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Résumé. On construit une stucture de modèles sur la catégorie DblCat
des doubles catégories et doubles foncteurs. Contrairement aux structures
de modèles existantes sur les doubles catégories, ces nouvelles structures de
modèles recouvrent la structure de modèles de Lack sur les 2-catégories via
le plongement horizontal H : 2Cat→ DblCat. Ce dernier est à la fois un ad-
joint de Quillen à gauche et à droite, et est homotopiquement plein et fidèle.
De plus, on obtient un enrichissement sur 2Cat de notre structure de modèles
sur DblCat, en utilisant une variante du produit tensoriel de Gray.

Sous certaines conditions, on prouve un théorème de Whitehead qui car-
actérise nos équivalences faibles comme étant les doubles foncteurs qui ad-
mettent un pseudo-inverse à équivalence horizontale pseudo-naturelle près.

Abstract. We construct a model structure on the category DblCat of
double categories and double functors. Unlike previous model structures for
double categories, it recovers the homotopy theory of 2-categories through
the horizontal embedding H : 2Cat → DblCat, which is both left and right
Quillen, and homotopically fully faithful. Furthermore, we show that Lack’s
model structure on 2Cat is both left- and right-induced along H from our
model structure on DblCat. In addition, we obtain a 2Cat-enrichment of our
model structure on DblCat, by using a variant of the Gray tensor product.

Under certain conditions, we prove a Whitehead theorem, characterizing
our weak equivalences as the double functors which admit an inverse pseudo
double functor up to horizontal pseudo natural equivalence.
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1. Introduction

In category theory as well as homotopy theory, we strive to find the correct
notion of “sameness”, often with a specific context or perspective in mind.
When working with categories themselves, it is commonly agreed that hav-
ing an isomorphism between categories is much too strong a requirement,
and we instead concur that the right condition to demand is the existence of
an equivalence of categories.

There are many ways one can justify this in practice, but, at heart, it is
due to the fact that the category Cat of categories and functors actually forms
a 2-category, with 2-cells given by the natural transformations. Therefore,
instead of asking that a functor F : A → B has an inverse G : B → A such
that their composites are equal to the identities, it is more natural to ask
for the existence of natural isomorphisms idA ∼= GF and FG ∼= idB. In

- 185 -



MOSER, SARAZOLA, VERDUGO MODEL STRUCTURE ON DBLCAT

particular, this characterizes F as a functor that is surjective on objects up to
isomorphism, and fully faithful on morphisms.

Ever since Quillen’s seminal work [21], and even more so in the last two
decades, we have come to expect that any reasonable notion of equivalence
in a category should lend itself to defining the class of weak equivalences of
a model structure. This is in fact the case of the categorical equivalences: the
category Cat can be endowed with a model structure, called the canonical
model structure, in which the weak equivalences are precisely the equiva-
lences of categories.

Going one dimension up and focusing on 2-categories, the 2-functors
themselves now form a 2-category, with higher cells given by the pseudo
natural transformations, and the so-called modifications between them. We
can then define a 2-functor F : A → B to be a biequivalence if it has an
inverse G : B → A together with pseudo natural equivalences idA ' GF
and FG ' idB, i.e., equivalences in the corresponding 2-categories of 2-
dimensional functors. Note that this inverse G is in general a pseudo functor
rather than a 2-functor. Furthermore, a Whitehead theorem for 2-categories
[14, Theorem 7.4.1] is available, and characterizes the biequivalences as the
2-functors that are surjective on objects up to equivalence, full on morphisms
up to invertible 2-cell, and fully faithful on 2-cells.

As in the case of the equivalences of categories, the biequivalences of
2-categories are part of the data of a model structure. Indeed, in [15, 16],
Lack defines a model structure on the category 2Cat of 2-categories and 2-
functors in which the weak equivalences are precisely the biequivalences; we
henceforth refer to it as the Lack model structure. In particular, the canonical
homotopy theory of categories embeds reflectively in this homotopy theory
of 2-categories.

In this paper, we consider another type of 2-dimensional objects, called
double categories, which have both horizontal and vertical morphisms be-
tween pairs of objects, related by 2-dimensional cells called squares. These
are more structured than 2-categories, in the sense that a 2-category A can
be seen as a horizontal double category HA with only trivial vertical mor-
phisms. As a consequence, the study of various notions of 2-category theory
benefits from a passage to double categories. For example, a 2-limit of a 2-
functor F does not coincide with a 2-terminal object in the slice 2-category
of cones, as shown in [2, Counter-example 2.12]. However, by considering
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the 2-functor F as a horizontal double functor HF , Grandis and Paré prove
that a 2-limit of F is precisely a double terminal object in the slice double
category of cones over HF ; see [9, 11, §4.2] and [8, Theorem 5.6.5].

This horizontal embedding of 2-categories into double categories is fully
faithful, and we expect to have a homotopy theory of double categories that
contains that of 2-categories; constructing such a homotopy theory is the aim
of this paper.

The idea of defining a model structure on the category of double cate-
gories is scarcely a new one. In [5], Fiore and Paoli construct a Thomason
model structure on the category DblCat of double categories and double
functors (more precisely, on the category of n-fold categories), and in [6],
Fiore, Paoli, and Pronk construct several categorical model structures on
DblCat. However, the horizontal embedding of 2-categories does not in-
duce a Quillen pair between the Lack model structure on 2Cat and any of
these model structures on DblCat; this follows from Lemma 8.8. Some
intuition is provided by the fact that their categorical model structures on
DblCat are constructed from the canonical model structure on Cat. As a
result, the weak equivalences in each of these model structures induce two
equivalences of categories: one between the categories of objects and hor-
izontal morphisms, and one between the categories of vertical morphisms
and squares. However, a biequivalence between 2-categories does not gen-
erally induce an equivalence between the underlying categories. Therefore,
the horizontal embedding of 2Cat into DblCat will not preserve weak equiv-
alences.

In order to remedy this loss of higher data, we aim to extract from a dou-
ble category A two 2-categories whose underlying categories are precisely
the ones mentioned above. First, we can promote the underlying category
of objects and horizontal morphisms of A to a 2-category by using the right
adjoint to the horizontal embedding H: this is a well-known construction
given by the underlying horizontal 2-category HA, whose 2-cells are given
by those squares of A with trivial vertical boundaries. As shown by Ehres-
mann and Ehresmann in [4], the category DblCat is cartesian closed, and
we denote by [−,−] its internal hom double categories. We can then alter-
natively describe the underlying horizontal 2-category HA as the 2-category
H[1,A], where 1 denotes the terminal category.

From this perspective, the category of vertical morphisms and squares
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can be seen as the underlying horizontal category of the double category
[V2,A], where V2 is the free double category on a vertical morphism. To
promote this to a 2-category we can simply consider instead the underlying
horizontal 2-category H[V2,A]; this defines a new functor V that sends a
double category A to a 2-category VA of vertical morphisms, squares, and
2-cells as described in Definition 2.11.

Using these constructions, we introduce a new notion of weak equiva-
lences between double categories, that we suggestively call double biequiv-
alences; these are given by the double functors F such that the induced
2-functors HF and VF are biequivalences in 2Cat. This provides a 2-
categorical analogue of notions of equivalences between double categories
already present in the literature. Notably, double biequivalences are the nat-
ural 2-categorical version of equivalences described by Grandis in [8, The-
orem 4.4.5 (iv)], which are precisely the double functors inducing equiva-
lences between the categories of objects and horizontal morphisms, and the
categories of vertical morphisms and squares.

Since biequivalences can be characterized as the 2-functors which are
surjective on objects up to equivalence, full on morphisms up to invertible 2-
cell, and fully faithful on 2-cells, our double biequivalences admit a similar
description. To give such a description, we introduce new notions of weak
invertibility for horizontal morphisms and squares in a double category A;
namely, those of horizontal equivalences and weakly horizontally invertible
squares, which correspond to the equivalences in the 2-categories HA and
VA, respectively. These notions were independently developed by Grandis
and Paré in [10, §2], where the weakly horizontally invertible squares are
called equivalence cells. Now the double biequivalences can be described as
the double functors which are surjective on objects up to horizontal equiva-
lence, full on horizontal morphisms up to vertically invertible square, surjec-
tive on vertical morphisms up to weakly horizontally invertible square, and
fully faithful on squares.

The double biequivalences are designed in such a way that a 2-functor
F : A → B is a biequivalence if and only if its associated horizontal dou-
ble functor HF : HA → HB is a double biequivalence. This can be seen
as a first step towards showing that the homotopy theory of 2-categories
sits inside that of double categories. Note that “surjectivity” rather than
“fullness” on vertical morphisms is necessary to achieve our goal of defin-
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ing a model structure on DblCat compatible with the horizontal embedding
H : 2Cat → DblCat. Indeed, as we want H to preserve weak equivalences,
and as the 2-category Eadj given by the free-living adjoint equivalence is
biequivalent to the terminal category 1, the double functor HEadj → 1

should be a weak equivalence in DblCat. It is then straightforward to check
that such a double functor cannot be full on vertical morphisms, as there
is no vertical morphism between the two distinct objects of the horizontal
double category HEadj.

Our first main result, Theorem 3.18, provides the desired model structure
on the category of double categories.

Theorem A. Consider the adjunction

2Cat× 2Cat DblCat ,

H t L

(H,V)

⊥

where each copy of 2Cat is endowed with the Lack model structure. Then
the right-induced model structure on DblCat exists. In particular, a double
functor is a weak equivalence in this model structure if and only if it is a
double biequivalence.

Since the Lack model structure on 2Cat is cofibrantly generated, so is
the model structure on DblCat constructed above. Moreover, every double
category is fibrant, since all objects are fibrant in 2Cat.

By taking a closer look at the homotopy equivalences in our model struc-
ture on DblCat, we identify them as the double functors F : A → B such
that there is a double functor G : B → A and two horizontal pseudo natural
equivalences idA ' GF and FG ' idB. In particular, the usual Whitehead
theorem for model structures (see [3, Lemma 4.24]) allows us to identify the
double biequivalences between cofibrant double categories as the homotopy
equivalences described above.

In fact, we show in Theorem 5.13 that a more lax version of this result,
involving a horizontally pseudo double functor G, holds for an even larger
class of double categories containing the cofibrant objects; this mirrors the
definition of biequivalences in 2Cat, which further supports the fact that our
double biequivalences provide a good notion of weak equivalences between
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double categories. As a corollary, we retrieve the Whitehead theorem for
2-categories mentioned above.

Theorem B. Let A and B be double categories such that the underlying
vertical category UVB is a disjoint union of copies of 1 and 2. Then a
double functor F : A → B is a double biequivalence if and only if there
is a normal horizontally pseudo double functor G : B→ A, and horizontal
pseudo natural equivalences η : idA ' GF and ε : FG ' idB.

This Whitehead Theorem is reminiscent of a result by Grandis in [8,
Theorem 4.4.5] which characterizes the 1-categorical version of our dou-
ble biequivalences under a different assumption on the double categories
involved; namely, that of horizontal invariance. In [20, Definition 2.10],
the authors introduce a notion of weakly horizontally invariant double cat-
egories, and use them to prove yet another Whitehead Theorem for double
biequivalences; see [20, Theorem 8.1]. Moreover, the weakly horizontally
invariant double categories are identified as the fibrant objects in a different
model structure on DblCat, whose study is the purpose of [20].

