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Résumé. Cet article fait partie d’un sujet, la topologie algébrique

dirigée, dont l’objectif général est d’inclure les processus non réversibles

dans le domaine de la topologie générale et algébrique. Ici, comme

une étape successive, nous voulons également couvrir les « processus

critiques », c’est-à-dire indivisibles et inarrêtables.

Cette partie introductive est consacrée à la mise en place du nou-

veau cadre et à la représentation de processus issus de divers do-

maines, en faisant appel à des prérequis mathématiques minimaux.

La catégorie fondamentale et la structure d’homotopie du cadre actuel

seront traitées dans les prochains articles.

Abstract. This article belongs to a subject, Directed Algebraic Topol-

ogy, whose general aim is including non-reversible processes in the range

of topology and algebraic topology. Here, as a further step, we also

want to cover ‘critical processes’, indivisible and unstoppable.

This introductory part is devoted to fixing the new framework and

representing processes of diverse domains, with minimal mathematical

prerequisites. The fundamental category and the homotopy structure

of the present setting will be dealt with in a sequel.
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Introduction

0.1 Aims

Directed Algebraic Topology is a recent subject, dating from the 1990’s.
It is an extension of Algebraic Topology, dealing with ‘spaces’ – typically
the directed spaces studied in [Gr1, Gr2] – where the paths need not
be reversible, with the general aim of including the representation of
irreversible processes.

We want to introduce a further extension, called controlled spaces,
where the paths need not be decomposable, in order to include critical
processes, indivisible and unstoppable, either reversible or not.

Taking into account transformations that cannot be stopped is an
unfortunate aspect of our time. But there are plenty of normal events
which cannot be stopped or decomposed in parts, like quantum effects,
the onset of a nerve impulse, the combustion of fuel in a piston, the
switch of a thermostat, the change of state in a memory cell, deleting
a file in a computer, the action of a siphon, the eruption of a geyser,
an all-or-nothing transform in cryptography, moving in a section of an
underground network, etc.

Critical processes and transport networks are often represented by
graphs, in an effective way as far as they do not interact with continuous
variation. We want to show that they can also be modelled by structured
spaces, in a theory that includes classical topology and ‘non-reversible
spaces’.

Controlled spaces can thus unify aspects of continuous and discrete
mathematics, interacting with sectors of Control Theory (see 0.6). The
simple fact of classifying phenomena of diverse domains by mathemat-
ical models which live in the same world may have an interest: these
models can be combined together, and studied with extensions of the
usual tools of Algebraic Topology.

In this introductory part we fix the general framework, presenting
many models and their concrete interpretations. The mathematical
background is essentially restricted to elementary topology and basic
category theory: limits and adjoint functors.

Part II of this series will introduce the fundamental category of con-
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trolled spaces, with suitable methods of calculation. Their homotopy
theory and the breaking of the usual symmetries of topology will be
dealt with in a sequel.

0.2 An example

On-off controllers are systems overseeing a certain variable. Their de-
scription, as in the usual figure below, combines classical topology, where
the variable moves freely, and graph theory, where a change of state
takes place. We want to model them in one framework – an enriched
form of topology.

For concreteness, let us think of a cooling system, with a thermostat
set at temperature T0, and a tolerance interval [T1, T2]. In the following
picture the horizontal axis measures the temperature, and the vertical
axis denotes two states: at level 0 the cooling device is off, at level 1 it
is on

X0

X′′ X′
X1

T1 T0 T2

0

1

����
OOOO

On the left branch X0 the system is in stand by; if the temperature
reaches T2 the cooling device goes on, jumping to state 1; from there, if
the temperature cools to T1, it goes back to state 0.

An elementary hysteresis process, or ‘hysteron’, behaves the same
way: for instance, the change of state in a memory cell, or the change
of orientation in an elementary domain of a ferromagnetic object.

We shall construct a model of this process, ‘pasting’ two natural
intervals X0, X1 (with euclidean topology and nothing more) and two
one-jump intervals X ′, X ′′ where the paths allowed have to jump the
whole interval, in the marked direction: see 3.1(a). More complex mod-
els can be used for combined systems, like a heating and cooling device,
in 3.1(c), or a system that regulates two variables, for instance temper-
ature and pressure in an air-supported dome, in 3.2.
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0.3 Directed and controlled spaces

Directed spaces, our main structure meant to cover irreversible pro-
cesses, were introduced in [Gr1] and extensively studied in a book on
Directed Algebraic Topology [Gr2]; they are frequently used in the the-
ory of concurrent processes, see 0.6.

A directed space X, or d-space, is a topological space equipped with
a set X] of directed paths [0, 1] → X, or d-paths, closed under: trivial
loops, concatenation and partial increasing reparametrisation (including
restrictions to subintervals). The selected paths, generally, cannot be
travelled backwards but are reflected in the opposite d-space Xop.

A topological space has a natural structure of d-space, where all
paths are selected. Directed Algebraic Topology is an extension of the
classical case; in particular, the fundamental groupoid and the groups of
singular homology are extended to directed versions: the fundamental
category ↑Π1(X) and the preordered abelian groups ↑Hn(X) of directed
singular homology.

For all this we shall mainly refer to the book [Gr2]. The prefixes d-
and ↑ are used to distinguish a directed notion from the corresponding
‘reversible’ one.

We now relax the axioms of d-spaces, to include critical processes:
essentially, the selected paths are no longer required to be closed under
restriction; they are called controlled paths, and the prefix c- is used to
distinguish the new notions. This is still a directed setting, pertaining
to Directed Algebraic Topology.

In this extension we gain models of phenomena which have no place
in the previous setting, and interesting formal ‘shapes’, like the one-
jump interval cI, the one-stop circle cS1, the n-stop circle cnS

1, or the
higher controlled spheres and tori described in 2.3-2.6.

We also loose some good properties of the theory of d-spaces. The
fundamental category and directed singular homology of d-spaces can be
extended to c-spaces, but new methods of calculation will be needed:
the van Kampen theorem and the Mayer-Vietoris sequence are both
based on the subdivision of paths and homological chains, which is no
longer permitted. Nevertheless, the fundamental category of ‘rigid’ c-
spaces, as the previous ones, can be fairly simple to analyse, precisely
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because of the scarcity of allowed paths.
Essentially, the previous setting of d-spaces extends classical topol-

ogy by breaking the symmetry of reversion: the allowed paths need
no longer be reversible and the fundamental groupoid becomes a cate-
gory. This further extension to c-spaces breaks a flexibility feature that
d-spaces still retain: paths can no longer be subdivided, and this has
drastic consequences.

