) := (f

{1}
(t1,s1))

{2,...,n}
(t2,...,tn,s2,...,sn) = (. . . (f

{1}
t1,s1)

{2}
(t2,s2)) . . .)

{n}
(tn,sn) : Un

(t,s) → (U ′)n(t,s).

We also require that fn
(t,s) be jointly continuous both in space and in time variables.

Theorem 1.6. When K = R or C, and V is a locally convex topological vector space,
then the conditions Cn

K and CK,n are both equivalent to the usual (Keller’s) definition of
Cn-maps.

Proof. As already mentioned, Cn
K clearly implies CK,n. Equivalence of Cn

K with Keller’s
definition has been proved in [BGN04]. On the other hand, CK,n obviously implies
Keller’s Cn-definition, which arises simply by taking (t, s) = (0, . . . , 0) in the CK,n-
condition. Thus all three conditions are equivalent.

Remark 1.4. For general K, properties Cn
K and CK,n cease te be equivalent: in positive

characteristic, condition Cn
K appears to be strictly stronger than CK,n (cf. the proof of the

general Taylor formula in [BGN04, Be11], which really uses full iteration; concerning this
item, cf. also [Be13]). It would be interesting to have a criterion allowing to decide when
Cn

K and Cn,K are equivalent.
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Definition 1.7. For all (t, s) ∈ K2n, the n-th order anchor of U ⊂ V is defined as follows:
for all locally linear sets (U, V ), (U ′, V ′), we consider the map

(U × U ′)(t,s) → U(t,s) × U ′(t,s), ((v0, v
′
0), (v1, v

′
1)) 7→ ((v0, v1), (v′0, v

′
1))

as identification. Under such identifications, the map Υ := Υn
(t,s) :=

(Υ
{1}
(t1,s1))

{2,...,n}
(t2,...,tn,s2,...,sn) : Un

(t,s) → (U
{1}
(t1,s1))

{2,...,n}
(t2,...,tn,s2,...,sn) × (U

{1}
(t1,s1))

{2,...,n}
(t2,...,tn,s2,...,sn)

inductively gives rise to a map Υn
(t,s) : Un

(t,s) → U2n which we call the n-fold anchor.

Remark 1.5. In order to fully formalize this definition, we need an explicit labelling of the
2n copies of U in U2n . For the moment, this is not needed, and will be taken up later (Def.
2.7). Let us, however, give the result for n = 2: space variables have labels 0, 1, 2, 12

corresponding to the subsets of {1, 2}, so we write v = (v0, v1, v2, v12) ∈ U
{1,2}
(t1,t2,s1,s2).

Then iteration shows that the linear map Υ is given by the (block) matrix (Kronecker
product of two first-order anchors)

(
1 s1

1 t1

)
⊗
(

1 s2

1 t2

)
=


1 s1 s2 s1s2

1 t1 s2 t1s2

1 s1 t2 s1t2
1 t1 t2 t1t2

 , (1.6)

so we have four “evaluation points” given by the four lines of the (block) matrix:

Υ∅(v) = v∅ + s1v1 + s2v2 + s1s2v12,
Υ1(v) = v∅ + t1v1 + s2v2 + t1s2v12,
Υ2(v) = v∅ + s1v1 + t2v2 + s1t2v12,
Υ12(v) = v∅ + t1v1 + t2v2 + t1t2v12.

(1.7)

The inverse matrix of (1.6) is the Kronecker product of the inverses of the respective first
order anchors (when these are invertible): it is given by

1

t1 − s1

(
t1 −s1

−1 1

)
⊗ 1

t2 − s2

(
t2 −s2

−1 1

)
=

1

(t− s)2


t1t2 −s1t2 −t1s2 s1s2

−t2 t2 s2 −s2

−t1 s1 t1 −s1

1 −1 −1 1


(1.8)

where (t− s)2 := (t1 − s1)(t2 − s2). For the general case, see Theorem 2.9.

Theorem 1.8. For a map f : U → U ′, the following are equivalent:

1. f is CK,n,
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2. for all (t, s) ∈ K2n, there exists a (unique) map fn
(t,s) : Un

(t,s) → (U ′)n(t,s), such that

(a) fn
(t,s)(v) is jointly continuous in space and time variables (v; t, s),

(b) for all (t, s) ∈ K2n, Υn
(t,s) ◦ fn

(t,s) = f 2n ◦Υn
(t,s):

Un
(t,s)

fn
(t,s)−→ (U ′)n(t,s)

Υn
t,s ↓ ↓ Υn

(t,s)

U2n f2
n

−→ (U ′)2n .

The map fn
(t,s) depends functorially on f : (f ◦ g)n(t,s) = fn

(t,s) ◦ gn(t,s) (Chain Rule).

Proof. By induction: for n = 1, this is Lemma 1.2. Assume the claim holds on level n−1

and apply it to f replaced by f {1}(t1,s1). From the inductive definitions, it follows readily that
the properties are again equivalent on level n. The (higher order) Chain Rule now also
follows by induction.

Example 1.2. Using Formula (1.8), let us give explicit formulae for n = 2:

f 2
(t1,t2,s1,s2)(v) = Υ−1

(
f(Υ∅(v)), f(Υ1(v)), f(Υ2(v)), f(Υ12(v))

)

=
1

(t− s)2


t1t2f(Υ∅v)− s1t2f(Υ1v)− t1s2f(Υ2v) + s1s2f(Υ12v)
−t2f(Υ∅v) + t2f(Υ1v) + s2f(Υ2v)− s2f(Υ12v)
−t1f(Υ∅v) + s1f(Υ1v) + t1f(Υ2v)− s1f(Υ12v)

f(Υ∅v)− f(Υ1v)− f(Υ2v) + f(Υ12v)

 (1.9)

Since (t − s)2 = (t1 − s1)(t2 − s2), the first term is in fact an affine combination of
values of f at the four evaluation points, whereas the other three terms are “zero-sum
combinations” of these values, and hence correspond to “true” difference quotients. In
order to state results at arbitrary order, we need some notation:

1.4 Hypercube notation, and formula for higher order slopes

Definition 1.9. We call n-hypercube the power set P(n) = P({1, . . . , n}). It serves as
index set for space variables, which we write in the form v = (vA)A∈P(n). Recall thatP(n)
is a semigroup for union ∪ and intersection ∩, and a group with respect to the symmetric
difference

A∆B = (A ∪B) \ (A ∩B) = (A ∩Bc) ∪ (B ∩ Ac),

where Ac = n\A is the complement of A in n. Recall also that Ac∆Bc = A∆B, and that
A∆Bc = (A∆B)c = Ac∆B, whence |A∆Bc| = n− |A∆B|.
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Definition 1.10. For all t, s ∈ Kn and A ∈ P(n), we let t∅ = 1 = s∅, and

tA =
∏
k∈A

tk, sA =
∏
k∈A

sk, (t− s)A =
∏
k∈A

(tk − sk).

