MACNEILLE COMPLETIONS OF SUBORDINATION ALGEBRAS

M. Abbadini, G. Bezhanishvili, L. Carai

Abstract

Résumé. Les algèbres de subordination S 5 sont une généralisation naturelle des algèbres de de Vries. Il a été prouvé récemment que la catégorie SubS5 ${ }^{S}$ des algèbres de subordination S 5 et des relations de subordination compatibles est équivalente à la catégorie des espaces compacts de Hausdorff et des relations fermées. Nous généralisons la complétion de MacNeille des algèbres de Boole au cadre des algèbres de subordination S 5 , et utilisons le caractère relationnel des morphismes de $\mathrm{SubS5}^{\mathrm{S}}$ pour prouver que le foncteur de complétion de MacNeille établit une équivalence entre SubS5 ${ }^{5}$ et sa sous-catégorie pleine des algèbres de de Vries. De plus, nous montrons que le foncteur qui associe à chaque algèbre de subordination S 5 le frame de ses idéaux ronds établit une dualité entre SubS5 ${ }^{S}$ et la catégorie des frames compacts réguliers et des homomorphismes de preframes. Nos résultats n'utilisent pas l'axiome du choix et fournissent un éclairage supplémentaire sur les dualités de type Stone pour les espaces compacts de Hausdorff avec différents types de morphismes. En particulier, nous montrons comment elles se restreignent aux sous-catégories amples de $\mathrm{SubS5}^{\mathrm{S}}$ correspondant aux relations continues et aux fonctions continues entre espaces compacts de Hausdorff.

Abstract. S5-subordination algebras are a natural generalization of de Vries algebras. Recently it was proved that the category SubS5s of S5-subordination algebras and compatible subordination relations between them is equivalent to the category of compact Hausdorff spaces and closed relations. We generalize MacNeille completions of boolean algebras to the setting of S5subordination algebras, and utilize the relational nature of the morphisms in SubS5 ${ }^{s}$ to prove that the MacNeille completion functor establishes an equiv-
alence between SubS5 ${ }^{\text {S }}$ and its full subcategory consisting of de Vries algebras. We also show that the functor that associates to each S5-subordination algebra the frame of its round ideals establishes a dual equivalence between SubS5 ${ }^{\text {S }}$ and the category of compact regular frames and preframe homomorphisms. Our results are choice-free and provide further insight into Stonelike dualities for compact Hausdorff spaces with various morphisms between them. In particular, we show how they restrict to the wide subcategories of SubS5 ${ }^{\text {S }}$ corresponding to continuous relations and continuous functions between compact Hausdorff spaces.
Keywords. Compact Hausdorff space, Gleason cover, closed relation, continuous relation, de Vries algebra, subordination relation, proximity, MacNeille completion, ideal completion, compact regular frame.
Mathematics Subject Classification (2020). 18F70, 54E05, 06D22, 06E15, 54D30, 54G05.

Contents

1 Introduction 2
2 Preliminaries 6
3 Round ideals of S5-subordination algebras 14
4 MacNeille completions of S5-subordination algebras 17
5 Continuous subordinations 25
6 Functional subordinations 35
7 Dual descriptions of the completions 40

1. Introduction

With each compact Hausdorff space X, we can associate numerous algebraic structures that determine X up to homeomorphism. This yields various dualities for the category KHaus of compact Hausdorff spaces and continuous
functions. In this paper we are interested in two dualities for KHaus from pointfree topology. By Isbell duality [Isb72], KHaus is dually equivalent to the category KRFrm of compact regular frames and frame homomorphisms; and by de Vries duality [dV62], KHaus is dually equivalent to the category DeV of de Vries algebras and de Vries morphisms.