0.4 The threshold effect

As another example, in the threshold effect, or siphon effect, the process
is partially described by a variable v which can vary in a real interval
[v0, v1]; when the variable reaches the highest value, the threshold v1,
it jumps down to the least value v0, in a way that cannot be stopped
within the process itself.

There are many examples of this effect in Particle Physics, Natural
Sciences, Computer Science, Medicine, Economics, Sociology, etc.

Some cases are well-known:

- in Hydraulics: the empting of a basin through a siphon (see 3.3);

- in Biology: the onset of a nerve impulse (v is an electric potential);

- in Engineering: the combustion in a piston (v is the quantity of fuel);

- in Zoology and Sociology: mass migration (v is the rate of the popu-
lation present in a region, with respect to the sustainable population).

The anti-siphon effect behaves in the opposite way: the threshold is
at the lowest level v0; reaching it, the variable goes up to the highest
value. The management of stocks of a given article, in a store or at
home, roughly follows this pattern.

Two models are proposed for the siphon effect, in 3.3.

0.5 An outline

In Section 1 we introduce the category cTop of controlled spaces and
we recall the category dTop of directed spaces. We also examine the
links among them and other domains: the categories Top of topological
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spaces and pTop of preordered spaces. Flexible and rigid paths, critical
paths and critical points are dealt with in 1.6.

Section 2 begins with limits and colimits for c-spaces and d-spaces.
Then we describe diverse c-structures on the interval [0, 1], on the
spheres, on the square [0, 1]2, etc.

Finally, Section 3 explores less elementary processes and how they
can be modelled: on-off controllers in 3.1 and 3.2; the threshold effect
in 3.3; transport networks in 3.4.

0.6 Literature

The framework of d-spaces, its fundamental category and singular ho-
mology are used by various authors working in the theory of concurrency
by methods of Directed Algebraic Topology.

This topic is covered in a recent book by L. Fajstrup, E. Goubault,
E. Haucourt, S. Mimram and M. Raussen [FjGHMR], and many articles
among which [CaGM, FjR, Gb, GbM, MeR, Ra1, Ra2]. The present
setting of c-spaces is closely related to the ‘multipointed d-spaces’ in-
troduced in [Ga].

In a different perspective, there are various approaches to what we
are calling critical processes, generally more concrete than the present
one. A comprehensive study of hysteretic processes, in the form of
operators turning an input function into an output function, can be
found in the book [BrS].

A combined analysis of continuous behaviours (possibly ruled by
differential equations) and ‘jumps’ between them (possibly controlled
by a state machine) is also present in the theory of switched systems [Fl,
Li], hybrid control systems [Bra], hybrid automata [He] and networked
control systems [BeHJ]. The author is indebted to the Referee and
M. Raussen for suggesting these links. Some work will be required to
explore the relationship between these approaches and the present one:
for instance, differential equations can be used to select smooth paths,
which would then generate part of the c-structure.

Hopefully the controlled spaces proposed here might form a common
ground for diverse more specific frameworks.
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0.7 Notation

The symbol ⊂ denotes weak inclusion. A continuous mapping be-
tween topological spaces, possibly structured, is called a map. Open
and semiopen intervals of the real line are always denoted by square
brackets, like ]0, 1[, [0, 1[ etc. Marginal remarks are written in small
characters.

A preorder relation, generally written as x ≺ y, is assumed to be
reflexive and transitive; an order relation, often written as x 6 y, is
also assumed to be anti-symmetric. A mapping which preserves (resp.
reverses) preorders is said to be increasing (resp. decreasing), always
meant in the weak sense.

1. Spaces with selected paths

We introduce the category cTop of controlled spaces, or c-spaces, an
extension of the category dTop of directed spaces studied in [Gr1, Gr2],
and we examine the links between them. Both structures are based on
topological spaces with ‘selected paths’ satisfying some axioms, more
general for the new structure.

1.1 Spaces and preordered spaces

Top is the category of topological spaces and continuous mappings, or
maps.

A preordered topological space is just a space equipped with a pre-
order relation x ≺ x′ (reflexive and transitive), without assuming any
relationship between these structures. They form the category pTop of
preordered topological spaces, with the increasing (i.e. preorder preserv-
ing) continuous mappings.

A preordered topological space X is a ‘directed notion’, which can be
reversed: the object Xop has the opposite preorder x ≺op x′ (defined by
x′ ≺ x). This gives a (covariant) involutive endofunctor, called reversor

R : pTop→ pTop, RX = Xop. (1)

(The category Cat of small categories has a similar reversor.)
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R will denote the euclidean line as a topological space, and I the
standard euclidean interval [0, 1]. Similarly Rn and In are euclidean
spaces. Sn is the n-dimensional sphere.

On the other hand, ↑R and ↑I are ordered topological spaces, with
their natural (total) order; ↑Rn and ↑In are cartesian powers in pTop,
with the product order: (xi) 6 (yi) if and only if, for all i, xi 6 yi.

Homotopy theory in Top is parametrised on I. In pTop it is pa-
rametrised on the ordered interval ↑I, yielding an elementary form of
directed homotopy (cf. [Gr2], 1.1.3-5).

1.2 The terminology of paths

In a topological space X, a (continuous) map a : I→ X is called a path in
X, from a(0) to a(1) – its endpoints. It is a loop at x if a(0) = x = a(1).

We begin by listing the (rather standard) terminology that we shall
use for paths.

(a) Concatenation. The concatenation of paths will be written as a′∗a′′;
the constant (or trivial, or degenerate) loop at the point x is written as
ex; the reversed path t 7→ a(1− t) as a].