Call (t, s) regular, or finite, if, ∀i = 1, . . . , n : (ti − si) ∈ K×, and singular if ∀i =
1, . . . , n : (ti − si) /∈ K×, and mixed else.

Theorem 1.11. Let f : U → U ′ be of class CK,n. Then, for all regular (t, s) ∈ K2n, and
all B ∈ P(n), the component (fn

(t,s)(v))B is given by

(fn
(t,s)(v))B =

1

(t− s)n

∑
A∈P(n)

(−1)|A∆B|sBc∩AtBc∩Ac f
( ∑
C∈P(n)

sC∩ActC∩AvC
)
.

The proof will be given in Subsection 2.4. For B = ∅, the component is an affine
combination of values of f at the 2n evaluation points, and for all other components it is
again a “zero sum combination”.

1.5 Categories of locally linear sets and CK,n-maps

To summarize, we have defined a category of locally linear sets and their morphisms:

Definition 1.12. We denote by LlinK,n the category whose objects are pairs (U, V ), where
V is a topological K-module and U ⊂ V a non-empty open subset, and morphisms are
CK,n-maps f : U → U ′. (For n = 0, morphisms are continuous maps, and for n = ∞,
these are maps that are CK,n for all n ∈ N.)

Definition 1.13. For m ≥ n and (t, s) ∈ K2n, the (n; t, s)-tangent functor is the functor
from LlinK,m to LlinK,m−n given by (U, V ) 7→ (Un

(t,s), V
n

(t,s)) and f 7→ fn
(t,s).

Remark 1.6 (Manifolds). By the usual glueing procedures, one may now define CK,n-
manifolds over K, modelled on locally linear sets – since these methods are indepen-
dent of the particular form of differential calculus, we do not wish to go here into details
(see [Be16] for a formulation of such principles, adapted to most general contexts). The
(n; t, s)-tangent functor then carries over to manifolds : for every K-smooth manifold M
we have a “generalized higher order tangent bundle”Mn

(t,s), depending functorially onM ,
and coming with an anchor map Mn

(t,s) →M2n .

2. The rings of calculus: tangent algebras

Our next aim is to understand the (n; t, s)-tangent functor as a functor of scalar extension,
from K to a ring denoted by Kn

(t,s), and which we shall define next.
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2.1 The scaloid, and the algebras Kn
(t,s).

The scaloid is the index set that will be used in the following construction of tangent
algebras:

Definition 2.1. We call scaloid the free monoid over K2, that is, the disjoint union over
n ∈ N0 of all K2n:

scal := scalK :=
∐
n∈N0

K2n

(in the following, we write (t, s) with t, s ∈ Kn for elements of K2n), together with its
monoid structure given by juxtaposition, and denoted by

(t, s)⊕ (t′, s′) = (t1, . . . , tn, t
′
1, . . . , t

′
m; s1, . . . , sn, s

′
1, . . . , s

′
m) = (t⊕ t′, s⊕ s′) .

We denote by K[X1, . . . , Xn] the algebra of polynomials in n variables with coeffi-
cients in K. It can be defined inductively by using the isomorphisms, where ⊗K denotes
the tensor product of two associative K-algebas,

K[X1, X2] ∼= (K[X1])[X2] ∼= K[X1]⊗K K[X2], (2.1)

so, by induction, we have an iterated tensor product of algebras

K[X1, . . . , Xn] ∼= K[X1]⊗K . . .⊗K K[Xn]. (2.2)

Definition 2.2. For (t, s) ∈ K2n, we define the (t, s)-tangent algebra

Kn
(t,s) := K[X1, . . . , Xn]/((Xi − ti)(Xi − si), i = 1, . . . , n)

(quotient by the ideal I(t,s) generated by all (Xi − ti)(Xi − si), i = 1, . . . , n).

Lemma 2.3. The algebra Kn
(t,s) is a free K-module of dimension 2n, having a canonical

basis indexed by elements A of the n-cube P(n),

eA := [XA], XA =
∏
k∈A

Xk.

It is also isomorphic to an n-fold tensor product of first order tangent algebras K{i}(ti,si)
=

K[Xi]/((Xi − si)(Xi − ti)):

Kn
(t,s) = K{1}(t1,s1) ⊗ . . .⊗K{n}(tn,sn).

Proof. For n = 1, the claim is obviously true: a polynomial algebra K[X] quotiented by
the ideal generated by a polynomial of degree 2 is of dimension 2, with K-basis the classes
[1] and [X]. For n > 1, the claim follows by induction using (2.1).
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Theorem 2.4. Assume K is a good topological ring. Then the structure maps + and ·
of the ring K are of class CK,∞, and applying n-fold restricted iteration with parameters
(t, s) yields a good topological ring which is canonically isomorphic to Kn

(t,s) (whence in
particular is a free K-module of dimension 2n)

Proof. The structure maps are continuous and (bi)-linear, hence smooth (both in the full
and restricted sense, cf. [BGN04]). By functoriality, and applying, concerning Cartesian
products, the convention from Def. 1.7, rings are transformed by the iterated functors into
rings. We have to show that the ring structure on the underlying set of Kn

(t,s) is precisely the
one defined above. For n = 1 and regular (t1, s1) = (t, s), this follows from the explicit
formulae for difference calculus : slightly more general, given a bilinear continuous map
β : V ×W → Y , thought of as a “product”, so let us write v •w := β(v, w), we compute

β
{1}
(t,s) : V(t,s) ×W(t,s) → Y(t,s), (

(
v0

v1

)
,

(
w0

w1

)
) 7→

(
v0

v1

)
•{1}(t,s)

(
w0

w1

)
which by an explicit computation using Formula (0.7) is given by(

v0

v1

)
•{1}(t,s)

(
w0

w1

)
=

(
v0 • w0 − st v1 • w1

v0 • w1 + v1 • w0 + (s+ t)v1 • w1

)
. (2.3)

Now, decomposing the product of K{1}(t,s) according to the canonical basis e0 = [1], e1 =

[X], we get exactly the same formula, whence the claim for n = 1 and regular (t, s). By
density, the claim follows for all (t, s), and by straightforward induction, using Lemma
2.3, it now follows for all elements (t, s) of the scaloid. Finally, by general argments
([Be08, Be11]), the ring Kn

(t,s) is again “good”.