Isbell duality is established by working with the contravariant functor $\mathcal{O}:$ KHaus \rightarrow KRFrm which associates with each compact Hausdorff space X the compact regular frame $\mathcal{O}(X)$ of open subsets of X, and with each continuous function $f: X \rightarrow Y$ the frame homomorphism $f^{-1}: \mathcal{O}(Y) \rightarrow$ $\mathcal{O}(X)$. De Vries duality is established by working with the contravariant functor $\mathcal{R O}$: KHaus $\rightarrow \mathrm{DeV}$. Writing int for the interior and cl for the closure, $\mathcal{R O}$ associates with each $X \in \mathrm{KHaus}$ the de Vries algebra $(\mathcal{R O}(X), \prec)$ of regular open subsets of X, where $U \prec V$ iff $\mathrm{cl}(U) \subseteq V$, and with each continuous function $f: X \rightarrow Y$ the de Vries morphism $\mathcal{R O}(f): \mathcal{R O}(Y) \rightarrow \mathcal{R} \mathcal{O}(X)$ given by $\mathcal{R O}(f)(V)=\operatorname{int}\left(\mathrm{cl} f^{-1}[V]\right)$ for each $V \in \mathcal{R O}(Y)$.

As a consequence of Isbell and de Vries dualities, KRFrm is equivalent to DeV . This equivalence can be obtained directly, without first passing to KHaus [Bez12]. We thus arrive at the following diagram, where the horizontal arrow represents an equivalence and the slanted arrows with the letter d on top represent dual equivalences.

Several authors have considered generalizations of KHaus where functions are replaced by relations. A relation R between two compact Hausdorff spaces X and Y is closed if R is a closed subset of $X \times Y$ and it is continuous if in addition the R-preimage of each open subset of Y is open in X. A function between compact Hausdorff spaces is closed iff it is continuous. But for relations this results in two different categories KHaus ${ }^{\mathrm{R}}$ and $\mathrm{KHaus}^{\mathrm{C}}$. In the former, morphisms are closed relations; and in the latter, they are continuous relations. Clearly KHaus is a wide subcategory of KHaus ${ }^{\text { }}$, which in turn is a wide subcategory of $K H^{2}{ }^{\mathrm{R}}$.

In BGHJ19] KRFrm was generalized to $\mathrm{KRFrm}^{\mathrm{C}}$, DeV to $\mathrm{DeV}^{\mathrm{C}}$ (see Section 2 for the definitions of these categories), and it was shown that the commutative diagram above extends to the following commutative diagram.

On the other hand, in [Tow96, JKM01] the category KRFrm was generalized to KRFrm ${ }^{\mathrm{P}}$, where morphisms are preframe homomorphisms (that is, they preserve finite meets and directed joins), and it was shown that KRFrm ${ }^{P}$ is dually equivalent to $K H a u s^{R}$. In a recent paper [ABC23] we introduced the category $\mathrm{DeV}^{\mathrm{S}}$ whose objects are de Vries algebras and whose morphisms are compatible subordination relations. We proved that DeV^{S} is equivalent to $\mathrm{KHaus}^{\mathrm{R}}$ and hence dually equivalent to $\mathrm{KRFrm}{ }^{\mathrm{P}}$. Thus, we arrive at the following commutative diagram that extends the two diagrams above.

Our aim here is to give a direct choice-free proof of the duality between $\mathrm{KRFrm}{ }^{\mathrm{P}}$ and $\mathrm{DeV}^{\mathrm{S}}$. From this we derive a direct choice-free proof of the equivalence between $\mathrm{KRFrm}{ }^{\mathrm{C}}$ and $\mathrm{DeV}^{\mathrm{C}}$, as well as an alternative choicefree proof of the equivalence between KRFrm and DeV .

Our main tool is the category $\mathrm{SubS5}^{\mathrm{S}}$ of $\mathrm{S5}$-subordination algebras introduced in [ABC23]. Objects of SubS5 ${ }^{\text {S }}$ were already considered by Meenakshi [Mee66], who studied proximity relations on an arbitrary boolean algebra. In [ABC23] we used a generalization of Stone duality to closed relations [Cel18, KMJ23] and the machinery of allegories [FS90] to show that SubS5 S is equivalent to the category StoneE ${ }^{R}$ whose objects are Stone spaces equipped with a closed equivalence relation and whose morphisms
are special closed relations (see Definition 2.1317). Since DeV^{5} is a full subcategory of SubS5 ${ }^{\text {s }}$, restricting this equivalence yields an equivalence between $\mathrm{DeV}^{\mathrm{S}}$ and the full subcategory $\mathrm{Gle}^{\mathrm{R}}$ of Stone E^{R} consisting of Gleason spaces. It turns out that these four categories are equivalent to KHaus ${ }^{R}$. Consequently, $\mathrm{DeV}^{\mathrm{S}}$ is equivalent to $\mathrm{SubS5}^{\mathrm{S}}$, but the proof goes through KHaus ${ }^{\mathrm{R}}$ and hence uses the axiom of choice.