We recall that the (standard, or regular) concatenation a = a′ ∗ a′′

of two consecutive paths a′, a′′ (with a′(1) = a′′(0)) is defined as

a(t) =







a′(2t), for 0 6 t 6 1/2,

a′′(2t− 1), for 1/2 6 t 6 1.
(2)

As an important feature of topological spaces, called here the path
splitting property, every path a has a unique decomposition a = a′ ∗ a′′,
with:

a′(t) = a(t/2), a′′(t) = a((t + 1)/2)) (t ∈ I). (3)

The operation of concatenation is not associative, the constant loops
do not behave as identities, and the reversed paths are not inverses –
except in trivial cases (e.g. in discrete spaces). But this works up to ho-
motopy with fixed endpoints, which allows us to define the fundamental
groupoid Π1(X) of a space, and the fundamental group π1(X, x0) of a
pointed space.
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(b) Regular concatenation. The regular n-ary concatenation a = a1 ∗
... ∗ an of consecutive paths is based on the regular partition 0 < 1/n <
2/n < ... < 1 of the standard interval, and is again uniquely determined
(it is understood that i = 1, ..., n):

a(t) = ai(nt− i + 1), for t ∈ [(i− 1)/n, i/n],

ai(t) = a((t + i− 1)/n), for t ∈ I.
(4)

(c) General concatenation. More generally, a = C((ai), (ti)) will denote
a general concatenation of n consecutive paths a1, ..., an, based on an
arbitrary partition 0 = t0 < t1 < ... < tn = 1 of I

a(t) = ai((t− ti−1)/τi), for t ∈ [ti−1, ti],

ai(t) = a(τit + ti−1), for t ∈ I (τi = ti − ti−1).
(5)

(d) Reparametrisation. We are interested in reparametrising the path a
as aρ : I → X, where the reparametrisation ρ : I → I is any increasing
map. We speak of a global reparametrisation if ρ is surjective, that is
ρ(0) = 0 and ρ(1) = 1. We speak of an invertible reparametrisation
if ρ is an increasing homeomorphism, or equivalently an automorphism
I→ I of ordered sets (or of ordered topological spaces).

Plainly, all n-ary concatenations are equivalent, up to invertible re-
parametrisation.

Of course, a non-surjective reparametrisation ‘restricts’ a path: for
instance, if ρ(t) = t/2 (as in formula (3)), the path aρ covers the first
half of a; let us note that it is still parametrised on I. More drastically,
if ρ is constant aρ is a constant loop.

A restriction will be an affine, non-degenerate (i.e. non-constant),
increasing map:

ρ : I→ I ρ(t) = (t2 − t1)t + t1 (0 6 t1 < t2 6 1). (6)

By the usual pleonastic terminology, a reparametrisation will also
be called a partial reparametrisation when we want to stress that it is
not assumed to be global (although it might be).
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1.3 Main definitions, I

A controlled space X, or c-space, will be a topological space equipped
with a set X] of (continuous) maps a : I → X, called controlled paths,
or c-paths, that satisfies three axioms:

(csp.0) (constant paths) the trivial loops at the endpoints of a controlled
path are controlled,

(csp.1) (concatenation) the controlled paths are closed under path con-
catenation: if the consecutive paths a, b are controlled, their concatena-
tion a ∗ b is also,

(csp.2) (global reparametrisation) the controlled paths are closed under
pre-composition with every surjective increasing map ρ : I→ I: if a is a
controlled path, aρ is also.

As a consequence, the c-paths are also closed under general concate-
nation. The underlying topological space is written as U(X), or |X|,
and called the support of X.

A map of c-spaces f : X → Y , or c-map, is a continuous mapping
between c-spaces which preserves the selected paths. Their category
will be written as cTop.

A c-space X is a directed notion. Reversing c-paths, by the in-
volution r(t) = 1 − t, yields the opposite c-space RX = Xop, where
a ∈ (Xop)] if and only if ar belongs to X]. This defines the reversor
endofunctor

R : cTop→ cTop, RX = Xop. (7)

A c-path a of X is reversible if ar is also controlled. The c-space
itself is reversible if X = Xop, that is if all its c-paths are reversible.
More generally, it is reversive if it is isomorphic to Xop.

1.4 Main definitions, II

Controlled spaces extend a structure introduced in [Gr1], also studied
in [Gr2] and elsewhere (see 0.6).

A directed space X, or d-space, is equipped with a set X] of maps
a : I→ X, called directed paths, or d-paths, that satisfies three axioms:
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(dsp.0) (constant paths) every trivial loop is directed,

(dsp.1) (concatenation) if the consecutive paths a, b are directed, their
concatenation a ∗ b is also,

(dsp.2) (partial reparametrisation) if ρ : I→ I is an increasing map and
a is a directed path, aρ is also.

The second axiom is the same of c-spaces (up to terminology), the
others are stronger; every d-space is a c-space, and the notation X] for
the set of selected paths is consistent. (In [Gr1, Gr2] this set is written
as dX, a notation which has no good extension here.)

A map of d-spaces, or directed map, or d-map, is a continuous map-
ping which preserves the directed paths. Their category dTop is a full
subcategory of cTop. The reversor endofunctor works in the same way.

A ‘multipointed d-space’, introduced by P. Gaucher [Ga] in 2009, is
more general: (dsp.0) is not assumed and (dsp.2) is only required for
invertible reparametrisations. It also generalises a c-space.

1.5 Standard intervals

The difference between these settings shows clearly in two structures of
the euclidean interval [0, 1].

(a) In dTop the standard d-interval ↑I has for directed paths all the
increasing maps I→ I. It plays the role of the standard interval in the
category dTop, because the directed paths of any d-space X coincide
with the d-maps ↑I→ X.

It may be viewed as the essential model of a non-reversible process,
or a one-way route in transport networks. It will be represented as

0 1

// (8)

(b) In cTop the standard c-interval cI, or one-jump interval, has the same
support, with controlled paths the surjective increasing maps I→ I and
the trivial loops at 0 or 1. The controlled paths of any c-space X coincide
with the c-maps cI→ X. It models a non-reversible unstoppable process,
or a one-way no-stop route

0 1

• •// // (9)
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1.6 Flexible paths and critical points

(a) Flexible paths. In a c-space X, a point x will be said to be flexible if
its trivial loop ex is controlled; the flexible support |X|0 is the subspace
of these points. In a diagram, an isolated flexible point will be marked
by a bullet, as in figure (9) above.

We say that a controlled path a is splittable if its halves a′, a′′ (cf. (3))
are also controlled, so that the decomposition a = a′ ∗ a′′ stays within
c-paths; we say that a is flexible if all its restrictions are controlled (see
(6)), or equivalently all its decompositions in general concatenations
give raise to c-paths. Each controlled trivial loop is flexible. A c-map
preserves all these properties.

