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= ~\ CAHIERS DE TOPOLOGIE ET
' GEOMETRIE DIFFERENTIELLE VOLUME LXiV-2(2023)
CATEGORIQUES

DOUBLE GROUPOIDS AND
POSTNIKOV INVARIANTS

Antonio M. CEGARRA

Résumé. Dans cet article, nous prouvons un théoréme de classification pour

les groupoides doubles (satisfaisant a une condition de remplissage supplémentaire,
tout a fait naturelle) au moyen de troisicmes classes de cohomologie de groupoides.
Dans une seconde étape, indépendante, nous montrons que la classe de coho-
mologie associée a un groupoide double coincide avec I'unique k-invariant

non trivial de sa réalisation géométrique.

Abstract. In this paper, we prove a classification theorem for double groupoids
(satisfying an extra, quite natural, filling condition) by means of third co-
homology classes of groupoids. In a second, independent, step, we prove

that the cohomology class associated to a double groupoid coincides with the
unique non-trivial k-invariant of its geometric realization.

Keywords. Double groupoid, Cohomology of groupoids, Postnikov invari-

ant, weak equivalence, homotopy type.

Mathematics Subject Classification (2010). 18D05, 20L.05, 55Q05, 55545,
55040.

Introduction and summary

Double groupoids (groupoid objects in the category of groupoids) go back to
Ehresmann [14, 15, 16]. Roughly, they consist of objects, two kinds of mor-
phisms between them, horizontal and vertical, and boxes whose boundaries
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A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

are squares with morphisms as edges, usually depicted

b

aT;p

Y

<
oO—r
T

g«

together with horizontal and vertical composition of morphisms and boxes
giving compatible groupoid structures and obeying middle four interchange
on boxes. The double groupoids we encounter in practice, and certainly
in this work, are small and satisfy a natural filling condition: Any filling
problem

finds a solution in the double groupoid. This filling condition on double
groupoids is often assumed in the case of double groupoids arising in dif-
ferent areas of mathematics, such as in weak Hopf algebra theory or in dif-
ferential geometry (see, for instance, Andruskiewitsch and Natale [1] and
Mackenzie [23]), and it is satisfied for those double groupoids that have
emerged with an interest in algebraic topology, mainly thanks to the work of
Brown, Higgins, Spencer, et al., where the connection of double groupoids
with crossed modules and a higher Seifert-van Kampen Theory has been
established (see the surveys by Brown [3, 4, 5] and the references given
there). Thus, the filling condition is easily proven for edge symmetric dou-
ble groupoids (also called special double groupoids) with connections (see
Brown and Higgins [6], Brown and Spencer [7], Brown, Hardie, Kamps and
Porter [8] and Brown, Kamps and Porter [9]), for double groupoid objects
in the category of groups (also termed cat?-groups by Loday [22], see also
Porter [25] and Bullejos, Cegarra and Duskin [10]), or, for example, for 2-
groupoids (regarded as double groupoids where one of the side groupoids
of morphisms is discrete (see for instance Moerdijk and Svensson [24] and
Hardie, Kamps and Kieboom [20]).

Every (small) double groupoid G has a geometric realization, which is
the topological space defined by first taking the double nerve NNG, which
is a bisimplicial set, and then realizing geometrically the diagonal to obtain
a space: |G| = | A NNG|. The usual definition of the homotopy invari-
ants of a double groupoid G involves only its underlying topological space

126



A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

|G| and does not take into account the algebraic structure. Our main goal
in this paper is to give a combinatorial definition of the (unique) Postnikov
invariant of a double groupoid with the filling condition using only its al-
gebraic structure. Recall that a (2-dimensional) Postnikov system is a triple
(P, A, k), where P is a groupoid, 4 is an abelian group valued functor on
P,and k € H3(P, A) is a three-cohomology class of P with coefficients in
A. Our definitions and constructions here are suggested by previous work
of the author and collaborators; particularly by the results in [11], where
we address the homotopy types realized from double groupoids satisfying
the filling condition. They are all the (not necessarily path-connected) ho-
motopy 2-types, that is, the homotopy types of all CW-complexes whose
homotopy groups at any base point vanish in degree 3 and higher.

After Section 1, where we briefly fix some notational conventions on
double groupoids, in Sections 2 and 3, we review several needed defini-
tions and results on the (algebraically defined) fundamental groupoid I1G
and the homotopy groups m5(G, a) of a double groupoid G satisfying the fill-
ing condition. Section 4 contains the new definition of the Postnikov invari-
ant of such a double groupoid, which is the equivalence class of a Postnikov
system (I1G, m,G, kG) where kG € H3(IIG, m,G) is a certain characteris-
tic cohomology class of the fundamental groupoid of G with coefficients in
the abelian group valued functor on IIG which assigns the homotopy group
mo(G, a) to each object a of G. In Section 5, we mainly state and prove the
expected classification result:

“The assignment G +— (11G, m2G,kG) induces a bijective correspon-
dence between weak equivalence classes of double groupoids satisfying the
filling condition and equivalence classes of Postnikov systems.”

Finally, in Section 6 we prove

“The Postnikov invariant of a double groupoid G with the filling condi-
tion is equivalent to the Postnikov invariant of its geometric realization |G|.”

As a bonus, we find a new proof of the fact that the assignment G — |G| in-
duces a bijective correspondence between weak-equivalence classes of dou-
ble groupoids satisfying the filling condition and homotopy 2-types.
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A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

1. Some conventions on double groupoids

The notion of double groupoid is well-known, we just specify in this prelim-
inary section some basic terminology and notational conventions. We will
work only with small double groupoids, so that in a double groupoid G we
have a set of objects (usually denoted by a, b, c, .. .), horizontal morphisms
between them (f, g, h, . ..), vertical morphisms between them (x,y, 2, .. .),
both with composition written by juxtaposition, and boxes (o, 3,7, . . .), usu-
ally depicted as

L
(0] TI‘
a

«—
g9

o)

Y

oO—r

where the horizontal morphisms f and g are, respectively, its vertical target
and source and the vertical morphisms y and x are its respective horizontal
target and source. The horizontal composition of boxes is denoted by the
symbol oy:

oo f’f
H

Fatat s Aunals
H

’ g g’g

and, similarly, the vertical composition of boxes is denoted by the symbol

oy

L
vT o Tz A
= = yy'T aoya’ sz’
yT ’ Tm . <_h .
A

Horizontal and vertical identities on objects and morphisms are respectively
denoted by I"a, IVa, "z, I'f, and Ia := I'I"a = I"Va, depicted as

a=—a a = <L a=—a
| o] 1 To (A | 1a ||
a R — <7 a==aq
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A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

and horizontal and vertical inverses of boxes are respectively denoted by
a™ a™V,and o™ = (o)™ = (oY) 7P, that i,

P g i
VR,
oo efeder e
. H . (— . . H
g ! f ft

We will use several times the coherence theorem by Dawson and Paré
[13, Theorem 1.2], which assures us that if a compatible arrangement of
boxes in a double groupoid is composable in two different ways, the resulting
pasted boxes are equal. Throughout the paper, an equality between pasting
diagrams of boxes in a double groupoid means that the resulting pasted boxes
are the same.

The double groupoids we are interested in satisfy the so-called filling
condition: Any filling problem

has a solution; that is, for any horizontal morphism g and any vertical mor-
phism y such that the source of y coincides with the target of g, there is a
box whose vertical source is g and whose horizontal target is 3. This con-
dition is more symmetric than it appears thanks to the following lemma by
Andruskiewitsch and Natale [1, Lemma 1.12].

Lemma 1.1. A double groupoid satisfies the filling condition if and only if
any filling problem such as the one below has a solution.

Throughout the paper we make the assumption that the double groupoids
we work with are small and satisfy the filling condition.
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A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

2. The fundamental groupoid 11§

Let G be a double groupoid. If ag, a; are objects of G, we define a path in G
from ag to a; to be a diagram (f, b, x) of the form

a1<—b

IE

Qo

that is, where b is an object, f a horizontal morphism from b to a;, and x a
vertical morphism from a to b. Throughout the paper, we identify paths in
G of the form

a <L ap a1 —aq
[ Te
Qo Qo

with the morphisms f and x respectively; that is, we write

f=(fa0,Vay), z=("ay,a,z).

If (f,b,2) and (g,c,y) are two paths from ag to a;, then we say that
(f,b, x) is homotopic to (g, c,y), denoted by (f, b, z) ~ (g, c,y), if there is

a box « in G of the form

~
@

2)

yz !

[ ——— ]

| =1

N—0

that is, whose horizontal target and vertical source are identities, its horizon-
tal source is yx~!, and its its vertical target is f~'g. We call such a box a
homotopy, and we often write v : (f, b, x) ~ (g, ¢, y) whenever we wish to
display the homotopy.

Lemma 2.1. Homotopy is an equivalence relation on the set of paths in G
Jfrom ag to ay.

Proof. Reflexivity: For any path (f, b, z), clearly Ib : (f,b,2) ~ (f,b, z).
Symmetry: If o : (f,b,x) ~ (g, ¢, y) is a homotopy, then the pasted box of

L
Ig~'f) ” Try
c+——0b <— c
g f !
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A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

is a homotopy (g, ¢,y) ~ (f,b, x).
Transitivity: Assume thata : (f,b,2) ~ (g,c,y)and 5 : (g,¢,y) ~ (h,d, 2).
Then, we find a homotopy 7 : (f, b, ) ~ (h,d, z) by pasting the diagram of
boxes

g g 'h

b+ ——c+——d

| Iv(f‘lg)‘ P T -1
be——c c ’

” T Tyw‘l
b c

O

Let [f, b, x] denote the homotopy class of a path (f,b,z) in G.

We define the fundamental groupoid 11G of the double groupoid G to be
a category having as objects all the objects of G. An arrow in IIG from an
object aq to an object a; is the homotopy class of a path in G from ag to a;.
Composition in I1G is as follows:

For each morphism in the fundamental groupoid p € 11G(ag, ay), let us
choose a representative path (f,,b,,z,) of p,

a0, 3)

that is, such that p = [f,, b,, z,]. If ay g & ap are any two composable
morphisms in IIG, by the filling condition on G, we can select a box 6 in G
whose horizontal target is x,, and whose vertical source is f,. Thus, we have
a diagram in G of the form

“)

and we define the composite 1p = [f, f, b, vx,| € 1IG(ay, as).
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Lemma 2.2. The composite 1 p is well-defined, that is, it is independent of
the choices of representative paths of p and 1) and of the choice of 0 in (4).

Proof. Suppose that o, = (fy,b,,2,) = (9, Cp,Yp) and vy = (fyp, by, Ty)
(g, ¢y, Yy) are homotopies and that we have selected boxes ¢ and ¢ as in
the diagrams below.

Ty f Gy 9

a2<—b¢<—b Qg Cy<—C

wa 0 Tl‘ wa o’ Ty
H

ax fo bP a1 9o €p
sz Typ

a

ag 0

Then, we get a homotopy « : (fyf,b,2x,) =~ (949, c,yy,) by pasting the
diagram

-1
=t Jy 90 g

b< by Cyp 4 c
|

Jowey?
by

For each object a of G, let id, = [I"a,a,Va] € 11G(a, a).
Theorem 2.3. With these definitions, 11G is a groupoid.

Proof. Identity: For every arrow p = [f,,b,,z,] € IIG(aop, a;), the diagrams
ing

@ =ai £-b, Ly —
H I'fp ” fﬂpT Iz, Tfﬁﬂ

a; <—0b, ap = ag

’ Tl’p a”

agp 0
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show that id,, p = p = pidy,.

Associativity: if ag & a9 & ay & ay are any three composable mor-
phisms in I1G, we can choose boxes ¢, 6’ and 6" as in the diagram

as (— b¢ (— b/ b”

e Pele

a2<—bw<—b

w?T P

whence,

((W’)P = [f(bf/? b/7 $,ZL’¢,] P = [f(bf/f”a bl/? xﬂxll'p] = ¢ [fd)fv bv xp] = ¢(¢p)

Inverse: For any morphism p € I1G(ag, a;), we can select a box v in G
of the form

Qa

—1
.

by

o

)
y Tx
pull
o
and construct p~* = [f, b, 2] € G(a1, ag). From the diagrams in G

—1

f 1
ap+—b+—qg ay <— b, Loy
xT ~ —h Twp— ZPT ,yfv T —1
a) <— bp ag <— b
fo f
o I
Qg aq
it follows that p~'p = id,, and pp~! = id,,. O

Lemma 2.4. (i) For any two composable horizontal morphisms

ag < a1 < Qo
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and for any two composable vertical morphisms
az
Ty
ai
Ta
Qo

the equalities [g][f] = [gf] and [y][x] = [yx] hold in TIG.
(13) For any path (f,b,x) in G, [f,b, x] = [f][z].

(tii) The filling problem in G

aﬁLb

i

C(TCLO

has a solution if and only if [y]|g] = [f][x] in IIG.

Proof. (i) follows from the existence of the first two diagrams below and
(77) by the third one.

agiaﬁiao Ay == Gy = Q9 a1<f—b=b
[ o T Tv | w |

a <T aop ap=—a; b=—0»b
I Tz E

Qo ap ag

For (7ii), suppose first 6 is any solution to the given filling problem.
Then, the diagram

shows that [y][g] = [f,b, 7] @ [f][z]. Conversely, assume that [y][x] =
[f][] w [f, b, x]. By the filling condition on G, we can select a box ¢’ of the
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A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

form

!
G1<—b,

yT 0’ Tz’

C(TCLO

whence, by the already proven part, [y|[g] = [f'][z'] = [f’, V', 2]. Tt follows
that [f, b, z] = [f’, V', 2], and therefore there is a homotopy « : (f', ¥/, z") ~
(f,b,x) which gives us the solution 6 that we are seeking for the filling
problem by pasting the diagram

/ 1—1
a Ly Ly

| vr [ Tewm
detty —

yT 0’ I,T Ihg! T:c’

C(TCL[):GO

3. The functor mG : IIG — Ab

For each object a of G, let m2(G, a) denote the set of all boxes o in G of the
form

a
I

a

a=a0
I

that is, whose horizontal source and target are both ['a, the vertical iden-
tity of a, and whose vertical source and target are both I'a, the horizontal
identity of a. By the general Eckman-Hilton argument, the interchange law
on G implies that both operations oy, and o, on m3(G,a) coincide and are
commutative. Thus, mo(G, a) is an abelian group with addition

O+T ! =0O0O,T =0 0y T,
zero 0 := la, and opposites —c := 0~V = o b,
The assignment a — m3(G,a) is the function on objects of a functor
mG : IIG — Ab, which acts on morphism as follows. There is an abelian

v
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group valued functor on the groupoid of horizontal morphisms which assigns
to each horizontal morphism f : ay — a; the homomorphism

fe 1 m2(G, a0) = (G, ar)

defined by f.o = I'f o, o o, IVf 1,

ag =— Qg aﬁLaO:ao;al
[ S e i
ag = Qg a1<7a0=a0<]:a1

and, similarly, there is an abelian group valued functor on the groupoid of
vertical morphisms which assigns to each vertical morphism = : ag — a;
the homomorphism

Ty © Fg(g,ao) — Wz(g,al)

defined by 2,0 = 1"z o, 0 o, P27},

aq ay
T 1h T
wmy A
[ S (R
Q agp

Qo == ag 0
= Thg=1 [zt
T T
aq ay

Lemma 3.1. If

aﬁLb

i T

C(Tao

is any box in G, then the diagram below commutes.

7T2(g, CL1) <f—* 7T2(ga b)

y*T Tm

(G, c) o T2(G, ao)
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Proof. Let us consider, for any o € m2(G, ao), the following pasting diagram

/ 7t
— be———ay

a’l b=
T o ] e
g 9!

c———ay Qg +——¢C

9 g "
c———ap ag +———=c
—h
qu 0~ x_1T Thg—1 Tm—1 o Tyfl
ai (f— b————»b T ay

The two natural ways to paste this diagram yield, on the one hand, f,x.o
and, on other hand, y,g.0. Hence f.z.0 = y.9.0. O]

For any morphism p € T1G(ay, a;), we define the homomorphism

Px = fp*xp* : 7T2<g7 a()) — 7T2(g7 al)a
where (f,,b,, x,) is a representative path of p.

Lemma 3.2. The homomorphism p, : m2(G,ag) — m(G, a1) does not de-
pend of the choice of representative path of p.

Proof. If (f,,b,,%,) = (gp, ¢y, Y,), there is a box in G as below.

f;:lgp
b, L% ¢
[ T
b, ——1b,
Then, by Lemma 3.1, f,.' .. 7, = idrygp,) Or, equivalently, g,y =
JorT . O]

Theorem 3.3. The assignments a — m2(G,a), p — ps define a functor
moG : I1G — Ab.

Proof. That (id,). = id, for any object a of G, is clear. Let a & a; & ag
be two composable morphisms in IIG. For any box € as in (4), we have
Yp = [fuf,b,xz,] Then, by Lemmas 3.2 and 3.1, (¢p), = fyufiuZpe =
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3.1 The action of 7,G on boxes of G

For any box in G

; d=d< b d=ddbv d=ddb
delb Il S A N N
oro]e = d=d o |» = d—d«b = d—d«b
Cega v 1y ] sy T ole ] o Te

C==cC+a C==Cta Cs—F—a
Clearly 0 + 0 = 0 and, for any 7,0 € m3(G, d),
d—d—d<p  d—ad (5)
[ S EVA . L
T+(o+0)=d=d=d«b = d=d+b=(1+0)+0
yTIhyTIhyTGTJC yTIhyTGTI
c=c=cC+4+-a c=c+—a
g g
Lemma 3.4. For any o € m5(G,d), any box 6 as above, and any boxes
clq b<+— LA —d
ToT T Tal To]
H a<— “4—cC d(Tb
the following equalities hold,
(c+80)o,d =0+ (0o,9), (6)
(c+0)ony =0+ (0on), (7)
aoy (0 +0)=ho+ (aoyb), (8)
Boy(oc+0)=z.04 (6oy0). )
Moreover,
(0+0)"=—flo+o", (10)
(c+0)"=—ylo+067". (11)
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Proof. (6) (the proof of (7) is dual):

d=d< b

| o ||

d=d<+—b

(040)o,0= T 0 T:U—F(@Ov(;)
T o1
.%.
(8) (the proof of (9) is dual):

fg—=adp  g=—gl Iy
[ | o |l H I'h H o || ra-t || () H
a+(c+0)=| a d=d+b e d—d—
T ey
= Ce——a DR i

Q

= h*(0'> + « Oph 0
(10) (the proof of (11) is dual):

(0+0) o (—feo+ 0™ Lo+ (Boy (—fuo +67)
Lot (= fflo+00,67"
Do —0o)+Ty=0+T1%=T.

Lemma 3.5. For any two boxes with the same edges

JEA
o Tx
a

g

!
P
0
g

T Yy

L—
oO—r .

<
oO—r

there is a unique o € m5(G, d) such that o + 60 = 0.
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Proof. Uniqueness. For any o € m5(G, d) and 6 as above,
(0 +0) th_h(i)a—i-(Qth_h) =0+ 1y =00, 1.

Hence, o + 0 determines o as 0 = ((o +0) op, Q*h) o, Iy~
Existence. Taking

we have 0 + 0 = ((0’ op 071 o, Ihy~Lo, Ihy) oh=0o,0 o, =0 0O

4. The Postnikov invariant [I1G, m,G, k(]

Let P be a groupoid. The category Ab” of functors A : P — Ab is abelian
and it has enough injectives and projective objects [19]. We can, thus, form
the right derived functors of the functor @ : Ab” — Ab, which is given by

Hm(A) = {(zo) € TI A(a)| psa =y forevery p:a — bin P},
acObP

where we write p,.x for A(p)(z). The cohomology groups of the groupoid P
with coefficients in a functor A : P — Ab [26], denoted by H"(P, A), are
defined by

H™(P,A) = (R"m)(A),  n=0,1,--.

To exhibit an explicit cochain complex that computes these cohomology
groups, let NP be the nerve of P. That is, the simplicial set whose m-

simplices are the composable sequences § = (fm B £0) of m
arrows in P (objects of P if m = 0). The face d; 3, for 0 < i < m, is obtained
from [ by replacing the morphisms ;,; and (3; by their composition ;1 3;,
while dyf and d,,,3 are obtained by leaving out 50 and Sm, respectively.
The degeneracies s;3 are obtained by inserting in 3 the identity morphism
idg;. This simplicial set NP is a Kan complex whose fundamental groupoid
is P (and whose homotopy groups vanish in degree 2 and higher). Thus,
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every functor A : P — Ab defines a local coefficient system on NP and
the cohomology groups H" (NP, A) are defined [17, 18, 21]. By Illusie [21,
Chap.VI, (3.4.2)] and Gabriel and Zisman [17, Appendix II, Prop. 3.3], there
are natural isomorphisms

H™(P, A) = H"(NP, A) = H"C*(P, A), n=0,1,-
where
C*(P,A):0— COP,A) = - = C™Y(P,A) S C™(PA) — -

denotes the complex of normalized cochains of P with coefficients in A.
Here, a normalized m-cochain ¢ € C™ (P, A) is a function

c: NP, — |_| Ala)

acObP

such that ¢(5) € A(Sm) and ¢(5) = 0 whenever some f3; is an identity. Each
C™(P,.A) is an abelian group with pointwise addition, and the coboundary
d:Cm™YP,A) — C™(P, A) is given by

3

de(B) =) c(d;fB) + (=1)" Bsc(dmfB).

7

Il
o

As usually, we write Z" (P, A) for the groups of n-cocycles of the com-
plex C*(P, A).

In this paper, we will only use the cohomology groups H*(P, A). For
future reference let us specify that a normalized 3-cocycle k € Z3(P, A) is
a function assigning to each three composable morphisms in the groupoid

as & ay & a, £ ay an element k(¢,v, p) € A(as) such that, for any four
. s ..
composable morphisms a4 < as ﬁ Qs <i ay Vi ap, the 3-cocycle condition

k(0,,¢) = k(6,0,49p) + k(d, 00, p) — k(0, ¢, p) + 0.k(d, 4, p) = 0.

holds, and k(¢, ¢, p) = 0 if one of the morphisms ¢, ¥ or p is an identity.
A normalized 2-cochain ¢ € C?(P, A) is a function assigning to each

pair of composable morphisms ay & a1 & ap an element c(p,v) € Alaz),
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such that ¢(¢, 1) = 0 whenever ¢ = id,, or 1) = id,,. The coboundary of
such a 2-cochain is the 3-cocycle Oc given by

80((;5, 1/}7 p) = C(¢7 w> - C(¢7 IDP) + C(@/’a p) - ¢*C(¢a )0)

Two normalized 3-cocycles k, k' € Z3(P, A) are cohomologous if and only
if there is a normalized 2-cochain ¢ € C?(P, A) such that &' = k + Jc.