In this paper we generalize MacNeille completions of boolean algebras to S 5 -subordination algebras and give a direct choice-free proof of the equivalence between $\mathrm{SubS5} 5$ and $\mathrm{DeV}^{\mathrm{S}}$. We also specialize the notion of a round ideal of a proximity lattice [War74] to our setting to obtain a contravariant functor from SubS5 ${ }^{\mathrm{S}}$ to $\mathrm{KRFrm}{ }^{\mathrm{P}}$, yielding a choice-free proof that $\mathrm{SubS5}^{\mathrm{S}}$ is dually equivalent to $K R F r m$. We thus arrive at the following commutative diagram.

We also study the wide subcategories of these categories whose morphisms encode continuous relations and continuous functions between compact Hausdorff spaces.

The paper is organized as follows. In Section 2 we recall the existing dualities for compact Hausdorff spaces that are relevant for our purposes. In Section 3 we describe the round ideal functor from SubS5 S to KRFrm . In Section 4 we define MacNeille completions of S 5 -subordination algebras and prove that the resulting functor yields an equivalence between SubS5 ${ }^{\mathrm{S}}$ and $\mathrm{DeV}^{\mathrm{S}}$. We then use this result to show that the round ideal functor from SubS5 ${ }^{\mathrm{S}}$ to $\mathrm{KRFrm}{ }^{\mathrm{P}}$ is a dual equivalence. In Section 5 we study the wide subcategories of these categories whose morphisms encode continuous relations between compact Hausdorff spaces. In Section 6we further restrict our attention to the morphisms that encode continuous functions between compact Hausdorff spaces. Finally, in Section 7 we give dual descriptions of the round ideal and MacNeille completions of S 5 -subordination algebras.

All the categories considered in this paper are listed in Tables 11 to 4 and all the equivalences and dual equivalences in Fig. 2 at the end of Section 6

2. Preliminaries

In this section we briefly recall Isbell duality, de Vries duality, and their generalizations. We start by recalling some basic definitions from pointfree topology (see, e.g., [PP12]). A frame or locale is a complete lattice L satisfying the join-infinite distributive law

$$
a \wedge \bigvee S=\bigvee\{a \wedge s \mid s \in S\}
$$

Each $a \in L$ has the pseudocomplement given by $a^{*}=\bigvee\{x \in L \mid a \wedge x=0\}$. We say that a is compact if $a \leq \bigvee S$ implies $a \leq \bigvee T$ for some finite $T \subseteq S$, and that a is well-inside b (written $a \prec b$) if $a^{*} \vee b=1$. A frame L is compact if 1 is compact and it is regular if $a=\bigvee\{x \in L \mid x \prec a\}$ for each $a \in L$.

A frame homomorphism between two frames is a map that preserves arbitrary joins and finite meets. We recall from the introduction that KRFrm is the category of compact regular frames and frame homomorphisms and that KHaus is the category of compact Hausdorff spaces and continuous functions.

Theorem 2.1 (Isbell duality). KRFrm is dually equivalent to KHaus.
A preframe homomorphism between two frames is a map that preserves directed joins and finite meets. We let KRFrm ${ }^{P}$ be the category of compact regular frames and preframe homomorphisms. Clearly KRFrm is a wide subcategory of KRFrm ${ }^{\mathrm{P}}$.