We now address our original motivation of constructing a homotopy the-
ory for double categories that contains that of 2-categories through the hor-
izontal embedding. Our model structure on DblCat successfully achieves
this goal, and moreover, exhibits the greatest possible compatibility with re-
spect to the horizontal embedding H : 2Cat → DblCat that one could hope
for, as studied in Section 6.

Theorem C. The adjunctions

2Cat DblCat

L

H

H

⊥

⊥

are both Quillen pairs between the Lack model structure on 2Cat and the
model structure on DblCat of Theorem A. Moreover, the functor H is ho-
motopically fully faithful, and the Lack model structure on 2Cat is both left-
and right-induced from our model structure on DblCat along H.
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As a consequence, a 2-functor F is a cofibration, fibration or weak equiv-
alence in 2Cat if and only if the double functor HF is a cofibration, fibration
or weak equivalence in DblCat, respectively.

Having established the exceptional behavior of our model structure with
the horizontal embedding, we want to further investigate its relation with the
Lack model structure on 2Cat. Lack shows in [15] that the model structure
on 2Cat is monoidal with respect to the Gray tensor product. In the dou-
ble categorical setting, there is an analogous monoidal structure on DblCat
given by the Gray tensor product constructed by Böhm in [1]. However, this
monoidal structure is not compatible with our model structure on DblCat
(see Remark 7.3), since it treats the vertical and horizontal directions sym-
metrically, while our model structure does not. Nevertheless, restricting this
Gray tensor product for double categories in one of the variables to 2Cat via
H removes this symmetry and provides an enrichment of DblCat over 2Cat
that is compatible with our model structure. More precisely, this enrichment
is given by the hom 2-categories of double functors, horizontal pseudo natu-
ral transformations, and modifications between them, denoted by H[−,−]ps.

Theorem D. The model structure on DblCat of Theorem A is a 2Cat-en-
riched model structure, where the enrichment is given by H[−,−]ps.

The fact that horizontal pseudo natural transformations play a key role
was to be expected, since they are the type of transformations that detect our
weak equivalences, as established in our version of the Whitehead theorem
above.
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2. Double categorical preliminaries

In this section, we recall the basic notions about double categories, and
also introduce non-standard definitions and terminology that will be used
throughout the paper. The reader familiar with double categories may wish
to jump directly to Definition 2.11.

Definition 2.1. A double category A consists of objects, horizontal mor-
phisms, vertical morphisms, and squares, which we denote by

A B

A′ B′

a

b

u v• •α

with horizontal compositions for horizontal morphisms and squares and ver-
tical compositions for vertical morphisms and squares, which are associative
and unital, and such that the horizontal and vertical compositions of squares
satisfy the interchange law.

We write idA and eA for the horizontal and vertical identity at an ob-
ject A, ea for the vertical identity square at a horizontal morphism a, and idu
for the horizontal identity square at a vertical morphism u.

Definition 2.2. Let A, B be double categories. A double functor F : A→ B
consists of maps on objects, horizontal morphisms, vertical morphisms, and
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squares, which are compatible with domains and codomains and preserve all
double categorical compositions and identities strictly.

Notation 2.3. We write DblCat for the category of double categories and
double functors.

Proposition 2.4 ([6, Proposition 2.11]). The category DblCat is cartesian
closed. We denote by [A,B] the hom double category for A,B ∈ DblCat.
In particular, for every double category A, there is an adjunction

DblCat DblCat

−× A

[A,−]

⊥ .

There is another monoidal structure on the category of double categories
introduced by Böhm in [1], similar to the Gray tensor product for 2-categories.

Proposition 2.5 ([1, §3]). There is a symmetric monoidal structure on the
category DblCat given by the Gray tensor product

⊗Gr : DblCat×DblCat→ DblCat.

Moreover, this monoidal structure is closed and we denote by [A,B]ps the
pseudo hom double category for A,B ∈ DblCat. In particular, for every
double category A, there is an adjunction

DblCat DblCat

−⊗Gr A

[A,−]ps

⊥ .

Remark 2.6. Given double categories A and B, a horizontal morphism in
the pseudo hom [A,B]ps is a horizontal pseudo natural transformation
h : F ⇒ G : A→ B. It consists of

(i) a horizontal morphism hA : FA→ GA in B, for each object A ∈ A,

(ii) a square hu : (Fu hA
hA′ Gu) in B, for each vertical morphism u : A A′

in A, and
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(iii) a vertically invertible square ha : (eFA
(Ga)hA
hB(Fa) eGB) in B, for each hor-

izontal morphism a : A → B in A, expressing a pseudo naturality
condition for horizontal morphisms.

These assignments of squares are functorial with respect to compositions of
horizontal and vertical morphisms, and these data satisfy a naturality condi-
tion with respect to squares.

In comparison, the horizontal morphisms in the (strict) hom [A,B] are
horizontal pseudo natural transformations h such that the vertically invert-
ible squares ha are identity squares for all a. See [8, §3.2.7] for an explicit
description of the data of the hom double category [A,B] and [8, §3.8] or [1,
§2.2] for the pseudo hom [A,B]ps.

As mentioned in the introduction, there is a full horizontal embedding of
the category 2Cat of 2-categories and 2-functors into DblCat.

Definition 2.7. The horizontal embedding functor H : 2Cat→ DblCat is
defined as follows. It takes a 2-categoryA to the double category HA having
the same objects as A, the morphisms of A as horizontal morphisms, only
identities as vertical morphisms, and squares

A

A

B

B

a

b

• •α

given by the 2-cells α : a ⇒ b in A. It sends a 2-functor F : A → B to the
double functor HF : HA → HB that acts as F does on the corresponding
data.

The functor H admits a right adjoint given by the following.

Definition 2.8. We define the functor H : DblCat→ 2Cat. It takes a double
category A to its underlying horizontal 2-category HA, i.e., the 2-category
whose objects are the objects of A, whose morphisms are the horizontal
morphisms of A, and whose 2-cells α : a ⇒ b are given by the squares in A
of the form
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A

A

B

B .

a

b

• •α

It sends a double functor F : A → B to the 2-functor HF : HA → HB that
acts as F does on the corresponding data.

Proposition 2.9 ([6, Proposition 2.5]). The functors H and H form an ad-
junction

2Cat DblCat .

H

H

⊥

Moreover, the unit η : id⇒ HH is the identity.

Remark 2.10. We can also define a functor V : 2Cat→ DblCat, sending a 2-
category to its associated vertical double category with only trivial horizontal
morphisms, and a functor V : DblCat → 2Cat, sending a double category
to its underlying vertical 2-category. These form an adjunction V a V.

We now introduce a new functor between DblCat and 2Cat that ex-
tracts, from a double category, a 2-category whose objects and morphisms
are the vertical morphisms and squares; this is the functor V mentioned in
the introduction. In order to do this, we use the category V2, where 2 is
the (2-)category {0 → 1} free on a morphism. This double category V2 is
therefore the double category free on a vertical morphism.

Definition 2.11. We define the functor V : DblCat→ 2Cat as the composite

DblCat DblCat 2Cat.
[V2,−] H

Explicitly, it sends a double category A to the 2-category VA = H[V2,A]
given by the following data.

(i) An object in VA is a vertical morphism u : A A′ in A.
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(ii) A morphism (a, b, α) : u→ v is a square in A of the form

A B

A′ B′ .

a

b

u v• •α

(iii) A 2-cell (σ0, σ1) : (a, b, α) ⇒ (c, d, β) consists of two squares σ0 and
σ1 in A such that the following pasting equality holds.

A B

A B

A′ B′

a

c

u v

d

• •

• •

σ0

β

=

A B

A′ B′

A′ B′

a

b

u v

d

• •

• •

α

σ1

By Propositions 2.4 and 2.9, we obtain the following.

Proposition 2.12. The functor V has a left adjoint L

2Cat DblCat

L

V

⊥

given by L = H(−)× V2.

Notation 2.13. We denote by ⊗2 : 2Cat × 2Cat → 2Cat the Gray tensor
product for 2-categories. It makes 2Cat into a closed symmetric monoidal
category with internal homs given by Ps[A,B]: the 2-category of 2-functors
from A to B, pseudo natural transformations, and modifications.

The following technical result, which exhibits the behavior of the func-
tors H, H, and V with respect to pseudo homs, will be of use when we prove
the existence of the desired model structure.
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Lemma 2.14. Let B be a 2-category and A be a double category. Then there
are isomorphisms of 2-categories

H[HB,A]ps
∼= Ps[B,HA] and V [HB,A]ps

∼= Ps[B,VA]

natural in B and A.

Proof. We first consider the isomorphism H[HB,A]ps
∼= Ps[B,HA]. On

objects, this follows from the adjunction H a H given in Proposition 2.9. On
morphisms, as there are no non-trivial vertical morphisms in HB, horizontal
pseudo natural transformations out of HB are canonically the same as pseudo
natural transformations out of B. The argument for 2-morphisms is similar.

For the second isomorphism, first note that [V2,A]ps = [V2,A], since
there are no non-trivial horizontal morphisms in V2, and therefore horizontal
pseudo natural transformations out of V2 correspond to horizontal (strict)
natural transformations out of V2. Therefore, we have that

V [HB,A]ps = H[V2, [HB,A]ps]ps
∼= H[HB, [V2,A]ps]ps

∼= Ps[B,H[V2,A]ps] = Ps[B,VA],

where the first isomorphism follows from the symmetry of the Gray tensor
product on DblCat; see Proposition 2.5 below.

We conclude this section by introducing new notions of weak invertibil-
ity for horizontal morphisms and squares in a double category, together with
some technical results that will be of use later in the paper. We do not prove
these results here, but instead refer the reader to work by the first author [18,
Appendix A]. These notions and results were independently developed by
Grandis and Paré in [10, §2].

Definition 2.15. A horizontal morphism a : A → B in a double category A
is a horizontal equivalence if it is an equivalence in the 2-category HA.

Definition 2.16. A square α : (u a
b v) in a double category A is weakly

horizontally invertible if it is an equivalence in the 2-category VA. See
[20, Definition 2.5] for a more detailed description.

Remark 2.17. In particular, the horizontal boundaries a and b of a weakly
horizontally invertible square α are horizontal equivalences, which we refer
to as the horizontal equivalence data of α.
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Since any equivalence in a 2-category can be promoted to an adjoint
equivalence (see, for example, [22, Lemma 2.1.11]), we get the following
result.

Lemma 2.18. Every horizontal equivalence can be promoted to a horizontal
adjoint equivalence. Similarly, every weakly horizontally invertible square
can be promoted to one with horizontal adjoint equivalence data.

Finally, we conclude with a result concerning weakly horizontally invert-
ible squares.

Lemma 2.19 ([18, Lemma A.2.1]). A square whose horizontal boundaries
are horizontal equivalences, and whose vertical boundaries are identities, is
weakly horizontally invertible if and only if it is vertically invertible.

Remark 2.20. It follows that, for a 2-category A, a weakly horizontally in-
vertible square in the double category HA corresponds to an invertible 2-cell
in A.