Definition 4.1. A (2-dimensional) Postnikov system (P, A, k) consists of a
groupoid P, an abelian group valued functor A : P — Ab, and a coho-
mology class k € H3*(P, A). Two such Postnikov systems (P, A, k) and
(P', A, X') are equivalent if there exists an equivalence f : P = P’ and a
natural isomorphism § : A = §* A’ such that §* (k') = §.(k), where

f: H3(P', A) = H3(P,§A"), §.: H*(P, A) = H*(P,fA")

are the corresponding induced isomorphisms in cohomology.
Let [P, A, k| denote the equivalence class of a Postnikov system (P, A, k).

Let G be a double groupoid. We associate to G a Postnikov system
(I1G, m2G, kG) as follows. For each morphism in the fundamental groupoid
p € 11G(ap, a1), let us choose a representative path (f,, b,, z,) of p, asin (3).
In particular, if p = id, for some object a of G, we take (I"a, a,I'a) as its
representative path.

If ay & a1 & ay are any two composable morphisms in IIG, by Lemma
2.4, we have [£,)fwy] [f,)[e,) = ¥ = [Fyp) [, whence

[ellfo] = [ W upllzwollz, '] = [f " Fpllzyp, ']
= [lefWa byp, £L‘¢p:L‘;1],

and therefore we can select a box 0y, , in G as below.

by by, (12)
Loy Oy.p quppl?p
a| <—— bp
fo
In particular, we choose
Oidarp = 1o Opign, = "y (13)
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If as & as & a1 & ag are any three composable morphisms in IIG, pasting
in the diagrams

Foifo 5 foue Fopdove
by ¢ by < boupp bop ¢ bgyyp

—1 —h -1 —
Ty, T 04 T ¢ ,p T%wp%p %wT O, Trwpxpl
by ¢ as < byp a; «——b,
e, Tee,
by by
f.w pr

le Tup

yields two boxes with the same edges, and therefore, by Lemma 3.5 and
the isomorphism fyy. : m2(G, byy) = m2(G, as), there is a unique element
k9 (¢, 1, p) € ma(G, as) such that

Lok (0,0, 0) + (0,57, 01 Op.p) = O p 0w 07 (14)
Note that composing horizontally with 6, ,, on the left in (14), by (8), gives
F3 k(0,9 0) + 0.0 = 0.0 on (Bgup 0w 07). (15)
More explicitly,
A Fop Fovp Fou
as < i b¢ < i b¢¢ < ks b¢wp<w—pa3 (16)

Loy 9¢¢,pf Ta;qgwpac;l
) —1
Lo 0, ap «——— bp Ivfdﬂ/)p
IVfe

k9 (9,4, p) = = on Teess
a2 < b N — b
-1 f"’ 9—%} fzp 1f1/m ur
Lo .00 T%P%w
as 4 by < — bgyp ¢ as
fo 0 fo fouvp o Touo

In fact, composing vertically with 67, on the right in (15) yields

Folk(,0,0) + T (f5 fouo) = (060 on (s 0w 053)) 0v 057,
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whence

I'fs on ((ew on (B v 055)) O 9&%) on I,
= T'fy on (F3. k(0,0 p) + T(f 5 foun)) on TS 5,
S0, ) + T(foly Fovnf i)
= k9 (¢, 9, p) + 0 = k9 (¢, 40, p).

Lemma 4.2. So defined, kY € Z?’(Hg,mg), that is, kY is normalized 3-
cocycle of 11G with coefficients in m2G.

Proof. That k9 is a normalized cochain, that is, k9(¢,, p) = 0 whenever
one of the morphisms ¢, ¥ or p is an identity, follows from the selection in
(13). For instance, if ¢ = id,,, then k9(id,,, 1, p) = 0 since

Ore. 5 ©n Oidayip = LF " on onlfp = T(f Fup) = Oup 00 057,
f eidan&P OV 6;’\;

To prove that k9 is a 3-cocycle, suppose as ¢~ az < ay < ai & ag
are morphisms in IIG. By using first horizontal composition in the diagram
below, we see, from (16), that the pasted boxes of the inner regions labeled
with (A), (B) and (C') are

(A) = Ivf(;_1 on k9(8, ¢, 1) oy Ifsswp,

(B) =T'f; " on k9(0, 00, p) on Ifspyp,

(C) = Ivfgl Oh 5*kg(¢7 W p) Sh Ivf5¢wp'
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_ -1 1
b < f5 fso b JsoToou b Tsgulsove b b
s ¢ 5 € s ¢ Sgp Sonp
L5 056, TsppTy,
s 05,6 Q9 4# bw v p—1
: ~ I (fwwf&bwﬂ)
; -1 -V
(4) 4 T %0 .
'= ToToy
as < by — b
~ fe ¢ oy o fbfl)
p - -V —1
:L‘é 1 95v¢’¢ x¢wz5¢’¢’
| bg( — b5 —= b5 bg
foa I5 5w PV frafsgup OV ovp
-1
Tsgpy Ospp,p TspyppTp
- -1
x5 05,40 aq <—fp bp Ih(%éwpx(pul,p) Z5¢ppT oy
—1 —v —1
(B) Ty 9500 TWEWP
: fo fowe
as < b¢ 3 b¢¢ 1 b¢'1/)p 3 as < b¢¢p
A~ f¢ f¢1/) f¢¢f¢¢p fd’wp A~ T
-1 -1 -1
x h,.—1 x —v x x
5 Mz 5 eé,qu ¢¢p|5¢wp
bs bs —— bssup
...‘ N N 6 f(s(lslﬂp
Ts Ihzs Ts
i - - -1
Dl Ig o b fwlprb Foio
;a3 ¢ < ¢ € ¢yp 3
%IJ O Toyptp
5 . o
Ty 9¢7¢ aq <—p bp I f¢$p I (f5 1f5¢1/)/))
(©) I'f, :c;lT 0 zpry!
9 < by —— b
~ f"/’ v f’P lpr /w\p
: -1 —v -1
: T 04,00 YT papp
To
Loag< by < — by ¢ a3
: ¢ fo oo e Foup
B -1
Lé_ 1 e 7!
f5 Yoppp
bs b bsgup
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Hence, using now vertical composition of inner boxes in it, we see that

Ivf(i_l Oh (kg((sa ¢7 ¢) + kg(57 sta p) + 5*kg(¢7 ¢7 p)) Oh Ivféqﬁwp =

_ -1 -1
be < s Fse b If5¢f5¢¢ b lf&wf‘iWP b b
/5 N o¢ S Sy © dpipp S¢ypp
0 056, O5p,p N 1 1
5 5,¢ 00_\/v 033 I (xéélbpx(pwp) L5y pT popp
N Y,p
-1
. b, < b < b < Tove U 4 Fove b
33 A — A} — A 39
~ fo ¢ fs fou 44 f¢$f¢wp ovp ~ ¢>T1/JP
97V
—1 _ -1 5,
zy M 1 Ts e $¢wp9|3g¢1wp
bs bs <~ bsgyp
~ A s Ssoup
zs has zs
—1 —1 —1
fe fo fou fopfove Sowp
a Vi b & b b < CL
3% ¢S oY * ¢Yp S 3
T o) 0¢1/) P ~1
’ LoyppLp
z 0 (f—p b Ivfo) (£ ', )
¢ R ai p vp 5 Jooyp
—v
IVfe xll .0 mpx;;
fy
9 € by < — b
A~ v fzp fll)ﬂ /w\p
—1 — —1
T 94%‘:&9 ThoToyp
as < by < — by, ¢ as
fé ¢ fo Towp e Foip
1 —1
Zs T Ihxé_l s T
f5 Yoppp
bs b Dsupp
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b < 5 oo b Tspfsgw b ,f(ngfaqawp b ;
a ¢ S 3 Spop Sdip
P 056, 0560, 1 T 1
Ts 5,0 e(ivv 0:3: Ih(z5¢¢px;wp) £E§¢wpx;wp
b .o
‘fq;/}P f(ﬁd)p
as < b¢< b¢1/1‘ b¢’l/1,0< 34 b@bp
= Osv.p ToppTp
o 0o ay ——b, Ty,
I‘Cfd) 9;:;7 qu;;p Ivf¢1llﬂ
12 by ¢ buo
—1 —v 1
e 950 TYpT
fowp
a3 by ¢ 1 bop ¢ a3 ¢ bowp
[ f¢ fzbdzp dp . T
ayt UP oyt| Yobue .
%Wféwp
bs bs <= bsgyp
Is Tsowp
_ N .
f5  fse Tsg Fsow ) TsopToouvp
by s ¢ bsgu 4 bsguo (17)
fﬁé{ Os5pw,p Ts sty
f
Ts¢ 05, ay —*—b,
= | e xﬂ Oup 2oz,
2 ¢ by < - b
A~ fy ¥ flb lfde ;‘lip
1 . B
e 0.0 ZTppT papp
ag < by ¢ _ b
I fo Y F5 Fove e
_ . )
7! 05 60 ToppTshep
- Iz
f5 H fsowe

Now, we realize that the diagram (17) above is also obtained by using
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vertical composition of inner boxes in the following diagram

_ -1 1
s oo fsp Toouw TspupToovp
" Tspy O59u,p T:r5¢¢ﬂx;1
: Tog Osp,0 Q1 — I b,
| e T e e
| L b
a2 P TR
: a:_lT 05y ¢ Tve Tac z; !
_ 3¢ _ S¢,p YoTspypp
b I5 foo b ,f5¢1f5¢1pp b
Y 5¢ S doYp
x5¢T Os¢,vp wawi%;
: f
T 95@ Qo < PP bwp
: _ o7 _
(B). z; 1T b0 Tx””’%ép
Loag¢ b ¢ — b
- fo ¢ B £ s Yo »
L T 05,60 Txmbpxampp
bé N b5 Wb
f51f5¢wp we

where the pasted boxes of the inner regions labeled with (D) and (E) are
easily recognized, by (16), to be

(D) =Tf5 " on k9(66, ¢, p) on I fsgup,
(E) =Tf; " on k9(8,9,¢p) on I fsgup-
So, the resulting pasted box of the diagram (17) is also
L'f5 " on (K9(66, 0, p) + K9 (6,6, 0p)) on I fagyp.

This proves the 3-cocycle condition, that is,

k9(0¢, ¢, p) + K9 (0, &, 0p) = k9(3,,9) + k9 (8, o, p) + 6.k (¢, ), p).
[l

Next, we observe the effect of different choices of (f,, b,, z,) and 0, , in
the construction of the 3-cocycle k9.

Lemma 4.3. (i) If the choice of the boxes 0y , in (12) is changed, then k9
is changed to a cohomologous cocycle. By suitably changing the boxes 0, ,,
kY may by changed to any cohomologous cocycle.

148



A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

(i1) If the choice of the representative paths (f,,b,, z,) in (3) is changed,
then a suitable new selection of the boxes 0, , leaves the cocycle k9 unal-
tered.

Proof. (i) Let, for each two composable morphisms as ﬁ ai Vil ap in 11G,

It
by, Mbwp

/ -1
wa ew,p wapwp
aq <—f bp
P

be any other selection of boxes in (3), and let kY € Z3(IIG, ) be the
corresponding 3-cocycle.

By Lemma 3.5 and the isomorphism fy, : (G, by) = m(G,a2), we
can write 0, , = fJ*lc(z/J, p) + 0., for a unique element (v, p) € (G, az),
and a normalized 2-cochain ¢ € C’Q(Hg , m2G) becomes so defined. Then,

for every composable morphisms as & a & a; ¢~ ag, we have

FolK 0,00, ) + [ c(d,1p) + 09

D (1306, ) + ) on((Fifucld, p) + o) ol Fpke(w, ) + 0,) ™)
= (S5l )+ 00) o L c(0, ) 0ov) o =yt el ) +053))
2 (fe(0, )+ 0000 (5000, )= Touu 00, ) 4B 0,077)

€ fole(6,9) + frle(dw, p) — [} foptopeayt fole(w, p)
+ 0,400 (Op,p0v0,,,)

D fle(o,0) + Frle(ow, p) — Fol fomtouayl frle(t, p)
+ [ K9 (0,1, p) + Op.

whence, by Lemma 3.5,

K9 (0,1, p) + (o, ¥p)
- C(¢7 w) + C(Qﬁ/}? p) - f¢¢*x¢q/,*l’;if1;*lc(¢7 p) + kg(¢7 wa p)
As, by Theorem 3.3 and Lemma 2.4,

-1 -1 -1 —1
Jowrnopnyy, = (OV)uTy, = Quhuy, = i fulipnlyy = Oufyn,
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we finally conclude that

K9 (6,0, p) = c(6,¥) — c(d,1p) + (@, p) — duc(h, p) + k9 (6,0, p)
= 0c(, ¥, p) + k9(¢, 0, p).

Thus, &’ = ¢ + k9 and therefore k9 and k'Y are cohomologous.
Conversely, suppose ¢ € C*(TIG, 75G) is any normalized 2-cochain and
k = Oc+ k9. Then fJ*lc(w,p) + 0y, is an allowable choice of 0, , for
each pair of composable morphisms (1), p) in [1G, for which, by the already
shown above, the corresponding 3-cocycle just becomes &’ 9= 0c+ k9 = k.
(1) Suppose we have choosen another representative path (g,, ¢,, y,) of
each morphism p in IIG. Then, we can select homotopies o, : (f,,b,, z,) =~

(9, ¢p,y,) and construct, for each two morphisms as <£ a; ya agp, the box

-1 -1 -1
Igw fw b /fw pr b ,prgwp
Cyp < P Yp < Cyp
1 ywwll a:bh H H e yw,ﬂ;;
v by ———b byy ——— b
Cy Cyp W 0 Y Yp
_ _ 1 0 1] _
‘WT 0.0 Tywpyp o= Ty ¥op T Way,z, ') |zpez,
b _
aq (T Cp Top "zy  aq bp — )
‘ H CAS
aq aj < b, < C
fo P fp_lgp P

which, by the already proven part (7), we can use to define the corresponding
3-cocycle k'Y € Z3(IIG, mG) from the new selected representative paths.

Then, for any three composable morphisms ag <i as <i aq vl ag,

v, — g v -V -V
g, ' on K7 (6,40, p) on I'gsyp = (0.4 on (B, 00 0',0)) 00 04y, =
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—1 ~1 1 —1 —1 —1
9y fo b fo fov b Fouw 90 9oy fov b waprb Fyuwp9ave
Co < ¢ P ¢ Coy < o) < Pp ¢ Coypp
A I A
T N B
yqu;l O(¢ ‘ a(bw : Oé¢.¢, O‘dnlm yqbz/)pmd)d,p
[
[
by ==y Doy Doy Doy bgwp === gy
oo | ! ’”WW Osv.p T i ToyppTp
[
I h
| aq b, b\p
! 1
| ay” ZpYp
Ih |_ R | R |
To | Opu 1: ay +— b, < c,
A~ P o~
[
¢ b | p YpTp
[
o oag b, b,
[ ~
z,t 1 o . .
| Ty b I ToTyp
[
B by by by by by
— —vh — -1
‘ oy : oy ‘ % TwopYupp
B | | - - - - __ 0 __ _ _
as a9 < b¢ — Cypy < bwp < Cyp
™~ f’wl’ fw l.qw g,j,lfw fwlpr ~
Wp | YppTy,,
—1
Tl a by byp
—1 —v —1
}% O wp T o TYp g
by =1y boyp boyp
T, _ .
%Tqﬁ a,™ Uy ZevpYpypp
Cp by ¢ - Do 5 Coup
9e fo f¢ Tovp fduppgawp
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1 —1 —1 -1
) 9e fé b ¢ f¢ fouw b ,fmz; fopp b f¢zpp9¢wp
Co < ¢ pip pp ¢ Conpp
%wT Opu,p Toypty
fo _
¢ 960 ar¢ by I 5 o)
_ v( . —1 —1 —v
= Moy~ fo) Ly T Oy Tz,
Qg 4 by +— b
~ fTP v fwlfdm }L’\p
-1 —v -1
) 04,10 oL popp
Cp ¢ by < Dgypp = Coup

95 fo 5 foue Fowp9000
=1, " on K9(¢, 1, p) o1 Igsu,-
Hence k9 (¢, v, p) = k9(¢, 1), p), and the 3-cocycle k9 is unchanged. [

Lemmas 4.2 and 4.3 prove that each double groupoid G has a three-
dimensional cohomology class kG = [k9] € H?(IIG, m,G) associated with
it. We refer to

[Hg7 7T2g, kg]
as the Postnikov invariant of G.

A double functor F' : G — G’ between double groupoids takes objects,
horizontal and vertical morphisms, and boxes in G to objects, horizontal and
vertical morphisms, and squares in G’, respectively, in such a way that all the
structure categories are preserved. Clearly, such a double functor induces a
functor I1F" : T1IG — T1G’,

F
Tax — TFx )
Qo Fao

and a natural transformation moF" : moG — (I1F')*m,G’, which consists of the
homomorphisms 7o (F, a) : m3(G, a) — me(G’, Fa) given by

a
I

a

a Fa=—Fa
= r |
a Fa= Fa.

e |

152



A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

We say that the double functor /' is a weak equivalence, and write
F:G>7,
whenever IIF' is an equivalence of groupoids and 75 F' is an isomorphism.
If, for any double groupoid G we define

7T0g - 7TO(]-_-[g)v

the set of iso-classes of objects of its fundamental groupoid, and, for each
object a of G,
m(G,a) = 11G(a,a),

the group of automorphisms of a in its fundamental groupoid, this notion
of weak equivalence is similar to the usual topological notion. Indeed, one
readily verifies that a double functor F' : G — G’ is a weak equivalence if
and only if F' induces an isomorphism of sets 710G = m,G’ and for every
object a of G isomorphisms of groups 7;(G, a) = m;(G’, Fa) fori = 1,2 (cf.
[11,3.4]).

We define two double groupoid G and G’ to be weak equivalent if there
exists a zig-zag chain of weak equivalences

G=G > G &G &G =G

connecting G and G’ (see Corollary 5.4).
Let [G] denote the weak equivalence class of a double groupoid G.

Theorem 4.4. The Postnikov invariant [11G, moG, kG| of a double groupoid
G only depends on its weak equivalence class [G].

Proof. Let F' : G = G’ be a weak equivalence between double groupoids.
Suppose that the construction of k9 € Z3(I1G, ,G) has been made by means
of representative paths (f,,b,,z,) of the morphisms p in IIG, as in (3), and
boxes 6y, , for each pair of composable morphisms (¢, p), as in (12). Then,
for the construction of k9 € Z3(I1G', m2G'), we can choose (E'f,, F'b,, Fz,)
as representative paths of the morphisms IIF'p in IIG’ as well as the boxes
Onry,nirp, = F0y,. If we do this, it follows from (16) that, for any triplet
(¢, 1, p) of composable morphisms in I1G,

K9 (IF ¢, IFY, TIFp) = Fk9 (¢, p).

This means that (IIF)*(k9") = (moF)(k9), whence (IIF)*(kG) = (ol )(KG).
Thus, [TIG, 76, kG| = [TIG', 0", kG']. 0
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5. The Classification Theorem

Theorem 5.1. The mapping [G] — [I1G, m,G, kG| establishes a bijective
correspondence between weak equivalence classes of double groupoids and
equivalence classes of Postnikov systems.

Proof. This follows from the following construction of a double groupoid G*
associated to each normalized 3-cocycle k € Z3(P, A), of any groupoid P
with coefficients in a functor A : P — Ab, and Proposition 5.3 bellow. [l

Let P be a groupoid, A : P — Ab a functor and k¥ € Z3(P, A) a
normalized 3-cocycle of P with coefficients in .A. We construct a double
groupoid, denoted by G*, as follows.

e The objects of G* are the arrows of P.

e For any two arrows of P, there is a unique horizontal (resp. vertical)
morphism in G* between them whenever they have the same target (resp.
source), whereas if they have different target (resp. source) then there are
no horizontal (resp. vertical) morphisms between them. Compositions and
identities are defined in the obvious manner. Thus, a path in G¥

§1¢—
T
&o

consists of three morphisms of P such that £, and 7 have the same source
and n and &; have the same target. Notice that such a path writes uniquely as

SRl QY — ibp
€o vp
with p = &'n, ¢ = n& ! and ¥ = &n~YE; are three composable arrows
as & as & a1 & ay in the groupoid P.
e A box (¢,%, p; u) in G¥, with boundary as below

QY —— php (18)
T G T
¢ — ¢Pa
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consists of three composable arrows in P, ag <£ as ﬁ ai Vil ap, together

with an element u € A(a3).

. s
e For any four composable arrows in P, a4 <+ as ﬁ as ﬁ a Vil aop,
u € A(az) and v € A(ay), the vertical composition of the boxes

0P «——ddipp (19)
T Govpw) T

QY ——— Pibp,

T Gwpw) T

Y ———p
is given by

(0, 99, p;v)oy (B, 1, p; u) (20)
= (5¢a 77Z)7 P v -+ 5*U + k(67 ¢> 770) - k<57 ¢a 77Z)p)) .

) A
e For any four composable arrows in P, ay ﬁ as i Qs Vil ap < ag, and
u,v € A(ay), the horizontal composition of the boxes

o 4 PYp < PPpA 21)
T @) T (dwprw) T
(R hp+ YpA,

is given by

(6,0, p;u) on (9, ¥p, A\;v) = (&, 0, pA;u+v). (22)

e The vertical and horizontal identity boxes are respectively defined by

P— QY oY (23)
I (pe-gw) = || (idaz 6.9:0) | d’f T ($:1idagi0) T
Pe—— v

for any two composable arrows as bl ay b apin P.

Lemma 5.2. With these definitions, G* is a double groupoid (satisfying the
filling condition).
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Proof. We first observe that the vertical composition of boxes in G* is asso-
ciative thanks to the 3-cocycle condition of £. In fact, let

VOPY 4———70¢p
T (dgvpw) T
01 ————d¢p
T Govew) T
T wew T
P Yp

be three vertically composable boxes, defined by five arrows
a5<la4ga3£a2<£a1<ia0
of P and elements u € A(as), v € A(ay) and w € A(as). Then,
(v, ¥000, p;w) oy (6, ¢, p;v)) oy (6,0, p; u)
= (¥8, ¢, pyw + v + k(7,05 ¢0) — k(7, 6, dop)) oy (6,9, p; w)

= (700, ¥, p; w + v +k(y, 6, ¢0) — k(7,6 pbp) + ubsu

and, on the other hand,

(7,700, p;w) oy ((8, g1, p;v) oy (6, U, p; )
= (7,706, p;w) oy (36,9, p;v + 8. (u) + k(8,9 ¢) — k(8, ¢, ¥p))
= (Y0, ¥, p; WYV + Vebutt + 1k (6, ,0) — ik (6, ¢, Pp)
+ k(y,00,0) — k(v,00,¢p)).