We recall that a relation $R \subseteq X \times Y$ between compact Hausdorff spaces is closed if R is a closed subset of $X \times Y$. As usual, for $x \in X$ and $y \in Y$, we write

$$
R[x]=\{y \in Y \mid x R y\} \quad \text { and } \quad R^{-1}[y]=\{x \in X \mid x R y\} .
$$

Also, for $F \subseteq X$ and $G \subseteq Y$, we write

$$
R[F]=\bigcup\{R[x] \mid x \in F\} \quad \text { and } \quad R^{-1}[G]=\bigcup\left\{R^{-1}[y] \mid y \in G\right\}
$$

Then R is closed iff $R[F]$ is closed for each closed $F \subseteq X$ and $R^{-1}[G]$ is closed for each closed $G \subseteq Y$ (see, e.g., [BBSV17, Lem. 2.12]). We let $K H a u s{ }^{R}$ be the category of compact Hausdorff spaces and closed relations,
where identities are identity relations and composition is relation composition. We recall that for two relations $R_{1} \subseteq X_{1} \times X_{2}$ and $R_{2} \subseteq X_{2} \times X_{3}$ the relation composition $R_{2} \circ R_{1} \subseteq X_{1} \times X_{3}$ is defined by

$$
x_{1}\left(R_{2} \circ R_{1}\right) x_{3} \Longleftrightarrow \exists x_{2} \in X_{2}: x_{1} R_{1} x_{2} \text { and } x_{2} R_{2} x_{3}
$$

The category KHaus ${ }^{\text {R }}$ is a full subcategory of the category of stably compact spaces and closed relations introduced and studied in [JKM01]. It is symmetric in that if R is a closed relation, then its converse $R^{\llcorner }: X_{2} \rightarrow X_{1}$ (defined by $y R^{\checkmark} x$ iff $x R y$) is also closed. This defines a dagger on KHaus ${ }^{\mathrm{R}}$ with which $\mathrm{KHaus}^{\mathrm{R}}$ forms an allegory (see, e.g., [ABC23, Lem. 3.6]). The following theorem generalizes Isbell duality:

Theorem 2.2 ([Tow96, JKM01]). KRFrm ${ }^{\mathrm{P}}$ is dually equivalent to $\mathrm{KHaus}^{\mathrm{R}}$.
A closed relation $R \subseteq X \times Y$ between compact Hausdorff spaces is continuous if V open in Y implies $R^{-1}[V]$ is open in X. Let $\mathrm{KHaus}^{\text {c }}$ be the wide subcategory of $\mathrm{KHaus}^{\mathrm{R}}$ whose morphisms are continuous relations.

In [BGHJ19, Def. 4.3], motivated by Johnstone's construction of the Vietoris frame of a compact regular frame [Joh82, Sec. III.4], a preframe homomorphism $\square: L \rightarrow M$ between compact regular frames is called continuous or a c-morphism if there is a join-preserving $\diamond: L \rightarrow M$ such that

$$
\square(a \vee b) \leq \square a \vee \diamond b \quad \text { and } \quad \square a \wedge \diamond b \leq \diamond(a \wedge b)
$$

Let $K R F r m{ }^{\mathrm{C}}$ be the wide subcategory of $\mathrm{KRFrm}{ }^{\mathrm{P}}$ whose morphisms are c morphisms. The duality of Theorem 2.2 then restricts to the following generalization of Isbell duality:

Theorem 2.3 ([区BHJ19, Thm. 4.8]). The categories KRFrm $^{\text {c }}$ and KHaus $^{\mathrm{C}}$ are dually equivalent.

Letting $\diamond=\square$, we can identify KRFrm with a wide subcategory of $K R F r m{ }^{c}$. Thus, we arrive at the following diagram, where the hook arrows represent inclusions of wide subcategories and the horizontal arrows dual
equivalences.

Definition 2.4. [ABC23], Def. 2.4] Let A, B be boolean algebras. A relation $S \subseteq A \times B$ is a subordination if S satisfies the following conditions for all $a, b \in A$ and $c, d \in B$:
(S1) $0 S 0$ and $1 S 1$;
(S2) $a, b S c$ implies $(a \vee b) S c$;
(S3) a $S c, d$ implies $a S(c \wedge d)$;
(S4) $a \leq b S c \leq d$ implies $a S d$.
Remark 2.5. The axioms (S1)-(S4) are equivalent to saying that S is a bounded sublattice of $A \times B$ satisfying (S4).