3. Model structure for double categories

This section contains our first main result, which proves the existence of a
model structure on DblCat constructed as a right-induced model structure
along the functor (H,V) : DblCat → 2Cat × 2Cat, where both copies of
2Cat are endowed with the Lack model structure.

An analogue construction could be done for weak double categories and
strict double functors, by considering Lack’s model structure on bicategories
and strict functors. These enjoy the same relations as the ones studied in this
paper; we exclude them for expositional purposes.

3.1 Lack model structure on 2Cat

We start by recalling the main features of Lack’s model structure on 2Cat;
see [15, 16]. Its class of weak equivalences is given by the biequivalences,
and we refer to the fibrations in this model structure as Lack fibrations.

Definition 3.1. A 2-functor F : A → B is a biequivalence if
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(b1) for every object B ∈ B, there is an object A ∈ A and an equivalence
B
'−→ FA in B,

(b2) for every pair of objectsA,C ∈ A and every morphism b : FA→ FC
in B, there is a morphism a : A → C in A and an invertible 2-cell
b ∼= Fa in B, and

(b3) for every pair of morphisms a, c : A → C in A and every 2-cell
β : Fa ⇒ Fc in B, there is a unique 2-cell α : a ⇒ c in A such
that Fα = β.

Definition 3.2. A 2-functor F : A → B is a Lack fibration if

(f1) for every object C ∈ A and every equivalence b : B
'−→ FC in B, there

is an equivalence a : A
'−→ C in A such that Fa = b, and

(f2) for every morphism c : A→ C inA and every invertible 2-cell β : b ∼=
Fc in B, there is an invertible 2-cell α : a ∼= c in A such that Fα = β.

Theorem 3.3 ([16, Theorem 4]). There is a cofibrantly generated model
structure on 2Cat, called the Lack model structure, in which the weak equiv-
alences are the biequivalences and the fibrations are the Lack fibrations.

Remark 3.4. Note that every 2-category is fibrant in the Lack model struc-
ture.

Recall that a monoidal model category is a closed monoidal category
which admits a model structure compatible with the monoidal structure; see
[19, Definition 5.1]. The Lack model structure on 2Cat is monoidal with
respect to the Gray tensor product.

Theorem 3.5 ([15, Theorem 7.5]). The category 2Cat endowed with the
Lack model structure is a monoidal model category with respect to the closed
symmetric monoidal structure given by the Gray tensor product.

3.2 Constructing the model structure for DblCat

We introduce double biequivalences in DblCat inspired by the definition of
biequivalences in 2Cat. Our convention of regarding 2-categories as hor-
izontal double categories justifies the choice of directions when emulating
the definition of biequivalences in the context of double categories.
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Definition 3.6. A double functor F : A→ B is a double biequivalence if

(db1) for every object B ∈ B, there is an object A ∈ A and a horizontal
equivalence B '−→ FA in B,

(db2) for every pair of objects A,C ∈ A and every horizontal morphism
b : FA → FC in B, there is a horizontal morphism a : A → C in A
and a vertically invertible square in B of the form

FA FC

FA FC ,

b

Fa

• •∼=

(db3) for every vertical morphism v : B B′ in B, there is a vertical mor-
phism u : A A′ in A and a weakly horizontally invertible square
in B of the form

B FA

B′ FA′ ,

'

'

v Fu• •'

(db4) for every data in A as below left, and every square in B as below right,

A C

A′ C ′

a

c

u u′• •
FA FC

FA′ FC ′

Fa

Fc

Fu Fu′• •β

there is a unique square α : (u a
c u
′) in A such that Fα = β.

Remark 3.7. In 2Cat, one can prove that a 2-functor F : A → B is a biequiv-
alence if and only if there is a pseudo functor G : B → A together with
pseudo natural equivalences idA ' GF and FG ' idB. Under certain hy-
potheses, we can show a similar characterization of double biequivalences
using horizontal pseudo natural equivalences. This is done in Section 5.2.
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Similarly to the definition of double biequivalence, we take inspiration
from the Lack fibrations to define a notion of double fibrations.

Definition 3.8. A double functor F : A→ B is a double fibration if

(df1) for every object C ∈ A and every horizontal equivalence b : B
'−→ FC

in B, there is a horizontal equivalence a : A
'−→ C in A such that Fa =

b,

(df2) for every horizontal morphism c : A→ C in A and for every vertically
invertible square β : (eFA

b
Fc eFC) in B as depicted below left, there

is a vertically invertible square α : (eA
a
c eC) in A as depicted below

right such that Fα = β,

FA FC

FA FC

b

Fc

• •β

∼=

A C

A C

a

c

• •α

∼=

(df3) for every vertical morphism u′ : C C ′ in A and every weakly hor-
izontally invertible square β : (v '' Fu′) in B as depicted below left,
there is a weakly horizontally invertible square α : (u '' u′) in A as
depicted below right such that Fα = β.

B FC

B′ FC ′

'

'

v Fu′• •β '

A C

A′ C ′

'

'

u u′• •α'

By requiring that a double functor is both a double biequivalence and a
double fibration, we get a notion of double trivial fibration, which can be
described as follows.

Definition 3.9. A double functor F : A→ B is a double trivial fibration if
it satisfies (db4) of Definition 3.6, and the following conditions:

(dt1) for every object B ∈ B, there is an object A ∈ A such that B = FA,
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(dt2) for every pair of objects A,C ∈ A and every horizontal morphism
b : FA → FC in B, there is a horizontal morphism a : A → C in A
such that b = Fa, and

(dt3) for every vertical morphism v : B B′ in B, there is a vertical mor-
phism u : A A′ in A such that v = Fu.

Remark 3.10. Note that (dt2) says that a double trivial fibration is full on
horizontal morphisms, while (dt3) says that a double trivial fibration is only
surjective on vertical morphisms.

We can use the functors H,V : DblCat → 2Cat to characterize double
biequivalences and double fibrations through biequivalences and Lack fibra-
tions in 2Cat. We state these characterizations here, and defer their proofs
to Section 5.1.

Proposition 3.11. A double functor F : A→ B is a double biequivalence in
DblCat if and only if the 2-functors HF : HA → HB and VF : VA → VB
are biequivalences in 2Cat.

Proposition 3.12. A double functor F : A → B is a double fibration in
DblCat if and only if the 2-functors HF : HA → HB and VF : VA → VB
are Lack fibrations in 2Cat.

This is intuitively sound, since horizontal equivalences and weakly hor-
izontally invertible squares were defined to be the equivalences in the 2-
categories induced by H and V , respectively.

As a corollary, we get a similar characterization for double trivial fibra-
tions.

Corollary 3.13. A double functor F : A → B is a double trivial fibration
in DblCat if and only if the induced 2-functors HF : HA → HB and
VF : VA→ VB are trivial fibrations in the Lack model structure on 2Cat.

To build a model structure on DblCat with these classes of morphisms
as its weak equivalences and (trivial) fibrations, we use the notion of right-
induced model structure. Given a model categoryM and an adjunction

M N ,

L

R

⊥ (3.14)
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we can, under certain conditions, induce a model structure on N along the
right adjoint R, in which a weak equivalence (resp. fibration) is a morphism
F in N such that RF is a weak equivalence (resp. fibration) inM.

Propositions 3.11 and 3.12 suggest that the model structure on DblCat
we desire, with double biequivalences as the weak equivalences and double
fibrations as the fibrations, corresponds to the right-induced model structure,
if it exists, along the adjunction

2Cat× 2Cat DblCat ,

H t L

(H,V)

⊥

where each copy of 2Cat is endowed with the Lack model structure. To
prove the existence of this model structure, we use results by Garner, Hess,
Kȩdziorek, Riehl, and Shipley in [7, 12]. In particular, we use the following
theorem, inspired by the original Quillen Path Object Argument [21].

Theorem 3.15. Let M be an accessible model category, and let N be a
locally presentable category. Suppose we have an adjunctionL a R between
them as in (3.14). Suppose moreover that every object inM is fibrant and
that, for every object X ∈ N , there is a factorization

X
W−→ Path(X)

P−→ X ×X

of the diagonal morphism in N such that RP is a fibration inM and RW
is a weak equivalence inM. Then the right-induced model structure on N
exists.

Proof. This follows directly from [19, Theorem 6.2], which is the dual of
[12, Theorem 2.2.1]. Indeed, if every object inM is fibrant, then the under-
lying fibrant replacement of conditions (i) and (ii) of [19, Theorem 6.2] are
trivially given by the identity.

Our strategy is then to construct a path object Path(A) for a double cat-
egory A together with double functors W and P factorizing the diagonal
morphism A → A × A, such that their images under (H,V) give a weak
equivalence and a fibration in 2Cat× 2Cat respectively.

- 203 -



MOSER, SARAZOLA, VERDUGO MODEL STRUCTURE ON DBLCAT

Definition 3.16. Let A be a double category. We define a path object for A
as the double category Path(A) := [HEadj,A]ps, where the 2-category Eadj

is the free-living adjoint equivalence. It comes with a factorization of the
diagonal double functor

A W−→ Path(A)
P−→ A× A,

where W is the double functor A ∼= [1,A]ps → [HEadj,A]ps = Path(A) in-
duced by the unique map HEadj → 1 and P is the double functor Path(A) =
[HEadj,A]ps → [1t1,A]ps

∼= A×A induced by the inclusion 1t1→ HEadj

at the two endpoints. Note that, since the composite 1 t 1 → HEadj → 1

is the unique map, the composite PW is the diagonal double functor A →
A× A.

Proposition 3.17. For every double category A, the path object of Defini-
tion 3.16

A W−→ Path(A)
P−→ A× A,

is such that (H,V)W is a weak equivalence and (H,V)P is a fibration in
2Cat× 2Cat.

Proof. We first prove that HW and VW are biequivalences in 2Cat. By
Lemma 2.14, we have commutative squares

H[1,A]ps

Ps[1,HA]

H[HEadj,A]ps

Ps[Eadj,HA]

HW

∼= ∼=

(HW )]

V [1,A]ps

Ps[1,VA]

V [HEadj,A]ps

Ps[Eadj,VA]

VW

∼= ∼=

(VW )]

where the 2-functors (HW )] and (VW )] are induced by the unique map
Eadj → 1. As the inclusion 1→ Eadj is a trivial cofibration in 2Cat and HA
and VA are fibrant 2-categories, by monoidality of the Lack model structure,
we get that the induced 2-functors

R : Ps[Eadj,HA]→ Ps[1,HA] and S : Ps[Eadj,VA]→ Ps[1,VA]

are trivial fibrations in 2Cat. As R(HW )] and S(VW )] compose to the
identity, by 2-out-of-3, we get that (HW )] and (VW )] are biequivalences.
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Again, by 2-out-of-3 applied to the commutative squares above, we conclude
that HW and VW are biequivalences.

Similarly, one can show that HP and VP are Lack fibrations in 2Cat,
since the 2-functor 1 t 1 → Eadj is a cofibration in 2Cat. Therefore, the
induced 2-functors

Ps[1 t 1,HA]→ Ps[Eadj,HA] and Ps[1 t 1,VA]→ Ps[Eadj,VA]

are fibrations in 2Cat, by monoidality of the Lack model structure.