The c-space itself is flexible if every point and every c-path is flexible.
A c-space is a d-space if and only if it is flexible, if and only if every
trivial loop is controlled and all its controlled paths are splittable.

A c-path a is rigid if in each general concatenation of a by controlled
paths, precisely one of them is not constant. A c-space is rigid if every
non-trivial path is a general concatenation of rigid paths. The interval
cI is rigid, as well as many c-spaces introduced in the next section.

(b) Critical paths and critical points. In a c-space X, a controlled path
is critical if it is not flexible.

A point x is:

- critical, if every non-trivial c-path a through x (i.e. x ∈ Im a) is critical,
and there is some,

- future critical, if every non-trivial c-path starting there is critical, and
there is some,

- past critical, if every non-trivial c-path arriving there is critical, and
there is some.

A future or past critical point x is always flexible, a critical point
need not. A d-space has no critical points.

In the interval cI all points are critical, the point 0 is also future
critical, while 1 is also past critical. There are c-spaces where these
three kinds are disjoint: see 2.3(e).
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1.7 Reshaping and generated structures

The c-structures on a topological space X are closed under arbitrary
intersection (as subsets of Top(I, X)), and form a complete lattice for
the inclusion: we say that the structure X1 is finer than X2 if X]

1 ⊂ X]
2,

or equivalently if the identity map of X gives a map X1 → X2; this map
is called a reshaping.

(a) Every set S of paths in the space X generates a c-structure, the
finest, or smallest, containing it. It is obtained by adding all the con-
stant loops at the endpoints of the paths of S, and stabilising the latter
under global reparametrisation and general concatenation.

(b) Similarly, the d-structures on a topological space X form a complete
lattice. Every set of paths of X generates a d-structure.

(c) If we start from a c-space X, the d-structure generated by the c-
paths can be obtained stabilising them under constant paths, restriction
and general concatenation.

(d) The forgetful functor U : dTop→ Top takes a d-space to its support,
the underlying topological space |X|. It has a left and a right adjoint

U : dTop ←−−→←− Top : D, D′ D a U a D′. (10)

For a topological space T , the d-space DT is the same space with
the discrete d-structure (the finest, or smallest), with directed paths all
the trivial loops. D′T has the indiscrete d-structure (the largest, or
coarsest), where all paths are directed.

(e) The category cTop has two forgetful functors to topological spaces

U : cTop→ Top, U0 : cTop→ Top, (11)

where U(X) = |X| is the topological support and U0(X) = |X|0 is the
flexible support. U has both adjoints, U0 has only the left one

Dc a U a D′, D a U0. (12)

For a topological space T , the c-space DcT is the same space with
the discrete c-structure: no path is controlled. D′T has the indiscrete
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c-structure, where all paths are controlled. In DT all trivial loops are
controlled. The functors D and D′ take values in dTop, and are denoted
as previously.

A topological space will be viewed as a c-space (and a d-space) by
its natural structure D′T , so that all its paths are selected.

(f) The singleton has two structures in cTop: the c-discrete singleton
Dc{∗} and the flexible singleton {∗} ( = D{∗} = D′{∗}), having a
controlled loop e∗; the flexible singleton is by far more important, as it
is the terminal object and the unit of the cartesian product (see 2.1).

A c-map x : Dc{∗} → X is ‘the same’ as a point of X, while a c-map
x : {∗} → X is a flexible point. In other words, Dc{∗} represents the
functor U : cTop→ Set, while {∗} represents U0 : cTop→ Set.

(g) All the c-spaces DT are trivially flexible and rigid.

1.8 Comparing directed structures

We are considering three ways of enriching topological spaces by a di-
rected structure (in a general sense), encoded in the categories pTop,
dTop and cTop. We now examine their interplay.

A preordered topological space X (in the sense recalled in 1.1) will
always be viewed as a d-space (and a c-space) by selecting the increasing
(continuous) paths ↑I → X, where ↑I denotes the ordered euclidean
interval [0, 1].

This defines a functor d : pTop→ dTop, and our categories are linked
by three obvious functors

d : pTop→ dTop, dTop ⊂ cTop, d : pTop→ cTop. (13)

Let us note that d is not an embedding: trivially, all preorders on
a discrete topological space give the same selected paths, namely the
trivial loops. (One can find more interesting examples in [Gr2], 1.4.5.)

(a) There is an adjunction

d : pTop ←−−→ dTop : p, p a d, (14)

where the left adjoint p provides a d-space with the path-preorder x � x′,
meaning that there exists a d-path from x to x′. The counit on a
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preordered space X is the preorder-reshaping pdX → X: if x � x′

there exists a d-path from x to x′ in dX, whence x ≺ x′ in X.
Both functors p, d are faithful. A d-space is said to be of (pre)order

type if it can be obtained, as above, from a topological space with such
a structure. Thus ↑Rn and ↑In are of order type; Rn, In and Sn are of
chaotic-preorder type. The directed sphere ↑Sn described in 2.5 is not
of preorder type (for n > 0).

(b) The embedding dTop→ cTop has a left and a right adjoint:

ˆ: cTop→ dTop (the reflector),

Fl : cTop→ dTop (the coreflector).
(15)

For a c-space X, the generated d-space X̂ has the same underlying
topological space with the d-structure generated by the c-paths. The
unit of the adjunction is the reshaping X → X̂, the counit is the identity
Ŷ = Y for a d-space Y .

In the second construction the flexible part Fl X is the flexible sup-
port |X|0 with the d-structure of the flexible c-paths. The counit is the
inclusion Fl X → X, the unit is the identity Y = Fl Y for a d-space Y .

The full subcategory of reversible c-spaces has a similar reflector and
coreflector: the generated reversible c-space and the reversible part.

(c) Composing the adjunction (14) with the previous reflection

pTop
d

// dTop
poo

⊂

// cTop
ˆoo pTop

d
// cTop

p̂oo (16)

we get the adjunction p̂ a d, where d still equips a preordered space
X with the increasing maps ↑I → X as c-paths (producing a d-space),
while p̂(X) = p(X̂) provides a c-space with the generated-path preorder
x � x′, depending on the d-paths of X̂. (The c-paths of X give a
preorder on the flexible support |X|0, not used here.)