When $A=B$, we say that S is a subordination on A. These were introduced in [BBSV17] as a counterpart of quasi-modal operators [Cel01] and precontact relations [DV06, DV07]. As follows from [BBSV17, Thm. 2.22], subordinations on A correspond to closed relations R on the Stone space of A. By [Cel01, DV07] (see also [BBSV17, Lem. 4.6]), we can characterize reflexivity, symmetry, and transitivity of R by the following axioms, where we write $\neg a$ for the complement of a in A.
(S5) $a S b$ implies $a \leq b$;
(S6) $a S b$ implies $\neg b S \neg a$;
(S7) $a S b$ implies there is $c \in A$ with $a S c$ and $c S b$.

Following the modal logic nomenclature, the pairs (B, S) where B is a boolean algebra and S is a subordination on B satisfying (S5)-(S7) were called S 5 -subordination algebras in [ABC 23].

These algebras were first introduced in [Mee66], where the notion of a proximity on a set was generalized to an arbitrary boolean algebra. Further generalizations include proximity lattices [War74, Smy92], proximity algebras [GK81], and proximity frames [BH14]. We point out that S5subordination algebras are exactly the proximity algebras of [GK81] where the underlying Heyting algebra is a boolean algebra.
Definition 2.6. Let $\mathbf{B}=(B, S)$ be an S 5 -subordination algebra.

1. [dV62, Def. 1.1.1] We call B a compingent algebra if S satisfies the following axiom:
(S8) If $a \neq 0$, then there is $b \neq 0$ with $b S a$.
2. Bez10, Def. 3.2] We call \mathbf{B} a de Vries algebra if \mathbf{B} is a compingent algebra and B is a complete boolean algebra.

Remark 2.7. As was pointed out in [BH14, Prop. 7.4], de Vries algebras are exactly those proximity frames where the frame is boolean.

A de Vries morphism between de Vries algebras is a map $f: B_{1} \rightarrow B_{2}$ satisfying the following conditions:
(M1) $f(0)=0$;
(M2) $f(a \wedge b)=f(a) \wedge f(b)$;
(M3) $a S_{1} b$ implies $\neg f(\neg a) S_{2} f(b)$;
(M4) $f(a)=\bigvee\left\{f(b) \mid b S_{1} a\right\}$.
The composition of two de Vries morphisms $f: B_{1} \rightarrow B_{2}$ and $g: B_{2} \rightarrow B_{3}$ is the de Vries morphism $g * f: B_{1} \rightarrow B_{3}$ given by

$$
(g * f)(a)=\bigvee\left\{g f(b) \mid b S_{1} a\right\}
$$

for each $a \in B_{1}$. Let DeV be the category of de Vries algebras and de Vries morphisms, where identity morphisms are identity functions and composition is defined as above.

Theorem 2.8 (de Vries duality). DeV is dually equivalent to KHaus.
In [BGHJ19] de Vries duality was generalized to a duality for $\mathrm{KHaus}^{\mathrm{C}}$. For this, the notion of a de Vries additive map from [BBH15] was utilized. We will instead work with the equivalent notion of a de Vries multiplicative map.

Definition 2.9. A map $\square: B_{1} \rightarrow B_{2}$ between de Vries algebras is de Vries multiplicative if $\square 1=1$ and for all $a, b, c, d \in B_{1}$, we have

$$
a S_{1} b \text { and } c S_{1} d \text { imply }(\square a \wedge \square c) S_{2} \square(b \wedge d)
$$

We calllower continuous if in addition

$$
\square a=\bigvee\left\{\square b \mid b S_{1} a\right\}
$$

for each $a \in B_{1}$. The composition of two such maps \square_{1} and \square_{2} is given by

$$
\left(\square_{2} * \square_{1}\right) a=\bigvee\left\{\square_{2} \square_{1} b \mid b S_{1} a\right\}
$$

Let $\mathrm{DeV}^{\mathrm{C}}$ be the category of de Vries algebras and lower continuous de Vries multiplicative maps, where identity morphisms are identity functions and composition is defined as above.