By exactly the same arguments we see also that the structure maps V × V → V and
K × V → V of a topological K-module are smooth, and give by restricted iteration rise
to the corresponding structure maps of the scalar-extended module V n

(t,s) = V ⊗K Kn
(t,s)

; also, if f : V → V ′ is linear, then fn
t,s coincides with the algebraic scalar extension

f ⊗ idKn
(t,s)

.

2.2 Source and target

Evaluation of a class [P ] ∈ K[X]/((X − s)(X − t)) at elements x ∈ K is in general
not well-defined, but it is so for x = s and x = t. Thus we get two algebra morphisms
α, β : K{1}(t,s) → K, called source and target

α([P ]) = P (s), β([P ]) = P (t). (2.4)

(Note that α is coupled with s and β with t, so the order of (s, t) matters.) With respect to
the basis e0 = [1], e1 = [X], we have α(v0 + v1e1) = v0 + sv1, β(v0 + v1e2) = v0 + tv1,
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which is in keeping with the definitions in Subsection 0.2. In Appendix B we describe
the structure of K{1}(t,s) in an intrinsic way, via α and β; this may be useful for a further
structure theory, but is not directly needed in the sequel.

2.3 The anchor

Putting source and target together, the first order anchor is the algebra morphism defined
by

Υ
{1}
(t,s) : K(t,s) → K×K, [P ] 7→ (α(P ), β(P )) = (P (s), P (t)).

Lemma 2.5. The first order anchor is an isomorphism if, and only if, (t, s) is regular, i.e.,
iff t− s ∈ K×.

Proof. The K-linear map Υ(t,s) is bijective iff its determinant t− s ∈ K×, see Subsection
0.2.

Higher order anchors can be defined in two (equivalent) ways: either by evaluating
(classes of) polynomials in several variables on a hypercube of evaluation points, or by
tensoring first order anchors. Here we choose the latter approach. For this, we need some
definitions and conventions:

Definition 2.6 (Hypercubic spaces and algebras). Let N ⊂ N be a finite subset of car-
dinal n. The hypercubic space, based on N , is by definition the free K-module KP(N) of
dimension 2n of functions from P(N) to K, with its canonical basis

EA = EN
A : P(N)→ K, EA(A) = 1, ∀B 6= A : EA(B) = 0.

A hypercubic space carries several important algebra structures. When equipping KP(N)

with its pointwise algebra structure, i.e., considering it as the algebra of functions from
P(N) to K, so that the product of the canonical basis elements is

EN
A · EN

B = δA,BE
N
A ,

we say that KP(N) is the N -hypercube algebra. When N = n = {1, . . . , n}, we often omit
the upper index n, and just speak of the n-hypercube algebra.

Remark 2.1. See Appendix A for some basic facts about linear algebra on hypercubic
spaces (independent of the algebra structure). For induction procedures, the following
remark is useful: If N1 and N2 are disjoint subsets of N, then

P(N1)× P(N2)→ P(N1 tN2), (A,B) 7→ A ∪B

is a bijection, whence we get an isomorphism (of modules, and of cube-algebras)

KP(N1) ⊗KP(N2) ∼= KP(N1tN2).
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In particular, by induction, there is a canonical isomorphism

KP({1,...,n}) ∼= KP({1}) ⊗ . . .⊗KP({n}).

Note that the neutral element of KP(N) is the function that is 1 everywhere, that is

1 =
∑

A∈P(N)

EN
A .

Definition 2.7. The n-fold anchor is the tensor product of n copies of the first order an-
chor: it is the algebra morphism

Υn
(t,s) := ⊗ni=1Υ

{i}
(ti,si)

: Kn
(t,s) → KP(n),

where for each k ∈ N, Υ
{k}
(tk,sk) : K{k}(tk,sk) → KP({k}) is a copy of the first order anchor.

Thus, by definition,

Υ
{k}
(tk,sk)(e∅) = Ek

∅ + Ek
k , Υ

{k}
(tk,sk)(ek) = skE

k
∅ + tkE

k
k .

For the categorical approach, it is not strictly necessary to have an explicit formula for
the higher order anchor; however, such a formula allows to derive the explicit formula for
the higher order slopes, and thus makes the whole procedure algorithmic and computable.
Recall Formula (1.6) for the matrix of the second order anchor, which is the Kronecker
product of two first-order anchors. Note that, when s1 = 1 = s2, then this matrix is a
symmetric matrix, whereas for t1 = 1 = t2, this is not the case. Using notation introduced
above, we generalize:

Theorem 2.8. Fix n ∈ N, and (t, s) ∈ K2n. With respect to the bases (eA)A∈P(n) in its
domain and (EA)A∈P(n) in its range, the n-fold anchor is given by

Υ = Υn
(t,s) =

∑
(A,B)∈P(n)2

tA∩BsA∩Bc e∗A ⊗ EB.

In other terms, it is characterized by the following equivalent conditions:

1. Υ(eA) =
∑

B∈P(n) tA∩BsA∩BcEB,

2. Υ(
∑

A∈P(n) vAeA) =
∑

B∈P(n)

(∑
A∈P(n) tA∩BsA∩BcvA

)
EB,

3. the matrix of Υ with respect to these bases has coefficients

Υ(B,A) := E∗B(Υ(eA)) = tA∩BsA∩Bc , (A,B) ∈ P(n)2.
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In particular, in the symmetric case s = −t, we have Υ(B,A) = (−1)|A∩B|sA, so

Υ = Υn
(−s,s) =

∑
A∈P(n)

sA
∑

B∈P(n)

(−1)|A∩B|e∗A ⊗ EB.

Proof. This is the special case of Theorem A.1 for a = 1 = c, b = s, d = t.

Next, to compute the inverse of the anchor, in the regular case, recall Formula (1.8)
concerning the case n = 2. This generalizes as follows:

Theorem 2.9. Fix (t, s) ∈ K2n. Recall the notation (t−s)n =
∏n

k=1(tk−sk). The anchor
map Υ = Υn

(t,s) is invertible if, and only if, (t, s) is regular, i.e., tk − sk is invertible for
all k = 1, . . . , n, and then its inverse map is given by the formula

Υ−1 =
1

(t− s)n

∑
(A,B)∈P(n)2

(−1)|A∆B|sAc∩BtBc∩Ac E∗A ⊗ eB.

Equivalently,

1. Υ−1(EA) = 1
(t−s)n

∑
B∈P(n)(−1)|A∆B|sAc∩BtBc∩Ac eB,

2. Υ−1(
∑

A∈P(n) yAEA) = 1
(t−s)n

∑
B∈P(n)(−1)|A∆B|yAsAc∩BtBc∩Ac eB.