2. Limits, colimits and structural models

Limits and colimits, for c-spaces and d-spaces, are easily obtained as
topological limits and colimits with the initial or terminal structure
determined by the structural maps.
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Then we describe diverse c-structures on the interval, the spheres
and the square; they can represent elementary events and will be used
as bricks to form models of more complex processes.

2.1 Limits and colimits

We already remarked that the c-structures on a topological space T
form a complete lattice. Therefore every family of maps fi : T → Xi

with values in c-spaces defines an initial c-structure on the space T : a
path a is controlled if and only if all composites fia are. Dually, every
family of maps fi : Xi → T defined on c-spaces gives raise to a final
c-structure on the space T : the controlled paths in T are generated by
all the paths fia, where a ∈ X]

i for some index i.
A (controlled) subspace X ′ ⊂ X of a c-space X has the initial struc-

ture of the embedding, which selects those paths in X ′ that are con-
trolled in X. A (controlled) quotient X/R has the quotient structure,
that is the final one for the projection p : X → X/R; it is generated by
the projected c-paths through general concatenation (see 1.7(a)).

The category cTop has all limits and colimits, constructed as in Top

and equipped with the initial or final c-structure for the structural maps.
For instance a path I →

∏

i Xi with values in a product of c-spaces is
controlled if and only if all its components I → Xi are, while a path
I→

∑

i Xi with values in a sum is controlled if and only if it is in some
summand Xi. Equalisers and coequalisers are realised as subspaces or
quotients, in the sense described above.

We already described the terminal {∗}, which is the unit of the
cartesian product. On the other hand, X×Dc{∗} is the discrete c-
structure Dc|X| on the underlying space.

If X is a c-space and A ⊂ |X| is a non-empty subset, X/A will
denote the c-quotient of X which identifies all points of A.

All this works in the same way in pTop and dTop. The embedding
dTop ⊂ cTop preserves all limits and colimits, as it has both adjoints
(see (15)). On the other hand, the canonical functors d : pTop→ dTop

and d : pTop→ cTop of (13) preserve limits (as right adjoints) and sums
(obviously), but do not preserve coequalisers.

In fact, in pTop the coequaliser of the endpoints {∗} −→−→ ↑I is

18
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the circle S1 with the indiscrete preorder. In dTop (and cTop) we get
a non-trivial d-structure, the directed circle ↑S1, described below in
2.5(a). Essentially, this is ‘why’ directed homotopy is simple but very
elementary in pTop.

(The standard c-circle cS1, described in 2.6(a), is the coequaliser of
the endpoints in cI.)

2.2 Controlled actions

Let G be a group, in additive notation (although not necessarily com-
mutative). A controlled G-space is a c-space X equipped with a (right)
action of G: this is an action on the underlying topological space such
that, for each g ∈ G, the induced map

X → X, x 7→ x + g, (17)

is a map of c-spaces (and therefore an isomorphism of cTop). Directed
G-spaces are a particular case.

The c-space of orbits X/G is the quotient c-space, modulo the equiv-
alence relation which collapses each orbit to a point. Its c-paths are
simply the projections of the directed paths of X, as verified below.
The same holds for d-spaces.

We have to prove that these projections are closed under global (resp. par-
tial) reparametrisation and binary concatenation. The first fact is obvious.
As to the second, let a, b : I→ X be two selected paths whose projections are
consecutive in X/G: there is some g ∈ G such that a(1) = b(0) + g. Then
the path b′(t) = b(t) + g is selected in X, and a ∗ b′ is also. Finally, writing
as p : X → X/G the canonical projection, pa ∗ pb = p(a ∗ b′) is the projection
of a selected path.

2.3 Elementary models

(a) The euclidean interval I and the euclidean line R have the natural
d-structure, where all paths are selected. The same holds for their
cartesian powers In and Rn, and for all spheres Sn. I will be called the
natural interval.

(b) The ordered euclidean interval ↑I and the ordered euclidean line ↑R
have the d-structure given by the increasing paths (already recalled for
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the former). The same holds for their cartesian powers ↑In and ↑Rn.
They are not reversible (for n > 0), yet reversive, i.e. isomorphic to the
opposite structure.
↑I is the standard ordered interval, and also the standard d-interval,

as already said. Its d-structure is generated by the identity map I→ I;
a d-map ↑I→ X is the same as a directed path of X.

But ↑I will also be important in cTop, as the flexible interval. Indeed,
for a c-space X, the c-maps ↑I→ X are the flexible paths of X.

(c) We already introduced the standard controlled interval cI, with the
c-structure generated by the identity map I → I: the c-paths are the
surjective increasing maps I→ I and the trivial loops at the endpoints.
The c-maps cI→ X are the selected paths of the c-space X (possibly a
d-space).

The c-space cI will also be called the quantum interval, or the one-
jump interval

0 1
cI• •// // (18)

The generated d-space is (cI)̂ = ↑I, while the flexible part Fl (cI) =
D{0, 1} is the discrete boundary ∂I of the interval, with its trivial loops.

(d) The line with integral stops cR, or integral jumps, is equipped with
the c-structure generated by the family of embeddings I→ R, t 7→ t+k
(k ∈ Z). Now the c-paths are the increasing maps I→ R whose image is
precisely an interval [k, k′] with integral endpoints (possibly the same)

−1 0 1 2 3

• • • • •// // // // // // // // (19)

The line cR is a controlled Z-space, with respect to the action of the
group Z by translations. The interval cI is a subspace of cR, and the
latter is the controlled Z-space generated by the embedding of cI.

The line cR is a rigid c-space (see 1.6): the rigid paths are those of
length 1, and every non-trivial c-path is a concatenation of them, on
a suitable partition. All points of cR are critical; the integral numbers

20



M. Grandis The topology of critical processes, I

are also past and future critical. The generated d-space (cR)̂ = ↑R is
of order type; the flexible part Fl (cI) = DZ is the discrete integral line
with the discrete d-structure.

(e) Let X be the euclidean ordered interval [0, 3], with controlled paths
given by the increasing maps I → X whose image either contains the
open subinterval ]1, 2[ or does not meet it.