Remark 2.10.

1. The results of [BGHJ19] are stated using de Vries additive maps that are lower continuous, where we recall that $\diamond: B_{1} \rightarrow B_{2}$ is de Vries additive if $\diamond 0=0$ and $a S_{1} b$ and $c S_{1} d$ imply $\diamond(a \vee c) S_{2}(\diamond b \vee \diamond d)$ for all $a, b, c, d \in B_{1}$, and it is lower continuous if $\diamond a=\bigvee\left\{\diamond b \mid b S_{1} a\right\}$ for all $a \in B_{1}$. To simplify proofs (see, e.g., Lemma 5.12), we will work with \square instead of \diamond.
2. As observed in BGHJ19, Rem. 4.11], working with lower continuous de Vries additive maps is equivalent to working with de Vries multiplicative maps that are upper continuous, i.e. maps \square that satisfy $\square a=\bigwedge\{\square b \mid a S b\}$. Analogously, working with de Vries multiplicative lower continuous maps is equivalent to working with de Vries additive maps that are upper continuous.
3. By a slight adjustment of the proofs of [BBH15, Thms. 4.21, 4.22] it is not difficult to show that the category of de Vries algebras and de Vries additive upper continuous maps between them is equivalent to the category of de Vries algebras and de Vries additive lower continuous maps between them. Similarly, one can show that $\mathrm{DeV}^{\mathrm{C}}$ is equivalent to the category of de Vries algebras and upper continuous de Vries multiplicative maps between them, and hence to the category of de Vries algebras and lower continuous de Vries additive maps between them. Thus, the results of [BGHJ19] apply to our setting.

Theorem 2.11 ([BGHJ19, Thm. 4.14]). The categories $\mathrm{DeV}^{\mathrm{C}}$ and $\mathrm{KHaus}^{\mathrm{C}}$ are dually equivalent.

In [BGHJ19] obtaining a de Vries like duality for KHaus $^{\mathrm{R}}$ was left open. This question was resolved in [ABC23] by working with special subordination relations between de Vries algebras. To introduce them, we require the following definition of compatibility.

Definition 2.12. For $i=1,2$ let R_{i} be a binary relation on a set X_{i}. We call a relation $T: X_{1} \rightarrow X_{2}$ compatible if $R_{2} \circ T=T=T \circ R_{1}$.

Let SubS5 ${ }^{\text {S }}$ be the category of S 5 -subordination algebras and compatible subordinations between them, where the composition of morphisms is the usual composition of relations, and the identity morphism on an S5subordination algebra (B, S) is the relation S. Let $\mathrm{DeV}^{\mathrm{S}}$ be the full subcategory of SubS5 ${ }^{\text {S }}$ consisting of de Vries algebras.

To connect KHaus^{R} with SubS5 ${ }^{\mathrm{S}}$, it is convenient to first obtain a Stonelike representation of S 5 -subordination algebras.

Definition 2.13.

1. An S5-subordination space is a pair (X, E) where X is a Stone space and E is a closed equivalence relation on X. We let StoneE E^{R} be the category whose objects are S 5 -subordination spaces and whose morphisms are compatible closed relations between them.
2. A Gleason space is an 55 -subordination space (X, E) such that X is extremally disconnected (i.e., the closure of an open set is open) and E is irreducible (i.e., if F is a proper closed subset of X, then so is $E[F]$). We let $\mathrm{Gle}^{\mathrm{R}}$ be the full subcategory of StoneE ${ }^{\mathrm{R}}$ whose objects are Gleason spaces.

Theorem 2.14 ([ABC23, Cors. 3.14, 4.7]). KHaus ${ }^{R}$, StoneE E^{R}, Gle R, SubS5 ${ }^{S}$, and $\mathrm{DeV}^{\mathrm{S}}$ are equivalent categories.

To make the paper self-contained, we briefly describe the functors yielding some of the equivalences of Theorem 2.14

Remark 2.15.