Hence the result follows by comparison, using that the cocycle condition of

. . 5 s
k applied to the lists of arrows a5 &oay & as <i as ?—p ap and as &oay &
as ﬁ ao ﬁ ay gives the equalities

Yk (8, 0,0p) + k(7,00,9p) = k(¥5, d,¢¥p) + k(7, 0, p1bp) — k(v,6, 9),
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The associativity of the horizontal composition of boxes is easier. Let

Pt ——— Y+ PUPA < PUpALL
T @upw) T @epr) T (dwermw) T
(R Yp+ YpA < VoA

be boxes, defined by arrows as ﬁ ay <£ as L a, yal a; & ag of P and
elements u, v, w € A(as). Then,

(6,9, 3 u) o (6, 90p, X;0)) on (&, YpA, s w)

= (¢, ¥, pAsu+v) oy (&, VpA, p; w)

= (6, ¥, pAs u+ v +w) = (¢,7, pyu) on (¢, ¥p, A v + w)
= (¢, ¥, p;u) on ((¢,10p, A;v)) on (&, YpA, 1 w)).

For any box (¢, v, p; u) as in (18), its respective vertical and horizontal
inverses

Pe———Yp  QYp—— 1

T (¢.0,p5u) ™ T T (¢4, p5u) 0 T

QY e——Yp  hp——1b,
are given by

(0,0, psu) ™ =(¢7", 0, pi k(07" 0, 9p) = k(o™ 0, 0) — M),
(0,1, pyu) "= (o, 1h, p~t; —u).

The only non-straightforward verification here is that

(0,1, p;u) oy (o, 9, pyu) ™ =T"(P) < Pip).

which is as follows

(6,0, pyu) oy (67, 0, pr k(67" 6, 0p) — k(67" 6, 0) — 67 )
= (idg, 00, piu+ Guk(d7, 6, 1p) — k(67" 6,0) —u
+ R0, 6,00) — k(67" 6, op))
= (iday, V10, 5 k(671 6,00p) — k(67" 6,0) + k(67 6, 6)
— k(¢ ¢, p))
2 (iday, 00, p; k(6,67 0) — k(6,671 )) = (iday, $, p30)
=T"(¢) < ¢iop),

(24)
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where we have used the equality

Ouk(071, 0,0) — k(g 07", o) = k(, 07", 9) (25)

which follows from the 3-cocycle and normalization conditions of k for the
-1
sequence of arrows ag i Qs  as ﬁ Qs <£ ay in P.

All other requirements are easily verified, except perhaps the interchange
law which is proved as follows. Suppose given boxes

0P < 0Yp ¢ OpthpA
T @ovpw) T Govpre) T

OICR PYp, 4 PYpA
T @wew) T (dwedw) T

(PR Yp+ PpA

5 A
defined by arrows of P, a5 < a4 <i as ﬁ Qs Vi a1 < ag, and elements
v,v" € A(as) and u, v’ € A(ay). Then,

(6,0, p;v) oy (¢, 0, p3 ) o ((8,Php, A;v") oy (¢, 10p, A ut))
= (00,0, p;v + dutu + k(0,0 ¢0) — k(8,0,9p)) on (60, ¥p, A; v
+ 8.u' + k(6,0 10p) — k(5, ¢,1pX))
= ((5¢, Y, pA; v + u + v + S + k(5, ¢, v) — k(0, ¢, w,o)\))
= (6,90, pA;v +0') oy (0,0, pAsu + )
= ((0, 91, p; v) o (8, ¢vop, A ) oy ((¢, 9, p5 ) on (), 1hp, A;u')).

]

Proposition 5.3. (i) Let (P, A, k) be a Postnikov system. For any represen-
tative 3-cocycle k € Z3(P, A) of k, the Postnikov invariant of the double
groupoid G* is equivalent to (P, A, k), that is,

[11G*, mG* kG*] = [P, A, K].

(17) Suppose (P, A, k) and (P', A", X' are equivalent Postnikov systems.
Then, for any representative 3-cocycles k € Z3(P, A) and k' € Z3(P', A")
of k and X' respectively, there is a weak equivalence G¥ = G¥'.
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(i17) Let G be a double groupoid. For any 3-cocycle k € Z3(11G, m5,G)
representative of the cohomology class kG, there is a weak equivalence
Gk > G.

Proof. Firstly notice that the homotopy relation between paths in G* is triv-
ial. In fact, suppose
SRt/ §ie—p
T~ 7
€o &o
are two homotopic paths in G*. This means that there is a box in G* of the
form

I—=

1
||

n

—

&, p5u)

<

for some composable arrows ag <i as & a; & ap in P and some u €
A(ag). But then, we have the equalities ) = n = ¥p = ¢ and ¢pp = p
which imply n = pu.

(i) There is a functor f* : P — IIG* which carries each object a of
P to the identity morphism id,, regarded as an object of G¥, and carries a
morphism p : ay — ay of P to the path

idg, <—p
fop = T
idy,.
If ¢ : a; — ay is another morphism in P, the equality f*(p) = 4 %
follows from the diagram in G
ida, ¢ (R vp
T Goidayp0) T
idy, —p

1

idy,

and, for any object a of P,
1d, =1d,
fkida = ” - idfka.
ud

a

159



A. M. CEGARRA CLASSIFYING DOUBLE GROUPOIDS

So, f* is actually a functor which is clearly fully faithful. Indeed, it is an
equivalence of groupoids since any object p : ag — a; is isomorphic in IIG*
to the object f*aq = id,, because of the path

idyy = idy,

.

p.

Now, for any object a of P, the abelian group 7, (G¥, fa) just consists of
all the boxes in G* of the form

id, =——=1d,
|| (idasida,idasu) ||

ida _ ’Lda
with u € A(a). The mapping §* : A(a) — m(G*, fa),
u > (idy, idg, idy; u),

is clearly an isomorphism of groups, for any object a of P, and thus we see
that we are in presence of a natural isomorphism §* : A = {*m,G*.

To complete the proof, it is enough to prove that f**(kG*) = F*(k).
Indeed, we are going to prove that f**(k9") = §* (k) once we select, for each

pair of composable arrows as ﬁ a; & ap in P, the box
Ye——Yp
efkwﬁkp :T (¥yiday ,0;0) T

1dg, «—p

in the construction of the 3-cocycle k9" . In fact, for any given composable

arrows as ﬁ Qs i ay Vil ap in P, by (16), the element

PHR) (6,0, p) = k9 ( 0, T4, T p) € ma(GF, TFas)
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is the pasted box of the diagram

1d g, 4 ox oY < PUVp ¢ id,,

T @ideg0) ]
($riday :0) idy, ¢———p
1Y (idag <) T iday,pi0)™ T 1¥(¢wpeiday)

idg, ¢ (R Yp
T (driday $p50) ™ T
id,, 4 b b ¢ i,
Since, by (23) and (24),

¥ (idgy < ¢) = (iday, ida,, $;0),

I (¢hp < iday) = (idag, pt0p, (01Pp)~1;0),

(1, idqy, p;0)™ = (W10, p; —k(¥ 1,9, p)),

(¢, iday, 1hp; 0)™ = (674, 0, ¥p; —k(d7, ¢, 1p)),

a direct computation, using (22) and (22), gives

K" (5. 0 i)

= (idag,iday iday; —0,10, k(7" 0, )+ {000, 0" 0p) = k(60,07 )
— 0k(67",6,00) + k(6,071, 0p) — (6,67, 9))

D (iday, iday, iday; — btk (V1 0, p)+k(G0, 07 ) — k(G 1, ).

Moreover, since the cocycle condition of £ on the sequence

-1
a3ﬁa1d<}— a2<ia1<iao

yields
S k(U™ 0, p) = k(9,0 p) = k(o™ Wp) + k(o7 W) = 0

we conclude that

K9 (15, §50, 1) = (iday, iday, iday; k(6,0, p)) = Fk(), 2, p)
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(77) By hypothesis, there is an equivalence f : P = P’, a natural isomor-
phism § : A = §* A’, and a normalized 2-cochain ¢ € C?(P,§*A’) such that
(k') = §.(k) + Oc. A weak equivalence F' : G = G*' is then defined by
the following assignments on objets, horizontal and vertical morphisms, and
boxes

¢\ fofb
prio (e vp) = (0 Fofp), | T | 1
¥ fib
P e———p  fofip+ fofvip
T wow T = T (eredesuteon)—covn) |
be—tp b ot

So defined, one verifies easily that F' : G¥ — G* is actually a double
functor. That F' is a weak equivalence follows from the commutativity of
the diagrams

PGk Ala) =2 7y(GF §a)
fl lHF gl J/TI'QF
PISTgY a(fa) S (G )

where f, f* and f* are equivalences of groupoids and, for any object a of P,
¥, §F and §* are isomorphisms of groups.

(4ii) By Lemma 4.3 (4), we can assume that k& = kY for a certain selection
of representative paths (f,,b,,z,) of the morphisms p in IIG and the boxes
8y.p» as in (3) and (12). Then, a double functor F' : GF = @ is defined by
the following assignments on objets, horizontal and vertical morphisms, and
boxes

£ op vp b
F(p) =b,, F( <« Yp) = (bp——byp), F| T |= Tzwpfff?l )
P by
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-1
f¢zp qup

P —— ipp Dy ¢ D
F T (¢,9,p5u) T = %w%lT Frrpa (@) 40,000 45 T%wp%; .
Y ———Pp by, < — by
fw pr

Many of the details to confirm that F', so defined, is a double functor are
routine and easily verifiable, so are left to the reader. For instance, if ¢, 1, p
are any three composable morphisms in G,

F(¢ ) F(oy < o) =[5 oy Fouf gy = 15 Fopo = F (¢ < dp)

and thus we see that /" preserves horizontal composition of morphisms. The
proof that F' preserves composition of boxes is as follows. Suppose two
vertically composable boxes in G¥, as in (19). Then,

F (8, ¢, p;7) oy F(, 0, p;7)
= (fé_q;p*r + 95—7@ on O5,6yp) Ov (f&pl*a + 9;2 %h 05.4p)
L (ST = B8, 00 ) + 50 0 033, 0 (50,0 = k(@0 p)
+ Opy,p Ov 91;?;)

D froon (T = (8,80, ) + Togunty, frk (0 = k(.20 )

+ 050 O U5 Ov Opupp O Oy
= i = k(8,00 9)) + Sy f505:(0 = (6,0, ) + bagur 00 6,
E i (1= K(0,00,0)) + f55.00(0 = k(6,, ) + O 0v 0
= Froon 7+ 0.0) 4 i (<K (5. 00, p) = k(6.0 p)) + By 0 3,

F((8, 9%, p;7) oy (6,4, p;7))

D F(0¢, 0, p:7 + 6.0 + K9 (6,6,0) — k9(5,6,¢p))

= fé_gﬁib*(T + 5*0 + kg((Sv Qb, w) - kg((Sa ¢7 ¢p)) + 95_(;1/; Oh 964&,1/1/)
(14)

= Froma (T4 020) + f5, (K9(5,6,0) — k95,6, 0p)) — k9 (50,4, p))
+ Os5¢yp,p Ov 9;";,
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and the result follows from Lemma 3.5, thanks to the 3-cocycle condition
of k. To prove that I' preserves horizontal composition of boxes is easier.
Suppose two horizontally composable boxes in G¥, as in (21). Then,

F(¢a ’QD, 05 U) Oh F(¢a 1/JP7 )\a T)
= (ST 053 00 O650) On (F3puT + 0500 Oh O 002)
®)

Foun® + FainT + 053, 00 0.0 on 055, 0n O.n
= fop (0 4+7) + 037 on 041
= F(¢, ¢, pX\i0+7) = F((¢,90, p;0) on (¢, 0p, A; T)).

That F' preserves identity boxes is also easily checked. For instance,

FIV(¢ <~ QW’) = F(ldv ¢7 % O) - 01—551(25 Oh Qid,qbzp = Ivf(z)_l Ivf¢¢
= I(f; fop) = TF (¢ + ¢0).

This double functor F'is a weak equivalence. In fact, the induced functor
on fundamental groupoids IIF : IIG*¥ — IIG is an equivalence since its
composition with the equivalence §* : TIG ~ TIG* is the identity functor on
[1G: for any morphism p € 11G(a, b),

) idy <— p bdr b,
[IF(fp) = IIF T | = Tep | = [fpsbps Tp] = p-
id, u

Furthermore, for any object a of G, the induced map
T F : mo(GFidy) — 7a(G, a)

is the obvious isomorphism

id, =——=1d, a a
| (idaidaidaio) |+ .
ida ———— Z'da a u

]

Corollary 5.4. Two double groupoids G and G' are weak equivalent if and
only if there is a double groupoid G" with weak equivalences G < G" = G,
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Proof. Suppose G and G’ are weak equivalent. By Theorem 4.4, they have
the same Postnikov invariant, that is, the Postnikov systems (I1G, G, kG)
and (T1G’, moG', kG') are equivalent. Then, by Proposition 5.3 (iz) and (ii7),
for any representative 3-cocycles of kG and kG’, say k and k' respectively,
there is a sequence of weak equivalences

G&EGhn gt g

6. Geometric realization

Theorem 6.1. The Postnikov invariant of a double groupoid G agrees with
the Postnikov invariant of its geometric realization |G|.

Proof. This follows from Proposition 6.2 below. [

For a groupoid P, let us recall from the beginning of Section 4 that NP
denotes its nerve, that is, the simplicial set with m-simplices the composable

sequences § = (Sm A A £0) of m arrows in P. If (P, A, k) is any
Postnikov system and we select any normalized 3-cocycle k € Z3(P, A)
representative of the cohomology class k € H3(P, A), then the equivalence
class [P, A, k]| is justly realized as the unique Postnikov invariant of (the
geometric realization of) the simplicial set homotopy colimit of the functor

K(A,2): P — Sset, a+— K(A(a),2),

twisted by the 3-cocycle k (see, for instance, Goerss and Jardine [18, Chapter
VI, Lemma 5.8]). This simplicial set, which we denote by

hoc}glim K(A,2;k), (26)

has the same simplices as the ordinary homotopy colimit hoc}glim K(A,2),

that is, its set of m-simplices is

| | E(A(Bm),2)m.

ﬁeNP'IIL
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Its face and degeneracy maps are also the same as those of non-twisted ho-
motopy colimit, except the last face maps which are here canonically af-
fected by the cocycle k. This twisted homotopy colimit (26) becomes a
Kan complex that is coskeletal in dimensions higher than three and whose
3-truncation can be described explicitly as below

S0
S0

U ABP =} U A(B2) =N ==\

BENPs d3 ' BENP,
where, for any 8 € NP, and 0 € A(52)
di(B,0) =d;8, 0<i<2,
forany 3 € NPs and (0¢, 01, 02) € A(B83)3,

(d:, ;) it 0<i<?2,

di(670'070'10'2>:{ (d;»,ﬂ,ﬁgl(k?(ﬁ)"'@_gl"'ao)) if Z:3,

forany g € NP,
Sz(ﬁ): (Siﬂa())a izovla
and, for any § € NP, and 0 € A(52),

(soB,0,0,0) if i=0,
si(B,0) =< (s16,0,0,0) if i=1,
(528,0,0,0) if i=2.

Now, for a double groupoid G, let NNG denote its double nerve, that is,
the bisimplicial set where a (p, ¢)-simplex is a subdivision of a box of G as
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a matrix of p x ¢ horizontally and vertically composable boxes of the form

Ipa fiq
(pq < (p—1q T (1q < (oq
qu/]\ 0p.q /l\zpflq "EllIT 01,4 Tmoq
Apg—1 & Ap—1g—1 QA1q < Aog—1
p% Toa1 P Tq Tq Fra_1 04
0 fr1 0 T o fir 71
Apl < Gp—11 T 11 < ao1
mplT Op,1 Tp—ll xllT 01,1 TJ?Ol
Apo $——— Ay e alp——a
p0 < Ap—10 10 <= Qoo

The bisimplicial face maps are the natural ones, induced by horizontal and
vertical composition of boxes in G, and the degeneracy ones by appropriate
identity boxes. We picture NNG so that the set of (p, ¢)-simplices is the
set in the p-th row and ¢-th column. Thus, its p-th column, NNG,,, is the

nerve of the “vertical” groupoid whose objects are strings - Lo 8 of D
composable horizontal arrows in G and whose arrows are length p sequences
of horizontally composable boxes

9p g1
,,,,,,,,, e
R
fp """""" ' fl

Similarly, the ¢-th column, NNG,,, is the nerve of the “horizontal” groupoid
whose objects are length ¢ sequences of composable vertical morphisms in
G and whose arrows are sequences of ¢ vertically composable boxes. In
particular, NNG,, and NNG, are, respectively, the nerves of the groupoids
of vertical and horizontal morphisms of G.

The geometric realization |G| of the double groupoid G is, by definition,
the geometric realization of the simplicial set diagonal of its double nerve,
that is, |G| = | A NNG|. By Cegarra-Remedios [12, Therem 1.1] or Zisman
[27], |G| can be also realized, up to homotopy equivalence, as the geomet-
ric realization of the Artin-Mazur fotal simplicial set [2, Section III] (aka
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codiagonal or W) of the double nerve, V NNG. A direct analysis of this
simplicial set tell us that it is a Kan complex in which any simplex of dimen-
sion higher than two is determined by any three of its faces. In particular, it
is coskeletal in dimensions higher than 3, so that it is completely determined
by its 3-truncation, which is explicitly described as follows. Its vertices are
the objects a of G. The 1-simplices &; are the paths of G

f11
@11 <— Aot

51 . Trm

Qoo

whose faces are dypé; = a1 and d1&; = ag. The 2-simplices & are the
diagrams in G

fo2 fi2
Q22 <— Q12 < Qo2

fElzT 012 TwO?

&2t a11 $— Qo1
fi1
Toon
oo
with faces
22 faz f12 11
22 L a12 Q22 < Qo2 a1 L Qo1
dOf? - Tml? d1§2 = Tu’vozﬂﬁm dgfg = TCEOl

aiy, oo, oo,

and its 3-simplices &3 are the diagrams in G

f33 f23 f13
33 < Q23 <— A13 < Ap3

1’23T 023 T$13913 Tio:s

Q9o — Q12 @
22 4 412 €75,402
53: 9912T 012 Tﬂtoz
11 <— Qo1

f11 Tﬂﬁm

Qoo
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with faces
f33 fas3 f33 f23 f13
33 < Q23 <— G413 33 < A23 < Ap3
x23T 023 T$13 9623T 02301013 T3303
do&s = A9 di&3 = Qoo —— a
053 22 oz 12 153 22 Foz f12 02
T.rlg TQ?OQ-TOI
a, aoo,
f33fe3 f13 f22 f12
Q33 <—— A13 <— ap3 Q22 < Q12 < Gp2
I13$12T 0130v012 Tx03x02 IE12T 012 Tl’02
da§3 = aiy <5— aoy d3&s = a1 <— o1
f11 fi1
Tﬂcm Tmm
apo, aopo-

Degeneracies are defined by

a=—a a11<ﬁ—1a01=a01 Cl11=a11<f1—1a01
Soa = [ soé1 = T 1wor Toor 516, = | |
a a1l == Qo1 Qi1 <— Qo1
|| Teor
Qoo Qoo
fa2 f12 fa2 f12
Q29 < Q12 < Qo2 = A2 Q29 < Q12 == Q12 < Q02
1'12T 012 T Moo T:Coz 9612T heo T 012 T:v02
a1 T ap1 = Qo1 11 == a11 <— Qo1
8052 = T Mzo1 T5501 8152 = || IVf1a ||
Qoo =— Qoo 11 (f_ Qo1
|| " e
apo Qoo

fa2 f12
Q29 == Q29 < Q12 < Qo2

” IVfaz ” IVf12 ”
Q29 <— Q12 < Qo2

5252: 112T 012 Tfﬂ02

a11 <, — Qo1
f11
Tﬂcm

apo
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Proposition 6.2. Let G be a double groupoid. For any normalized 3-cocycle
k € Z3(11G, 7oG) representing the cohomology class kG, there is a weak
equivalence of simplicial sets

r: ho%oglim K(mG,2; k) = VNNG.

Proof. By Lemma 4.3 (i), we can assume that & = k9 for a certain selection
of representative paths (f,, b,,z,) of the morphisms p in IIG and the boxes
6y.p» as in (3) and (12). The claimed simplicial map I', which is completely
defined by its 3-truncation

S0

S0
5o A S0

0 1 do 1/_0\
U w653 ==} ml, 02) == NIIG, =2 NGy

BENIIG3 d3 " BENIIG,

52 d u/d()/g\ Kdz\
VNNG; =————= VNNG, =——= VNNG, == VNNG,,

d3 d2

is given as follows: I'y is the identity map on the objects of the double
groupoid G. For any morphism p € 11G(aq, a1),

Cl1<f—pbp

Fl (p) = Txp

Qo,

If ay & a1 & a are any two morphisms in IIG and o € (G, az),

fw fqzlpr
Qo < bw( bwp

ﬂ?wT Fiu (@404, T%piﬂ?l
FQ(va;o-> = a1<—bp

fo T:(;p

Qo,
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and, for any as & as & a1 & aoin TIG and (0, 01, 02) € m(G, as)?,

—1 —1
. fs b < fo fow b e fop Fowp b
as < ¢S oY ° PYp
Foi(01=00)
2y | o (00)+0g4 + %wpl“;;
—h
040000
a9 < T bw < bwp
T fﬂ‘i’:l(f;t_)—ffl-i-@?\
Us(¢, ¢, p;00,01,02) = o 716 k(b0) | TeoTs
+
Op.p
a— b
1 f» f)
Tp
ag.

So defined, all the simplicial identities to verify that I' is actually a sim-
plicial map are easily checked, except perhaps that d;I's = I'yd; fori = 1, 2.
For i = 1, the required equality d,I'5(¢, v, p, 09, 01,02) = Ta(p,p, 01)
follows from the equalities

(Fi (00)+05,6) on (Flu(o1 = 00) + 65 o0 6)
" 17 (00) + 5 (01 = 00) + 05 00 051 01 O
= [ (1) + 05,

The case ¢ = 2 is somewhat more complicated. In this case, the required
equality
dgFg(Qb, 1/}7 P,00,01, 02) = F2(¢1/}7 P, 02)
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follows from the equalities

(frp(a100) +053.0005.5p) 0w (fl 0 (00— 01+ 02 +K(8, 0, p) +0y.)
2 fok(01-00) + Topuy L £107 (00— 01+ 0+ k(0,, p))
+ (053 05.50) Ov Oy
fope(01=00) 2 gputb 07 (00 — 01 + 02 + k(¢,9, )
+ (0,1, o0 Os.0) 0v Oy
2 foh (01 = 00) + Ty (60)7 (00 — 01 + 02 + k(6. 0, p))

2. 4(“

+ (6, on 9¢wp Oy 9wp

)
+( ) Oh 9¢wp) oy 9¢p

- fﬁf’_wl*o-Q + fq;;*k(qs7 wu P) + (0;72} On 0¢ﬂl’ﬂ) Oy 0¢7p

(14)
= f¢¢*‘72 + QW p-

2. 4(11

That I' induces an isomorphism on the fundamental groupoids follows
from the observation that homotopies (f, b, x) ~ (g, ¢, y) in G between two
paths from an object a to an object aq, as in (2), are in bijection with homo-
topies (f, b, x) ~ (g, ¢, y) in the simplicial set V NNG, by the mapping

1 ai ——a1<g—c
f'g
b — C IVtha Tyx71
| a Tyet = ay «—Db
b=—10 ! T
Qo

Furthermore, for any object a of G, the induced homomorphism by I" on the
second homotopy groups with base a,

o (ho%oglim K(mG,2; k), a) — m(VNNG, a),
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is explicitly given by
t—a=a
(idy, idy; o) 2 |C|L;l|z
g

and clearly is an isomorphism.
Since the homotopy groups of ho%%lim K(m2G,2; k) and of VNNG van-

ish in degree 3 and higher, I' is actually a weak homotopy equivalence. [

As a consequence of Theorems 5.1 and 6.1, we get a new proof of the
following fact (cf. [12, Theorem 13] for a more general result).