Loosely speaking, we are modelling a process measured on the in-
terval [0, 3], which

- can only proceed ‘forward’,

- passing point 1, is obliged to go on to point 2, at least,

or a one-way route with a no-stop section, or a stream with rapids

0 1 2 3

// // // // (20)

The point 1 is future critical; all the points of ]1, 2[ are not flexible
and critical; 2 is past critical. The generated d-space X̂ = ↑[0, 3] is the
ordered structure, while Fl X is the ordered structure on the flexible
support [0, 1] ∪ [2, 3].

2.4 Other structures on the interval

We have already seen three c-structures on the euclidean interval [0, 1]:
the natural structure I, where all paths are controlled; the ordered struc-
ture ↑I, with the increasing paths; the one-jump structure cI, with the
surjective increasing paths and the trivial loops at the endpoints.

There are many others, that can be used as bricks of modelisation.
We list here some of them; two ‘siphon structures’ can be found in 3.3.

(a) The two-jump interval cJ has the c-structure generated by the re-
strictions to the first or second half

c−(t) = t/2, c+(t) = (t + 1)/2 (t ∈ I), (21)

0 1/2 1

• • •// // // //
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The non-trivial c-paths are the increasing maps I→ I whose image
is either [0, 1/2], or [1/2, 1], or [0, 1]. This c-space is isomorphic to the
subspace c[0, 2] ⊂ cR, and can model a non-reversible two-stage process.
Formally, it parametrises the concatenation of two c-paths (see Part II).

(b) Delayed intervals. The past-delayed c-interval c−I will be the eu-
clidean interval [0, 1] with the c-structure generated by the past-delayed
reparametrisation ρ : I→ I

ρ(t) = 0 ∨ (2t− 1), σ(t) = 2t ∧ 1, (22)

while the future-delayed c-interval c+I has the c-structure generated by
the future-delayed reparametrisation σ : I→ I.

In c−I the non-trivial controlled paths are the surjective increasing
maps I→ I which are constant on some non-degenerate interval [0, t1].
For a c-space X, a c-map c−I→ X is the same as a past-delayed c-path
(constant as above).

These c-spaces are not reversive, but anti-isomorphic to each other,
by reversion

r : c−I→ (c+I)
op, r(t) = 1− t. (23)

Their structures are rigid and finer than cI, because their generators
are surjective increasing maps, i.e. controlled paths in cI.

There are many delayed structures on the interval. They can model
irreversible non-stoppable processes with inertia, or inductance.

(c) The reversible d-interval I∼ is the d-space generated by identity and
reversion id , r : I → I; its directed paths are the piecewise monotone
maps I→ I. The reversible directed paths of a d-space X coincide with
the d-maps I∼ → X. I∼ is strictly finer than the natural interval I; it
can model a shock absorber.

(d) The one-jump reversible interval cI∼ has the c-structure generated
by identity and reversion id , r : I → I. The reversible c-paths of a c-
space X coincide with the c-maps cI∼ → X.

Every c-path in cI∼ has an integral length and those of length 1 are
rigid; cI∼ is rigid and the generated d-space is I∼. The interval cI∼ can
(basically) model a reversible non-stoppable process, like the change of
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state in a memory cell, or a two-way no-stop route, or the flights of an
airplane between two airports

0 1
cI∼• •oooo // // (24)

2.5 Directed spheres and tori

(a) The standard d-circle ↑S1 is the standard circle with the anticlock-
wise structure, where the directed paths a : I → S1 move this way, in
the oriented plane R2: a(t) = (cos ϑ(t), sin ϑ(t)), with an increasing
continuous argument ϑ : I→ R

↑S1

oo

(25)

The directed circle can be described as an orbit space

↑S1 = (↑R)/Z, (26)

with respect to the action of the group of integers on the directed line
↑R, by translations: the directed paths of ↑S1 are simply the projections
of the increasing paths in the line.

The c-space ↑S1 can also be obtained as the coequaliser in dTop of
the following pair of maps

∂−, ∂+ : {∗} −→−→ ↑I, ∂−(∗) = 0, ∂+(∗) = 1. (27)

Indeed, this coequaliser is the quotient ↑I/∂I, which identifies the
endpoints; the d-structure of the quotient, generated by the projected
paths, is what we want: it is sufficient to concatenate a finite number
of projected paths, which are already stable under partial reparametri-
sation.

(b) The standard directed n-sphere is defined, for n > 0, as the quotient
of the directed cube ↑In modulo its (ordinary) boundary ∂In

↑Sn = (↑In)/(∂In), ↑S0 = S
0 = {−1, 1} (n > 0), (28)
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while ↑S0 has the discrete topology and the natural d-structure (obvi-
ously discrete).

All directed spheres are reversive; their d-structure can be described
by an asymmetric distance (see [Gr2], 6.1.5). The pointed suspension
of S0 in the category of pointed d-spaces gives ↑S1 and, by iteration,
all higher ↑Sn ([Gr2], 1.7.4, 1.7.5). The unpointed suspension gives
different d-spaces, less interesting.

(c) The standard directed n-torus is a cartesian power of ↑S1

↑Tn = (↑S1)n. (29)

Equivalently, it is the orbit d-space (↑Rn)/Zn, for the action of the
additive group Zn by translations.

2.6 Controlled spheres and tori

(a) The standard c-circle cS1, or one-stop circle, is now defined as the
orbit c-space of the line cR for the action of the group Z, by translations

•

cS1 = (cR)/Z

oooo

(30)

The controlled paths of cS1 are the projections of the controlled
paths in the line: here this means an anticlockwise path (as in 2.5(a))
which is a loop at [0], the only flexible point (corresponding to (1, 0) in
the plane). The simple loops are rigid, and so is cS1.

The circle cS1 can also be obtained as the coequaliser in cTop of the
endpoints of cI

∂−, ∂+ : {∗} −→−→ cI, ∂−(∗) = 0, ∂+(∗) = 1. (31)

All points are critical; the flexible point is also past and future crit-
ical. The generated d-space is (cS1)̂ = ↑S1, while Fl (cS1) is the flexible
point with its trivial loop.

(b) More generally, the n-stop c-circle cnS
1 (n > 0) is the orbit space

cnS
1 = (cnR)/Z (c1S

1 = cS1), (32)
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where the c-paths of cnR are the increasing paths whose image is an
interval [k/n, k′/n], for integers k 6 k′.

In cnS
1 a c-path is an anticlockwise path between two points [k/n]

and [k′/n] of the circle. The ‘minimal generators’ have length 1/n of
the circle and are rigid; the c-space itself is also.