In particular, in case s = −t, we get (using (A∆B) t (Ac ∩Bc) = (A ∩B)c)

Υ−1(EA) =
1

(−2)nsn

∑
B∈P(n)

(−1)|A∩B|sBc eB.

Proof. This is a special case of Theorem A.2.

2.4 The n-th order restriced slope map

Now we prove the already anounced formula from Theorem 1.11 for fn
(t,s) when (t, s) is

regular. We decompose v ∈ V n
(t,s) = V ⊗K Kn

(t,s) in the form v =
∑

A∈P(n) vAeA, and
Υ(v) =

∑
A∈P(n) ΥA(v)EA, with the 2n evaluation points given by

ΥA(v) =
∑

C∈P(n)

sC∩ActC∩AvC .

Then

fn
(t,s)(

∑
A∈P(n)

vAeA) = Υ−1
( ∑
A∈P(n)

f
(
ΥA(v)

))
=

1

(t− s)n

∑
B∈P(n)

eB

( ∑
A∈P(n)

(−1)|A∆B|tAc∩BcsBc∩Af
(
ΥA(v)

))
=

1

(t− s)n

∑
B∈P(n)

eB

( ∑
A∈P(n)

(−1)|A∆B|tAc∩BcsBc∩Af
( ∑
C∈P(n)

tC∩AsC∩AcvC
))
.
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2.5 Target calculus, source calculus, and symmetric calculus

There are three special cases of calculus, as defined here, that deserve attention:

1. target calculus, obtained when s = 0, i.e., ∀i, si = 0;

2. source calculus, obtained when t = 0,

3. symmetric calculus, obtained when s = −t, i.e., ∀i, si + ti = 0.

In these cases, the range of scaloid parameter reduces to Kn instead of K2n, and the
relations satisfied by the canonical basis (eA)A∈P(n) are relatively simple:

1. target calculus, e2
i = tiei, whence e2

A = tAeA and eAeB = tA∩BeA∪B,

2. source calculus, same, with s instead of t,

3. symmetric calculus, e2
i = 4t2i , so e2

A = 4|A|t2
A, eAeB = 4|A∩B|t2

A∩BeA∆B.

The “most singular value” is in all cases t = 0 = s, whereas the “unit value” is

1. target calculus, “unit” t = 1 = (1, . . . , 1), s = 0,

2. source calculus, “unit” t = 0, s = 1,

3. symmetric calculus, “unit” t = 1, s = −1 = (−1, . . . ,−1) (another convention
would be to divide this by 2, if 2 is invertible in K).

Thus, taking for (t, s) the unit value, the algebra Kn
(t,s) with its canonical basis,

1. in target calculus, is the semigroup algebra of the monoid (P(n),∪),

2. idem in source calculus,

3. in symmetric calculus, after normalizing by division by 2, is the group algebra of
the group (P(n),∆) with group law given by the symmetric difference ∆.

In all three cases, the anchor, being a morphism to the multiplicative algebra of functions
on P(n), plays the rôle of a Fourier transform. Namely, for A ∈ P(n), the linear form
E∗A : KP(n) → K is the A-projection, which is a character, i.e., an algebra morphism into
the base ring. Thus the 2n components of Υ,

ΥA := E∗A ◦Υ : Kn
(t,s) → K, x 7→

∑
C∈P(n)

sC∩ActC∩AxC

also are characters (for n = 1, these are just the source and target projections; for n ≥ 1,
they can be considered as higher order versions of source and target maps). For instance,
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when t = −s is constant 1
2
, then from the explicit formula above we get all 2n characters

of the group (P(n),∆) (for A ∈ P(n)),

ΥA = χA : P(n)→ {±1}, B 7→ χA(B) = (−1)|A∆B| (2.5)

Thus the matrix of Υ is the character table of the abelian group (P(n),∆), which is also
the matrix of the Fourier transform when identifying this group with its dual group.

3. The categorical approach

In the preceding section we have described how to define, starting with a K-smooth func-
tion f , a family of functions (fn

(t,s))(t,s;n)∈scalK , behaving well with tangent algebras, an-
chors, and their corresponding scalar extensions. In the present section, we describe an
abstract, categorical setting capturing the main features of these constructions. The pro-
cedure is very much like the classical one, starting from polynomial functions, to define
abstract polynomial rings. In general, one cannot recover all abstract polynomials by
polynomial functions; for this we need assumptions on K (e.g., of topological nature).

3.1 The small monoidal categories in question

Let c be a monoid, with “product” denoted by ⊕ and neutral element 0. It gives rise
to a small category that shall also be denoted by c: its objects are elements t ∈ c, and
morphisms are given by compositions of left- and right multiplications in the monoid, i.e.,
of the form

t→ t1 ⊕ t⊕ t2, t, t1, t2 ∈ c.

The monoids we are interested in will all be left and right cancellative, that is, t ⊕ s =
t′ ⊕ s ⇒ t = t′ and t ⊕ s = t ⊕ s′ ⇒ s = s′; thus the small category c is skeletal in the
sense of [CWM], p. 93: two objects are isomorphic iff they are equal. Now, here are the
cases we are interested in:

1. The monoid N0 with its usual addition, and neutral element 0.

2. Recall from Definition 2.1 that objects of the scaloid scalK are elements (t, s) of
the free monoid over K2. The neutral element is the empty word. Morphisms are
now defined as above.

3. The small category of K-tangent algebras talgK has objects the algebras Kn
(t,s)

defined in Def. 2.2, together with their label (t, s). The monoidal structure is given
by the tensor product of associative K-algebras, which now serves to define also the
morphisms in this category. The neutral element is K, labelled by the empty word.
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Lemma 3.1. The small monoidal categories talgK and scalK are isomorphic (in the sense
defined in [CWM], p. 92): under this bijection, Kn

(t,s) corresponds to (t, s).

Proof. By the definitions given above, the map talgK → scalK is well-defined, its in-
verse map is (t, s) 7→ Kn

(t,s). As we have seen in Lemma 2.3, this bijection then is an
isomorphism of monoids.

Lemma 3.2. The “length” or “degree” map ` : scalK → N0, associating to each word
its length, is a monoid morphism, and defines a functor of monoidal categories.

Proof. Obviously, ` is a morphism, and by routine computation such a morphism induces
a morphism (functor) of the corresponding monoidal categories.