We are finally ready to prove the existence of the right-induced model
structure on DblCat along the adjunction H t L a (H,V).

Theorem 3.18. Consider the adjunction

2Cat× 2Cat DblCat ,

H t L

(H,V)

⊥

where each copy of 2Cat is endowed with the Lack model structure. Then
the right-induced model structure on DblCat exists. In particular, a double
functor is a weak equivalence (resp. fibration) in this model structure if and
only if it is a double biequivalence (resp. double fibration).

Proof. We first describe the weak equivalences and fibrations in the right-
induced model structure on DblCat. These are given by the double functors
F such that (H,V)F is a weak equivalence (resp. fibration) in 2Cat× 2Cat,
or equivalently, such that both HF and VF are biequivalences (resp. Lack
fibrations) in 2Cat. Then it follows from Propositions 3.11 and 3.12 that
the weak equivalences (resp. fibrations) in DblCat are precisely the double
biequivalences (resp. double fibrations).

We now prove the existence of the model structure. For this purpose, we
want to apply Theorem 3.15 to our setting. First note that 2Cat and DblCat
are locally presentable, and that the Lack model structure on 2Cat is cofi-
brantly generated. In particular, this implies that the product 2Cat×2Cat en-
dowed with two copies of the Lack model structure is combinatorial, hence
accessible. Moreover, every pair of 2-categories is fibrant in 2Cat× 2Cat,
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since every object is fibrant in the Lack model structure. Finally, for every
double category A, Proposition 3.17 gives a factorization

A W−→ Path(A)
P−→ A× A

such that W is a double biequivalence and P is a double fibration. By Theo-
rem 3.15, this proves that the right-induced model structure along (H,V) on
DblCat exists.

Remark 3.19. Note that every double category is fibrant in this model struc-
ture. Indeed, this follows directly from the fact that it is right-induced from
a model structure in which every object is fibrant.

4. Generating (trivial) cofibrations and cofibrant objects

In this section, we take a closer look at the (trivial) cofibrations and cofibrant
objects in our model structure on DblCat, and we show that the latter is
cofibrantly generated.

4.1 Generating sets of (trivial) cofibrations

Recall from Theorem 3.3 that the Lack model structure on 2Cat is cofi-
brantly generated. As a consequence, our model structure on DblCat is also
cofibrantly generated.

Proposition 4.1. Let I2 and J2 denote sets of generating cofibrations and
generating trivial cofibrations, respectively, for the Lack model structure on
2Cat. Then, the sets of morphisms in DblCat

I = {Hi, Hi× V2 | i ∈ I2}, and J = {Hj, Hj × V2 | j ∈ J2}

give sets of generating cofibrations and generating trivial cofibrations, re-
spectively, for the model structure on DblCat of Theorem 3.18.

Proof. Since the model structure on DblCat is right-induced from two copies
of the Lack model structure on 2Cat along the adjunction H t L a (H,V),
sets of generating cofibrations and of generating trivial cofibrations can be
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given by the images under the left adjoint HtL of the fixed sets of generating
cofibrations and generating trivial cofibrations in 2Cat× 2Cat.

Let i and i′ be generating cofibrations in I2 in 2Cat. Then Hi and
Li = Hi×V2 are cofibrations in DblCat. To see this apply HtL to the cofi-
brations (i, id∅) and (id∅, i), respectively. Similarly, Hi′ and Li′ = Hi′×V2
are cofibrations in DblCat. Since coproducts of cofibrations are cofibrations,
then (HtL)(i, i′) = HitLi′ can be obtained from Hi and Li′ = Hi′×V2.
This shows that I is a set of generating cofibrations of DblCat.

Similarly, we can show that J is a set of generating trivial cofibrations
of DblCat.

However, we can find sets of generating (trivial) cofibrations, which are
both smaller and more descriptive than the ones given above, by using the
characterization of fibrations and trivial fibrations in our model structure
given in Proposition 3.12 and Corollary 3.13.

Notation 4.2. Let S be the double category free on a square, δS be its bound-
ary, and S2 be the double category free on two squares with the same bound-
ary.

S =

0 1

0′ 1′

;α• • δS =

0 1

0′ 1′

;• • S2 =

0 1

0′ 1′

α0 α1• •

We fix notation for the following double functors, which form a set of gen-
erating cofibrations for our model structure on DblCat:

• the unique map I1 : ∅ → 1,

• the inclusion I2 : 1 t 1→ H2,

• the unique map I3 : ∅ → V2,

• the inclusion I4 : δS→ S, and

• the double functor I5 : S2 → S sending both squares in S2 to the non-
trivial square of S.
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We also fix notation for the following double functors, which form a set of
generating trivial cofibrations for our model structure on DblCat:

• the inclusion J1 : 1 → HEadj, where the 2-category Eadj is the free-
living adjoint equivalence,

• the inclusion J2 : H2→ HCinv, where the 2-category Cinv is the free-
living invertible 2-cell, and

• the inclusion J3 : V2 → HEadj × V2; note that the double category
HEadj × V2 is the free-living weakly horizontally invertible square
(with horizontal adjoint equivalence data).

Proposition 4.3. In the model structure on DblCat of Theorem 3.18, a set
I ′ of generating cofibrations is given by

{I1 : ∅ → 1, I2 : 1 t 1→ H2, I3 : ∅ → V2, I4 : δS→ S, I5 : S2 → S}

and a set J ′ of generating trivial cofibrations is given by

{J1 : 1→ HEadj, J2 : H2→ HCinv, J3 : V2→ HEadj × V2}.

Proof. It is a routine exercise to check that a double functor is a double trivial
fibration as defined in Definition 3.9 if and only if it has the right-lifting
property with respect to the cofibrations in I ′, and that a double functor is
a double fibration as defined in Definition 3.8 if and only if it has the right-
lifting property with respect to the trivial cofibrations of J ′. This shows that
I ′ andJ ′ are sets of generating cofibrations and generating trivial cofibration
for DblCat, respectively.

4.2 Cofibrations and cofibrant double categories

Our next goal is to provide a characterization of the cofibrations in DblCat.
In [15, Lemma 4.1], Lack shows that a 2-functor is a cofibration in 2Cat if
and only if its underlying functor has the left lifting property with respect
to all surjective on objects and full functors. A similar result applies to our
model structure.

First, we state a characterization of the functors in Cat which have the
left lifting property with respect to all surjective on objects and full (resp. sur-
jective on morphisms) functors, that will be useful to understand the charac-
terization of cofibrations in Proposition 4.7.
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Lemma 4.4. A functor F : A → B has the left lifting property with respect
to surjective on objects and full (resp. surjective) on morphisms functors if
and only if

(i) the functor F is injective on objects and faithful, and

(ii) there are functors I : B → C and R : C → B such that RI = idB,
where the category C is obtained from the image of F by freely ad-
joining objects and then freely adjoining morphisms between specified
objects (resp. by freely adjoining objects and morphisms).

Moreover, a functor ∅ → A has the left lifting property with respect to sur-
jective on objects and full (resp. surjective) on morphisms functors if and
only if the category A is free (resp. a disjoint union of copies of 1 and 2).

Proof. The statement about “full on morphisms” is proven in [15, Corol-
lary 4.12]. For the “surjective on morphisms” case, the proof is analogous,
replacing 1 t 1→ 2 by ∅ → 2.

The second statement about ∅ → A follows from the fact that a retract
of a free category is itself free, and similarly for disjoint unions of copies of
1 and 2.

Notation 4.5. We write U : 2Cat → Cat for the functor that sends a 2-
category to its underlying category.

Remark 4.6. The functor UH : DblCat → Cat, which sends a double cat-
egory to its underlying category of objects and horizontal morphisms, has
a right adjoint. It is given by the functor Rh : Cat → DblCat that sends
a category C to the double category with the same objects as C, horizontal
morphisms given by the morphisms of C, a unique vertical morphism be-
tween every pair of objects, and a unique square ! : (! fg !) for every pair of
morphisms f, g in C.

Similarly, the functor UV : DblCat→ Cat admits a right adjoint Rv.

Proposition 4.7. A double functor F : A → B is a cofibration in DblCat if
and only if

(i) the underlying horizontal functor UHF : UHA → UHB has the left
lifting property with respect to all surjective on objects and full func-
tors, and
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(ii) the underlying vertical functor UVF : UVA → UVB has the left
lifting property with respect to all surjective on objects and surjective
on morphisms functors.

Proof. Suppose first that F : A → B is a cofibration in DblCat, i.e., it has
the left lifting property with respect to all double trivial fibrations. In order
to show (i), let P : X → Y be a surjective on objects and full functor. By
the adjunction UH a Rh, saying that UHF has the left lifting property with
respect to P is equivalent to saying that F has the left lifting property with
respect to RhP . We now prove this latter statement.

Note that the double functor RhP : RhX → RhY is surjective on objects
and full on horizontal morphisms, since P is so. Moreover, by construc-
tion of Rh, there is exactly one vertical morphism and one square for each
boundary in both its source and target; therefore RhP is surjective on verti-
cal morphisms and fully faithful on squares. Hence RhP is a double trivial
fibration, and F has the left lifting property with respect to RhP since it is a
cofibration in DblCat.

Similarly, one can show that (ii) holds, by considering the adjunction
UV a Rv and replacing fullness by surjectivity on morphisms.

Now suppose that F : A → B satisfies (i) and (ii). Let P : X → Y
be a double trivial fibration and consider a commutative square as below
left. We want to find a lift L : B → X in this square as depicted below.
Using (ii), since UVP is surjective on objects and surjective on morphisms,
we have a lift Lv in the below middle diagram. We now wish to find a
lift Lh in the diagram below right, that agrees with Lv on objects. Using the
characterization of UHF given in Lemma 4.4, and the fact that UHP is full,
we can extend the given assignment on objects to a functor Lh : UHB →
UHX.

A X

B Y

G

F P

Q

L

UVA UVX

UVB UVY

UVG

UVF UVP

UVQ

Lv

UHA UHX

UHB UHY

UHG

UHF UHP

UHQ

Lh

Then, since P : X → Y is fully faithful on squares, the assignment on ob-
jects, horizontal morphisms, and vertical morphisms given by Lh and Lv
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uniquely extend to a double functor L : B → Y, which gives the desired
lift.

Remark 4.8. From Lemma 4.4 and Proposition 4.7, it is straightforward to
see that a cofibration in DblCat is in particular injective on objects, and
faithful on horizontal morphisms and vertical morphisms.

Finally, as a corollary of Lemma 4.4 and Proposition 4.7, we obtain a
characterization of the cofibrant double categories.

Corollary 4.9. A double category A is cofibrant if and only if its underlying
horizontal category UHA is free and its underlying vertical category UVA
is a disjoint union of copies of 1 and 2.

5. Fibrations, weak equivalences, and Whitehead theorems

The purpose of this section is to describe the weak equivalences and fi-
brations of our model structure. Section 5.1 provides proofs of Proposi-
tions 3.11 and 3.12, which claim that the weak equivalences and fibrations
of the right-induced model structure on DblCat of Theorem 3.18 are pre-
cisely the double biequivalences and the double fibrations.