Corollary 6.3. The mapping G — |G| induces a bijective correspondence
between weak equivalence classes of double groupoids and weak homotopy
classes of 2-types.
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CATEGORIQUES

COMPARING THE NON-UNITAL AND
UNITAL SETTINGS FOR DIRECTED
HOMOTOPY

Philippe GAUCHER

Résumé. Cette note explore le lien entre la structure de modeles de type
Quillen des flots et la structure de modeles de Ilias sur les petites catégories
enrichies sur les espaces topologiques. Les deux ont des équivalences faibles
qui induisent des équivalences sur les (semi)catégories fondamentales. La
structure de modeles de Ilias ne peut pas étre transférée sur les flots le long de
I’adjoint a gauche qui ajoute le morphismes identité. La structure de modeles
minimale sur les flots ayant comme cofibrations le transfert le long de ce
foncteur des cofibrations de la structure de modeles de Ilias a comme catégorie
homotopique 1’ensemble totalement ordonné a 3 éléments. La structure de
modeles de type Quillen des flots peut étre transférée le long de I’adjoint a
droite oubliant les morphismes identité. On obtient une catégorie de modele
minimale telle que les équivalences faibles induisent une équivalence sur les
catégories fondamentales. Le foncteur identité de la catégorie des petites
catégories enrichies sur les espaces topologiques n’est ni un adjoint de Quillen
a gauche, ni un adjoint de Quillen a droite entre la structure de modeles de
type Quillen et la structure de modeles de Ilias.

Abstract. This note explores the link between the g-model structure of
flows and the Ilias model structure of topologically enriched small categories.
Both have weak equivalences which induce equivalences of fundamental
(semi)categories. The Ilias model structure cannot be left-lifted along the left
adjoint adding identity maps. The minimal model structure on flows having as
cofibrations the left-lifting of the cofibrations of the Ilias model structure has
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a homotopy category equal to the 3-element totally ordered set. The q-model
structure of flows can be right-lifted to a q-model structure of topologically
enriched small categories which is minimal and such that the weak equiva-
lences induce equivalences of fundamental categories. The identity functor
of topologically enriched small categories is neither a left Quillen adjoint
nor a right Quillen adjoint between the g-model structure and the Ilias model
structure.

Keywords. Directed homotopy, flow, Dwyer-Kan equivalence, combinatorial
model category, minimal model category, locally presentable category, topo-
logically enriched category.

Mathematics Subject Classification (2020). 18C35,18D20,55U35,68Q85.

1. Introduction

1.1 Presentation

The time flow of a concurrent process can be modelled by a topologically
enriched small semicategory [8] or by a topologically enriched small category
[4, 27]. The objects represent the states of the concurrent process and the
nonidentity morphisms represent the execution paths, the topology modelling
concurrency [6]. The primary reason for excluding identity morphisms in [8,
Definition 4.11] is to obtain functorial constructions for the branching and
merging homology theories (see [8, Section 20]). It enables us to prove the
invariance by refinement of observation in [10, Corollary 11.3], and therefore
to fix Goubault-Jensen’s construction of [19]. The main technical tool is
the minimal model category introduced in [8], called the g-model structure
(of flows) after [17, Theorem 7.6]. The examples coming from computer
science are non-unital as well because they are modelled by precubical
sets (e.g. [12, 13, 20, 31]) and because precubical sets have non-unital
geometric realizations [12, Definition 7.2]. The transverse degeneracy maps
of precubical sets, introduced for the functorial formalization of the parallel
product with synchronization of process algebra [13, Theorem 3.1.15 and
Definition 4.2.2], belong to the non-unital world as well. The transverse
degeneracy maps lead to a vast generalization of Raussen’s notion of natural
d-path in [18]. The non-unital setting is also necessary to construct the
underlying homotopy type functor which is geometrically the homotopy type
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of the space obtained after forgetting the temporal information [11, Section 6]
[15, Proposition 8.16].

On the other hand, the mathematical literature provides several con-
structions of model structures on enriched small categories such that the
weak equivalences are the so-called Dwyer-Kan equivalences of [5]: for
simplicially enriched small categories [3], for topologically enriched small
categories [25] and for small categories enriched in a given monoidal model
category [2]. The generating cofibrations of the g-model structure of flows
of [8] are almost those obtained by transfer along the left adjoint formally
adding identity maps from the generating cofibrations of the Ilias model
structure constructed in [25]. The only difference is the presence of the flow
cofibration R : {0,1} — {0} which has no counterpart in the Ilias model
structure (see Proposition 3.3). This leads to the question of comparing the
model structures on flows and on topologically enriched small categories.
The following sequence of theorems answers the question.

Theorem. (Theorem 3.5) The Ilias model structure on topologically enriched
small categories [25] cannot be transferred to the category of flows along the
left adjoint formally adding identity maps.

Theorem. (Corollary 4.10) The minimal model structure on flows with respect
to the transfer of the cofibrations of the Illias model structure along the left
adjoint formally adding identity maps has three homotopy types.

Theorem. (Theorem 5.2) The g-model structure of flows can be transferred
along the right adjoint forgetting the identity maps to the category of topolog-
ically enriched small categories. We obtain a combinatorial model structure
which is minimal. Its weak equivalences induce equivalences of fundamental
categories. The left Quillen adjoint formally adding identity maps from flows
to enriched small categories is not a left Quillen equivalence.

The model category of Theorem 5.2 on topologically enriched small
categories seems to be new. With the same argument, the h-model structure
and the m-model structure of flows constructed in [17, Theorem 7.4] can be
transferred along the right adjoint forgetting the identity maps to the category
of topologically enriched small categories as well. We obtain a h-model
structure and a m-model structure on topologically enriched small categories
which are both accessible as model categories.
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The following table of minimal model categories summarizes the results
of this note. The symbol @ means that the weak equivalences induce equiva-
lences of fundamental (semi)categories. The symbol O means that they do
not.

| | R is a cofibration | R is not a cofibration |
Flow | @ g-model structure of [8] | O Corollary 4.10
Cat | ® Theorem 5.2 @ Ilias model structure of [25]

The conclusion that must be drawn from this note is that the flow cofi-
bration R : {0, 1} — {0} is much more important in a globular approach of
directed homotopy than what was expected in [8].

1.2 Prerequisites and notations

We refer to [1] for locally presentable categories, to [7, 22, 29] for combina-
torial and accessible model categories. We refer to [23, 24] for more general
model categories. We work with a locally presentable convenient category
of topological spaces Top for doing algebraic topology. The internal hom
is denoted by TOP(—, —). The category of A-generated spaces or of A-
Hausdorff A-generated spaces (cf. [16, Section 2 and Appendix B]) are two
such examples. The category Top is equipped with its g-model structure (we
use the terminology of [26]). What follows is some notations and conventions:
& is the initial object, 1 is the final object, Id x is the identity of X. A model
structure (C, F, W) means that the class of cofibrations is C, that the class of
fibrations is F and that the class of weak equivalences is WW. A combinatorial
model structure on K is minimal if the class of weak equivalences is the small-
est Grothendieck localizer with respect to its set of generating cofibrations
[21, 30]. Note that in [30], the adjective left-determined is used instead. When
all objects of a model category are fibrant, any Grothendieck localizer which
is strictly smaller than the class of weak equivalences never induces a model
structure. By [21, Theorem 1.4], every tractable combinatorial model cate-
gory with fibrant objects is minimal. The notation f [ ¢ means that g satisfies
the right lifting property (RLP) with respectto f;2C = {¢,Vf €C,g0 f};
C? =inj(C) = {g,Vf € C, f @ g}; cof (C) = 2(CP); cell(C) is the class of
transfinite compositions of pushouts of elements of C. A cellular object X
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of a combinatorial model category is an object such that the canonical map
@ — X belongs to cell(]) where I is the set of generating cofibrations.

In this paper, the transfer of a model structure of Flow along the right
adjoint Cat C Flow of Proposition 2.7 is called the right-lifting of the model
structure of Flow. Similarly, the transfer of a model structure of Cat (of a
weak factorization system resp.) along the left adjoint I™ : Flow — Cat
of Proposition 2.7 is called the left-lifting of the model structure of Cat (of
the weak factorization system resp.). See the introductions of [7, 22] and the
beginning of [7, Section 2] for further explanations.

1.3 Acknowledgments

I thank Simon Henry for a useful discussion about semicategories. I thank the
anonymous referee for the suggestions to improve and clarify the presentation.

2. The adjunction I : Flow < Cat :D

Definition 2.1. /8, Definition 4.11] A flow is a small semicategory enriched
over the closed monoidal category (Top, X ). The corresponding category is
denoted by Flow.

A flow X consists of a topological space PX of execution paths, a discrete
space X of states, two continuous maps s and ¢ from PX to X called the
source and target map respectively, and a continuous and associative map
x: {(z,y) € PX x PX;t(x) = s(y)} — PX such that s(z xy) = s(z)
and t(x x y) = t(y). Let P, 3 X = {z € PX | s(x) = aand t(z) = (}.
Note that the composition is denoted by x * y, not by y o x.

Every set can be viewed as a flow with an empty space of execution paths.
The obvious functor Set C Flow from the category of sets to that of flows
is limit-preserving and colimit-preserving. The following examples of flows
are important for the sequel:

Example 2.2. For a topological space Z, let Glob(Z) be the flow defined by
Glob(2)° = {0,1}, PGlob(Z) =Py 1Glob(Z) = Z, s =0, t = 1.

This flow has no composition law. The directed segment is the flow ? =

Glob({0}).
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Example 2.3. Denote by B (like branching) the flow 1 <— 0 — 1 with three
states and two execution paths. This flow has no composition law.

Notation 2.4. Let n > 1. Denote by D" = {b € R" |b| < 1} the n-
dimensional disk, and by S"~' = {b € R™, |b| = 1} the (n — 1)-dimensional
sphere. By convention, let DY = {0} and S™! = &.

Notation 2.5. Let

19 = {c, : Glob(S"™!) € Glob(D") | n > 0},
J9 = {Glob(D" x {0}) C Glob(D" x [0,1] | n > 0},
C:@—{0},R:{0,1} — {0}.

Notation 2.6. The category of small categories enriched over Top is denoted
by Cat. The set of objects of an enriched small category X is denoted by
Obj(X) and the space of morphisms from A to B by X (A4, B).

Proposition 2.7. (well-known) The inclusion Cat C Flow has a left adjoint !
denoted by 17 : Flow — Cat. It consists of adding identity maps as
isolated points in the spaces of morphisms. This functor is faithful.

What follows is an adaptation of [6, Definition 4.37].

Definition 2.8. Let X be an object of Flow. The fundamental semicategory
of X is the small semicategory 71(X ) having X° for the set of objects
and the set of morphisms between two objects is the set of path-connected
components of the space of execution paths between these two objects. If
X € Cat C Flow, then @1(X) is a small category which is called the
fundamental category of X.

Forall X € Flow, I (7 (X)) is also a small category which is called the
fundamental category of X. For X € Cat, the canonical map I'* (71 (X)) —
71(X) is not an equivalence of categories.

't has also a right adjoint, the enriched small category of idempotents of a flow, which is
not used in this note.
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3. Left-lifting the Ilias model structure

Theorem 3.1. [25, Theorem 2.4] There exists one and only one combinatorial
model structure (Cat)prx = (Cpr, Fpr, Wpk ) on Cat with the following
properties:

* A set of generating cofibrations is the set of maps It (19 U {C?}).

* The weak equivalences are the DK-equivalences: there are the maps of
enriched functors F : C — D such that 71(F) : @1(C) — 71(D) is an
equivalence of categories and such that for all pairs of objects («, B) of C,
there is a weak homotopy equivalence C(a, ) — D(F (), F'(3)).

o A set of generating trivial cofibrations is given by the set of maps I7(J9') U
{T*({0}) — ({0 =2 1})°/} where {0 = 1} is the small category with two
isomorphic objects 0 and 1.

It is called the 1lias model structure. All objects are fibrant.

Theorem 3.1 is the topological analogue of the Bergner model structure
on simplicially enriched small categories [3]. The weak equivalences are
the Dwyer-Kan equivalences of [S]. The combinatorial model category is
minimal since all objects are fibrant. The weak equivalences of Wp induce
equivalences of fundamental categories by definition.

Proposition 3.2. Let f : X — Y be a map of flows. Leti : A — B €
19" U {C}. Consider a commutative square of Cat

I*(A) —2—=T*(X)

180 ()

I"(B)

(Y)
Then either I (B) U+ ()17 (X) = 1T (X)), or the canonical map I (B) U+ a)

I"(X) — I7(Y) is of the form It (g) for some unique map of flows g :
Bu, X —Y.
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Proof. That there is at most one such a map g is a consequence of the fact
that I is faithful. A commutative diagram of enriched small categories of
the form

o I+(X)
I*t(f)
" ({0}) I (Y)

is the image by the functor I'* : Flow — Cat of the commutative diagram
of flows

%] X
\ f
(0} Y

Thus, in this case, g exists by the universal property of the pushout. Consider
now a commutative diagram (C') of enriched small categories of the form

I*(Glob(8" 1)) — &~ I*+(X)

|

I*(Glob(D")) — 2~ I*+(Y)

()

with n > 0. If ¢(0) # ¢(1) are two different objects of I* (X)), then the latter
commutative diagram of enriched small categories is the image by the functor
I : Flow — Cat of the commutative diagram (D) of flows

Glob(S™ 1) —2 ~ X

|

Glob(D")

f

Y

We conclude the existence of g as above. It remains the case ¢(0) = ¢(1). In
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this case, we have the commutative diagram of topological spaces

1
S ——— {Tdy(0) } U Py(0) 1) X

.

)
{Idg(0) } UPy0).01)Y

D’I’L

If n > 1 and since D" is connected, then either ¢(D™) C {Idy)} and
$(8"71) C {Idgo)} or $(D") C Py0) 1) and ¢(8" ") C Py(o),p) X If
n =0, then S"~' = & and either ¢(D") C {Idy()} or ¢(D") C Pyo)s1)Y -

In the first alternative in both cases, there is the pushout diagram of
enriched small categories

I+(Glob(8" 1)) — &~ I*+(X)

J me)
I+(Glob(D™)) ’?(X).

In the second alternative in both cases, the commutative diagram (C') is
the image by the functor I : Flow — Cat of the commutative diagram (D)
and we conclude the existence of g as above. O

By [7, Theorem 2.6], the left-lifting of the small weak factorization system
(Cpr, Fpx N Whpi) along the left adjoint I : Flow — Cat exists and is
accessible. In fact, we have the proposition:

Proposition 3.3. The left-lifting of the small weak factorization system
(Cpk,Fprx N Whpi) along the left adjoint ™ : Flow — Cat is small,
being generated by 19" U {C'}.

Proof. 1t suffices to prove that I* ' (Cpx) = cof(I9 U {C}). We have
IT(19 U {C}) C Cpk by Theorem 3.1. Since I : Flow — Cat is a
left adjoint, we obtain the inclusion cell(/% U {C}) c It '(Cpx). And
using the fact that every map of cof (19 U {C'}) is a retract of a map of
cell(I9 U {C'}), we obtain the inclusion cof (I9' U {C}) € It ' (Cpx) since
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the class of maps Cpx is closed under retract. Conversely, let f : X — YV
be a map of flows such that I (f) : IT(X) — I"(Y) is a cofibration of
Cat. By using the small object argument of [24, Theorem 2.1.14], we factor
I (f) as a composite IT(X) — Z — I"(T') such that the map IT(X) — Z
belongs to cell(I* (79 U {C})) and such that the map Z — I*(T') belongs
to inj(IT (19 U {C})). Since I is a left adjoint, by an immediate transfinite
induction, there exists a transfinite tower (X, )a,<) of Flow with X = X,
and Z = I (X)) such that each map X, — X, for @ < X\ is a pushout
of a map of 19 U {C}. By induction on a > 0, let us prove that the map of
enriched small categories I7(X,) — I*(T) is the image by the functor I
of a map of flows g, : X, — T'. There is nothing to prove for o = 0. The
passage from « to o + 1 is ensured by Proposition 3.2. Finally, the statement
holds for a limit ordinal « since I is colimit-preserving. We deduce that
the map of enriched small categories Z — I7(T) is of the form I (g) for
some map of flows g : X, — T': take g = g,. The lift ¢ in the commutative
diagram of enriched small categories

IF(X) ——17(X))

()

I(T)

exists since I7(f) is a cofibration of Cat by hypothesis. For all o € T, the
commutativity of the diagram of spaces

(1do} U Py o T —— {Tdy)} U Pyt ) Xr ——2m {Ido} U Py 0T

implies that (P, ,T') C Py(a)¢(a) X, and therefore that ¢ = I*(¢) for some
map of flows ¢ : T — X,. Since the functor I* is faithful, we obtain the
commutative diagram of flows

X— X,

f

s}

\

T

~
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It means that the map of flows f : X — T is a retract of the map of
flows X — X,. We deduce f € cof(I9 U {C}), the map X — X,
belonging to cell(19' U {C}) by construction. We deduce the inclusion
I* Y (Cpk) C cof (17 U {C}). O

Lemma 3.4. Let f : X — Y be a map of Flow such that Y is a set. Then X
is a set as well.

Proof. 1t is a consequence of the lack of identity maps for the objects of
Flow. O

Theorem 3.5. The model category (Cat)pg cannot be left-lifted along the
left adjoint It : Flow — Cat.

Proof. By Proposition 3.3 and Lemma 3.4, the map R : {0,1} — {0}
satisfies the RLP with respect to I" ' (Cpx) because it satisfies the RLP with
respect to C': @ — {0}. ButIT(R) ¢ Wpy. It means that the left acyclicity
condition I+_1(C pi)? C I+t (Wpk) fails and that the left-induced model
structure does not exist by [7, Proposition 2.3]. O

Theorem 3.5 can be proved without using Proposition 3.3. Indeed, thanks
to Lemma 3.4, the only maps of flows f belonging to It~ (Cpx ) such that
there exists a morphism in the category of maps of flows from f to R are the
set maps of cell(C') = cof(C), i.e. the one-to-one set maps. Proposition 3.3
is proved because it is used in Corollary 4.10.

4. Left-lifting the cofibrations of the Ilias model structure

We need to recall:

Theorem 4.1. [17, Theorem 7.6] There exists one and only one combinatorial
model structure (Flow), on Flow with the following properties:

e A set of generating cofibrations is the set of maps 19" U {C, R}.

» The weak equivalences are the maps of flows f : X — Y inducing a
bijection f° : X° = Y and a weak homotopy equivalence Pf : PX —
PY.
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* A set of generating trivial cofibrations is given by the set of maps J9'.

It is called the g-model structure. The cofibrations (fibrations resp.) are
called g-cofibrations (q-fibrations resp.). All flows are q-fibrant.

The weak equivalences of (Flow ), induce isomorphisms of fundamental
semicategories. The g-model structure of flows is minimal by [21, Theo-
rem 1.4] since it is combinatorial and all its objects are fibrant 2.

Definition 4.2. The class of maps of flows Wpi consists of the maps of flows
[+ X = Y such that either X =Y = &, or X and Y are both nonempty
sets, or X and 'Y both contain at least one execution path.

As an immediate consequence of the definition above, we obtain:

Proposition 4.3. All maps of flows

2 ={c, |n>1},0% {0} C {0,1},
cf =1d=Lcy : T UGlob(S™) ¢ T LI Glob(D")

belong to Whoik.

We recall the four following propositions for the convenience of the
reader.

Proposition 4.4. [8, Proposition 13.2] Let i : U — V be a map of Top. A
morphism of flows f : X — Y satisfies the RLP with respect to Glob(i) :
Glob(U) — Glob(V) if and only if for all (o, 3) € X° x X°, the map
PosX = Py, s3)Y satisfies the RLP with respect to 1.

Proposition 4.5. ([24, Theorem 2.1.19]) Let I and J be two sets of maps
of a locally presentable category K. Let W be a class of maps satisfy-
ing the two-out-of-three property and which is closed under retract. If
cell(J) C Wncof(l), inj(I) C Wninj(J) and W N cof(I) C cof(J),
then (cof (I),inj(J), W) is a model structure on K.

2[14, Theorem 4.3] gives another argument which does not require to use a locally
presentable setting.
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Proposition 4.6. ([24, Lemma 5.2.6]) Let M be a model category. Consider
a pushout diagram of M of the form

X——Y

Z rT

such that X, Y, Z are cofibrant, such that the top horizontal map is a cofibra-
tion and such that the left vertical map is a weak equivalence. Then the right
vertical map Y — T' is a weak equivalence.

Proposition 4.7. [14, Proposition 3.7] The globe functor Glob : Top —
Flow preserves connected colimits (i.e. colimits such that the underlying
small category is connected).

Notation 4.8. Let 3 be the small category associated with the poset {0 <
1 <2}

Theorem 4.9. There exists one and only one model structure on Flow such
that

* A set of generating cofibrations is 19" U {C'}.
* A set of generating trivial cofibrations is {C*,cf} U J9'U Iill.
* The class of weak equivalences is Wpk.

* The homotopy category of this model structure is the category 3: every flow
is weakly equivalent either to the initial or terminal flow, or to a singleton.

» The cofibrant flows are the g-cofibrant flows.

* The fibrant flows are the flows X such that PX = O (i.e. the sets) and the
flows X such that for all (o, ) € X°x XY, the space P, 3 X is contractible.
In particular, not all flows are fibrant.

Moreover, this combinatorial model structure is minimal.
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Proof. The uniqueness comes from the fact that a model structure is charac-
terized by its cofibrations and its trivial cofibrations. Note that 3 is the full
subcategory of Flow generated by the initial and terminal flows and by the
singleton. Consider the functor w : Flow — 3 characterized as the unique
functor which takes a flow X to 0 if X = @, to 1 if X° # @ and PX = &,
and to 2 otherwise. Then W p is the inverse image by w of the identity maps
of 3. We deduce that the class Wpx has the two-out-of-three property and
that it is closed under retract.