3.2 Functor categories

Next we consider functor categories. We mostly follow notations and conventions from
[CWM, MM92]. Thus, we denote by Sets the (large) category of sets and set-maps,
and (following notation from [MM92], p. 25) by Sets2 the (large) category of anchored
sets, that is, objects (M,γ,M ′) are maps γ : M → M ′, where morphisms are anchor-
compatible pairs of maps Φ : M → N , Φ′ : M ′ → N ′, i.e. γN ◦ Φ = Φ′ ◦ γM .

Functors from a category C to a category B, together with their natural transforma-
tions, form a functor category Fn(C,B) = BC (see e.g. [CWM], II.4, or [MM92]).
Specifically, for c one of the small monoidal categories mentioned above, we are inter-
ested in functor categories Fn(c,Sets) = Setsc or Fn(c,Sets2). If M : c → Sets is a
functor, then for every object a ∈ c we write Ma := M(a) (the set obtained by applying
M to a), and for every morphism φ : a→ b of c, we writeMφ : Ma →Mb for the induced
set-map. Likewise, for each natural transformation f : M → N , we write fa : Ma → Na

for the corresponding set-map from M(a) to N(a). The compatibility condition then is

∀φ : a→ b, ∀f : Nφ ◦ fa = fb ◦Mφ.

Composition of natural transformations is defined “pointwise”, i.e., for two laws f : M →
N , g : N → P and all objects a of c, we have (g ◦ f)a := ga ◦ fa : Ma → Pa.

Definition 3.3. For each object a of c, evaluation at level a, defined by

eva : M 7→Ma, f 7→ fa,

is a functor from Fn(c,Sets) to Sets. In particular, when c is monoidal with neutral
element 0, we call simply evaluation the evaluation ev0 at 0.

In the following, our concern will be to define (“extension”) functors that go in the
direction opposite to ev0 : Fn(c,Sets)→ Sets.
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3.3 Cubic extensions of sets.

For each set M and n ∈ N, we have a hypercube of sets MP(n) ∼= M2n . This gives rise to
a “cubic extension functor”:

Lemma 3.4. Let us define

ι : Sets→ SetsN0 ,
M 7→M := (0 7→M, n 7→MP(n))

f 7→ f := (0 7→ f, n 7→ fP(n))
.

Then M : N0 → Sets is a functor, and (for f : M → N ), f : M → N is a natural
transformation, and ι is a functor from Sets to Fn(N0,Sets) such that ev0 ◦ ι = ISets is
the identity functor on Sets.

Proof. The main point is to see that M is a functor. Indeed, this follows from the identifi-
cations (MA)B = MA×B together with P(n + m) = P(n)× P(m):

MP(n+m) = MP(n)×P(m) = (MP(n))P(m).

(In particular, for n = 0, this means that M = M0 → MP(m) is the diagonal imbedding:
an element x ∈ M corresponds to the constant function x : P(m) → M having value
x.) Next, the properties of a natural transformation for f are easily checked, as are those
saying that ι is a functor. Finally, by definition, for the neutral element, M

0
= M , whence

ev0 ◦ ι(M) = M .

Definition 3.5. Let us call cubic set the realisationM of a setM as a functor described by
the lemma, and denote by CubeSet the image of ι, the cubic realisation of the category
Sets.

3.4 Scalar extensions of modules

On the category ModK of K-modules with K-linear maps, we also have the “usual” alge-
braic scalar extension functor:

Lemma 3.6. Let us define

τ : ModK → SetsscalK ,
V 7→ V := (n, t, s) 7→ V n

(t,s) = V ⊗K Kn
(t,s)

f 7→ f := (n, t, s) 7→ fn
(t,s) = f ⊗K idKn

(t,s)

.

This defines a functor from the category ModK to Fn(scalK,Sets) such that ev0 ◦ τ is
the identity functor on ModK.
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Proof. All of this is clear from properties of algebraic scalar extensions, along with the
isomorphism of categories scalK ∼= talgK. (As in the preceding proof, the main point
is that V is a functor. In the present case, this holds more generally for general ring
morphisms, and not only those coming from the monoidal structure of scalK ∼= talgK.)

Remark 3.1. Clearly, as morphisms in ModK one could also use affine maps instead of
linear ones. More generally, following N. Roby [Ro63], one could replace linear maps f
by polynomial morphisms, corresponding to “polynomial laws” as defined in loc. cit.

3.5 K-space laws

Now we define a functor category SpaceK of smooth K-space laws. One could do so for
each fixed n ∈ N, defining K-space laws of class Cn, but it is quicker and clearer to do
this for all n ∈ N0 together.

Definition 3.7. Objects of SpaceK are pairs (M,Υ), where M : scalK → Sets is a
functor and Υ : M → M0 is a natural transformation, and morphisms of SpaceK are
natural transformations f : M →M ′ commuting with anchors in the sense that

Υ′ ◦ f = f0 ◦Υ : M →M ′
0.

We require that ModK is a subcategory of SpaceK, in the sense that on ModK the
extensions coincide with algebraic scalar extensions coming from the corresponding ring
extensions: when V is a K-module, then Υ : V → V0 is, for each (n, t, s) ∈ scalK, given

by the anchor of scalar extensions Υn
(t,s) : V n

(t,s) → V P(n).

Equivalently, a K-space law (M,ΥM) could also be defined as a functor from scalK
to Sets2, the category of “anchored sets”, satisfying certain properties. The present for-
mulation features the anchor as a kind of “underlying morphism” of functor categories
SpaceK → CubeSet ∼= Sets. At this point, the situation is quite similar to the one
given by abstract polynomials P ∈ K[X], to which we can associate, by evaluation on K,
an underlying set-map P̃ : K→ K. In order to define a functor in the other direction, we
need assumptions.

3.6 The topological case

Let’s return to the topological case, and assume that K is a good topological ring. Re-
call from Definition 1.12 the category LlinK,n of locally linear sets with CK,n-maps as
morphisms (n ∈ N, or n =∞).
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Definition 3.8 (Prolongation functor). We define a prolongation functor

ι : LlinK,∞ → Fn(talgK,Sets)

by associating to an object (U, V ) (i.e., U open in a topological K-module V ) the functor
U defined by (t, s) 7→ Un

(t,s) (Def. 1.5), and to a CK,n-map f : U → U ′ the natural
transformation defined by restricted iteration (Def. 1.5)

f : fK = f, fKn
(t,s)

= fn
(t,s).

Lemma 3.9. The correspondence ι defined above defines a K-space, it is indeed a functor,
and

ev0 ◦ ι = idLlinK,∞ .