In Section 5.2 we turn our attention to another characterization of the
weak equivalences, known as the Whitehead theorem. Recall that, in the 2-
categorical case, a 2-functor is a biequivalence if and only if it has a pseudo
inverse up to pseudo natural equivalence (see [14, Theorem 7.4.1]). A simi-
lar statement does not hold in general for double biequivalences, but it does
if we assume cofibrancy on the target double category. In particular, we
retrieve the usual Whitehead theorem for model categories applied to our
setting, and also the characterization of biequivalences stated above. An-
other version of the Whitehead theorem for double biequivalences is given
in [20, Theorem 8.1], which in turn holds for the fibrant objects of the model
structure on DblCat defined therein.

5.1 Characterizations of weak equivalences and fibrations

We first prove Proposition 3.11, dealing with weak equivalences. In order to
characterize the double functors F such that (H,V)F is a weak equivalence
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in 2Cat × 2Cat, we express what it means for HF and VF to be biequiva-
lences in 2Cat; this is done by translating (b1-3) of Definition 3.1 for these
2-functors.

Remark 5.1. Let F : A → B be a double functor. Then HF : HA → HB is
a biequivalence in 2Cat if and only if F satisfies (db1-2) of Definition 3.6,
and the following condition:

(hb3) for every pair of horizontal morphisms a, c : A → C in A and every
square in B of the form

FA FC

FA FC ,

Fa

Fc

• •β

there is a unique square α : (eA
a
c eC) in A such that Fα = β.

Remark 5.2. Let F : A→ B be a double functor. Then VF : VA→ VB is a
biequivalence in 2Cat if and only if F satisfies (db3) of Definition 3.6, and
the following conditions:

(vb2) for every pair of vertical morphisms u : A A′ and u′ : C C ′ in A
and every square β : (Fu b

d Fu
′) in B, there is a square α : (u a

c u
′)

in A and two vertically invertible squares in B such that the following
pasting equality holds,

FA FC

FA FC

FA′ FC ′

b

Fa

Fu Fu′

Fc

• •

• •

∼=

Fα

=

FA FC

FA′ FC ′

FA′ FC ′

b

d

Fu Fu′

Fc

• •

• •

β

∼=
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(vb3) for every tuple of squares α : (u a
c u
′) and α′ : (u a′

c′ u
′) in A, and τ0 and

τ1 in B as in the pasting equality below left, there are unique squares
σ0 : (eA

a
a′ eC) and σ1 : (eA′ c

c′ eC′) in A satisfying the pasting equality
below right, and with the property that Fσ0 = τ0 and Fσ1 = τ1.

FA FC

FA FC

FA′ FC ′

Fa

Fa′

Fu Fu′

Fc′

• •

• •

τ0

Fα′

=

FA FC

FA′ FC ′

FA′ FC ′

Fa

Fc

Fu Fu′

Fc′

• •

• •

Fα

τ1

A C

A C

A′ C ′

a

a′

u u′

c′

• •

• •

σ0

α′

=

A C

A′ C ′

A′ C ′

a

c

u u′

c′

• •

• •

α

σ1

The reader may have noticed that condition (db4) in Definition 3.6 re-
garding fully faithfulness on squares has not been mentioned so far, but it is
recovered by the conditions (hb3) and (vb2-3) above.

Lemma 5.3. Suppose that F : A → B is a double functor satisfying (hb3)
of Remark 5.1, and (vb2-3) of Remark 5.2. Then F satisfies (db4) of Defini-
tion 3.6.

Proof. Suppose β : (Fu Fa
Fc Fu′) is a square in B as in (db4) of Defini-

tion 3.6. By (vb2) of Remark 5.2, there is a square α : (u a
c u

′) in A and
two vertically invertible squares ψ0, ψ1 in B such that the following pasting
equality holds.

FA FC

FA FC

FA′ FC ′

Fa

Fa

Fu Fu′

Fc

• •

• •

∼=

ψ0

Fα

=

FA FC

FA′ FC ′

FA′ FC ′

Fa

Fc

Fu Fu′

Fc

• •

• •

β

∼=

ψ1

By (hb3) of Remark 5.1 applied to ψ0 and ψ1, there are unique squares
ϕ0 : (eA

a
a eC) and ϕ1 : (eA′ c

c eC′) in A such that Fϕ0 = ψ0 and Fϕ1 = ψ1.
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Moreover, the squares ϕ0 and ϕ1 are vertically invertible by the unicity con-
dition in (hb3). Therefore, the square α given by the following vertical past-
ing

A C

A′ C ′

a

c

u u′• •α =

A C

A C

A′ C ′

A′ C ′

a

a

u u′

c

c

• •

• •

• •

∼=ϕ0

α

∼=

ϕ−1
1

is such that Fα = β. This settles the matter of the existence of the square α.
Now suppose there are two squares α : (u a

c u
′) and α′ : (u a

c u
′) in A such

that Fα = β = Fα′. Take τ0 = eFa and τ1 = eFc in (vb3) of Remark 5.2.
This gives unique squares σ0 and σ1 in A such that the following pasting
equality holds

A C

A C

A′ C ′

a

a

u u′

c

• •

• •

σ0

α′

=

A C

A′ C ′

A′ C ′

a

c

u u′

c

• •

• •

α

σ1

and Fσ0 = eFa and Fσ1 = eFc. By unicity in (hb3), we must have σ0 = ea
and σ1 = ec. Replacing σ0 and σ1 by ea and ec in the pasting diagram above
implies that α = α′. This proves unicity.

We can now use the above results to obtain the desired characterization
of the weak equivalences in our model structure on DblCat.

Proof of Proposition 3.11. Suppose that F : A→ B is a double functor such
that both HF and VF are biequivalences in 2Cat. By Remarks 5.1 and 5.2,
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we directly have that F satisfies (db1-3) of Definition 3.6. Moreover, by
Lemma 5.3, we also have that F satisfies (db4) of Definition 3.6. This shows
that F is a double biequivalence.

Now suppose that F : A → B is a double biequivalence. We want to
show that both HF and VF are biequivalences in 2Cat. To show that HF
is a biequivalence, it suffices to show that (hb3) of Remark 5.1 is satisfied;
this follows directly from taking u and u′ to be vertical identities in (db4) of
Definition 3.6.

It remains to show that VF is a biequivalence; we do so by proving (vb2-
3) of Remark 5.2. To prove (vb2), let u : A A′ and u′ : C C ′ be vertical
morphisms in A and β be a square in B of the form

FA FC

FA′ FC ′ .

b

d

Fu Fu′• •β

By (db2) of Definition 3.6, there are horizontal morphisms a : A → C and
c : A′ → C ′ in A and vertically invertible squares ϕ0 : (eFA

b
Fa eFC) and

ϕ1 : (eFA′ d
Fc eFC′) in B. By (db4) of Definition 3.6, there is a unique square

α : (u a
c u
′) in A such that

FA FC

FA′ FC ′

Fa

Fc

Fu Fu′• •Fα =

FA FC

FA FC

FA′ FC ′

FA′ FC ′ ,

Fa

b

Fu Fu′

d

Fc

• •

• •

• •

∼=

ϕ−1
0

β

∼=ϕ1

which gives (vb2). Finally, we prove (vb3). Suppose we have a pasting
equality in B as below left.
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FA FC

FA FC

FA′ FC ′

Fa

Fa′

Fu Fu′

Fc′

• •

• •

τ0

Fα′

=

FA FC

FA′ FC ′

FA′ FC ′

Fa

Fc

Fu Fu′

Fc′

• •

• •

Fα

τ1

A C

A C

A′ C ′

a

a′

u u′

c′

• •

• •

σ0

α′

=

A C

A′ C ′

A′ C ′

a

c

u u′

c′

• •

• •

α

σ1

By applying (db4) of Definition 3.6 to τ0 and τ1, we obtain unique squares
σ0 : (eA

a
a′ eC) and σ1 : (eA′ c

c′ eC′) in A such that Fσ0 = τ0 and Fσ1 = τ1.
Moreover, by unicity in (db4) of Definition 3.6, we have the pasting equality
above right, since applying F to each vertical composite yields the same
squares in B. This proves (vb3), and thus concludes the proof.

Now we turn our attention to Proposition 3.12, dealing with fibrations.
For this, we first translate (f1-2) of Definition 3.2 for HF and VF .
Remark 5.4. Let F : A → B be a double functor. Then HF : HA → HB is
a fibration in 2Cat if and only if F satisfies (df1-2) of Definition 3.8.
Remark 5.5. Let F : A → B be a double functor. Then VF : VA → VB is
a fibration in 2Cat if and only if F satisfies (df3) of Definition 3.8, and the
following condition:

(vf2) for every square α′ : (u a′

c′ u
′) in A and every square β : (Fu b

d Fu
′)

in B, together with vertically invertible squares τ0 and τ1 in B as in
the pasting equality below left, there is a square α : (u a

c u′) in A,
together with vertically invertible squares σ0 and σ1 in A as in the
pasting equality below right, such that Fα = β, Fσ0 = τ0, Fσ1 = τ1.

FA FC

FA FC

FA′ FC ′

b

Fa′

Fu Fu′

Fc′

• •

• •

τ0

∼=

Fα′

=

FA FC

FA′ FC ′

FA′ FC ′

b

d

Fu Fu′

Fc′

• •

• •

β

τ1

∼=

A C

A C

A′ C ′

a

a′

u u′

c′

• •

• •

σ0

∼=

α′

=

A C

A′ C ′

A′ C ′

a

c

u u′

c′

• •

• •

α

σ1

∼=
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We can now use the above remarks to show the desired characterization
of the fibrations in our model structure.

Proof of Proposition 3.12. It is clear that if a double functor F : A → B is
such that both HF and VF are Lack fibrations in 2Cat, then it is a double
fibration, by Remarks 5.4 and 5.5.

Suppose now that F : A → B is a double fibration. By Remark 5.4, we
directly get that HF is a Lack fibration in 2Cat. To show that VF is also a
Lack fibration, it suffices to show that (vf2) of Remark 5.5 is satisfied. Let
α′ : (u a′

c′ u
′) be a square in A and β : (Fu b

d Fu
′) be a square in B, together

with vertically invertible squares τ0 and τ1 in B as in the leftmost pasting
equality diagram in (vf2). By (df2) of Definition 3.8, there are vertically
invertible squares σ0 : (eA

a
a′ eC) and σ1 : (eA′ c

c′ eC′) in A such that Fσ0 =
τ0 and Fσ1 = τ1. Then the square α given by the vertical composite

A C

A′ C ′

a

c

u u′• •α =

A C

A C

A′ C ′

A′ C ′

a

a′

u u′

c′

c

• •

• •

• •

∼=σ0

α′

∼=

σ−1
1

is such that Fα = β, which proves (vf2).

5.2 Homotopy equivalences and the Whitehead theorem

Any model category satisfies a Whitehead theorem, stating that the weak
equivalences between cofibrant-fibrant objects are precisely the homotopy
equivalences; i.e., the morphisms f : X → Y such that there is a morphism
g : Y → X with the property that fg and gf are homotopic to the identity.
We begin by studying what the notion of homotopy entails in our setting;
for this, let us first introduce the notion of horizontal pseudo natural equiva-
lences.
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Definition 5.6. Let F,G : A → B be double functors. A horizontal pseudo
natural transformation h : F ⇒ G is a horizontal pseudo natural equiva-
lence if

(i) the horizontal morphism hA : FA → GA is a horizontal equivalence
in B, for each object A ∈ A, and

(ii) the square hu : (Fu hA
hA′ Gu) is weakly horizontally invertible in B, for

each vertical morphism u : A A′ in A.