All maps of cell({C*,cf} U J9 U T gll) are g-cofibrations which are one-
to-one on states, which implies cell({C*, cf JUJUIZ,) C cof (19 U{CY).
Every map of cell({CF, cf YUJ9'UI gll) is either between nonempty sets or be-
tween flows containing execution paths, hence the inclusion cell({C*, ¢f } U
J9y Igll) C WDK-

We obtain the inclusion cell({C*, ¢f }U J9UTZ,) € Wpk N cof (19 U
{C}). Anelement f : X — Y of inj([9'U{C'}) is surjective on states. There-
fore X° = gifand only if Y* = @ and f € inj(C'"). By Proposition 4.4, ev-
ery map P, s X — Py p(s)Y forall (o, ) € X% x X is a trivial g-fibration
of spaces. Consequently, X contains execution paths if and only if Y contains
execution paths. We deduce that f € Wp. By Proposition 4.4 again, we
deduce that f € inj(J9 U I9'). We obtain the inclusions inj(I9' U {C}) C
Wk Ninj({CH} U J9 U I9) € W Ninj({CF, ¢f } U JP U TE).

Finally, a map f € Wpx N cof (19 U {C}) is a g-cofibration which is
one-to-one on states such that either the source and the target are empty,
or the source and the target are nonempty set (in this case, f belongs to
cof ({C1})), or such that both the source and the target contain execution
paths. In the latter case, it belongs to cof ({cg } U I gll). We deduce that
Wi Neof (19U {C}) C cof ({C*, g YU ST UTE).

The proof of the existence of the model structure is complete thanks to
Proposition 4.5.

Since all flows are g-fibrant, a flow X is fibrant if and only if the canon-
ical map X — 1 satisfies the RLP with respect to {CT, cd } U [gll. Since
inj(C™) N Set is equal to the surjective set maps union the set maps starting
from the empty set by [9, Lemme 4.4(3)], the canonical map X — 1 always
satisfies the RLP with respect to C". Thus a flow X is fibrant if and only
if the canonical map X — 1 satisfies the RLP with respect to {cg } U I gll.
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We deduce that all sets viewed as flows are fibrant. Consider now a flow X
such that PX = @. Then the map X — 1 satisfies the RLP with respect to
cg if and only it satisfies the RLP with respect to co. The characterization of
fibrant objects is complete thanks to Proposition 4.4.

Since not all flows are fibrant for this model structure, an additional
argument is required to prove that it is indeed minimal.

Consider a model structure (C, F, W) on Flow such that C = cof (19 U
{C'}). The cofibrant flows are the g-cofibrant flows and the cofibrations are the
g-cofibrations which are one-to-one on states. All trivial q-fibrations are trivial
fibrations since they satisfy the RLP with respect to 19 U{C'} C I9'U{C, R}.

Observe at first that R : {0,1} — {0} is a trivial fibration. We have
R.C* = Id{y. By the two-out-of-three property, we deduce that C* : {0} C
{0,1} is a weak equivalence. It means that two nonempty sets viewed as
flows are always weakly equivalent.

We are going to prove by induction on n > 1 that the map

cn - Glob(S" 1) C Glob(D")
is a trivial cofibration. From the pushout diagram (see Example 2.3)

{1y u{1} B

! Glob(S?)

and Proposition 4.6, we deduce that the map B — Glob(S) is a weak
equivalence. From the fact that the composite map B — Glob(S") —

is a trivial fibration and the two-out-of-three property, we deduce that the
unique map of flows Glob(S°) — I is a weak equivalence. Consider the
commutative diagram of flows

Glob(S") === Gloh(S?)
Glob(D') r?
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The bottom horizontal map Glob(D!) — ? is a weak equivalence, being
a trivial g-fibration. By the two-out-of-three property, we deduce that ¢; :
Glob(S°) — Glob(D') is a weak equivalence as well, and therefore a trivial
cofibration since it is a g-cofibration which is one-to-one on states. The
induction hypothesis is therefore proved for n = 1. Suppose that the induction
hypothesis is proved for n > 1. Using Proposition 4.7 and the pushout
diagram of spaces

Sn—l Dn

l_a

we obtain the commutative diagram of flows

Glob(S™1) —*~ Glob(D") 7

Glob(D") Glob(Sm) — (D) 7

lo ———=Glob

Using the induction hypothesis, we deduce that the map Glob(D™) —
Glob(S™) is a trivial cofibration, being a pushout of the trivial cofibration

Cn. All maps Glob(DY) — I for N > 0 are trivial g-fibrations, and hence
trivial fibrations. Using the two-out-of-three property, we obtain the induction
hypothesis for n + 1. We have proved that all maps of cell([ gll) are trivial
cofibrations.

Now we can conclude the proof as follows. Let X be a flow containing
at least one execution path and let X“°/ be a g-cofibrant replacement of X.
Consider the flow Mon(X /) defined by the pushout diagram of flows

XO Xcof

{0} ———= Mon(X /).

By Proposition 4.6, the canonical map X/ — Mon(X“/) is a weak
equivalence. Consequently, we can suppose without loss of generality that
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X° = {0} and that X is a cellular object of the g-model structure of flows.
Write the canonical map @ — X as a composite @ — X — X' — X
such that the map X° — X! belongs to cell({c;}) and such that X' — X
belongs to cell(/ gll). In particular, the map X' — X is a trivial cofibration
by the first part of the proof. Factor the canonical map X! — 1 as a com-
posite X! — X — 1 such that the left-hand map belongs to cell([ gll) and
such that the right-hand map belongs to inj(/ gll). It means that X is weakly
equivalent to X°°. Since the map X — 1 is bijective on states, it is injective
with respect to C' : @ — {0}. Since, moreover, X > contains an execution
path, it is also injective with respect to ¢, : Glob(S™!) C Glob(D°). Thus,
the map X*>° — 1 is a weak equivalence, being a trivial fibration. We deduce
that every flow in (C, F, W) is weakly equivalent to &, {0} or 1. Since the
full subcategory of Flow generated by the three objects &, {0} and 1 is
3, the homotopy category of (C, F, V) is then a categorical localization of
3. We deduce the inclusion Wy C W. The set of generating cofibrations
I9"U{C'%} is tractable. Therefore, by [21, Theorem 1.4], there exists a minimal
model structure (C, F, W) with respect to the set of generating cofibrations
19'U{C?}. In this case, there is also the inclusion YW C Wp and the proof is
complete since a model structure is characterized by its classes of cofibrations
and weak equivalences. O

Corollary 4.10. The minimal model structure on flows with respect to the
left-lifting of the cofibrations of the Ilias model structure has three homotopy

types.

Proof. It is a consequence of Proposition 3.3 and Theorem 4.9. O

5. Right-lifting the q-model structure of flows

We want to prove that the g-model structure of flows can be transferred along
the right adjoint Cat C Flow. At first, we recall:

Theorem 5.1. (Kan-Quillen, see [28, proof of Theorem 1 of Section 11.4 | and
[23, Theorem 11.3.2] or for an abstract presentation [22, Theorem 2.2.1])
Let M and N be two locally presentable categories. Let (C,F, W) be a
combinatorial model structure of M such that all objects are fibrant. Con-
sider a categorical adjunction L : M A N : U. Suppose that there exists a
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factorization of the diagonal of N as a composite X Path(X) S5 X xX
such that U(T) is a weak equivalence of M and such that U(r) is a fibration
of M for all objects X of N. Then there exists a unique combinatorial model
structure on N such that the class of fibrations is U~ (F) and such that the
class of weak equivalences is U~ (W). If the set of generating (trivial resp.)
cofibrations of (C, F, W) is I (J resp.), then the set of generating (trivial
resp.) cofibrations of the model structure of N is L(I) (L(J) resp.).

In the terminology of this note, Theorem 5.2 means that the g-model
structure of flows has a right-lifting to the category of small topologically
enriched categories which is minimal.

Theorem 5.2. There exists a unique model structure (Cat), = (C,, F4, W,)
on Cat such that:

* The set of generating cofibrations is {I*(Glob(S"™')) C I™(Glob(D")) |
n = 0} UL (C), I"(R)}.

* The set of generating trivial cofibrations is {I"(Glob(D™ x {0})) C
IT(Glob(D™ x [0,1])) | n > 0}.

* A map of small enriched categories f : X — Y is a weak equivalence if
and only if Obj(f) : Obj(X) — Obj(Y) is a bijection and for all (o, B) €
Obj(X) x Obj(X), the continuous map X («, 5) — X (f(«), f(B)) isa
weak homotopy equivalence.

* A map of small enriched categories f : X — Y is a fibration if and only
if for all (a, ) € Obj(X) x Obj(X), the continuous map X (c, 3) —
X(f(a), f(B)) is a g-fibration of spaces.

Moreover, this model structure is minimal and all objects are fibrant. The left
Quillen adjoint I : (Flow), — (Cat), is not a left Quillen equivalence.

Proof. Consider the right adjoint Cat C Flow. Let X be a small enriched
category. Let Path(X) be the small enriched category having the same
objects as X and such that the space of morphisms Path(X)(«, f) is equal to
the topological space TOP([0, 1], X («, 3)) with the continuous composition
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law defined for any triple («, 3, 7) of objects of X as the composite:

TOP([0,1], X (v, 8)) x TOP([0, 1], X(8,7))
~ TOP([0, 1], X (c, B) x X(8,7))
5 TOP([0, 1], X (a, 7).

The composition law is clearly associative. The identity of Path(X)(«, «)
(the space of morphisms in Path(X) from « to itself) is the constant map
Id, : [0,1] = X(o,«). For all small enriched categories X, for all
(a, B) € Obj(X) x Obj(X), the map X(«, 3) = TOP({0}, X(«,8)) —
TOP([0, 1], X («, 8)) = Path(X)(a, B) is a trivial g-fibration of spaces and
the map

Path(X)(a, 8) = TOP([0, 1], X (o, 8)) — TOP({0, 1}, X (av, 8))
= X(a, 8) x X(a, B)

is a g-fibration of spaces. Using Theorem 5.1, the g-model structure of Flow
right induces a combinatorial model structure on Cat. The model structure
is minimal because it is combinatorial and all its objects are fibrant.

Let X be an enriched small category. In Flow, the map X/ —
X is a trivial g-fibration of flows. It means that for all & € Obj(X),
Py oX cof P, X is a trivial g-fibration of spaces. Therefore the map
T (XN (a,a) = {Id,} UP,.X* - X(a,a) = P, ,X cannot be a
weak homotopy equivalence. It implies that the map I (X /) — X cannot
be a weak equivalence of (Cat),. We deduce that the left Quillen adjoint
(Flow), — (Cat), is not homotopically surjective, and therefore that it is
not a left Quillen equivalence. O

We have I ({0}) — ({0 = 1})*/ € (Cpx N Wpr)\(C, N W,). Thus,
Id : (Cat)px — (Cat), cannot be a left Quillen adjoint. We have R :
{0,1} — {0} € C,\Cpk. It implies that Id : (Cat), — (Cat)px cannot be
a left Quillen adjoint either.
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Cartesian Differential Comonads and
New Models of Cartesian Differential
Categories

Sacha IKONICOFF and Jean-Simon Pacaud LEMAY

Résumé. Les catégories différentielles cartésiennes (CDC) sont équipées
d’un combinateur différentiel qui formalise 1’opération de dérivation du
calcul différentiel a plusieurs variables, et fournissent aussi la sémantique du
lambda-calcul différentiel. Une source importante d’exemple de CDCs
provient des catégories coKleisli des comonades structurelles des categories
diftérentielles, ce dernier concept fournissant la sémantique catégorique de
la logique linéaire différentielle. Dans cet article, nous généralisons cette
construction en introduisant la notion de comonade différentielle
cartésienne, qui sont précisemment les comonades dont la catégorie de
coKleisli est une CDC, ce qui offre une plus large gamme d’exemples. Nous
construisons ainsi de nouveaux exemples de CDC provenant de comonades
différentielles cartésiennes faisant intervenir les séries formelles, les
algebres a puissances divisées, et les algebres de Zinbiel.

Abstract. Cartesian differential categories (CDC) come equipped with a
differential combinator that formalizes the derivative from multi-variable
differential calculus, and also provide the categorical semantics of the
differential A-calculus. An important source of examples of CDCs are the
coKleisli categories of the comonads of differential categories, where the
latter concept provides the categorical semantics of differential linear logic.
In this paper, we generalize this construction by introducing Cartesian
differential comonads, which are precisely the comonads whose coKleisli
categories are CDCs, and thus allows for a wider variety of examples of
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CDCs. As such, we construct new examples of CDCs from Cartesian
differential comonads based on power series, divided power algebras, and
Zinbiel algebras.

Keywords.  Cartesian Differential Categories, Cartesian Differential
Comonads, Power Series, Divided Powers, Zinbiel Algebras.

Mathematics Subject Classification (2010). 13F25, 18B99, 18C20,
18D99.

1. Introduction

Cartesian differential categories (CDC), introduced by Blute, Cockett, and
Seely in [4], formalize the theory of multivariable differential calculus by
axiomatizing the (total) derivative, and also provide the categorical
semantics of the differential A-calculus, as introduced by Ehrhard and
Regnier in [18]. Briefly, a CDC (Def 2.3) is a category with finite products
such that each homset is a commutative monoid, which allows for zero
maps and sums of maps (Def 2.1), and equipped with a differential
combinator D, which for every map f : A — B produces its derivatives
D[f] : A x A — B. The differential combinator satisfies seven axioms,
known as [CD.1] to [CD.7], which formalize the basic identities of the
(total) derivative from multi-variable differential calculus such as the chain
rule, linearity in the vector argument, symmetry of the partial derivatives,
etc. Two main examples of CDCs are the category of Euclidean spaces and
real smooth functions between them (Ex 2.7), and the Lawvere Theory of
polynomials over a commutative (semi)ring (Ex 2.6). An important class of
examples of CDCs, especially for this paper, are the coKleilsi categories of
the comonads of differential categories [4, Propostion 3.2.1].

Differential categories, introduced by Blute, Cockett, and Seely in [3],
provide the algebraic foundations of differentiation and the categorical
semantics of differential linear logic [17]. Briefly, a differential category
(Ex 3.12) is a symmetric monoidal category with a comonad !, with
comonad structure maps 04 : !(A) — !I(A) and €4 : I(A) — A, such that
for each object A, !(A) is a cocommutative comonoid with comultiplication
Ay I(A) = I(A) ® I(A) and counit e4 : !(A) — I, and equipped with a
deriving  transformation, which i1s a natural transformation
ds : 1(A) ® A — !(A). The deriving transformation satisfies five axioms,
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this time called [d.1] to [d.5], which formalize basic identities of
differentiation such as the chain rule and the product rule. In the opposite
category of a differential category, called a codifferential category, the
deriving transformation is a derivation in the classical algebra sense.
Examples of differential categories include the opposite category of the
category of vector spaces over a field where ! is induced by the free
symmetric algebra [3,6], as well as the opposite category of the category of
real vector spaces where ! is instead induced by free C*°-rings [15].

In a differential category, a smooth map from A to B is a map of type
I(A) — B. In other words, the (infinitely) differentiable maps are precisely
the coKleisli maps. The interpretation of coKleisli maps as smooth can be
made precise when the differential category has finite (bi)products where
one uses the deriving transformation to define a differential combinator on
the coKleisli category. Briefly, for a coKleisli map f : !(A) — B (which
is a map of type A — B in the coKleisli category), its derivative D[f] :
l(Ax A) — B (which is a map of type A x A — B in the coKleisli category)
is defined as [ f]ods0(1ya)®e4)o(!(m)®!(m1))0A 4x 4, Where composition
o is the one of the base category and where 7; are the product projection
maps. One then uses the five deriving transformations axioms [d.1] to [d.5]
to prove that D satisfies the seven differential combinator axioms [CD.1] to
[CD.7]. Thus, for a differential category with finite (bi)products, its coKleisli
category is a CDC. For the examples where ! is the free symmetric algebra
or given by free C*°-rings, the resulting coKleisli category can respectively
be interpreted as the category of polynomials or real smooth functions over
possibly infinite variables (but that will still only depend on a finite number
of them), of which the Lawvere theory of polynomials or category of real
smooth functions is a sub-CDC.

Let us take another look at the construction of the differential
combinator for the coKleisli category. Define the natural transformation
Oy : '(A X A) — '(A) asdy =dyo (1!(A) &® EA) o ('(Wo) & '(71’1)) o Asxa.
Then the differential combinator is simply defined by precomposing a
coKleisli map f : !(A) — B with 0, so D[f] := f o J4. It is important to
stress that this is the composition in the base category and not the
composition in the coKleisli category. Thus, the properties of the
differential combinator D in the coKleisli category are fully captured by the
properties of the natural transformation O in the base category, which in
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turn are a result of the axioms of the deriving transformation d. However,
observe that the type of 04 : (A x A) — !(A) does not involve any
monoidal structure. In fact, if one starts with a comonad whose coKleisli
category is a CDC, it is always possible to construct 0, and to show that
D[—] = — o 0, but it is not always possible to extract a monoidal structure
on the base category. Thus, if one’s goal is simply to build CDCs from
coKleisli categories, then a monoidal structure ® or a deriving
transformation d, or even a comonoid structure A and e, are not always
necessary. Therefore, the objective of this paper is to precisely characterize
the comonads whose coKleisli categories are CDCs. To this end, in this
paper we introduce the novel notion of a Cartesian differential comonad.
Cartesian differential comonads are precisely the comonads whose
coKleisli categories are CDCs. Briefly, a Cartesian differential comonad is
a comonad ! on a category with finite biproducts equipped with a
differential combinator transformation, which is a natural transformation
O0a : (A x A) — !(A) which satisfies six axioms called [dec.1] to [dc.6]
(Def 3.1). The axioms of a differential combinator transformation are
analogues of the axioms of a differential combinator. Thus, the coKleisli
category of a Cartesian differential comonad is a CDC where the
differential combinator is defined by precomposition with the differential
combinator transformation (Thm 3.4). This is proven by reasonably
straightforward calculations, but one must be careful when translating back
and forth between the base category and the coKleisli category. Conversely,
a comonad on a category with finite biproduct whose coKleisli category is a
CDC is in fact a Cartesian differential comonad, where the differential
combinator transformation is the derivative of the identity map
Liay : [(A) = 1(A) seen as a coKleisli map A — !(A) (Prop 3.5). Using
this, since we already know that the coKleisli category of a differential
category is a CDC, it immediately follows that the comonad of a differential
category is a Cartesian differential comonad, where the differential
combinator transformation is precisely the one defined above. Therefore,
Cartesian  differential comonads and  differential  combinator
transformations are indeed generalizations of differential categories and
deriving transformations. However, Cartesian differential comonads are a
strict generalization since, as mentioned, they can be defined without the
need of a monoidal structure. A very simple separating example is the
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identity comonad on any category with finite biproducts, where the
differential combinator transformation is simply the second projection map
(Ex 3.15). While this example is trivial, it recaptures the fact that any
category with finite biproducts is a CDC and this example clearly works
without any extra monoidal structure, and thus is not a differential category
example. Therefore, Cartesian differential comonads allow for a wider
variety of examples of CDCs. As such, in this paper we present three new
interesting examples of Cartesian differential comonads, which are not
differential categories, and their induced CDCs. These three examples are
respectively based on formal power series, divided power algebras, and
Zinbiel algebras. It is worth mentioning that these new examples arise more
naturally as coCartesian differential monads (Ex 3.13), the dual notion of
Cartesian differential comonads, and thus it is the opposite of the Kleisli
category which is a CDC.

The first example (Sec 5) is based on reduced power series. Recall that
a formal power series is said to be reduced if it has no constant/degree 0
term. While the composition of arbitrary multivariable formal power series
is not always well defined, due to their constant terms, the composition of
reduced multivariable power series is always well-defined [7, Sec 4.1], and
so we may construct categories of reduced power series. Also, it is well
known that power series are always and easily differentiable, similarly to
polynomials, and that the derivative of a reduced multivariable power series
is again reduced. Motivated by capturing power series differentiation, we
show that the free reduced power series algebra monad [20, Sec 1.4.3] is a
coCartesian differential monad whose monad structure is based on reduced
power series composition and whose differential combinator transformation
is induced by standard power series differentiation (Prop 5.1). Furthermore,
the Lawvere theory of reduced power series (Ex 5.2) is a sub-CDC of the
opposite category of the resulting Kleisli category.

The second new example (Sec 6) is based on divided power algebras.
Divided power algebras, defined by Cartan [8], are commutative non-unital
associative algebras equipped with additional operations (—)["] for all
strictly positive integer n, satisfying some relations (Def 6.1). In
characteristic 0, divided power algebras correspond precisely to
commutative non-unital associative algebras. In positive characteristics,
however, the two notions diverge. There exist free divided power algebras
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and we show that the free divided power algebra monad [28, Sec 10,
Théoreme 1 and 2] is a coCartesian differential monad (Prop 6.2). Free
divided power algebras correspond to the algebra of reduced divided power
polynomials. Thus the differential combinator transformation of this
example captures differentiating divided power polynomials [25]. In
particular, the Lawvere theory of reduced divided power polynomials (Ex
6.3) is a sub-CDC of the opposite category of the Kleisli category of the
free divided power algebra monad.

The third new example (Sec 7), and perhaps the most exotic example in
this paper, is based on Zinbiel algebras. The notion of Zinbiel algebra was
introduced by Loday [27] and also further studied by Dokas [16]. A Zinbiel
algebra is a vector space A endowed with a non-associative and
non-commutative bilinear operation <. Using the Zinbiel product, every
Zinbiel algebra can be turned into a commutative non-unital associative
algebra. The underlying vector space of free Zinbiel algebras is the same as
the underlying vector space of the non-unital tensor algebra. Therefore, free
Zinbiel algebras are spanned by (non-empty) associative words and
equipped with a product < (which is sometimes referred to as the
semi-shuffle product). The resulting commutative associative algebra is
then precisely the non-unital shuffle algebra over V. We show that the free
Zinbiel algebra monad [27, Prop 1.8] is a coCartesian differential monad
whose differential combinator transformation (Prop 7.2) corresponds to
differentiating non-commutative polynomials with respect to the Zinbiel
product. The resulting CDC can be understood as the category of reduced
non-commutative polynomials where the composition is defined using the
Zinbiel product, which we simply call Zinbiel polynomials. As such, the
Lawvere theory of Zinbiel polynomials is a new exotic example of a CDC.
It is worth mentioning that the shuffle algebra has been previously studied
as an example of another generalization of differential categories in [1], but
not from the point of view of Zinbiel algebras.

An important class of maps in a CDC are the D-linear maps (Def 2.4),
also often simply called linear maps [4]. A map f : A — B is D-linear if its
derivative D[f] : A x A — B is equal to f evaluated in its second
argument, that is, D[f] = f o m; (where 7 is the projection map of the
second argument). A D-linear map should be thought of as being of degree
1, and thus does not have any higher-order derivative. Thus, in many
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examples, D-linearity often coincides with the classical notion of linearity.
For example, in the CDC of real smooth functions, a smooth function is
D-linear if and only if it is R-linear. For a Cartesian differential comonad,
every map of the base category provides a D-linear map in the coKleisli
category. However, it is not necessarily the case that the base category is
isomorphic to the subcategory of D-linear maps of the coKleisli category.
Indeed, a simple example of such a case is the trivial Cartesian differential
comonad which maps every object to the zero object and thus every
coKleisli map is a zero map. Clearly, if the base category is non-trivial it
will not be equivalent to the subcategory of D-linear maps. Instead, it is
possible to provide necessary and sufficient conditions for the base category
to be isomorphic to the subcategory of D-linear maps of the coKleisli
category. It turns out that this is precisely the case when the Cartesian
differential comonad comes equipped with a D-linear unit, which is a
natural transformation 74 : A — !(A) satisfying two axioms [du.1] and
[du.2] (Def 3.7). If it exists, a D-linear unit is unique and it is equivalent to
an isomorphism between the base category and the subcategory of D-linear
maps of the coKleisli category (Prop 3.10). In the context of differential
categories, specifically in categorical models of differential linear logic, the
D-linear unit is precisely the codereliction [3, 6, 17]. The Cartesian
differential comonads based on power series, or divided power algebras, or
Zinbiel algebras all come equipped with D-linear units.