Proof. First of all, U defines a K-space: there is an anchor having the required properties;
it is a functor: it is compatible with left and right tensoring, and similarly, CK-maps indeed
induce natural transformations. Finally, the evaluation functor clearly gives us back the
original objects and morphisms, UK = U, fK = f .

For the moment, the composition ι ◦ evK is not even defined, since the evaluation
ev0(f) has no reason to be a smooth function. Thus our concern will be to define a
subcategory where this is the case. Since the local linear structure plays a decisive role
here, we restrict our attention to this situation, allowing us to state the result even as an
isomorphism of categories.

Definition 3.10. We define the functor category CSpaceK of continuous K-space laws to
be the subcategory of SpaceK defined as follows:

1. categories Sets and Sets2 are replaced by Toplin and Toplin2 (open sets in
topological K-modules, and the corresponding continuous anchors and continuous
morphisms, meaning that all ΥA and fA are continuous maps),

2. morphisms f are moreover jointly continuous in the scaloid, i.e.: for all locally
linear sets (U, V ) and morphisms f , the following map is continuous (where V n

(t,s)
∼=

V 2n via the e-basis, and likewise for W 2n):

K2n × V 2n ⊃ {(t, s;v) | v ∈ Un
(t,s)} → W 2n , (t, s;v) 7→ fn

(t,s)(v).

Inclusions of (non-empty) open sets in topological K-modules, U ⊂ V , then induce mor-
phisms U → V , which again will be called “inclusions”. The whole set-up of our theory
is designed such that the following result becomes essentially a tautology:
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Theorem 3.11. We have two well-defined and mutually inverse functors ev and ι, defining
an isomorphism of categories

LlinK,∞ ∼= CSpaceK.

In particular, ι defines a full and faithful imbedding of LlinK into a functor category.

Proof. Note that in the present case we can speak of equality of objects on both sides
in question, and hence the notion of “isomorphism” of these categories makes sense (cf.
[CWM], p. 92-93).

Starting with a CK,n-function f , it follows from Lemma 3.9 that f can be identified
with evaluation at level 0 of the natural transformation f defined by f .

To prove the converse, let f : U → U ′ be a continuous morphism of laws. We have to
show that f is induced by a map of classCK,n; more precisely, we show that the underlying
map f = f0 : UK = U → U ′ = (U ′)K is of class CK,n, and that it induces f . As required
in Definition 3.7, the anchor of V n

(t,s) is given by idV ⊗ΥK, and via inclusions, the anchor
of U is given by restricting the anchor of V . Since f is a morphism, it commutes with the
anchor in the sense that

Υ ◦ fKn
(t,s)

= fKP(n) ◦Υ.

By the continuity property (2) from Definition 3.10, these maps are continuous and jointly
continuous also in (t, s), whence satisfy the condition from Theorem 1.8, showing that the
base map f = fK is of class CK,∞, with the components of f given by the construction
from topological differential calculus; thus fK induces the natural transformation f .

Remark 3.2. As usual for “tautological” results, the main work lies in the preceding def-
initions and auxiliary results. To make this yet more plain, let’s write G for the monoid
talgK

∼= scalK (Lemma 3.1) and C for some subcategory of Sets2. Assuming C to be
small, we may consider the set CG of all functions from G to C. Clearly, evaluation at the
neutral element o ∈ G defines a map evo : CG → C. The natural candidate for a map in
the other direction is sending C to the “constants” C → CG, f 7→ (g 7→ f). The problem
is that the meaning of “constants” has to be carefully defined in a categorical context.

Remark 3.3 (Infinitesimal vs. local and global). A remark on comparison with the case
of Weil laws as defined in [Be14] is in order here. Taking for cK the category of Weil
algebras, instead of our tangent algebras, we get a formally quite similar theory. However,
the anchor becomes “invisible” (for a Weil algebra, it degenerates to a single character),
and one may say that Weil algebras are by nature infinitesimal objects (because of the
nilpotency condition). Thus the link with the local and global theory is not encoded by
algebra (as in our approach), and in order to get a well-adapted model one has to use more
analytic tools (so it is not clear how far these can be generalized beyond the case of real or
complex base field) – see [Du79, MR91]. Nevertheless, it might be interesting to look for
a category of algebras comprising both Weil algebras and our tangent algebras – in order
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to prepare the ground, in Appendix B, we describe some algebraic structures that might
be useful for such an approach.

4. Further directions

With Theorem 3.11, we have shown that the functor category SpaceK can be considered
as a “well adapted model” for general differential calculus. In subsequent work, we will
develop the theory further: on the one hand, comparing with SDG, we will investigate
categorical questions, on the other hand, by enriching the structure of our category of
algebras, the theory naturally offers links with higher algebra and with super-calculus.
We give some short comments on these items.

4.1 Natural transformations, morphisms

In the preceding formulation, we have limited morphisms in the monoidal categories
scalK, resp. talgK, to the strict minimum necessary to state the general form of the theory.
However, in differential geometry, other algebra morphisms play a rôle by inducing nat-
ural transformations, as explained by the theory of Weil-functors (see [KMS93]). These
algebra morphisms appear already on the level of difference calculus: for instance, the
automorhism κ (inversion, see Theorem B.1) corresponds to the exchange automorphism
on the level of KP(1) ∼= K2, inducing a global automorphism on the level of the functor
categories. Likewise, our monoidal categories are moreover symmetric braided monoidal,
via the usual braiding A⊗B ∼= B⊗A of associative algebras: again, this gives rise to glob-
ally defined morphisms (Schwarz’s Theorem, and the “canonical flip” of higher tangent
bundles) which together with the inversions, generate at n-th order level an automorphism
group which is a hyperoctahedral group (automorphism group of a hypercube).

4.2 Groupoids, and higher algebra

In topological calculus, the extended domains Un
(t,s) carry a natural structure of n-fold

groupoid (by iteration from Item (5) of Theorem B.1; see [Be15a, Be15b, Be17], for the
case of target calculus). This is related to the preceding item: indeed, one can show that
the groupoid structure on Kn

(t,s) is internal to the category of algebras, i.e., all structure
maps of the groupoid are algebra morphisms. However, in order to “categorify” this,
one needs to enlarge our small category of algebras so that it becomes stable under more
general operations than just tensor products, such as fiber products. This will be taken up
in subsequent work.
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4.3 Graded calculus

We insist on the importance of the monoidal structure of the categories talgK and scalK,
with the aim to adapt the present approach for giving a functorial approach to super-
calculus. In principle, it seems that the basic structure outlined in Remark 3.2 can be
transposed to the monoidal category of graded algebras and graded tensor products gen-
erated by Υt,s. It remains to understand the precise relation of such a graded categori-
cal calculus with supercalculus, as it is currently presented. To do this, on should con-
centrate on symmetric calculus (t = −s), since in this case the groupoid inversion κ
(which becomes the grading automorphism of superalgebras) is given by the simple for-
mula κ(v0 + ev1) = v0 − ev1 (cf. Theorem B.1).