Rotating motions can follow this pattern, with mandatory direction and
stops: for instance, the second hand of a watch, a washing machine dial,
a panoramic wheel with n cabins. The mode dial of a photocamera and
a railway turntable can be modelled by the reversible c-space generated by
cnS

1.

(c) The standard c-sphere cSn is defined as a quotient of cIn (for n > 0)

cSn = (cIn)/(∂In), cS0 = S
0 = {−1, 1} (n > 0), (33)

and will be examined in Part III.

(d) The standard controlled n-torus is a cartesian power of cS1

cTn = (cS1)n, (34)

and can also be obtained as the orbit c-space (cRn)/Zn.

2.7 Controlled squares and cubes

(a) We have already seen the ordered square ↑I2, also called the flexible
square when viewed in cTop.

(b) The standard c-square cI2, represented in the left figure below, has
the structure of a cartesian power: a path I→ I2 is controlled if and only
if it is increasing and each of its projections covers [0, 1], or is constant
at 0 or 1

cI2 ↑I2
s

t

• •

••

77 77 77

// //

// //

OOOO OOOO

//

OO
(35)

There are four flexible points, the vertices of the square. The c-paths
of cI2 have five kinds of generators: two horizontal paths s 7→ (s, α) (for
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α = 0, 1), two vertical paths t 7→ (α, t), and all increasing paths from
(0, 0) to (1, 1) in the ordered square, as exemplified in the left picture
above.

There is no finite set of generators, but we shall see that the funda-
mental category has only five non-trivial arrows (and four identities at
the flexible points).

The space is rigid. The generated d-space is the ordered square ↑I2,
whose d-paths are the increasing maps I→ I2; one of them is drawn in
the second picture above.

Similarly, in the standard c-cube cIn a path is controlled if and only
if it is increasing and each of its projections covers [0, 1], or is constant
at 0 or 1. Again, (cIn)̂ = ↑In.

For a product, the structure (X×Y )̂ is always finer than X̂×Ŷ , and can
be strictly finer. For instance one can take the empty structure X = Dc{∗}
and Y = cI or ↑I, so that (X×Y )̂ = (Dc|I|)̂ = D|I|, but X̂×Ŷ = {∗}×↑I = ↑I.
This issue will be studied in a Part II.

(c) The hybrid square cI×↑I will be important in the construction of
the fundamental category. Here a path I→ I2 is controlled if and only
if it is increasing and its first projection is either surjective or constant
at 0 or 1

cI×↑I
s

t
44 44

OO

OO

//

OO
(36)

(All the horizontal paths s 7→ (s, t0) are controlled, but already belong to
the family of increasing paths whose first projection is surjective.)

The generated d-space is again ↑I2; the flexible part D{0, 1}×↑I only
allows increasing paths in the vertical edges.

(d) The following example shows a sharp distinction between a c-struc-
ture X of the square and the generated d-space

X X̂
p′ p′′

• •

••

?? ??

�� �� ��
(37)
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The c-paths of X are generated by two diagonal paths, t 7→ (t, t)
and t 7→ (t, 1− t); the flexible points are the four vertices of the square,
and it is easy to guess that the fundamental category ↑Π1(X) will only
have two non-trivial arrows, the marked ones. But the fundamental
category ↑Π1(X̂) of the generated d-space has two new arrows between
the vertices, like the arrow p′ → p′′ displayed in the right figure above.

Clearly, one cannot model a crossing of railways by a d-space. Within
c-spaces, one can make X reversible adding the reversed c-paths.

3. Critical processes and models

We now start from ‘critical processes’, trying to model them by c-spaces
built with the previous ones, by limits and colimits.

3.1 On-off controllers and elementary hysteresis

We consider a system meant to regulate a certain variable, either op-
posing its rising, or helping it, or working both ways. An elementary
hysteresis process, or ‘hysteron’, generally behaves in the first way –
counteracting the effect.

(a) Reacting controller. We begin by considering a cooling device coun-
teracting the rising of temperature, with a thermostat set at tempera-
ture T0 and a tolerance interval [T1, T2].

In the following picture the horizontal axis represents the tempera-
ture, and the vertical axis denotes two states, 0 and 1

X0

X′′ X′
X1

T1 T0 T2

0

1

����
OOOO

(38)

On the left branch X0 the system is off; if the temperature grows to
T2 the device jumps to state 1; then, if the temperature cools to T1, it
goes back to state 0.

27



M. Grandis The topology of critical processes, I

The support |X| of our model is a one-dimensional subspace of R2,
the union of the supports of the following c-spaces

X0 = [0, T2]× {0}, X1 = [T1, +∞[×{1},

X ′ = {T2} × cI, X ′′ = {T1} × cIop.

The c-structure of X is generated by the c-structures of:

- X0, X1, natural intervals, where the temperature can vary,

- X ′, X ′′, one-jump c-intervals, where the state of the system varies.

One could also use the plane with the terminal c-structure cfR
2 produced

by the topological embedding f : X → R2; the c-paths are those of X.

A hysteretic process is generally studied as a functional operator that
turns a piecewise monotone input function into an output function (of time,
in both cases): see [BrS], Chapter 2. Here the input is the temperature
function, while the output values are the states 0, 1. This analysis presents
some indetermination and failure of continuity at the critical temperatures
T1, T2, as discussed in [BrS], Example 2.1.1.

(b) Cooperating controller. A heating system supports the rising of
temperature. It can be modelled by the opposite c-space: in state 0 the
system is on; see the lower half of the following diagram.

(c) Dual controller. Combining both models we can represent a heating
and cooling system, like a heat pump. The system is meant to keep the
temperature in an interval [T1, T2], with a lower tolerance [T1, T ′

1] and
an upper tolerance [T ′

2, T2] (disjoint intervals); the vertical axis denotes
now three states: at level 0 the system is off, at level -1 the heating is
on, at level 1 the cooling device is on

heating

off

cooling

T1 T ′

1

T ′

2
T2

−1

0

1

����
OOOO

����
OOOO

(39)
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3.2 Controlling two variables

We deal now with a pair of on-off controllers, acting on two independent
variables

(a) Two reacting controllers. We start from two copies X, Y of the
c-space drawn in (38)

X Y

off

A is on

off

B is on

x1 x2 y1 y2

����
OOOO ����

OOOO (40)

In X a device A controls the variable x, countering its rising; in Y
the device B acts similarly on the variable y.