In [5], Blute, Cockett, and Seely give a characterization of the CDCs
which are the coKleisli categories of differential categories. Generalizing
their approach, it is also possible to precisely characterize the CDCs which
are the coKleisli categories of Cartesian differential comonads (Sec 4). To
this end, we must work with abstract coKleisli categories (Def 4.1), which
gives a description of coKleisli categories without starting from a comonad.
Abstract coKleisli categories are the dual notion of Fiihrmann’s
thunk-force-categories [22], which instead do the same for Kleisli
categories. Every abstract coKleisli category is canonically the coKleisli
category of a comonad on a certain subcategory (Lem 4.3), and conversely,
the coKleisli category of any comonad is an abstract coKleisli category
(Lem 4.11). In this paper, we introduce Cartesian differential abstract
coKleisli categories (Def 4.8) which are abstract coKleisli categories that
are also CDCs such that the differential combinator and the abstract
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coKleisli structure are compatible. Every Cartesian differential abstract
coKleisli category is canonically the coKleisli category of a Cartesian
differential comonad over a certain subcategory of D-linear maps (Prop
4.9), and conversely, the coKleisli category of a Cartesian differential
comonad is a Cartesian differential abstract category (Prop 4.15).

In conclusion, Cartesian differential comonads give a minimum general
construction to build coKleisli categories which are CDCs. The theory of
Cartesian differential comonads also highlights the interaction between the
coKleisli structure and the differential combinator. ~ While Cartesian
differential comonads recapture some of the notions of differential
categories, they are more general. Therefore, Cartesian differential
comonads open the door to a variety of new, interesting, and exotic
examples of CDCs. New examples will be particularly important and of
interest, especially since applications of CDCs keep being developed,
especially in the fields of machine learning and automatic differentiation.

Remark: In order to stay within the journal’s page limits, the majority of
the heavy technical proofs have been removed (as approved by the editors).
All proofs in full details and extra commutative diagrams for definitions can
be found in an extended version of this paper here [24].

Conventions: In an arbitrary category, we use the classical notation for
composition as opposed to diagrammatic order which was used in other
papers on differential categories (such as in [4, 26] for example). The
composite map go f : A — C'is the map that first does f : A — B then
g : B — C. We denote identity maps as 14 : A — A.

2. Cartesian Differential Categories

In this background section we review CDCs [4].

The underlying structure of a CDC is that of a Cartesian left additive
category (CLAC), which in particular allows one to have zero maps and
sums of maps, while also allowing for maps which do not preserve said sums
or zeros. Maps which do preserve the additive structure are called additive
maps. Then a CLAC is a left additive category with finite products such that
the product structure is compatible with the commutative monoid structure,
that is, the projection maps are additive. Note that since we are working
with commutative monoids, we do not assume that our CLACs necessarily
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come equipped with additive inverses, or in other words negatives. For a
category with (chosen) finite products we denote the (chosen) terminal object
as T, the binary product of objects A and B by A x B with projection maps
mo: AXx B — Aand 7 : A x B — B and pairing operation (—, —), so that
formaps f: C' — Aandg: C — B, (f,g) : C — A x B is the unique map
such that g o (f,g) = f and 7 o (f, g) = g. As such, the product of maps
h:A— Bandk:C — Disthemaph x k: A x C'— B x D defined as
h x k= (homg,kom).

Definition 2.1. A left additive category [4, Def 1.1.1] is a category X such
that each hom-set X(A, B) is a commutative monoid, with binary addition
+:X(A,B)xX(A,B) = X(A,B), (f,g9) = f+gand zero 0 € X(A, B),
and such that pre-composition preserves the additive structure, that is, for
anymaps [ : A — B, g : A — B, and x : A — A, we have that
(f+g)ox = fox+goxandOox = 0. Amap f : A — B is said
to be additive [4, Def 1.1.1] if post-composition by f preserves the additive
structure, that is, for any maps v : A’ — Aand y : A" — A, we have that
fo(r+y)= fox+ foyand f o0 = 0. A Cartesian left additive category
(CLAC) [26, Def 2.3] is a left additive category X which has finite products
and such that all the projection maps 7y : AX B — Aandm : AXB — B
are additive.

We note that the definition of a CLAC presented here is not precisely
that given in [4, Def 1.2.1], but was shown to be equivalent in [26, Lem 2.4].
Also note that in a CLAC, the unique map to the terminal object T is the
zeromap 0 : A — T. Here are now some important maps for CDCs that can
be defined in any CLAC:

Definition 2.2. In a CLAC X, define the injection maps o : A — A x B
and 11 : B - A x Bas iy = (14,0) and 11 := (0,1p); the sum map
Va: AXx A — Aas Vo = mg+ my, the lifting map (4, : A X A —
(Ax A) x (A X A)as l:= 1y X 11, and lastly the interchange map c, :
(AxA)x (AxA) = (Ax A) x (Ax A)ascy:= (my X mg, T X 71).

It is important to note that while c is natural in the expected sense, the
injection maps ¢;, the sum map V, and the lifting map ¢ are not natural
transformations. Instead, they are natural only with respect to additive maps.
In particular, since the injection maps are not natural map for arbitrary maps,
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it follows that these injection maps do not make the product a coproduct,
and therefore not a biproduct. However, the biproduct identities still hold
in a CLAC in the sense that m; o ; = 0if ¢ # j and 7; 0 ¢; = 1, and also
Lo 0 o + t1 o mp = 14« p. With all this said, it turns out that a category with
finite biproducts is precisely a CLAC where every map is additive [23, Ex
2.3.(i1)]. In that case, note the injection maps and the sum map as defined
above are precisely the injection maps and codiagonal of the coproduct.

CDCs are CLACs which come equipped with a differential combinator,
which in turn is axiomatized by the basic properties of the directional
derivative from multivariable differential calculus. There are various
equivalent ways of expressing the axioms of a CDC. Here we have chosen
the one found in [26, Def 2.6] (using the notation for CLACs introduced
above). It is important to notice that in the following definition, unlike in
the original paper [4] and other early works on CDCs, we use the
convention used in the more recent works where the linear argument of
D[ f] is its second argument rather than its first argument.

Definition 2.3. A Cartesian differential category (CDC) [4, Def 2.1.1] is
a CLAC X equipped with a differential combinator D, which is a family of
operators D : X(A, B) — X(A x A, B), which sends amap f : A — B to
amap D[f] : A x A — B, and such that the following seven axioms hold:
[CD.1]1D[f + g] = D[f] + D[g] and D[0] = 0

[CD.2] D[f] o (14 x V4) = D[f] o (14 X m) + D[f] o (14 X 71) and
D{flow=0

[CD.3] D[14] = m, D[mg] = 7o o w1, and D[my| = m o my

[CD.4] D[(f, )] = (D[], Dlg]) [CD.6] D [D[f]] o {4 = DIf]
[CD.5]1D]gof] = Dlglo(fom, D[f]) [CD.71D[D[f]] o ca = D [D[f]]

Foramap f: A — B, D[f]: A x A — B s called the derivative of f.

A discussion on the intuition for the differential combinator axioms can
be found in [4, Remark 2.1.3]. It is also worth mentioning that there is a
sound and complete term logic for CDCs [4, Sec 4]. An important class of
maps in a CDC is the class of linear maps. In this paper, however, we borrow
the terminology from [23] and will instead call them D-linear maps. This
terminology will help distinguish between the classical notion of linearity
from commutative algebra and the CDC notion of linearity.
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Definition 2.4. In a CDC X with differential combinator D, a map f is said
to be D-linear [4, Def 2.2.1] if D[f] = f o 1. Define the subcategory of
linear maps D-lin[X] to be the category whose objects are the same as X and
whose maps are D-linear in X, and let U : D-lin[X] — X be the obvious
forgetful functor.

By [4, Lem 2.2.2], every D-linear is additive, and therefore it follows that
D-lin[X] has finite biproducts, and is thus also a CLAC (where every map
is additive) such that the forgetful functor U : D-lin[X] — X preserves the
Cartesian left additive structure strictly. It is important to note that although
additive and linear maps often coincide in many examples of CDC, in an
arbitrary CDC, not every additive map is necessarily linear. However it is
always possible to linearize a map. For any map f : A — B, define L[f] :
A — B, called the linearization of f [14, Def 3.1], as L[f] = D[f] o¢;. Then
L[f] is D-linear, and f : A — B is D-linear if and only if f = L[f]. For
other properties of linear maps, see [4, Cor 2.2.3].

We conclude this section with some examples of well-known CDCs and
their D-linear maps. The first three examples are based on the standard
notions of differentiating linear functions, polynomials, and smooth
functions respectively.

Example 2.5. Any category X with finite biproduct is a CDC where the
differential combinator is defined by precomposing with the second
projection map: D[f] = f o m. In this case, every map is D-linear by
definition and so D-lin[X] = X. As a particular example, let F be a field and
let F-VEC be the category of F-vector spaces and [F-linear maps between
them. Then F-VEC is a CDC where for an F-linear map f : V — W, its
derivative D[f] : V' x V' — W is defined as D[f](v, w) = f(w).

Example 2.6. Let [F be a field. Define the category F-POLY whose object
are n € N, where a map P :n — m is a m-tuple of polynomials in n
variables, that is, P = (pi(Z),...,pn (7)) with p;(Z) € Flxy,...,z,).
F-POLY is a CDC where the differential combinator is given by the
standard differentiation of polynomials, that is, for a map P : n — m, with
P = (p1(Z), ..., pm(Z)), its derivative D[P] : n x n — m is defined as the
tuple of the sum of the partial derivatives of the polynomials p;(Z),

D[P|(Z,7) = (ZL @g‘;f)yi):. Amap P : n — m is D-linear if it of
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the form: P = (3", rzmxﬁ;n:l In other words, P = (p1(Z), ..., pm(Z))
is D-linear if and only if each p;(Z) induces an F-linear map F" — F. As
such, D-lin[F-POLY] is equivalent to the category F-LIN whose objects are
the finite powers " for each n € N (including the singleton F® = {0}) and
whose maps are F-linear maps " — [F"*. We note that this example can be
generalized to the category of polynomials over an arbitrary commutative
(semi)ring.

Example 2.7. Let R be the set of real numbers. Define SMOOTH as the
category whose objects are the Euclidean real vector spaces R and whose
maps are the real smooth functions F':R"™ — R™ between them.
SMOOTH is a CDC, arguably the canonical example, where the differential
combinator is defined as the directional derivative of a smooth function. So
for a smooth function F' : R™ — R™, its derivative is the smooth function

D[F] : R* x R" — R™ defined as: D[F|(Z,7) = <ZZL1 g%@)yx
Note that R-POLY is a sub-CDC of SMOOTH. A smooth function
F : R" — R™ is D-linear if and only if it is R-linear in the classical sense.

Therefore, D-lin[SMOOTH] = R-LIN.

Example 2.8. An important source of examples of CDCs, especially for
this paper, are those which arise as the coKleisli category of a differential
category [3,5]. We will review this example in Ex 3.12.

There are many other interesting (and sometimes very exotic) examples
of CDC:s in the literature. See [14,23] for lists of more examples of CDCs.

3. Cartesian Differential Comonads

In this section, we introduce the main novel concept of study in this paper:
Cartesian differential comonads, which are precisely the comonads whose
coKleisli category is a CDC. This is a generalization of [4, Prop 3.2.1],
which states that the coKleisli category of the comonad of a differential
category is a CDC. The generalization comes from the fact that a Cartesian
differential comonad can be defined without the need for a monoidal
product or cocommutative comonoid structure on the comonad’s
coalgebras. As such, this allows for a wider variety of examples of CDCs.
Briefly, a Cartesian differential comonad is a comonad on a category with
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finite biproducts, which comes equipped with a differential combinator
transformation, which generalizes the notion of a deriving transformation in
a differential category [3,6]. The induced differential combinator is defined
by precomposing a coKleisli map with the differential combinator
transformation (with respect to composition in the base category).
Conversely, a comonad whose coKleisli category is a CDC is a Cartesian
differential comonad, where the differential combinator transformation is
defined using the coKleisli category’s differential combinator. We point out
that this statement, regarding comonads whose coKleisli categories are
CDCs, is a novel observation and shows us that even if one cannot extract a
monoidal product on the base category from the coKleisli category, it is
possible to obtain a natural transformation which captures differentiation.
Lastly, we will also study the case where the D-linear maps of the coKleisli
category correspond to the maps of the base category. The situation arises
precisely in the presence of what we call a D-linear unit, which generalizes
the notion of a codereliction from differential linear logic [3,6,17,19].

If only to introduce notation, recall that a comonad on a category X is a
triple (!,0,¢) consisting of a functor !:X — X, and two natural
transformations d4 : !(A) — !!(A), called the comonad comultiplication,
and e4:1(A) — A, called the comonad counit, and such that
5!(A) @) 5A = '(5A) o 5,4 and €1(4) © (SA = 1!(A) = !(EA) o 5,4.

Definition 3.1. For a comonad (!,0,e) on a category X with finite
biproducts, a differential combinator transformation on (!,0,¢) is a
natural transformation 04 : (A x A) — (A) such that the following
equalities hold (where vj, V, {, and c are defined as in Def 2.2):

[de.1] Zero Rule: 040 !(11) = 0;

[de.2] Additive Rule: Og0!(14 X V) =040 (1(1a X mo) + (14 X m));
[de.3] Linear Rule: €4 004 = 71 © €axA;

[de.4] Chain Rule: 64 0 04 = Oyay o ! ({{(7m0),04)) © 6axas

[de.5] Lift Rule: 04 0 Oaxao!(fa) = 0a;

[dc.6] Symmetry Rule: 04 © Oaxa 0 !(ca) = 0a © Oaxa-
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A Cartesian differential comonad on a category X with finite biproducts
is a quadruple (!,6,¢,0) consisting of a comonad (!, 6, <) and a differential
combinator transformation 0 on (!, 6, €).

For commutative diagram versions of the axioms [de¢.1] to [dc.6] see the
extended version [24]. As the name suggests, the differential combinator
transformations axioms correspond to some of the axioms a differential
combinator. The zero rule [dec.1] and the additive rule [de¢.2] correspond to
[CD.2], the linear rule [dc.3] corresponds to [CD.3], the chain rule [dc.4]
corresponds to [CD.5], the lift rule corresponds to [CD.6], and lastly the
symmetry rule [dc.6] corresponds to [CD.7].

Our goal is now to show that the coKleisli category of a Cartesian
differential comonad is a CDC. As we will be working with coKleisli
categories, we will use the notation found in [5] and use interpretation
brackets [—] to help distinguish between composition in the base category
and coKleisli composition. So for a comonad (!, d,¢) on a category X, let
X, denote its coKleisli category, which is the category whose objects are the
same as X and where a map A — B in the coKleisli category is map of type
I(A) — B in the base category, that is, X|(A,B) = X(!(A),B).
Composition of coKleisli maps [f] : !(A) — B and [g] : (B) — Cis
defined as [g o f] = [g] o ! ([f]) o 04. The identity maps in the coKleisli
category is given by the comonad counit: [14] := €4. Let F, : X — X be
the standard inclusion functor which is defined on objects as F(A) = A and
on maps f : A — B as follows: [Fi(f)] = f o€a. A key map in this story
is the coKleisli map whose interpretation is the identity map in the base
category. So for every object A, define the map 4 : A — !(A) in the
coKleisli category as [pa]] = 1ia). It is a well-known result that if the base
category has finite products, then so does the coKleisli category.

Lemma 3.2. [30, Dual of Proposition 2.2] Let (!,6,¢) be a comonad on a
category X with finite products. Then the coKleisli category X, has finite
products where the product X on objects and terminal object are defined as
as in X and the projection maps [m] : (Ax B) — Aand [m] : (AxB) —
B are defined respectively as [m;] = m; o eaxp. Furthermore, F| : X —
X, preserves the finite product strictly, that is, F|(A x B) = A x B and
Fi(T) = T, and also that [Fy(m;)] = [m], [F((f,9))] = [(F(f), ()],
and [Fy (f x g)] = [F(f) x Fi(g)].
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If the base category is also Cartesian left additive, then so is the coKleisli
category in a canonical way, that is, where the additive structure is simply
that of the base category.

Lemma 3.3. [4, Prop 1.3.3] Let (!,,¢) be a comonad on a CLAC X with
finite products. Then the coKleisli category X, is a CLAC where the finite
product structure is given in Lem 3.2, the sum of coKleisli maps
[f1:'A) = B and [g] : YA — B is defined as in X
If + gl = [f] + lg], and the zero [0] : (A) — B is the same as in X,
[0] = 0. Furthemore, F, : X — X preserves the additive structure strictly,

that is, [F1(0)] = 0 and [F\(f + ¢)] = [F.(f) + Fi(g)].

Now since every category X with finite biproducts is a CLAC, it follows
that for every comonad (!, 4, <) on X, the coKleisli category X is a CLAC.
It is important to point out that even if all maps in X are additive maps, the
same is not true for X,. This is due to the fact that !(f + ¢) and !(0) do not
necessarily equal !(f) 4+ !(g) and 0 respectively.

We now provide the first main result of this paper: that the coKleisli
category of a Cartesian differential comonad is a CDC.

Theorem 3.4. Let (!,0,¢,0) be a Cartesian differential comonad on a
category X with finite biproducts. Then the coKleisli category X, is a CDC
where the Cartesian left additive structure is defined as in Lem 3.3 and the
differential combinator D is defined as follows: for a map [f] : '(A) — B,
its derivative [D[f]] : (A x A) — B is defined as [D[f]] = [f] o Oa.
Furthermore:

(i) For every object Ain X, [D[pal] = 0a.

(ii) A coKleisli map [f] : (A) — B is D-linear in X if and only if the
following equality holds: [[f] o 0a o (1) = [f];

(iii) Foreverymap f: A — BinX, [F\(f)] is D-linear in X,,.

(iv) There is a functor Fpyi, : X — D-lin[X\] which is defined on objects
as Fpuin(A) = Aand onmaps f : A — B as [Fpuin(f)] = foea =
[F\(f)], and such that Fy = U o Fp_j,.

Proof. See extended version [24]. OJ
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The converse of Thm 3.4 is also true and states that a comonad whose
coKleisli category is a CDC is indeed a Cartesian differential comonad.

Proposition 3.5. Let X be a category with finite biproducts and let (1,6, ¢)
be a comonad on X. Suppose that the coKleisli category X, is a CDC with
differential combinator D such that the underlying Cartesian left additive
structure of X is the one from Lem 3.3 and for every map f : A — B
in X, [Fi(f)] is a D-linear map in X,. Define the natural transformation
Oa : (A x A) = I(A) as 04 = [D[pal]]. Then (!,0,¢,0) is a Cartesian
differential comonad and furthermore for every coKleisli map [f] : [(A) —

B, [D[f]] = [f] o 0a.
Proof. See extended version [24]. O
As a result, we obtain the following bijective correspondence:

Corollary 3.6. Let X be a category with finite biproducts and let (!, §, €) be a
comonad on X. Then there is a bijective correspondence between differential
combinator transformations O on (!, §, €) and differential combinators D on
the coKleisli category X, with respect to the Cartesian left additive structure
from Lem 3.3 and such that for every map f in X, [F\(f)] is a D-linear map
in X, via the constructions of Thm 3.4 and Prop 3.5. via

Proof. See extended version [24]. O

We now turn our attention back to the D-linear maps in the coKleisli
category of a Cartesian differential comonad. Specifically, we wish to
provide necessary and sufficient conditions for when the subcategory of
D-linear maps is isomorphic to the base category. Explicitly, we wish to
study when Fpy, : X — D-lin[X|] as defined in Thm 3.4.(iv) is an
isomorphism. The answer, as it turns out, is requiring that the comonad
counit has a section.

Definition 3.7. Letr (!,0,¢,0) be a Cartesian differential comonad on a
category X with finite biproducts. A D-linear unit on (!, 6, ¢, 0) is a natural
transformation 1y : A — (A) such that the following equalities hold:

[du.1] Linear Rule: €y ona = 145

[du.2] Linearization Rule: €4 0ms = 0a 0 !(11).
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For commutative diagram versions of the axioms [du.1] to [du.6] see the
extended version [24]. Note that the definition of a D-linear unit essentially
says that 04 o !(¢1) is a split idempotent via 174 and € 4. Our first observation
is that D-linear units are unique.

Lemma 3.8. For a Cartesian differential comonad, if a D-linear unit exists,
then it is unique.

Proof. See extended version [24]. U]

For a Cartesian differential comonad with a D-linear unit, the D-linear
maps in the coKleisli category correspond precisely to the maps in the base
category. We also have the following useful identity:

Lemma 3.9. Let (!1,0,¢,0) be a Cartesian differential comonad on a
category X with finite biproducts. Then [L[p4]] = 0a o !(21).

Proof. See extended version [24]. O

Proposition 3.10. Let (!,6,¢,0) be a Cartesian differential comonad on a
category X with finite biproducts. Then Fpy, : X — D-lin[X] is an
isomorphism (where Fp.;, is defined as in Thm 3.4.(iv)) if and only if
(!,0,¢,0) has a D-linear unitny : A — 1(A).

Proof. See extended version [24]. O

As a result, in the presence of a D-linear unit, we obtain the following
characterizations of D-linear maps.

Corollary 3.11. Let (!,0,e,0) be a Cartesian differential comonad on a
category X with finite biproducts. If (!,9,e,0) has a D-linear unit n, then
the following are equivalent for a coKleisli map [ f] : '(A) — B,

(1) [f] is D-linear in X,

(ii) There exists a (necessarily unique) map g : A — B in X such that

[f] =goea=[Fig)]
(i) [f]onacea=[f]

We conclude this section with some examples.
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Example 3.12. The main example of a Cartesian differential comonad is
the comonad of a differential category. Briefly, a differential
category [3, Def 2.4] is an additive symmetric monoidal category X
equipped with a comonad (!,0,¢), two natural transformations
Ay Y(A) — (A) @ (A) and e4 : !(A) — I such that !(A) is a
cocommutative comonoid, and a natural transformation called a deriving
transformation d4 : !(A) ® A — !(A) satisfying certain coherences which
capture the basic properties of differentiation [6, Def 7]. By [4, Prop 3.2.1],
for a differential category X with finite products, its coKleisli category X is
a CDC where the differential combinator is defined using the deriving
transformation. For a coKleisli map [f] : !4 — B, its derivative
IDIA : (A x A — B is  defined as:
[DLAI] = [f1 0 da o (Lia ® £a) o (7o) © 1(71)) © Auca. Applying Prop
3.5, we obtain a  differential combinator  transformation:
da o (Liay ® €a) o (I(m) ® (1)) © Asxa. Furthermore, if there exists a
natural transformation uy : I — !(A) such that eq o uy = 1; and
us o eq = 1(0), then we obtain a D-linear unit defined as
na =dao(ug ®14); )\;11, where A4 : I @ A = A. Readers familiar with
differential linear logic will note that any differential storage
category [3, Def 4.10] has such a map  and that in this case the D-linear
unit is precisely the codereliction [6, Sec 5]. However, we stress that it is
possible to have a D-linear unit for differential categories that are not
differential storage categories. We invite the reader to see [6, Sec 9]
and [23, Ex 4.7] for lists of examples of differential categories.