1. The functor $\mathcal{Q}:$ Stone $^{\mathrm{R}} \rightarrow \mathrm{KHaus}^{\mathrm{R}}$ maps an object (X, E) to the quotient space X / E, and a morphism $R:\left(X_{1}, E_{1}\right) \rightarrow\left(X_{2}, E_{2}\right)$ to the morphism $\mathcal{Q}(R): \mathcal{Q}\left(X_{1}, E_{1}\right) \rightarrow \mathcal{Q}\left(X_{2}, E_{2}\right)$ given by

$$
[x]_{E_{1}} \mathcal{Q}(R)[y]_{E_{2}} \Longleftrightarrow x R y
$$

(i.e., $\mathcal{Q}(R)=\pi_{2} \circ R \circ \pi_{1}$, where π_{1} and π_{2} are the quotient maps).

2. A quasi-inverse of the functor \mathcal{Q} is given by the Gleason cover functor $\mathcal{G}:$ KHaus $^{\mathrm{R}} \rightarrow$ StoneE $^{\mathrm{R}}$ which associates to each compact Hausdorff space X the pair $\mathcal{G}(X)=(\widehat{X}, E)$ where $g: \widehat{X} \rightarrow X$ is the Gleason cover of X and $x E y$ iff $g(x)=g(y)$ (for Gleason covers see, e.g.,
[Joh82, Sec. III.3.10]). It also maps a closed relation $R: X_{1} \rightarrow X_{2}$ to the relation $\mathcal{G}(R): \mathcal{G}\left(X_{1}\right) \rightarrow \mathcal{G}\left(X_{2}\right)$ given by

$$
x \mathcal{G}(R) y \Longleftrightarrow g_{1}(x) R g_{2}(y)
$$

(i.e., $\mathcal{G}(R)=g_{2}{ }^{\breve{ }} \circ R \circ g_{1}$).

3. The functor \mathcal{G} is also a quasi-inverse of the restriction of the functor \mathcal{Q} to $\mathrm{Gle}^{\mathrm{R}}$.
4. The inclusion of $G l e{ }^{R}$ into Stone E^{R} is an equivalence whose quasiinverse is the composition $\mathcal{G} \circ \mathcal{Q}$.
5. The functor Clop: Stone $\mathrm{E}^{\mathrm{R}} \rightarrow \mathrm{SubS5}^{\mathrm{S}}$ maps an object (X, E) to $\left(B, S_{E}\right)$, where B is the boolean algebra of clopen subsets of X and S_{E} is the binary relation on B given by $U S_{E} V$ iff $E[U] \subseteq V$. Also, Clop maps a morphism $R:\left(X_{1}, E_{1}\right) \rightarrow\left(X_{2}, E_{2}\right)$ to the compatible subordination relation $S_{R}: \operatorname{Clop}\left(X_{1}, E_{1}\right) \rightarrow \operatorname{Clop}\left(X_{2}, E_{2}\right)$ given by $U S_{R} V$ iff $R[U] \subseteq V$.
6. A quasi-inverse of the functor Clop is given by the ultrafilter functor Ult: SubS5 ${ }^{\mathrm{S}} \rightarrow$ StoneE $^{\mathrm{R}}$ which associates to each object (B, S) the pair $\operatorname{Ult}(B, S)=\left(X, R_{S}\right)$ where X is the Stone space of ultrafilters of B and $x R_{S} y$ iff $S[x] \subseteq y$. We call $\left(X, R_{S}\right)$ the 55 -subordination space of (B, S). A morphism $T:\left(B_{1}, S_{1}\right) \rightarrow\left(B_{2}, S_{2}\right)$ is mapped by Ult to the morphism $R_{T}: \mathrm{Ult}\left(B_{1}, S_{1}\right) \rightarrow \mathrm{Ult}\left(B_{2}, S_{2}\right)$ given by $x R_{T} y$ iff $T[x] \subseteq y$.
7. The restrictions Clop: $\mathrm{Gle}^{\mathrm{R}} \rightarrow \mathrm{DeV}^{\mathrm{S}}$ and $\mathrm{Ult}: \mathrm{DeV}^{S} \rightarrow \mathrm{Gle}^{\mathrm{R}}$ are also quasi-inverses of each other.