If the horizontal morphisms hA : FA → GA are in addition horizontal ad-
joint equivalences in B, we say that h is a horizontal pseudo natural ad-
joint equivalence.

We write h : F ' G for such a horizontal pseudo natural transformation.

Remark 5.7. By [18, Lemma A.3.3], a horizontal pseudo natural (adjoint)
equivalence as above is precisely an (adjoint) equivalence in the 2-category
H[A,B]ps, or equivalently, a horizontal (adjoint) equivalence in the double
category [A,B]ps.

With this definition in hand, we get the following characterization of
homotopic double functors.

Proposition 5.8. Let F,G : A → B be double functors. Then F and G are
homotopic via the path object Path(B) of Definition 3.16 if and only if there
is a horizontal pseudo natural adjoint equivalence F ' G.

Proof. Recall that the path object Path(B) of Definition 3.16 is given by the
pseudo hom double category [HEadj,B]ps, where the 2-category Eadj is the
free-living adjoint equivalence {0 '−→ 1}. Therefore, a homotopy between
double functors F,G : A→ B via the path object Path(B) is a double func-
tor h : A → [HEadj,B]ps such that Ph = (F,G) or, equivalently, a double
functor

ĥ : HEadj → [A,B]ps

such that ĥ(0) = F and ĥ(1) = G. This corresponds to a horizontal pseudo
natural adjoint equivalence F ' G by Remark 5.7.
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Remark 5.9. By the usual Whitehead theorem (see, for example, [3, Lemma
4.24]), a morphism between cofibrant-fibrant objects in a model category is
a weak equivalence if and only if it is a homotopy equivalence. Hence, since
all double categories are fibrant in the model structure of Theorem 3.18, we
can use Proposition 5.8 to characterize double biequivalences between cofi-
brant objects in DblCat as those double functors which admit an inverse
up to horizontal pseudo natural adjoint equivalence, i.e., double functors
F : A → B such that there is a double functor G : B → A together with
horizontal pseudo natural adjoint equivalences idA ' GF and FG ' idB.

In our double categorical setting, we can prove a version of the White-
head theorem for a wider class of weak equivalences, by only imposing a
condition on their target double categories. However, in some cases, the ho-
motopy inverse is not a strict double functor anymore, but it is rather pseudo
in the horizontal direction.

Definition 5.10. A horizontally pseudo double functor F : A → B con-
sists of maps on objects, horizontal morphisms, vertical morphisms, and
squares, which are compatible with domains and codomains. These maps
preserve identities and compositions of vertical morphisms and of squares
strictly, but they preserve identities and compositions of horizontal mor-
phisms only up to vertically invertible squares. These are submitted to as-
sociativity, unitality, and naturality conditions. See [8, Definition 3.5.1] for
details (note, however, that our definition has reversed the roles of the hori-
zontal and vertical directions).

If F strictly preserves horizontal identities, we say that F is normal.

Remark 5.11. Analogously to Remark 2.6 and Definition 5.6, we have no-
tions of horizontal pseudo natural transformations and horizontal pseudo nat-
ural equivalences between horizontally pseudo double functors. See [8, §3.8]
for precise definitions; note that our definition has reversed the roles of the
horizontal and vertical directions.

Our class of double biequivalences contains in particular the double func-
tors that have a horizontally pseudo inverse up to horizontal pseudo natural
equivalence.

Proposition 5.12. Let F : A → B be a double functor. If there is a nor-
mal horizontally pseudo double functor G : B→ A together with horizontal
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pseudo natural equivalences η : idA ' GF and ε : FG ' idB, then F is a
double biequivalence.

Proof. Under these assumptions, the double functor F is in particular a hor-
izontal biequivalence as introduced in [20, Definition 8.8]. Therefore F is a
double biequivalence by [20, Proposition 8.11].

By only requiring that the target of a double biequivalence F does not
contain any non-trivial composites of vertical morphisms, we can construct
a horizontally pseudo double functor which gives a homotopy inverse of F .
As the construction of this homotopy inverse is practically identical to the
one in [20, Proposition 8.12], we only specify here the data of the pseudo
inverse and of one of the horizontal pseudo natural equivalences, and refer
the reader to the proof of [20, Proposition 8.12] for details.

Theorem 5.13. Let A and B be double categories such that the underlying
vertical category UVB is a disjoint union of copies of 1 and 2. Then a
double functor F : A → B is a double biequivalence if and only if there
is a normal horizontally pseudo double functor G : B→ A, and horizontal
pseudo natural equivalences η : idA ' GF and ε : FG ' idB.

Proof. By Proposition 5.12, we directly get the converse implication.
Now suppose that F is a double biequivalence. We highlight the defini-

tion of the horizontally pseudo double functor G : B→ A and the horizontal
pseudo natural equivalence ε : FG⇒ idB on objects and vertical morphisms
as it is the only part of the construction that differs from [20, Proposition
8.12]. One can easily check that the rest of the proof of [20, Proposition
8.12] does not depend on the weakly horizontally invariant condition that is
not required in this statement, and thus can be applied verbatim.

To define G and ε on objects and vertical morphisms, we give the values
of G and ε on each copy of 1 and 2 in UVB.

• Given a copy of the form B : 1 → UVB, by (db1) applied to the
object B ∈ B, we get an object A ∈ A and a horizontal equivalence
f : FA

'−→ B in B. We set GB := A and εB := f : FGB
'−→ B.

• Given a copy of the form v : 2→ UVB, by (db3) applied to the verti-
cal morphism v : B B′ in B, we get a vertical morphism u : A A′

in A and a weakly horizontally invertible square β in B as follows.
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FA

FA′

B

B′

f

'

'
g

•Fu •vβ '

We set GB := A, GB′ := A′, and Gv := u, and we set εB :=
f : FGB

'−→ B, εB′ := g : FGB′
'−→ B′, and εv := β : (FGv εB

εB′ v).

As there are no composites of vertical morphisms in B, G and ε are trivially
compatible with vertical morphisms.

Remark 5.14. If we further require that the double category B in Theo-
rem 5.13 is cofibrant, we can construct the weak inverse G : B → A of
F in such a way that it is a strict double functor, since the underlying hor-
izontal category of B is free. This subsumes the usual Whitehead theorem
mentioned in Remark 5.9.

Finally, as a horizontal double category has a discrete underlying vertical
category, the result applies in particular to the case where B is horizontal. We
then retrieve the Whitehead theorem for 2-categories, which can be found in
[14, Theorem 7.4.1].

Corollary 5.15. Let A and B be 2-categories. Then a 2-functor F : A → B
is a biequivalence if and only if there is a normal pseudo functor G : B → A
together with pseudo natural equivalences η : idA ' GF and ε : FG ' idB.

Proof. Since F is a biequivalence if and only if HF is a double biequiv-
alence, as we will see in Theorem 6.5, and HB is horizontal, we can ap-
ply Theorem 5.13 to HF : HA → HB. Then HF is a double biequiv-
alence if and only if there is a normal horizontally pseudo double func-
tor G′ : HB → HA together with horizontal pseudo natural equivalences
η′ : idHA ' G′(HF ) and ε′ : (HF )G′ ' idHB. As normal horizontally
pseudo double functors and horizontal pseudo natural equivalence between
double categories in the image of H are equivalently normal pseudo functors
and pseudo natural equivalences between their preimages, the data (G′, η′, ε′)
for HF uniquely correspond to a data (G, η, ε) for F as required.

- 221 -



MOSER, SARAZOLA, VERDUGO MODEL STRUCTURE ON DBLCAT

6. Quillen pairs between DblCat and 2Cat

In this paper, the model structure on DblCat was constructed in such a way
as to be compatible with the Lack model structure on 2Cat through the hor-
izontal embedding H : 2Cat → DblCat. We now study the precise relation
between these model structures.

We present here the two Quillen pairs involving the horizontal embed-
ding functor H : 2Cat→ DblCat and its right and left adjoints.

Proposition 6.1. The adjunction

2Cat DblCat

H

H

⊥

is a Quillen pair, where 2Cat is endowed with the Lack model structure and
DblCat is endowed with the model structure of Theorem 3.18. Moreover,
its derived unit is levelwise a biequivalence; in particular, this says that the
functor H is homotopically fully faithful.

Proof. Since the functor (H,V) : DblCat→ 2Cat×2Cat and the projection
pr1 : 2Cat × 2Cat → 2Cat are right Quillen, then so is their composite
H : DblCat→ 2Cat, which proves that H a H is a Quillen pair. Moreover,
since every object in DblCat is fibrant, the derived unit of the adjunction
H a H is given by the components of the unit at cofibrant objects, and is
therefore levelwise an identity, by Proposition 2.9.

The functor H : 2Cat → DblCat is also right Quillen. The existence of
its left adjoint is given by the Adjoint Functor Theorem, since H preserves
all limits and colimits between locally presentable categories.

Theorem 6.2. The adjunction

DblCat 2Cat

L

H

⊥

is a Quillen pair, where 2Cat is endowed with the Lack model structure and
DblCat is endowed with the model structure of Theorem 3.18.
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Proof. We show that H is right Quillen, i.e., it preserves fibrations and trivial
fibrations.

Let F : A → B be a fibration in 2Cat; we prove that HF : HA → HB is
a double fibration in DblCat. Since HHF = F and F is a fibration, (df1-2)
of Definition 3.8 are satisfied. It remains to show (df3) of Definition 3.8. Let
us consider a weakly horizontally invertible square in HB

B FC

B FC .

'
b

'
d

• •β
∼=

Note that its vertical boundaries must be trivial, since all vertical morphisms
in HB are identities. Then the square β is, in particular, vertically invertible
by Lemma 2.19. Since F is a fibration in 2Cat, there is an equivalence
c : A

'−→ C such that Fc = d, by (f1) of Definition 3.2. Now β can be
rewritten as

FA FC

FA FC .

'
b

'
Fc

• •β

∼=

Then β is equivalently an invertible 2-cell β : b ∼= Fc in B. Since F is a
fibration in 2Cat, there is a morphism a : A → C in A and an invertible 2-
cell α : a ∼= c inA such that Fα = β, by (f2) of Definition 3.2. In particular,
since c is an equivalence in A, then so is a. This gives a vertically invertible
square in HA of the form

A C

A C

'
a

'
c

• •α

∼=

such that Fα = β; furthermore, by Lemma 2.19, the square α is weakly
horizontally invertible. This shows that HF is a double fibration.
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Now let the 2-functor F : A → B be a trivial fibration. We show that
HF : HA → HB is a double trivial fibration in DblCat. Since HHF = F
and F is a trivial fibration, it satisfies (dt1-2) of Definition 3.9. Then (dt3) of
Definition 3.9 follows from the fact that F is surjective on objects, since all
vertical morphisms are identities. Finally, (dt4) of Definition 3.9 is a direct
consequence of F being fully faithful on 2-cells, since all squares in HA and
HB are equivalently 2-cells in A and B, respectively. This shows that HF is
a double trivial fibration, and concludes the proof.