Example 3.13. Our three main novel examples of Cartesian differential
comonads that we introduce in Sec 5, 6, and 7 below, arise instead more
naturally as the dual notion, which we simply call coCartesian differential
monads. Following the convention in the differential category literature for
the dual notion of differential categories, we have elected to keep the same
terminology and notation for the dual notion of a differential combinator
transformation. Briefly, a coCartesian differential monad on a category X
with finite biproducts is a quadruple (S, p,n,0) consisting of a monad
(S, ,m) (where p14 : SS(A) — S(A) and 9y : A — S(A)) and a natural
transformation 04 : S(A) — S(A x A), again called a differential
combinator transformation, such that the dual diagrams of Def 3.1
commute. By the dual statement of Prop 3.5, the opposite category of the
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Kleisli category of a coCartesian differential monad is a CDC. The dual
notion of a D-linear unit is called a D-linear counit, which would be a
natural transformation €4 : S(A) — A such that the dual diagrams of Def
3.7 commute. By the dual statement of Prop 3.10, the existence of a
D-linear counit implies that the opposite of the base category is isomorphic
to the subcategory of the D-linear of the opposite of the Kleisli category.

The following are two “trivial” examples of CDCs any category with
finite biproducts. While both are “trivial” in their own way, they both provide
simple separating examples. Indeed, the first is an example of a Cartesian
differential comonad without a D-linear unit, while the second is a Cartesian
differential comonad which is not induced by a differential category.

Example 3.14. Let X be a category with finite biproducts, and let T be the
chosen zero object. Then the constant comonad C which sends every object
to the zero object C(A) = T and every map to zero maps C(f) = O is a
Cartesian  differential comonad whose differential combinator
transformation is simply 0. This Cartesian differential comonad has a
D-linear unit if and only if every object of X is a zero object.

Example 3.15. Let X be a category with finite biproducts. Then the
identity comonad 1x is a Cartesian differential comonad whose differential
combinator transformation is the second projection 7; : A x A — A and
has a D-linear unit given by the identity map 14 : A — A. The resulting
coKleisli category is simply the entire base category X and whose
differential combinator the same as in Ex 2.5. As such, this example
recaptures Ex 2.5 that every category with finite biproducts is a CDC where
every map is D-linear.

4. Cartesian Differential Abstract coKleisli Categories

The goal of this section is to give a precise characterization of the CDCs
which are the coKleisli categories of Cartesian differential comonads. This
is a generalization of the work done by Blute, Cockett, and Seely in [5],
where they characterize which CDCs are the coKleisli categories of the
comonads of differential categories. This was achieved using the concept of
abstract coKleisli categories [5, Sec 2.4], which is the dual notion of
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thunk-force-categories as introduced by Fithrmann in [22].  Abstract
coKleisli categories provide a direct description of the structure of coKleisli
categories in such a way that the coKleisli category of a comonad is an
abstract coKleisli category and, conversely, every abstract coKleisli
category is canonically the coKleisli category of a comonad on a certain
subcategory. As such, here we introduced Cartesian differential abstract
coKleisli categories which, as the name suggests, are abstract coKleisli
categories that are also CDCs such that the differential combinator and
abstract coKleisli structure are compatible. We show that the coKleisli
category of a Cartesian differential comonad is a Cartesian differential
abstract coKleisli categories and that, conversely, every Cartesian
differential abstract coKleisli category is canonically the coKleisli category
of a Cartesian differential comonad on a certain subcategory. We will also
study the D-linear maps of Cartesian differential abstract coKleisli
categories.
We will start from the abstract coKleisli side of the story.

Definition 4.1. An abstract coKleisli structure on a category X is a triple
(I, @, €) consisting of an endofunctor ! : X — X, a natural transformation
wa - A = (A), and a family of maps €4 : (A) — A (which are not
necessarily natural), such that eay : WA) — (A) is a natural
transformation, and that €y o p4 = 1g4 = €4 o (pa) and
€40 €4 = €40!(eq) hold. An abstract coKleisli category [5, Def 2.4.1] is a
category X equipped with an abstract coKleisli structure (!, ¢, €).

Below in Lem 4.11, we will review how every coKleisli category is an
abstract coKleisli category. In order to obtain the converse, we first need
from an abstract coKleisli category to construct a category with comonad.
In an abstract coKleisli category, there are an important class of maps called
the e-natural maps (which are the dual of thunkable maps in thunk-force
categories [22, Def 7]). These e-natural maps form a subcategory which
comes equipped with a comonad, and the coKleisli category of this comonad
is the starting abstract coKleisli category.

Definition 4.2. In an abstract coKleisli category X with abstract coKleisli
structure (!, @, €), amap f : A — Bis said to e-natural ifcgo!(f) = foea.
Define the subcategory of e-natural maps e-nat[X] to be the category whose
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objects are the same as X and whose maps are e-natural in X, and let U, :
e-nat[X| — X be the obvious forgetful functor.

As we will discuss in Lem 4.12, in the context of a coKleisli category
of a comonad, these e-natural maps should be thought of as the maps in
the base category. We now review in detail how every abstract coKleisli
category is isomorphic to the coKleisli category of a canonical comonad on
the subcategory of e-natural maps.

Lemma 4.3. [22, Dual of Thm 4] Let X be an abstract coKleisli category
with abstract coKleisli structure (!, ¢, €). Define the natural transformation
Ba:(A) = NA) as Ba = (@a). Then (!, 5,¢€) is a comonad on e-nat[X]
such that the functor G, : X — e-nat[X], defined on objects as G.(A) = A
and on amap [ : A — B as [G.(f)] = eg o !(f), is an isomorphism with
inverse G_! . e-nat[X], — X defined on objects as G.(A) = A and on a
coKleisli map [f] : (A) — Bas G2 ([f]) = [f] o pa.

We now wish to equip abstract coKleisli categories with Cartesian
differential structure. To do so, we must first discuss Cartesian left additive
structure for abstract coKleisli categories. We start with the finite product
structure:

Definition 4.4. A Cartesian abstract coKleisli category [5, Def 2.4.1] is an
abstract coKleisli category X with abstract coKleisli structure (!, p, €) such
that X has finite products and all the projection maps 7y : A X B — A and
m : A X B — B are e-natural.

For a Cartesian abstract coKleisli category X, it follows that e-natural
maps are closed under the finite product structure.

Lemma 4.5. /5, Sec 2.4] Let X be a Cartesian abstract coKleisli category
with abstract coKleisli structure (!, ¢, €). Then e-nat[X| has finite products
(which is defined as in X).

Next we discuss Cartesian left additive structure for abstract coKleisli
categories, where we require that e-natural maps are closed under the
additive structure.
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Definition 4.6. A Cartesian left additive abstract coKleisli category is a
Cartesian abstract coKleisli category X with abstract coKleisli structure
(I, ¢, €) such that X is also a CLAC, zero maps 0 : A — B are e-natural,
and if f:A— B and g : A — B are e-natural, then their sum
f+g9:A— Bise-natural.

For a Cartesian left additive abstract coKleisli category, the subcategory
of e-natural maps also form a CLAC. It is important to stress however that
e-natural maps are not assumed to be additive, and therefore the subcategory
of e-natural maps does not necessarily have biproducts.

Lemma 4.7. Let X be a Cartesian left additive abstract coKleisli category
with abstract coKleisli structure (!, p,€). Then e-nat[X] is a CLAC (where
the necessary structure is defined as in X). Furthermore, €4 o !(0) = 0
and if f + A — Band g : A — B are e-natural, then eg o !(f + g) =

€EB © '(f) +e€ego '(g)
Proof. See extended version [24]. L]

We are now in a position to define Cartesian differential abstract
coKleisli categories.

Definition 4.8. A Cartesian differential abstract coKleisli category is a
CDC X, with differential combinator D, such that X is also a Cartesian left
additive abstract coKleisli category with abstract coKleisli structure
(!, ¢, €) and every e-natural map is D-linear.

We will now show that for a Cartesian differential abstract coKleisli
category, the canonical comonad on the subcategory of e-natural maps is a
Cartesian differential comonad and that the coKleisli category is
isomorphic to the starting Cartesian differential abstract coKleisli category.

Proposition 4.9. Let X be a Cartesian differential abstract coKleisli
category with differential combinator D and abstract coKleisli structure
(I, ¢, €). Then e-nat[X] is a category with finite biproducts and (!, 3, €, 0)
(where (!, B, €) is defined as in Lem 4.3) is a Cartesian differential comonad
on e-nat[X| where the differential combinator transformation
0a : 1(A) = (A x A) is defined as 0x = €yay o ! (D[pa]). Furthermore,
G. : X — enatlX], is a Cartesian differential isomorphism, so

219



S. IKONICOFF & J.-S. P. LEMAY CART. DIFF. COMONADS

[G(D[fD] = [D[G(NI] and GZ' ([Df]]) = DIG " ([f])), where the

differential combinator on the coKleisli category e-nat[X], is defined as in
Thm 3.4.

Proof. See extended version [24]. O

It is important to note that while e-natural maps are assumed to be D-
linear, the converse is not necessarily true. It turns out that all D-linear maps
are e-natural precisely when the Cartesian differential comonad has a D-
linear unit.

Lemma 4.10. Let X be a Cartesian differential abstract coKleisli category
with differential combinator D and abstract coKleisli structure (!, p,€).
Define the natural transformation ns : A — 1(A) as na := L{pa|. Then the
following are equivalent:

(i) e-nat[X] = D-lin[X], that is, every D-linear map is e-natural;
(ii) For every object A, 14 is e-natural;
(iii) 1 is a D-linear unit for (!, B, €, 0).
Proof. See extended version [24]. O

We turn our attention to the converse of Prop 4.9. We will now explain
how every coKleisli category of a Cartesian differential comonad is a
Cartesian differential abstract coKleisli category. To do so, let us first
quickly review how every coKleisli category is an abstract coKleisli
category.

Lemma 4.11. [5, Prop 2.6.3] Let (!,6,¢) be a comonad on a category X.
Then define the endofunctor, : X, — X, on objects as |,(A) = (A) and on
a coKleislimap [ f] : /(A) = Bas [L(f)] = ([f]) o 64 0 €1a). Also define
the family of coKleisli maps [e4] : '(A) — A as [ea] = €4 0 eya). Then
the coKleisli category X, is an abstract coKleisli category with abstract
coKleisli structure (!, ¢,€), where ¢ is defined as [pa] = lya.
Furthermore,

(i) A coKleislimap [f] : ((A) — B is e-natural if and only if [ f] o €14y =
[f1o!(ea).
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(ii) Foreverymap [ : A — BinX, [F\(f)] : (A) — B is e-natural;

(iii) There is a functor F. : X — e-nat[X|| which is defined on objects as
Fo(A) = Aandonmaps f: A— Bas [F(f)] = foea = [F(f)]
and such that Fy = U o F..

A natural question to ask is when the subcategory of e-natural maps of a
coKleisli category is isomorphic to the base category. The answer is when
the comonad is exact (for monads, this is called the equalizer requirement
[22, Def 8]).

Lemma 4.12. [22, Dual of Thm 9] Let (!, 0, ¢) be a comonad on a category
X. Then F. : X — e-nat[X)] is an isomorphism if and only if the comonad
(1,6,¢) is exact [5, Sec 2.6], that is, the following is a coequalizer diagram:

€1(A)

11(A) I(A) = A

l(ea)

In the case of an exact comonad, the base category can be recovered from
the coKleisli category using the subcategory of e-natural maps. For abstract
coKleisli categories, note that the comonad from Lem 4.3 is always exact.

For a comonad on the category with finite products, the coKleisli
category is a Cartesian abstract coKleisli category.

Lemma 4.13. [5, Sec 2.6] Let (!,0,¢) be a comonad on a category X with
finite products. Then the coKleisli category X, is a Cartesian abstract
coKleisli category with abstract coKleisli structure as defined in Lem 4.11.

For a comonad on a CLAC, the coKleisli category is a Cartesian left
additive abstract coKleisli category.

Lemma 4.14. Let (!,0,¢) be a comonad on a CLAC X. Then the coKleisli
category X, is a Cartesian left additive abstract coKleisli category with
abstract coKleisli structure as defined in Lem 4.11 and Cartesian left
additive structure as defined in Lem 3.3.

Proof. See extended version [24]. O

We will now show that for a Cartesian differential comonad, its coKleisli
category is a Cartesian differential abstract coKleisli category.
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Proposition 4.15. Let (!,0,¢) be a Cartesian differential comonad on a
category X with finite biproducts. Then X, is a Cartesian differential
abstract coKleisli category with Cartesian differential structure defined in
Thm 3.4 and abstract coKleisli structure (!, ¢, €) as defined in Lem 4.11.

Proof. See extended version [24]. O

We conclude this section by showing that for a Cartesian differential
comonad with a D-linear unit, the underlying comonad is exact and that a
coKleisli map is D-linear if and only if it e-natural.

Lemma 4.16. Ler (!,d,¢,0) be a Cartesian differential comonad on a
category X with finite biproducts. Then (!,d,e,0) has a D-linear unit
na - A — 1(A) if and only if (1,0,¢) is exact and for each object A, the
D-linear map [L[pal] : 1(A) — Y(A) is e-natural.

Proof. See extended version [24]. O

Corollary 4.17. Let (!,9,e,0) be a Cartesian differential comonad with a
D-linear unit n on a category X with finite biproducts. Then for a coKleisli
map [f] : (A) — B, [f] is D-linear in X, if and only if [ f] is e-natural in
X. As such, X = e-nat[X|] = D-lin[X|]

5. Example: Reduced Power Series

In this section we construct a Cartesian differential comonad (in the
opposite category) based on reduced formal power series, which therefore
induces a CDC of reduced formal power series. To the extent of the
authors’ knowledge, this is a new observation. This is an interesting and
important non-trivial example of a Cartesian differential comonad which
does not arise from a differential category. Unsurprisingly, the differential
combinator will reflect the standard differentiation of arbitrary
multivariable power series. However, the problem with arbitrary power
series lies with composition. Indeed, famously, power series with degree 0
coefficients, also called constant terms, cannot be composed, since in
general this results in an infinite non-converging sum in the base field.
Thus, multivariable formal power series do not form a category, since their
composition may be undefined. Reduced formal power series are power
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series with no constant term. These can be composed [7, Sec 4.1] and thus,
we obtain a Lawvere theory of reduced power series. The total derivative of
a reduced power series is again reduced, and therefore, we obtain a CDC of
reduced power series. Futhermore, this CDC of reduced power series is in
fact a subcategory of the opposite category of the Kleisli category of the
coCartesian differential monad P, the free reduced power series algebra
monad, which can be seen as the free complete algebra functor induced by
the operad of commutative algebras [20, Sec 1.4.4]. Lastly, it is worth
mentioning that, while in this section we will work with vector spaces over
a field, we note that all the constructions easily generalize to the category of
modules over a commutative (semi)ring.

Let F be a field. For an F-vector space V, define P(V) as
P(V) = T2 (V®")g(,) where (VE")s(,) denotes the vector space of
symmetrized n-tensors, that is, classes of tensors of length n under the
action of the symmetric group which permutes the factors in V®". An
arbitrary element t € P(V) is then an infinite ordered list t = (t(n)) "

n=1

where t(n) € (V®")g(,. Therefore, an arbitrary element of P(1") can be

written in the form t = (t(n)),—, = (Z;Zl Vinia) - - -U(n,i,n)):):l where
V(nk,1) - - - Uln,k,n) denotes the class of v, 1) @ ... @ V) € V" under
the action of the symmetric group. If X is basis of V, then

P(V) = F[X], [20, Sec 1.4.4], where F[X] is the non-unital associative
ring of reduced power series over X, that is, power series over X with no
constant/degree 0 term. Therefore, P(V) is a non-unital associative
[F-algebra. The algebra structure is induced by concatenation of classes of
tensors x : vy...U, ® Wy... Wk > Vp...0,W; ... W, Which provides a
commutative, associative multiplication:
0 (V) gy @ (VER) g0y = (VE™) g(1k). It is worth pointing out that
P(V') does not have a unit element. More specifically, P(V') will not come
equipped with a natural map of type F — P(V). So P(V') will not induce
an algebra modality, and therefore will not induce a differential category
structure on F-VEC.

This induces a monad P on F-VEC [20, Sec 1.4.3]. Define the functor
P : F-VEC — F-VEC as mapping an F-vector space V' to P(V), as defined
above, and mapping an F-linear map f : V' — W to the F-linear map
P(f):P(V) — P(W) defined on elements t as above by

P(f)t) = (ZZ1f(U(n,z’,1)) ) ..f(v(n’m)))zo:l. Define the monad unit
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nv V. — P(V) by ny(v) = (v,0,0,...). From a power series point of
view, if X is a basis of V/, i, maps a basis element z € X to its associated
monomial of degree 1. For the monad multiplication, let us first consider an
element s € PP(1/), which is a list of symmetrized tensor products of lists
of symmetrized tensor products, s = (s(n)),_,, s(n) € ((P(V))*")g,, and

n=1°
thus, s(n) is of the form s(n) = > ", s(n)u1)...5(n)un for some
s(n)u;) € P(V). Now for every partition of n not involving 0, that is, for
every nq + ...+ n, = n with n; > 1, define s(ny, ..., ng) € (VE")g(n) as
s(ny,....,mk) = Yorq85(k)uay(na) * ... % s(k)ir(ne), where x is the
concatenation multiplication defined above. Lastly, define
pv 2 PP(V) = P(V) as puyv(s) = (3pey 2ontinpen 5(01, - - ,nk))zozl

This monad multiplication corresponds to the composition of multivariable
reduced power series, as defined explicitly in [7, Sec 4.1].

We now introduce the differential combinator transformation for P, that
will correspond to differentiating power series. Define the map 9y : P(V') —
P(V x V) by setting:

—

Ov(t)= (Z > ((v(n,m), 0). - (Vi) 0) - - - (Vi) 0)> (0, Un,z‘,j)> ,

i=1 j=1 =

where t is an arbitrary element of P(1") as above and (v(n/lEO) indicates
the omission of the factor (v(n,i,j), 0) in the product. If X is a basis of V/, the
differential combinator transformation can described as a map
Oy : F[X]+ — F[X U X],; which maps a reduced power series t(¥) to its
sum of its partial derivatives: dy (7)) = >, .z aatg) xf, where x denotes
the element z; in the second copy of X in the disjoint union X L} X. Note
that even if t(Z¥) depends on an infinite list of variables, Oy (t(Z)) is
well-defined as a formal power series. It is worth insisting on the fact that 0
cannot be induced by a deriving transformation in the sense of Ex 3.12.
Indeed, as a map, 0 does not factor through a map P(V) — P(V) ® V.
Note that a power series could have infinite partial derivatives and, since
infinite sums and ® are generally incompatible, the derivative of a power
series could not be described as an element of P(V) ® V. Moreover, we
already noted the lack of unit: a differential operator of type
P(V) — P(V) ® V would not be able to properly derive degree 1
monomials without a unit argument to put in the P(V") component. We also
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have a D-linear counit e : P(V) — V defined as simply the projection
onto V: ey (t) = t(1). From a power series point of view, € projects out the
degree 1 coefficients of a reduced power series. So (P,u,n,0) is a
coCartesian differential monad with D-linear counit ¢, or in other words:

Proposition 5.1. (P,u,n,0) is a Cartesian differential comonad on
F-VEC? with D-linear unit .  Therefore F-VECY is a CDC and
D-lin [F-VEC] 2 F-VEC.

Proof. See extended version [24]. OJ

The CDC F-VECY’ can be interpreted as the category whose objects are
[F-vector spaces and whose maps are reduced power series between them.
As a result, focusing on the finite-dimensional vector spaces, specifically
[, one obtains a CDC of reduced power series over finite variables. We
describe this category in detail.

Example 5.2. Let IF be a field. Define the category F-POW,..; whose object
are n € N, where a map ‘P : n — m is a m-tuple of reduced power series
(i.e. power series with no degree O coefficients) in n variables, that is,
P = (p1(2),....pn (7)) with p,(Z) € Flzy,...,2,]+. The identity maps
1, : n — n are the tuples 1,, = (xq,...,x,) and where composition is
given by multivariable power series substitution [7, Sec 4.1]. F-POW,..4 is a
CLAC where the finite product structure is given by n X m = n + m with
projection maps 7y : n X m — n and 71 : n X m — m defined as the tuples
7o = (r1,...,2,) and 7 = (Tpi1,...,Tpim), and where the additive
structure is defined coordinate-wise via the standard sum of power series.
F-POW, .4 is also a CDC where the differential combinator is given by the
standard differentiation of power series, that is, for a map ‘P : n — m, with
B = (p1(2),...,pm(Z)), its derivative D[] : n x n — m is defined as the
tuple of the sum of the partial derivatives of the power series p;(Z), so
DIB|(Z,¥) := <Z?:1 %y»m - It is important to note that even if p, ()
j=
has terms of degree 1, every partial derivative Myi will still be reduced

6%
(even if 8%#;1) has a degree O term), and thus the differential combinator D

is indeed well-defined. A map 3 : n — m is D-linear if it of the form
B =00 ri7ja:,~>;.n:1. Thus D-lin[F-POW,.,] is equivalent to F-LIN (as
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defined in Ex 2.6). We note that this example generalize to the category of
reduced formal power over an arbitrary commutative (semi)ring.

Observe that F-POW,4(n,1) = Flzy,...,z,]+ = F-VECY (F",F),
which then implies that F-POW,..4(n,m) = F-VECY (F",F™). Thus we
have that F-POW, .4 is isomorphic to the full subcategory of F-VECZ” whose
objects are the finite dimensional F-vector spaces. In the finite dimensional
case, the differential combinator transformation corresponds precisely to the
differential combinator on F-POW,..;: O (p(Z)) = D[p](Z, 7). Therefore,
F-POW,..q is a sub-CDC of F-VEC?, where the latter allows for power series
over infinite variables.