4.4 Full iteration, and simplicial calculus

As mentioned in Remark 1.3, full iteration leads to higher order “tangent maps” f {1,...,n}

having a very complicated structure. In principle, this structure can also be interpreted
in terms of higher groupoids (see [Be15b]). In this setting, the analog of the tangent
algebra category talgK will be some small higher order category, whose structure remains
to be understood yet. Restricting again variables to certain subspaces, one can obtain a
sufficiently simple calculus, called simplicial in [Be13], and corresponding to the classical
concept of divided differences. It is certainly possible to put this simplicial calculus into
a categorical form, essentially as done in this work for restricted iteration. The advantage
should be a better compatibility of calculus with algebra in positive characteristic, but the
drawback is that the close link with the tensor product, featured in the present approach,
gets lost: iteration is no longer given by subsequent tensor products.

A. Hypercubic linear algebra

In this appendix, “linear spaces” are modules over a commutative ring K. Recall Defi-
nition 2.6 of a hypercubic space based on N ∈ P(N). Changing slightly our viewpoint,
every free K-module V with basis indexed by P(N) is isomorphic to KP(N) and hence
will also be called hypercubic space.

When f : V → W is linear, for bases (bj)j∈J in V and (ci)i∈I in W , we denote by
fi,j := c∗i (f(bj)) its matrix coefficients (where (c∗i )i∈I is the dual basis of c). We write also
(φ⊗ v)(x) = φ(x) · v. Then

f =
∑

(i,j)∈I×J

fi,j b
∗
j ⊗ ci, f(bk) =

∑
i

fi,kck.

When writing a matrix in the usual way as rectangular number array, we use the natural
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total order on the index set – that is, the lexicographic order; for instance,

P({1, 2}) = (∅, {1}, {2}, {1, 2}).

In the following, for an n-tuple a = (ai)i∈N ∈ Kn, we use the notation aN :=
∏

i∈N ai, in
the same way as we do for t, s ∈ Kn in the main text. When N is considered to be fixed,
and A ⊂ N , we denote by Ac = N \ A its complement.

The following result allows to put hands on induction procedures using iterated tensor
products, cf. Remark 2.1.

Theorem A.1. Let N = {k1, . . . , kn} and fi : KP({ki}) → KP({ki}) linear, with matrix

fi =

(
ai bi
ci di

)
: Ei

∅ 7→ aiE
i
∅ + ciE

i
i , Ei

i 7→ biE
i
∅ + diE

i
i .

Then the matrix of the linear map f := ⊗ni=1fi : KP(N) → KP(N) is given by the matrix
coefficients, for (A,B) ∈ P(N)2,

fA,B = E∗A
(
f(EB)

)
= aAc∩Bc · bAc∩B · cA∩Bc · dA∩B.

In other terms, f(EN
B ) =

∑
A∈P(N) aAc∩Bc · bAc∩B · cA∩Bc · dA∩B EN

A , or

f =
∑

(A,B)∈P(N)2

aAc∩Bc · bAc∩B · cA∩Bc · dA∩B (EN
B )∗ ⊗ EN

A .

Proof. When the cardinality n of N is equal to one, then the claim is true, directly by
definition of the matrix coefficients. For n = 2, the matrix of f1 ⊗ f2 is

(
a1 b1

c1 d1

)
⊗
(
a2 b2

c2 d2

)
=


a1a2 b1a2 a1b2 b1b2

c1a2 d1a2 c1b2 d1b2

a1c2 b1c2 a1d2 b1d2

c1c2 d1c2 c1d2 d1d2


(“Kronecker product”). For instance, when B = ∅, so Bc = {1, 2},

f(E
{12}
∅ ) = a12E∅ + c1a2E1 + a1c2E2 + c12E12,

in keeping with the claim. In the general case, we expand the expression

f = ⊗ifi = ⊗i
(
ai(E

i
∅)
∗ ⊗ Ei

∅ + bi(E
i
∅)
∗ ⊗ Ei

i + ci(E
i
i)
∗ ⊗ Ei

∅ + di(E
i
i)
∗ ⊗ Ei

i

)
by distributivity: we get a sum of 4n terms, which correspond exactly to the 4n terms
in the last formula of the claim. (E.g., for n = 2, there are 16 terms, corresponding to
expanding the product (a1 +b1 +c1 +d1)(a2 +b2 +c2 +d2) by distributivity, giving the 16
matrix coefficients shown above. The first column contains the 4 terms from expanding
(a1 + c1)(a2 + c2), etc.)
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To memorise the formula: for 2× 2-matrices and indices, the correspondence is(
a b
c d

)
:

(
Ac ∩Bc Ac ∩B
A ∩Bc A ∩B

)
.

Next, we give a formula for the inverse of f , when its determinant is invertible. From
well-known properties of the Kronecker product it follows that

det(f) = det(⊗ni=1fi) = (
n∏
i=1

det(fi))
2n−1

,

whence the first statement of the following theorem:

Theorem A.2. LetN and f = ⊗ni=1fi be as in the preceding theorem. Then f is invertible
if, and only if, all fi are invertible, and then its inverse is given by the matrix coeffients,
for (A,B) ∈ P(N)2 (recall A∆B is the symmetric difference)

(f−1)A,B =
(−1)|A∆B|∏n
i=1 det(fi)

fBc,Ac =
(−1)|A∆B|∏n
i=1 det(fi)

aA∩B · bA∩Bc · cAc∩B · dAc∩Bc .

Proof. Assume each fi is invertible. For n = 1, N = {k}, the inverse is(
ak bk
ck dk

)−1

=
1

(akdk − bkck)

(
dk −bk
−ck ak

)
. (A.1)

For n = 2, the matrix of the inverse is the Kronecker product of the inverses

1

det(f1) det(f2)

(
d1 −b1

−c1 a1

)
⊗
(
d2 −b2

−c2 a2

)
=

1

det(f1) det(f2)


d1d2 −b1d2 −d1b2 b1b2

−c1d2 a1d2 c1b2 −a1b2

−d1c2 b1c2 d1a2 −b1a2

c1c2 −a1c2 −c1a2 a1a2


which is in keeping with the formula announced in the claim. To put this computation
into a conceptual framework, note that the inverse in (A.1) is obtained by first taking the
adjugate matrix, and then dividing by the determinant. The adjugate X] of a 2× 2-matrix
X , in turn, is given by

X] = JX>J−1,

where X> is the transposed matrix, (X>)(A,B) = X(B,A), and

I :=

(
1 0
0 −1

)
, J :=

(
0 1
−1 0

)
, K :=

(
0 1
1 0

)
, (A.2)
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i.e., J sendsE∅ 7→ E1, E1 7→ −E∅ (soX] is the adjoint ofX with respect to the canonical
symplectic form on K2; call it “symplectic adjoint”). For each 2× 2-matrix M let

Mn = ⊗ni=1M : KP(n) → KP(n).