Remark 6.3. As we have seen in Proposition 6.1, the functor H is homotopi-
cally fully faithful, and therefore the derived counit of the adjunction L a H
is levelwise a biequivalence.

Remark 6.4. As a consequence of Proposition 6.1 and Theorem 6.2, we see
that the functor H : 2Cat → DblCat preserves all cofibrations, fibrations,
and weak equivalences. Indeed, the fact that it preserves cofibrations and
fibrations follows from the fact that H is both left and right Quillen, while
the fact that it preserves weak equivalences is a consequence of Ken Brown’s
Lemma (see [13, Lemma 1.1.12]), since all objects in 2Cat are fibrant.

In fact, more is true: the horizontal embedding H also reflects cofibra-
tions, fibrations, and weak equivalences, as we deduce from the following.

Theorem 6.5. The Lack model structure on 2Cat is both left- and right-
induced along the adjunctions

2Cat DblCat ,

L

H

H

⊥

⊥

where DblCat is endowed with the model structure of Theorem 3.18.

Proof. To show this result, it is enough to prove that a 2-functor F : A → B
is a biequivalence (resp. Lack fibration, cofibration) in 2Cat if and only if
the double functor HF : HA → HB is a double biequivalence (resp. double
fibration, cofibration) in DblCat, as a model structure is uniquely determined
by its classes of weak equivalences and fibrations, or alternatively by its
classes of weak equivalences and cofibrations.
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By Remark 6.4, we have that if F is a biequivalence (resp. Lack fibra-
tion, cofibration) in 2Cat, then HF is a double biequivalence (resp. double
fibration, cofibration) in DblCat, as H preserves all of these classes of mor-
phisms.

Conversely, if HF is a double biequivalence (resp. double fibration), then
HHF = F is a biequivalence (resp. Lack fibration) by definition of the
model structure on DblCat.

It remains to show that if HF is a cofibration, then so is F . For this,
suppose that HF is a cofibration in DblCat; we show that F has the left
lifting property with respect to all trivial fibrations in 2Cat. Let P : X → Y
be a trivial fibration in 2Cat and consider a commutative square as below.

A

B

X

Y

G

F

H

P

Since H preserves trivial fibrations, we have that HP is a double trivial fibra-
tion. Then, as HF is a cofibration, there is a lift in the diagram below left.
By the adjunction H a H, this corresponds to a lift in the diagram below
right, which concludes the proof.

HA

HB

HX

HY

HG

HF

HH

HP

A

B

HHX = X

HHY = Y

G

F

H

HHP = P

We saw that the derived unit (resp. counit) of the adjunction H a H
(resp. L a H) is levelwise a biequivalence. However, these adjunctions
are not expected to be Quillen equivalences, since the homotopy theory of
double categories should be richer than that of 2-categories. This is indeed
the case, as shown in the following remarks.

Remark 6.6. The components of the derived counit of the adjunction H a H
are not double biequivalences. To see this, consider the double category V2
free on a vertical morphism. Since HV2 ∼= 1 t 1 is cofibrant in 2Cat, the
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component of the derived counit at V2 is given by the component of the
counit

εV2 : HH(V2) ∼= 1 t 1→ V2,

which is not a double biequivalence, as it does not satisfy (db3) of Defini-
tion 3.6.

Remark 6.7. The components of the derived unit of the adjunction L a H are
not double biequivalences. By Proposition 4.3, the unique map I3 : ∅ → V2
is a generating cofibration in DblCat, so that V2 is cofibrant. Since all
objects in 2Cat are fibrant, the component of the derived unit at V2 is given
by the component of the unit

ηV2 : V2→ HL(V2) ∼= 1,

which is not a double biequivalence, as it does not satisfy (db2) of Defini-
tion 3.6. Note that the isomorphism above comes from the fact that the left
adjoint L collapses the vertical structure and thus LV2 ∼= 1.

Remark 6.8. Since we induced the model structure on DblCat along HtL a
(H,V), we also get that the adjunction L a V forms a Quillen pair between
2Cat and DblCat. However, note that neither the derived unit nor counit of
L a V are levelwise weak equivalences.

7. 2Cat-enrichment of the model structure on DblCat

The aim of this section is to provide a 2Cat-enrichment on DblCat which is
compatible with the model structure introduced in Theorem 3.18. Recall that
a model categoryM is said to be enriched over a closed monoidal category
N that is also a model category, if it is a tensored and cotensoredN -enriched
category and it satisfies the pushout-product axiom (see for example [19, §5]
for more details). In particular, the category N is said to be a monoidal
model category if its model structure is enriched over itself.

7.1 The model structure on DblCat is not monoidal

In [15, Example 7.2], it is shown that the Lack model structure is not monoidal
with respect to the cartesian product. As shown in the remark below, a simi-
lar argument also applies in the case of DblCat.
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Remark 7.1. By Proposition 4.3, the inclusion I2 : 1 t 1 → H2 is a gener-
ating cofibration in DblCat. However, the pushout product I2 � I2 with re-
spect to the cartesian product is the double functor from the non-commutative
square of horizontal morphisms to the commutative square of horizontal
morphisms, as in [15, Example 7.2]. Since cofibrations in DblCat are in par-
ticular faithful on horizontal morphisms by Remark 4.8, the pushout-product
I2 � I2 cannot be a cofibration in DblCat.

As stated in Theorem 3.5, Lack’s model structure on 2Cat is monoidal
with respect to the Gray tensor product. However, since the cofibrations
in DblCat are not as well behaved in the vertical direction as in the hori-
zontal direction; e.g., the underlying vertical category of a cofibrant double
category is only a disjoint union of copies of 1 and 2 rather than a free cate-
gory, our model structure is not compatible with the Gray tensor product on
DblCat (see Proposition 2.5), as we show below.

Notation 7.2. Let I : A→ B and J : A′ → B′ be double functors in DblCat.
We write I �Gr J for their pushout-product

I �Gr J : A⊗Gr B′
∐

A⊗GrA′

B⊗Gr A′ → B⊗Gr B′

with respect to the Gray tensor product ⊗Gr on DblCat.

Remark 7.3. The model structure defined in Theorem 3.18 is not compatible
with the Gray tensor product ⊗Gr. To see this, recall that I3 : ∅ → V2 is a
generating cofibration in DblCat by Proposition 4.3. However the pushout-
product

I3 �Gr I3 : ∅ → V2⊗Gr V2
is not a cofibration, where V2 ⊗Gr V2 is the double category generated by
the following data

0

0′

1′

0

1

1′ .

• •

• •

∼=
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Indeed, since the underlying vertical category of V2⊗Gr V2 has non-trivial
composites of vertical morphisms, this is not a cofibrant double category by
Corollary 4.9.

7.2 2Cat-enrichment of the model structure on DblCat

By restricting the Gray tensor product on DblCat along H in one of the vari-
ables, we get rid of the issue concerning the vertical structure that obstructs
the compatibility with the model structure of Theorem 3.18. With this vari-
ation, we show that DblCat is a tensored and cotensored 2Cat-enriched cat-
egory, and that the corresponding enrichment is now compatible with our
model structure.

Definition 7.4. The tensoring functor ⊗ : 2Cat × DblCat → DblCat is
defined to be the composite

2Cat×DblCat DblCat×DblCat DblCat.
H× id ⊗Gr

Proposition 7.5. The category DblCat is enriched, tensored, and cotensored
over 2Cat, with

(i) hom 2-categories given by H[A,B]ps, for all A,B ∈ DblCat,

(ii) tensors given by C ⊗ A, for all A ∈ DblCat and C ∈ 2Cat, where ⊗
is the tensoring functor of Definition 7.4, and

(iii) cotensors given by [HC,B]ps, for all B ∈ DblCat and C ∈ 2Cat,

where [−,−]ps is the pseudo hom double category of Proposition 2.5.

Proof. This follows directly from the definition of⊗, and the universal prop-
erties of the tensor ⊗Gr and of the adjunction H a H.

We now present the main result of this section.

Theorem 7.6. The model structure on DblCat of Theorem 3.18 is a 2Cat-
enriched model structure, where the enrichment is given by H[−,−]ps.

The rest of this section is devoted to the proof of this theorem. With that
goal, we first prove several auxiliary lemmas.
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Notation 7.7. Let i : A → B and j : A′ → B′ be 2-functors in 2Cat, and let
I : A → B be a double functor in DblCat. We denote by i�2j the pushout-
product

i�2 j : A⊗2 B′
∐
A⊗2A′

B ⊗2 A′ → B ⊗2 B′

with respect to the Gray tensor product ⊗2 on 2Cat (see Notation 2.13), and
we denote by i� I the pushout-product

i� I : A⊗ B
∐
A⊗A

B ⊗ A→ B ⊗ B

with respect to the tensoring functor ⊗ : 2Cat × DblCat → DblCat. In
particular, we have that i� I = Hi�Gr I .

Lemma 7.8. Let A and B be 2-categories. There is an isomorphism of
double categories

A⊗HB ∼= H(A⊗2 B),

natural in A and B.

Proof. By the universal properties of ⊗ and ⊗2, the adjunction H a H, and
Lemma 2.14, we have an isomorphism

DblCat(A⊗HB,C) ∼= 2Cat(A,H[HB,C]ps) ∼= 2Cat(A,Ps[B,HC])
∼= 2Cat(A⊗2 B,HC) ∼= DblCat(H(A⊗2 B),C),

for every double category C, which is natural in A, B, and C. The result
then follows from the Yoneda lemma.

Remark 7.9. The natural isomorphism H[H(−),−]ps
∼= Ps[−,H(−)] im-

plies that the adjunction H a H is enriched with respect to the 2Cat-enrich-
ments H[−,−]ps and Ps[−,−] of DblCat and 2Cat, respectively.

Lemma 7.10. Let A be a 2-category. There is an isomorphism of double
categories

A⊗ V2 ∼= HA× V2,

natural in A.
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Proof. By the universal properties of⊗ and×, and the fact that by the proof
of Lemma 2.14 H[V2,B]ps = H[V2,B] for all B ∈ DblCat, we have an
isomorphism

DblCat(A⊗ V2,B) ∼= 2Cat(A,H[V2,B]ps) = 2Cat(A,H[V2,B])
∼= DblCat(HA, [V2,B]) ∼= DblCat(HA× V2,B),

for every double category B, which is natural in A and B. The result then
follows from the Yoneda lemma.

Lemma 7.11. Let i : A → B and j : A′ → B′ be 2-functors in 2Cat. There
are isomorphisms

i�Hj ∼= H(i�2 j) and i� (Hj × V2) ∼= H(i�2 j)× V2

in the arrow category DblCat2.

Proof. Since H is a left adjoint, it preserves pushouts and, by Lemma 7.8,
we have that it is compatible with the tensors ⊗ and ⊗2. Therefore, we have
i�Hj ∼= H(i�2 j). By Lemma 7.10, by associativity of ⊗Gr, and by the
first isomorphism, we then get that

i� (Hj × V2) ∼= i� (j ⊗ V2) ∼= (i�Hj)⊗Gr V2
∼= (i�2 j)⊗ V2 ∼= H(i�2 j)× V2.

We are now ready to prove Theorem 7.6.