6. Example: Divided Power Algebras

In this section, we show that the free divided power algebra monad is a
coCartesian differential monad, and therefore, we obtain a CDC of divided
power polynomials [29, Sec 12]. Divided power algebras were introduced
by Cartan [8] to study the homology of Eilenberg-MacLane spaces with
coefficients in a prime field of positive characteristic. Such structures
appear notably on the homotopy of simplicial algebras [8,21], and in the
study of D-modules and crystalline cohomology [2]. The free divided
power algebra monad [ was first introduced by Roby in [28] and
generalized in the context of operads by Fresse in [21]. Much as for
reduced power series, the composition of divided power polynomials is
only well-defined when they are reduced, that is, have no constant term.
More generally, the study of divided power algebras has been widely
developed in the non-unital setting [21]. Since the monad we study encodes
a structure of non-unital algebras, this provides another example of a
Cartesian differential comonad which is not induced by a differential
category. We begin by reviewing the definition of a divided power algebra.

Definition 6.1. Let F be a field. A divided power algebra [8, Sec 2] over
F is a commutative associative (non-unital) F-algebra (A, *), where A is
the underlying F-vector space and * is the F-bilinear multiplication, which
comes equipped with a divided power structure, that is, a family of functions
() - A — A, a v al, indexed by strictly positive integers n, such that
the following identities hold:
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[dp.1] (Aa)™ = A\"al foralla € Aand \ € F.

[dp.2] ™ ol = (") alm ) forall a € A.

[dp.3] (a+b)™ =al + (377 all 5 0 1) 40 foralla € A, b € A.
[dp.4] a!Y = a foralla € A.

[dp.5] (a*b)" = nlal « bl = @ x b = al"l x 0" foralla € A, b € A.

[dp.6] (")) = Gl for all a € A.

The function (—)" is called the n-th divided power operation.

When the base field F is of characteristic 0, the only divided power
structure on a commutative associative algebra (A, ) is given by al"l = a;!" ,
which justifies the name “divided powers”. Therefore, in the characteristic
0 case, a divided power algebra is simply a commutative associative
(non-unital) algebra. However, in general, for non-zero characteristics, the
two notions diverge. Examples of divided power algebras include the
homology of Eilenberg-MacLane spaces [8, Sec 5 and 8], the homotopy of
simplicial commutative algebras [8, Théoreme 1], and all Zinbiel algebras
(which we review in the next section) [16, Thm 3.4]. Furthermore, there
exists a notion of free divided power algebras, which we review now.

Let F be a field. For an [F-vector space V, define
M (V) = (V&) C V@ a5 the subspace of tensors of length n of V
which are fixed under the action of the symmetric group S(n), that is,
invariant under all n-permutations 0 € S(n). Categorically speaking,
[.(V) is the joint equalizer of the m-permutations. Define (V') as
(V) = @, T.(V). The vector space (V) is endowed with a divided
power algebra structure, and is the free divided power algebra over
V' [8, Sec 2]. Explicitly, the divided power operations and the product are
defined on generators v, w € V by: v/ = v®" andv* w = v @ w + w @ v.
An arbitrary element of (V') can then be expressed as a finite sum of
divided power monomials [9, Sec 4], which are elements of the form:
UE’“” s« ...« vl for vy, ... v, € V, where * is the multiplication of r(v),
and (—)I"] are the divided power operations. Note that this decomposition
in monomials is not unique in general. Later on, we will define the
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differential combinator on monomials. In order to check that this
combinator is well defined, one can use the explicit form of such a

monomial UY” x ool = D oeS(n)/S(r. TH)J(U?” ® ... ® vIm),
where S(r1,...,rn,) = S(r1) X ... x S(rp) is the Young subgroup of the
symmetric group S(ry + ... +1,).

Free divided power algebras induce a monad I' on F-VEC [21, Prop
1.2.3]. Note that it is sufficient to define the monad structure maps on
divided power monomials and then extend by linearity. Define the
endofunctor I' : F-VEC — F-VEC which sends a F-vector space V' to its
free divided power algebra ['(V), and which sends an F-linear map
f:V — W to the F-linear map '(f) : (V') — (W) defined on divided
powers monomials as F(f)(vgﬁ] k. Lk v,[f"}) = (flo))rd s % (f(v,))m],
which we then extend by linearity. The monad unit 7y : V' — (V) is the
injection map of V into I'(V): 7y (v) = v!!l. Note that, with this notation,
the zero element of I'(V') will here be denoted by 0!!). The monad
multiplication gy : T'(IF'(V)) — (V) is defined as follows on divided
power monomials of divided power monomials, using [dp.5] and [dp.6]:

Ly <(v£qil] . v[ql’kl])[”] % ... % (vgf’l”l] k... % UEZ:”])[TPO
(H H rlqz,f« > Ei ol Sk vﬁ,ﬁl’kl] ...k vl[zzzp’kp}
rz qi,j:
=1 7=1

which we then extend by linearity. Note that the functor ', and the monad
structure we described, can be constructed from the operad of commutative
(non-unital) algebras [21, Prop 1.2.3]. Furthermore, note that the algebras of
the monad [ are precisely the dividied power algebras [28, Sec 10, Thm 1
and 2].

Observe that " will not be an algebra modality since (V') is non-unital.
Therefore, I' will provide an example of Cartesian differential comonad that
is not induced from a differential category structure. We now define the
differential combinator transformation for . Define 9y : (V) — I'(V x V)
as follows on divided power monomials:

8\/(2)[1”] .. ox )

= Z(vl, 0) s s (v, )P s s (g, 0) 7 s (0, )
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which we then extend by linearity. If »; = 1, we use the following
convention:

(v1,0) " s s (0, O s s (uy, 0) ) s (0, )
= (v, O s s (01, 0)M s (0, Ol s s (0, 0) 0 s (0, 0)

We will see below that 0 corresponds to taking the sum of the partial
derivatives of divided power polynomials. Note that a consequence of the
lack of a unit in (V) is that 0y does not factor through a map
(V) — (V) ® V since such a map would be undefined on the divided
power monomials of degree 1, v!'l. We also have a D-linear counit
ey @ (V) — V defined as follows on divided power monomials:
ey (v!1]) = v, and 5V(v¥ﬂ kL .Lok vg”]) = 0 otherwise, which we extend by
linearity. Thus ey picks out the divided power monomials of degree 1, v
for all v € V, while mapping the rest to zero.

Proposition 6.2. (I, 11,0, 0) is a Cartesian differential comonad on F-VEC
with D-linear unit €. Therefore F-VEC{ is a CDC and D-lin [F-VECY] =
F-VEC,

Proof. See extended version [24]. O

The Kleisli category F-VEC; is closely related to the notion of
(reduced) divided power polynomials. For a set X, we denote by F| X | the
ring of reduced divided power polynomials over the set X, which is by
definition the free divided power algebra over the [F-vector space with basis
X [29, Sec 12]. In other words, a reduced divided polynomial with
variables in X is an [F-linear composition of commutative monomials of the
type m[lkl] ... 2% where x1,...,T, 18 a tuple of n different elements of X
and ky, . .., k, are strictly positive integers. By reduced, we mean that these
polynomials do not have degree 0 terms. Multiplication is given by
concatenation, multilinearity and the relation [dp.2] of Def 6.1.
Composition of divided polynomials can be deduced from the relations
[dp.1], [dp.3], [dp.5] and [dp.6] of 6.1. For example, if p(z) = 2z, and
q(y, 2) = y"™z, then: p(q(y, 2)) = %y[mn]zw. We can define a notion of
formal partial derivation for divided polynomials. For x € X, define the
linear map - : F[X]— F[X] ®F on monomials (which we then extend
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by linearity). For all monomial m = x[kl] ] , () L(m)=0ifz # x;
forall i € {1,...,n}; (i) L(m) = 2t xgkjll}:c[k }x[liﬂl]. ARy
r=xyand ky > 15 (i) £ (m) = ol gl gl ey — g

k; =1, and n > 1; and finally (iv) dm( x) = 1p where 1y € F is a generator
of the second term of the direct sum F[ X| & F given by the unit of F. We
note that, in the case where X is a singleton, these definitions correspond to
the notion of derivation for formal divided power series, also called Hurwitz
series, as defined by Keigher and Pritchard in [25]. We can restrict to the
finite dimensional case and obtain a sub-CDC of F-VEC{ which is
isomorphic to the Lawvere theory of reduced divided power polynomials.

Example 6.3. Let I be a field. Define the category F-DPOLY whose object
are n € N, where a map P :n — m is a m-tuple of reduced divided
polynomials in n variables, that is, P = (pi(Z),...,pm(Z)) with
pi(Z) € Flxy,...,x,].The identity maps 1, : n — n are the tuples of the
form 1, = <x[11], o ,xﬂ) and composition is given by divided power
polynomial substitution as explained above. F-DPOLY is a CLAC where
the finite product structure is given by n X m = n + m with projection
maps my:nXm—n and m :nxXm —m defined as the tuples
Ty = (a:[ll], . ,:1:%]> and m; = <;1:£111L1, . ,xﬂm% and where the additive
structure is defined coordinate-wise via the standard sum of divided power
polynomials. F-DPOLY is also a CDC where for a map P : n — m, with
P = (p1(Z), ..., pm(Z)), its derivative D[P] : n x n — m is defined as the

tuple of the sum of the partial derivatives of the divided power polynomials
pi(Z): D[P](Z, ) := (Zf ) d’;gaf"”) yi”) . It is important to note that even
7 jzl

if p;(Z) has terms of degree 1, every partial derivative dp ”(x) [1] will still be

reduced (even if 4P ]( %) may have a degree O term), and thus the differential
combinator D is 1ndeed well-defined. A map P : n — m is D-linear if it of

the form P = <Z i x[1]> . Thus, D-lin[F-DPOLY] is equivalent to
IF-LIN (as defined in Ex 2.6). -

We have that F-DPOLY(n,1) = F[zy,...,z,| = F-VEC? (F",F),
which then implies that F-DPOLY (n, m) = F-VEC (F",F™). Therefore,
[F-DPOLY is indeed isomorphic to the full subcategory of F-VEC{” whose
objects are the finite dimensional [F-vector spaces. In the finite dimensional
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case, the differential combinator transformation corresponds precisely to
the differential combinator on F-DPOLY: O (p(Z)) = D[p|(Z,¥). Thus,
F-DPOLY is a sub-CDC of F-VEC]’, where the latter allows for divided
power polynomials over infinite variables (but will still only depend on a
finite number of them).

7. Example: Zinbiel Algebras

In this section, we show that the free Zinbiel algebra monad is a
coCartesian differential monad, and therefore we construct a CDC based on
non-commutative polynomials equipped with the half-shuffle product.
Zinbiel algebras were introduced by Loday in [27], as Koszul dual to the
classical notion of Leibniz algebra. Zinbiel algebras were further studied by
Dokas [16], who shows that they are closely related to divided power
algebras. The free Zinbiel algebra is given by the non-unital shuffle algebra.
Therefore, this example corresponds to differentiating non-commutative
polynomials with a type of polynomial composition defined using the
Zinbiel product. Due to the strangeness of the composition, the differential
combinator transformation is very different from previous examples.
Nevertheless, this is yet another interesting Cartesian differential comonad
which does not arise as a differential category. Furthermore, it is worth
mentioning that, while the (unital) shuffle algebra has been previously
studied in a generalization of differential categories in [1], the Zinbiel
algebra perspective was not considered. In future work, it would be
interesting to study the link between these two notions.

Definition 7.1. Let I be a field. A Zinbiel algebra [27, Def 1.2] over F, also
called dual Leibniz algebra, is an F-vector space A equipped with a bilinear
operation < such that (a < b) < c= (a < (b<c¢))+ (a < (¢ <b)) forall
a,b,c € A

It 1s important to insist on the fact that the bilinear product < is not
assumed to be associative, commutative, or have a distinguished unit
element. That said, it is interesting to point out that any Zinbiel algebra is
equipped with an associative and commutative bilinear product * defined as
axb =a < b+ b < a. Thus, a Zinbiel algebra is also a non-unital
commutative, associative algebra [27, Prop 1.5]. The underlying vector
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space of free Zinbiel algebras is the same as for free non-unital tensor
algebras. Readers familiar with the latter will note that the tensor algebra is
non-commutative when the multiplication is given by concatenation.
However, there is another possible multiplication which is commutative,
called the shuffle product. The tensor algebra equipped with the shuffle
product is called the shuffle algebra. Furthermore, it turns out that the
shuffle product is the commutative associative multiplication * one obtains
from the free Zinbiel algebra. Thus, the free Zinbiel algebra and the shuffle
algebra are the same object. For the purposes of this paper, we only need to
work with the Zinbiel product <.

Let IF be a field. For an F-vector space V, define Zin(V') as Zin(V) =
P,-, V. It is known that Zin(V') is the free Zinbiel algebra over V' [27,
Prop 1.8] with Zinbiel product < defined on pure tensors by (v;®. ..®v,) <
(W1®. .. QW) = D~ csmnim)/Sn)xS(m) V1®T (V2. . . QURQWIR. . .QWp,),
which we then extend by linearity. Thus, Zin(V') is spanned by words of
elements of V. Free Zinbiel algebras induce a monad Zin on F-VEC [27,
Prop 1.8]. Similar to previous examples, note that it is sufficient to define the
monad structure maps on pure tensors and then extend by linearity. Define
the endofunctor Zin : F-VEC — F-VEC which sends an F-vector space
V to its free Zinbiel algebra Zin(V'), and which sends an F-linear map f :
V' — W to the F-linear map Zin(f) : Zin(V') — Zin(W) defined on pure
tensors as Zin(f) (vo® ... ®@v,) = f(vg) ® ... ® f(v,), which we then
extend by linearity. The monad unit ny, : V' — Zin(V) is the injection of V'
into Zin(V'), ny(v) = v, and the monad multiplication uy : ZinZin(V') —
Zin(V') is defined on pure tensors by taking their Zinbiel product starting
from the right, so defined on a pure tensor v, ® ... ® v, € ZinZin(V'), where
v € Zin(V), by py (0, ® ... ®0,) =0, < (... (0, < by)...), which we
then extend by linearity. Unsurprisingly, the algebras of the monad Zin are
precisely the Zinbiel algebras. Similar to the other examples, due to a lack
of unit, Zin will not be an algebra modality and therefore this will result in
another example of a Cartesian differential comonad which does not come
from a differential category.

We can now define the differential combinator transformation for Zin.
Define 0y : Zin(V') — Zin(V x V') on pure tensors as follows:

Oy(v1 ®@vy...QRv,) = (0,v1) ® (v2,0) ® ... ® (vy,,0)
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which we then extend by linearity. Note that this differential combinator
transformation is quite different from the other examples in appearance.
Below, we will explain how this differential combinator transformation
corresponds to a sum of partial derivative for non-commutative polynomials
with the multiplication given by the Zinbiel product. We also have a
D-linear counit ey : Zin(V') — V which projects out the V' component of
Zin(V), that is, it is defined on pure tensors as £(v) = v and
ev(v1 ® ... ®v,) = 0 otherwise, and which we extend by linearity.

Proposition 7.2. (Zin,p,n,0) is a Cartesian differential comonad on
F-VEC? with D-linear unit .  Therefore, F-VECT. is a CDC and
D-lin [F-VECZ, | = F-VEC.

Proof. See extended version [24]. L]

The Kleisli category F-VECy;, is closely related to non-commutative
polynomials. For a set X, let F(X) be the set of non-commutative
polynomials and F(X), be the set of reduced non-commutative
polynomials, that is, those without any constant terms. As a vector space,
F(X) ., over aset X is isomorphic to the underlying vector space of the free
Zinbiel algebra over the free vector space generated by X. Thus, to
distinguish between polynomials and non-commutative polynomials, we
will use the tensor product ®. For example, ry = yx is the commutative
polynomial, while * ® y and y ® x are two different non-commutative
polynomials. Composition in the Kleisli category corresponds to using the
Zinbiel product < to define a new kind of substitution of non-commutative
polynomials. We use the term Zinbiel polynomials to refer to reduced
non-commutative polynomials with the Zinbiel product and the Zinbiel
substitution. We are now in a position to define partial derivatives on
non-commutative polynomials. For z € X, define £ : F(X) — F(X) as
follows on Zinbiel monomials (which we then extend by linearity):

—d(“mf”'@x") =19,%...0x,if r1 =z and —d(“mf'“@x”) = 0 otherwise.
We use the convention that % = 1. We can also restrict to the

finite-dimensional case and obtain a sub-CDC F-VECY ~which is
isomorphic to the Lawvere theory of Zinbiel polynomials, and where the
differential combinator is defined using their partial derivatives.
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Example 7.3. Let I be a field. Define the category [F-ZIN whose object are
natural numbers n € N, where a map P : n — m is an m-tuple of reduced
non-commutative polynomials in n variables, so P = (p;(Z), ..., pm(Z))
with p; (%) € F(xq,...,x,)+. The identity maps 1,, : n — n are the tuples
1, = (x1,...,x,) and where composition is given by Zinbiel substitution,
as defined above. [F-ZIN is a CLAC where the finite product structure is
given by n x m = n 4+ m with projection maps my : n X m — n and
71 : n X m — m defined as the tuples of the form 7y = (zy,...,2,) and
™ = {(Tpi1,---,Tnim), and where the additive structure is defined
coordinate wise via the standard sum of non-commutative polynomials.
[F-ZIN is also a CDC where the differential combinator is given by the
differentiation of Zinbiel polynomial given above, that is, for a map
P :n — m,with P = (py(Z), ..., pm(Z)), its derivative D[P] : n x n — m
is defined as the tuple of the sum of the partial derivatives of the Zinbiel

polynomials p;(Z), D[P|(Z,¥) := <Z?:1 Yi @ d%(,f)> . It is important to
k2 jzl

note that even if p;(¥) has terms of degree 1, every partial derivative
Yi & dzzl];if) will still be reduced. Indeed, the polynomial of the form
vy @ 1 € F(xy,...,2n,y1,...,yn) are identified with the reduced
polynomial y; € F(xy,...,2n,v1,...,Yn)+, and so, for example,
Yi ® @ = 9;. Thus, the differential combinator D is indeed well-defined.
A map P : n — m is D-linear if it of the form P = (3, ri,jxi);n:l. Thus
D-lin[F-ZIN] is equivalent to F-LIN (as defined in Ex 2.6). We note that this
example generalize to the category of Zinbiel polynomials over an arbitrary

commutative (semi)ring.

Observe that F-ZIN(n, 1) = F(xy,...,z,)+ = F-VECT (F" F), which
then implies that F-Zin(n,m) = F-VECF (F",F™). Therefore, we have
that IF-Zin is isomorphic to the full subcategory of F-VEC{” whose objects
are the finite dimensional F-vector spaces. In the finite dimensional case,
the differential combinator transformation corresponds precisely to the
differential combinator on F-ZIN: O~ (p(Z)) = D[p|(¥, 7). Thus, F-ZIN is a
sub-CDC of F-VECZ’, where the latter allows for Zinbiel polynomials over
infinite variables (but will still only depend on a finite number of them).

It is worth noting the link between divided power algebras and Zinbiel
algebra. Any Zinbiel algebra is endowed with a divided power algebra
structure [16, Thm 3.4], and this results in an inclusion of the free divided
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power algebra into the free Zinbiel algebra, ['(V) — Zin(V') [16, Sec 5]. As
such, this inclusion can be extended to a monic monad morphism [ = Zin.
However, it is not compatible with the differential combinators. For
instance, let V' be the vector space spanned by x and v, and let 9" and 94"
denote the differential combinator transformation for the respective monad.
Let p(x,y) = 2!+ ¢yl € T(V). On one hand, the injection (V') — Zin(V)
identifies p(x,y) to p(z,y) = = @ y + y ® = and so we have that
o (p)(z,y, 2%, y*) = 2* @ y + y* ® x. On the other hand, we have that
o (p)(z,y, %, y*) = () 5yl + (y) % 201 which the injection
(v x V) — Zin(V  x V) identifies  to
O (p)(x, y, 2"y ) =" Qu+y R +y Qr+r ey

8. Future Work

Beyond finding and constructing new interesting examples of Cartesian
differential comonads, and therefore also new examples of CDCs, there are
many other interesting possibilities for future work with Cartesian
differential comonads. We conclude this paper by listing three potential
ideas.

I. In [23], it was shown that every CDC embeds into the coKleisli
category of a differential (storage) category [23, Thm 8.7]. In principle, this
already implies that every CDC embeds into the coKleisli category of a
Cartesian differential comonad. However, Cartesian differential comonads
can be defined without the need for a symmetric monoidal structure. Thus,
it is reasonable to expect that there is a finer (and possibly simpler)
embedding of a CDC into the coKleisli category of a Cartesian differential
comonad.

II. In this paper, we studied the (co)Kleisli categories of (co)Cartesian
differential (co)monads. A natural follow-up question to ask is: what can
we say about the (co)Eilenberg-Moore -categories of (co)Cartesian
differential (co)monads? As discussed in [13], for differential categories the
answer is tangent categories [10]. Indeed, the Eilenberg-Moore category of
any codifferential category is always a tangent category [13, Thm 22],
while the coEilenberg-Moore category of a differential (storage) category
with sufficient limits is a (representable) tangent category [13, Thm 27]. As
such, it is reasonable to expect the same to be true for (co)Cartesian
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differential (co)monads, that is, that the (co)Eilenberg-Moore category of
(co)Cartesian differential (co)monad is a tangent category by generalizing
the constructions found in [13]

III. An important part of the theory of calculus is integration,
specifically its relationship to differentiation given by antiderivatives and
the Fundamental Theorems of Calculus. Integration and antiderivatives
have found their way into the theory of differential categories [12, 17] and
CDCs [11]. In future work, it would therefore be of interest to define
integration and antiderivatives for (co)Cartesian differential (co)monads.
We conjecture that integration in this setting would be captured by an
integral combinator transformation, which should be a natural
transformation of the opposite type of the differential combinator
transformation, that is, of type [, : I(A) — !(A x A). The axioms of an
integral combinator transformation should be analogue to the axioms of an
integral combinator [11, Sec 5] in the coKleisli category. Some of the
examples presented in this paper seem to come equipped with an integral
combinator transformation. For example, there is a well-established notion
of integration for power series which should induce integral combinator
transformations in an obvious way. In the case of divided power
polynomial, there is a notion of integration in the one-variable case
(see [25] for the integration of formal divided power series in one variable).
However, it is unclear to us how integration for multivariable divided power
polynomials would be defined, which is necessary if we wish to construct
an integral combinator transformation. In the case of Zinbiel algebras, we
conjecture that [, : Zin(V x V) —  Zin(V) defined as:
J(a10,a11) ® ... @ (ano, any) = Zf:{l,...,n}ﬁ{o,l} a1,7(1) @ -+ @ G f(n) 18
a candidate for an integral combinator transformation (in the dual sense). In
a differential category, one way to build an integration operator is via the
notion of antiderivatives [12, Def 6.1], which is the assumption that a
canonical natural transformation K4 : !(A) — [!(A) be a natural
isomorphism.  Another goal for future work would be to generalize
antiderivatives (in the differential category sense) for Cartesian differential
comonads.

In conclusion, there are many potential interesting paths to take for future
work with Cartesian differential comonads.
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