Then, for the matrices I, J,K defined by (A.2), the effect on EA is

In(EA) = (−1)|A|EA, Kn(EA) = EAc , Jn(EA) = (−1)|A
c|EAc , (A.3)

The inverse of Jn is J−1
n (EA) = KnIn(EA) = (−1)|A|EAc = (−1)nJn(EA). Using this,

we compute

f ](EA) = Jn ◦ f> ◦ J−1
n (EA) = (−1)|A|Jn ◦ f>(EAc)

= (−1)|A|Jn
∑
B

f>Ac,BEB

= (−1)|A|
∑
B

fB,Ac(−1)|B
c|EBc = (−1)|A|

∑
B

fBc,Ac(−1)|B|EB

=
∑
B

(−1)|A|(−1)|B|aA∩B · bA∩Bc · cAc∩B · dAc∩BcEB

which together with |A|+ |B| ≡ |A∆B| mod (2), so (−1)|A|(−1)|B| = (−1)|A∆B|, gives
us the adjugate and the claim.

Remark A.1. In the same way, it follows that, even if f is not invertible, we have

f ◦ Jn ◦ f> ◦ J−1
n =

n∏
i=1

det(fi) · id.

B. On the structure of tangent algebras

One may be interested in defining a class of algebras, generalizing the by now classical
Weil algebras (see [KMS93, MR91]), and the bundle algebras from [Be14], incorporating
also algebras arising from difference calculus. The following structure theorem might
help to select structural features that could be used for defining such a category. We use
notation defined in Subsection 2.2.

Theorem B.1 (Structure of the first order tangent algebra K{1}(t,s)).

1. The ideals ker(α) and ker(β) satisfy ker(α) · ker(β) = 0.

2. The product of w, v ∈ K{1}(t,s) is given by the “fundamental relation”

w · v = α(w)v − α(w)β(v) + β(v)w.

- 159 -



W. BERTRAM, J. HAUT FUNCTORIAL DIFFERENTIAL CALCULUS

3. The map
κ : K{1}(t,s) → K{1}(t,s), v 7→ (α + β)(v) · 1− v

is an algebra automorphism of order 2 such that α ◦ κ = β. Moreover,

∀v ∈ K{1}(t,s) : v · κ(v) = α(v)β(v)1.

4. An element v is invertible in K{1}(t,s) if, and only if, α(v)β(v) ∈ K×, and then the
inverse is

v−1 =
1

α(v)β(v)
κ(v) = (

1

α(v)
+

1

β(v)
)1− v

α(v)β(v)
.

5. The set K{1}(t,s), equipped with the following product ∗ (for (u,w) such α(u) = β(w)),
inversion κ, and units λ1 (λ ∈ K), is a groupoid:

u ∗ w = u− α(u)1 + w.

Proof. (1) ker(α) = K(e− s) and ker(β) = K(e− t), and, by the defining relation of the
algebra, (e− s)(e− t) = [(X − t)(X − s)] = 0 .

(2) Since α(v − α(v)1) = 0 and β(w − β(w)1) = 0, the preceding item implies

0 = (v − α(v))(w − β(w)) = vw − α(v)w − β(w)v + α(v)β(w).

(3) Note that κ(1) = 1 + 1 − 1 = 1 and κ(e) = s + t − e, whence κ(κ(e)) =
s+ t− (s+ t− e) = e, so κ2 = id. Next, α(κ(v)) = (α+β)(v)−α(v) = β(v). To prove
that κ is an automorphism, since κ(1) = 1, it suffices to show that κ(e2) = κ(e)2. Indeed,
κ(e)2 = (t+s)2−2(t+s)e+e2 = (t+s)2−ts−(t+s)e and κ(e2) = κ(−ts+(t+s)e) =
−ts+ (t+ s)κ(e) = −ts+ (t+ s)2 − (t+ s)e. Finally,

v · κ(v) = α(v)κ(v)− α(v)β(κv) + β(κv)v = α(v)β(v)1.

(4) If v is invertible, then applying the morphisms α and β, it follows that both α(v)
and β(v) are invertible. Conversely, the last formula from (3) shows that under this con-
dition v has an inverse given by v−1 as in the claim.

(5) The defining properties of a groupoid are easily checked by direct computation, cf.
[Be15a, Be17].

It is then true, moreover, that the groupoid law ∗ is an algebra morphism from the fiber
product algebra K(t,s) ×α,β K(t,s) to K(t,s), and thus is “internal” to a certain category of
algebras.

- 160 -



W. BERTRAM, J. HAUT FUNCTORIAL DIFFERENTIAL CALCULUS

References

[Be08] Bertram, W., Differential Geometry, Lie Groups and Symmetric Spaces over
General Base Fields and Rings, Memoirs of the AMS 192, no. 900 (2008).
https://arxiv.org/abs/math/0502168
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Université de Lorraine at Nancy, CNRS, INRIA
Boulevard des Aiguillettes, B.P. 239
F-54506 Vandœuvre-lès-Nancy, France
mail : wolfgang.bertram, jeremy.haut@univ-lorraine.fr

- 162 -


	Topological differential calculus
	The underlying algebraic structure: anchor
	The simple idea of a good functor from rings to sets
	Further topics
	Topological differential calculus
	Locally linear sets, and the anchor
	The topological setting
	Full versus restricted iteration
	Hypercube notation, and formula for higher order slopes
	Categories of locally linear sets and CK,n-maps

	The rings of calculus: tangent algebras
	The scaloid, and the algebras K(t,s)n.
	Source and target
	The anchor
	The n-th order restriced slope map
	Target calculus, source calculus, and symmetric calculus

	The categorical approach
	The small monoidal categories in question
	Functor categories
	Cubic extensions of sets.
	Scalar extensions of modules
	K-space laws
	The topological case

	Further directions
	Natural transformations, morphisms
	Groupoids, and higher algebra
	Graded calculus
	Full iteration, and simplicial calculus

	Hypercubic linear algebra
	On the structure of tangent algebras