Proof of Theorem 7.6. Recall from Proposition 4.1 that a set I of generating
cofibrations and a set J of generating trivial cofibrations for the model struc-
ture on DblCat are given by morphisms of the form Hj and Lj = Hj×V2,
where j is a generating cofibration or a generating trivial cofibration in 2Cat,
respectively.

We show that the pushout-product of a generating cofibration in I with
any (trivial) cofibration in 2Cat is a (trivial) cofibration in DblCat, and that
the pushout-product of a generating trivial cofibration in J with any cofibra-
tion in 2Cat is a trivial cofibration in DblCat.

Given cofibrations i and j in 2Cat, we know by Lemma 7.11 that

i�Hj ∼= H(i�2 j) and i� (Hj × V2) ∼= H(i�2 j)× V2 = L(i�2 j),

- 230 -



MOSER, SARAZOLA, VERDUGO MODEL STRUCTURE ON DBLCAT

and by Theorem 3.5 that i�2 j is also a cofibration in 2Cat, which is trivial
when either i or j is. Since H and L preserve (trivial) cofibrations by Propo-
sition 6.1 and Remark 6.8, then H(i�2 j) and L(i�2 j) are cofibrations in
DblCat, which are trivial if either i or j is. Taking j to be a generating
cofibration or generating trivial cofibration in 2Cat, we get the desired re-
sults.

8. Comparison with other model structures on DblCat

In [6], Fiore, Paoli, and Pronk construct several model structures on the cat-
egory DblCat of double categories. We show in this section that our model
structure on DblCat is not related to their model structures in the following
sense: the identity adjunction on DblCat is not a Quillen pair between the
model structure of Theorem 3.18 and any of the model structures of [6]. This
is not surprising, since our model structure was constructed in such a way
that the functor H : 2Cat → DblCat embeds the homotopy theory of 2Cat
into that of DblCat, while there seems to be no such relation between their
model structures on DblCat and the Lack model structure on 2Cat, e.g. see
end of Section 9 in [6]. Further evidence is given by the fact that our double
biequivalences are 2-categorically induced, while the weak equivalences in
the model structures of [6] are rather 1-categorically induced.

We start by recalling the categorical model structures on DblCat con-
structed in [6]. Since our primary interest is to compare them to our model
structure, we only describe the weak equivalences; the curious reader is en-
couraged to visit their paper for further details.

The first model structure we recall is induced from the canonical model
structure on Cat by means of the vertical nerve.

Definition 8.1 ([6, Definition 5.1]). The vertical nerve of double categories
is the functor

Nv : DblCat→ Cat∆op

sending a double category A to the simplicial categoryNvA such that (NvA)0

is the category of objects and horizontal morphisms of A, (NvA)1 is the cat-
egory of vertical morphisms and squares of A and, for n ≥ 2,

(NvA)n = (NvA)1 ×(NvA)0 . . .×(NvA)0 (NvA)1.
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Proposition 8.2 ([6, Theorem 7.17]). There is a model structure on DblCat
in which a double functor F is a weak equivalence if and only if NvF is
levelwise an equivalence of categories.

The next model structure on DblCat requires a different perspective. For
a 2-category A that admits limits and colimits, there is a model structure
on the underlying category UA in which the weak equivalences are pre-
cisely the equivalences of the 2-category A; see [17]. When applying this
construction to the 2-category DblCath of double categories, double func-
tors, and horizontal natural transformations, one obtains the following model
structure on DblCat; see [6, §8.4].

Proposition 8.3. There is a model structure on DblCat, called the trivial
model structure, in which a double functor F : A→ B is a weak equivalence
if and only if it is an equivalence in the 2-category DblCath, i.e., there is a
double functor G : B → A and two horizontal natural isomorphisms idA ∼=
GF and FG ∼= idB.

Remark 8.4. By comparing this to our Whitehead theorems (see Section 5.2),
we see that the weak equivalences in the model structure of Proposition 8.3
require stricter conditions than double biequivalences. Indeed, the units and
counits in the statement above are horizontal strict natural isomorphisms,
while in our Whitehead theorems they are horizontal pseudo natural equiv-
alences. This further supports our claim that the weak equivalences in our
model structure are a 2-categorical analogue, and therefore carry more infor-
mation, than the weak equivalences already present in the literature.

The last model structure is of a more algebraic flavor. Let T be a 2-monad
on a 2-category A. In [17], Lack gives a construction of a model structure
on the category of T -algebras, in which the weak equivalences are the mor-
phisms of T -algebras whose underlying morphism inA is an equivalence. In
particular, double categories can be seen as the algebras over a 2-monad on
the 2-category Cat(Graph) whose objects are the category objects in graphs;
see [6, §9]. This gives the following model structure.

Proposition 8.5. There is a model structure on DblCat, called the algebra
model structure, in which a double functor F is a weak equivalence if and
only if its underlying morphism in the 2-category Cat(Graph) is an equiva-
lence.
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Remark 8.6. In [6, Corollary 8.29 and Theorems 8.52 and 9.1], Fiore, Paoli,
and Pronk show that the model structures on DblCat of Propositions 8.2,
8.3 and 8.5 coincide with model structures given by Grothendieck topolo-
gies, when double categories are seen as internal categories to Cat. Then,
it follows from [6, Propositions 8.24 and 8.38] that a weak equivalence in
the algebra model structure is in particular a weak equivalence in the model
structure induced by the vertical nerve Nv.

Remark 8.7. At this point, we must mention that [5, 6] define other model
structures on DblCat, which are not equivalent to any of the above. How-
ever, these are Thomason-like model structures, and are therefore not ex-
pected to have any relation to our model structure, which is categorical.

We now proceed to compare these three model structures on DblCat to
the one defined in Theorem 3.18. Our strategy will be to find a trivial cofibra-
tion in our model structure that is not a weak equivalence in any of the other
model structures. Let Eadj be the free-living adjoint equivalence 2-category
{0 '−→ 1}. By Proposition 4.3, the inclusion double functor J1 : 1 → HEadj

at 0 is a generating trivial cofibration in our model structure on DblCat.

Lemma 8.8. The double functor J1 : 1 → HEadj is not a weak equivalence
in any of the model structures on DblCat of Propositions 8.2, 8.3 and 8.5.

Proof. We first prove that J1 is not a weak equivalence in the model structure
on DblCat of Proposition 8.2 induced by the vertical nerve. For this, we
need to show that

Nv(J1) : Nv(1) = ∆1→ Nv(HEadj)

is not a levelwise equivalence of categories. Indeed, the categoryNv(HEadj)0

is the free category generated by {0 � 1} which is not equivalent to 1.
By Remark 8.6, a weak equivalence in the algebra model structure on

DblCat of Proposition 8.5 is in particular a weak equivalence in the model
structure induced by the vertical nerve. Therefore J1 is not a weak equiva-
lence in the algebra model structure either.

Finally, we show that J1 is not a weak equivalence in the trivial model
structure on DblCat of Proposition 8.3. If J1 was an equivalence in the
2-category DblCath, then its weak inverse would be given by the unique
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double functor ! : HEadj → 1 and we would have a horizontal natural iso-
morphism idHEadj

∼= J1 !, where J1 ! is constant at 0. But such a horizontal
natural isomorphism does not exist since 1 is not isomorphic to 0 in HEadj.
Therefore J1 is not an equivalence.

Proposition 8.9. The identity adjunction on DblCat is not a Quillen pair
between the model structure of Theorem 3.18 and any of the model structures
of Propositions 8.2, 8.3 and 8.5.

Proof. We consider the identity functor id : DblCat → DblCat from the
model structure of Theorem 3.18 to any of the other model structures of
Propositions 8.2, 8.3 and 8.5, and show that it is neither left nor right Quillen.

Since J1 is a trivial cofibration in the model structure of Theorem 3.18,
but is not a weak equivalence in any of the other model structures as shown
in Lemma 8.8, we see that id does not preserve trivial cofibrations; therefore,
it is not left Quillen. Moreover, every object is fibrant in the model structure
of Theorem 3.18, so that if id was right Quillen, it would preserve all weak
equivalences by Ken Brown’s Lemma (see [13, Lemma 1.1.12]). However,
it does not preserve the weak equivalence J1, and thus it is not right Quillen.
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Différ., 19(3):295–333, 1978.

- 234 -



MOSER, SARAZOLA, VERDUGO MODEL STRUCTURE ON DBLCAT

[5] Thomas M. Fiore and Simona Paoli. A Thomason model structure
on the category of small n-fold categories. Algebr. Geom. Topol.,
10(4):1933–2008, 2010.

[6] Thomas M. Fiore, Simona Paoli, and Dorette Pronk. Model struc-
tures on the category of small double categories. Algebr. Geom. Topol.,
8(4):1855–1959, 2008.
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Topol. Géom. Différ. Catég., 40(3):162–220, 1999.
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[12] Kathryn Hess, Magdalena Kȩdziorek, Emily Riehl, and Brooke Ship-
ley. A necessary and sufficient condition for induced model structures.
J. Topol., 10(2):324–369, 2017.

[13] Mark Hovey. Model categories, volume 63 of Mathematical Surveys
and Monographs. American Mathematical Society, Providence, RI,
1999.

[14] Niles Johnson and Donald Yau. 2-dimensional categories. Preprint on
arXiv:2002.06055, 2020.

[15] Stephen Lack. A Quillen model structure for 2-categories. K-Theory,
26(2):171–205, 2002.

[16] Stephen Lack. A Quillen model structure for bicategories. K-Theory,
33(3):185–197, 2004.

- 235 -



MOSER, SARAZOLA, VERDUGO MODEL STRUCTURE ON DBLCAT

[17] Stephen Lack. Homotopy-theoretic aspects of 2-monads. J. Homotopy
Relat. Struct., 2(2):229–260, 2007.

[18] Lyne Moser. A double (∞, 1)-categorical nerve for double categories.
Preprint on arXiv:2007.01848.

[19] Lyne Moser. Injective and projective model structures on enriched di-
agram categories. Homology Homotopy Appl., 21(2):279–300, 2019.

[20] Lyne Moser, Maru Sarazola, and Paula Verdugo. A model struc-
ture for weakly horizontally invariant double categories. Preprint on
arXiv:2007.00588, 2020.

[21] Daniel G. Quillen. Homotopical algebra. Lecture Notes in Mathemat-
ics, No. 43. Springer-Verlag, Berlin-New York, 1967.

[22] Emily Riehl and Dominic Verity. Elements of ∞-category theory.
2018.

Lyne Moser
Max Planck Institute for Mathematics
Vivatsgasse 7
53111 Bonn, Germany
moser@mpim-bonn.mpg.de

Maru Sarazola
Department of Mathematics
Cornell University
Ithaca NY, 14853, USA
mes462@cornell.edu

Paula Verdugo
Department of Mathematics and Statistics
Macquarie University
NSW 2109, Australia
paula.verdugo@hdr.mq.edu.au

- 236 -


	Introduction
	Double categorical preliminaries
	Model structure for double categories
	Generating (trivial) cofibrations and cofibrant objects
	Fibrations, weak equivalences, and Whitehead theorems
	Quillen pairs between DblCat and 2Cat
	2Cat-enrichment of the model structure on DblCat
	Comparison with other model structures on DblCat