The cartesian product X×Y models the combined system. Its sup-
port is a subspace of R4, but we draw it in R3, with four states on the
vertical axis: at 0 both devices are off, at 1 only A is on, at 2 only B is
on, at 3 both A and B are on

x1 x2

y1

y2

����
OOOO

����

OOOO

0

A

3

B

OOOO

OOOO
����

����

22

oo

(41)

The new c-space can be obtained as follows. We put on R3 the
terminal c-structure for the topological map

f : X×Y → R
3, f(x, s, y, t) = (x, y, s + 2t), (42)

and we use this c-space cfR
3. Equivalently, we can use the c-subspace

Z = Im f of the previous structure: they have the same c-paths. Z is
contained in four parallel planes, at level 0, 1, 2, 3.
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The right figure above represents a c-path in Z. It starts at level 0,
with both variables below the active thresholds x2, y2, and both increas-
ing; when the variable x reaches x2, system A jumps on, counteracting
it. Both variables are still growing; when y attains y2, device B also
activates and the process is in state 3. Then the variable x decreases
below x1 and A goes off, while B is still on, in state 2. Finally also the
variable y is brought below y1 and both devices are off, at level 0.

(b) The opposite case of two cooperating controllers is modelled by the
opposite c-space Zop. The mixed case, with A cooperating with variable
x and B counteracting variable y, is also of interest.

An air-supported dome can give examples of both cases. In winter
time, the compressor would rise pressure and the heating would rise
temperature; in summer time, the compressor would work the same
way while air-conditioning would reduce temperature.

3.3 The threshold effect and siphon structures.

In the threshold effect a variable v can vary in the interval [v0, v1];
reaching the threshold v1 it jumps down to its least value v0. Various
processes of this type are listed in the Introduction, Subsection 0.4.
Here we consider two structures on the interval I that can model such
a process.

(a) The growing siphon. We denote as cSI the standard interval with the
c-structure generated by all the increasing maps I→ I and the reversion
r(t) = 1− t

0 1
cSI

. ... . . . . . . . ... .//
oooo (43)

A controlled path can only increase between 0 and 1; reaching 1,
either it stays there or jumps down to 0. Point 1 is future critical,
point 0 is past critical, and there are no (bilateral) critical points. The
generated d-structure (cSI)̂ has two generators, id I and r: it is the
reversible d-interval I∼ of 2.4(c); the flexible part is ↑I.

For concreteness, we refer to a hydraulic system consisting of a water
basin filled by a source; water can only get out by a siphon tube, as in
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the figure below, so that its level v in the basin will grow up to the upper
part of the tube, marked 1, and then flow out until the level reaches the
lower opening of the tube in the basin, marked 0 (the diameter of the
tube is overlooked)

0

v

1

(44)

(b) The oscillating siphon. A more complex model c′

SI allows the c-
paths to decrease in the semiopen interval [0, 1[. There are three kinds
of generators of the c-paths:

- the increasing maps I→ I,
- the decreasing maps a : I→ I with image in [0, 1[, i.e. a(0) < 1,
- the reversion r(t) = 1− t.

Here a controlled path is piecewise monotone; whenever it reaches
1, either it stays there or it jumps to 0 (and possibly goes on). Point
1 is still future critical, but 0 is no more past critical. The generated
d-structure is again the reversible d-interval I∼, the flexible part allows
the piecewise monotone paths which can only reach 1 as the terminal
endpoint.

In the hydraulic system previously described, the basin can now let
out water by other openings or evaporation. Other processes considered
in 0.4 are also better fitted by this model; for instance the electric
potential at a neural membrane can increase and decrease; reaching the
threshold value the impulse is emitted.

3.4 Transport networks and labelled graphs

Transport networks are usually modelled in graph theory. They can
also be modelled by c-spaces, as we have already seen in various exam-
ples; this would allow to combine them with planar or three-dimensional
regions.
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(a) The following is a model of a road that contains a dual-carriage
section (for left-hand drive one would turn the picture upside-down)

0 1 2 3
//

oo (45)

The d-space X is the quotient Y/R of the sum Y = X1 + ... + X4

X1 = [0, 1], X2 = ↑[1, 2],

X3 = ↑[1, 2]op, X4 = [2, 3],

modulo the equivalence relation that identifies the three points 1 (of X1,
X2, X3) and – separately – the three points 2 (of X2, X3, X4). A path
in X is directed if and only if it is a general concatenation of projections
of d-paths in the various Xi. For instance, to go from 0 to the point
(1/2)3 of X3 we must (at least) reach 2 along X1 and X2 and then come
back along X3; there are infinitely many longer paths.

(b) Similarly, one can construct a one-dimensional c-space X as a real-
isation of a labelled graph, in the sense of a multigraph whose edges are
labelled with additional information on direction and critical properties.
We have already drawn many examples in 3.1.

As above, the c-space X can be obtained as a quotient of a sum
of intervals with the appropriate c-structure: natural intervals I when
unlabelled, standard d-intervals ↑I when labelled by a single arrow,
standard c-intervals cI when labelled by a double arrow, etc.

This can represent a transport networks, where some routes are one-
way and others are no-stop – as in an underground section, or a mo-
torway tunnel, or an airline route. The model can be further enriched,
adding delays (for a stop sign), etc. Or higher dimensional regions, as
we were suggesting.

3.5 Point-like variations

In the examples of this section one can often form a ‘slightly’ different
model, using a general procedure: if X is a c-space and A ⊂ |X|, one
builds a finer c-space on |X| excluding all the previous c-paths that have
an endpoint in A.
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Thus, in the model of the heat controller described in 3.1(a), one can
omit the paths that start or end at (0, T2) or (1, T1). Similarly, in the
siphon-interval 3.3(a) one can rule out the paths starting or ending at
1. In both cases we are forcing the jump at these points, which become
critical and non-flexible. This can be appreciated, but the new models
are more complicated and their fundamental category will also be.

In our opinion the choice between such variations is merely a theo-
retical issue, that should be based on the results one can obtain. In the
same way as, if we model a thin rod by the interval [0, 1], it is Math-
ematics rather than experience that leads us to use an interval of the
real line instead of the rational line: the classical results on continuous
functions and differential equations only hold in the former.
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