It follows from Theorems 2.2 and 2.14 that SubS5 ${ }^{5}$ is dually equivalent to $\mathrm{KRFrm}{ }^{\mathrm{P}}$ and equivalent to $\mathrm{DeV}^{\mathrm{S}}$. The main contribution of this paper is to
give direct choice-free proofs of these results by generalizing ideal and MacNeille completions of boolean algebras to the setting of S 5 -subordination algebras, to fill in the empty boxes of the following diagram, and to show that it commutes up to natural isomorphism. The unlabeled horizontal arrows in the diagram represent equivalences of categories while the ones labeled with the letter d represent dual equivalences. The vertical arrows are inclusions of wide subcategories.

Figure 1

3. Round ideals of $\mathbf{S} 5$-subordination algebras

For a boolean algebra B, let $\mathcal{I}(B)$ be the set of ideals of B ordered by inclusion. It is well known that $\mathcal{I}(B)$ is a frame, where $I \wedge J=I \cap J$ and $\bigvee I_{\alpha}$ is the ideal generated by $\bigcup I_{\alpha}$. Moreover, the compact elements of $\mathcal{I}(B)$ are the principal ideals. This in particular implies that $\mathcal{I}(B)$ is compact and regular $\cdot{ }^{1}$ In this section we generalize these results to the frame of round ideals of an S 5 -subordination algebra.

Round ideals have been extensively studied in pointfree topology and domain theory. In particular, it follows from War74, Smy92] that the round ideals of a proximity lattice form a stably compact frame. As we pointed out in the previous section, S5-subordination algebras (B, S) are exactly the proximity algebras of [GK81] where the algebra B is a boolean algebra. This additional feature allows us to show that the round ideals of (B, S) form

[^0]a compact regular frame. Moreover, associating with each S 5 -subordination algebra its frame of round ideals defines a contravariant functor from SubS5 ${ }^{\text {S }}$ to KRFrm . In Section 4 we will show that this functor is in fact a dual equivalence.

Definition 3.1. Let $\mathbf{B}=(B, S)$ be an S 5 -subordination algebra. We call an ideal I of B a round ideal if $a \in I$ implies $a S b$ for some $b \in I$. Let $\mathcal{R} \mathcal{I}(\mathbf{B})$ be the set of round ideals of \mathbf{B} ordered by inclusion.

Remark 3.2.

1. It is straightforward to see that an ideal I is round iff $I=S^{-1}[I]$, and that if I is an ideal of B, then $S^{-1}[I]$ is a round ideal of \mathbf{B}.
2. The notion of a round filter is dual to that of a round ideal. Therefore, a filter F is round iff $F=S[F]$, and if F is a filter of B, then $S[F]$ is a round filter of \mathbf{B}.

Let B be a boolean algebra and $X \subseteq B$. We denote by $U(X)$ the set of upper bounds of X, by $L(X)$ the set of lower bounds of X, and by $\neg X$ the set $\{\neg x \mid x \in X\}$. It is well known that $U(X)$ is a filter, $L(X)$ is an ideal, $\neg \neg X=X$, and X is a filter iff $\neg X$ is an ideal. Moreover, $\neg U(X)=L(\neg X)$ and $\neg L(X)=U(\neg X)$.

Lemma 3.3. Let B be a boolean algebra and S an S 5 -subordination on B. If $X \subseteq B$, then $\neg S[X]=S^{-1}[\neg X]$.

Proof. We have that $a \in \neg S[X]$ iff there is $x \in X$ such that $x S \neg a$. By (S6) this is equivalent to the existence of $x \in X$ such that $a S \neg x$, which means that $a \in S^{-1}[\neg X]$.

Theorem 3.4. Let B be an S 5 -subordination algebra.
(1) $\mathcal{R I}(\mathbf{B})$ is a subframe of $\mathcal{I}(\mathbf{B})$.
(2) If $I \in \mathcal{R} \mathcal{I}(\mathbf{B})$, then $I^{*}=S^{-1}[\neg U(I)]=\neg S[U(I)]$.
(3) The well-inside relation on $\mathcal{R} \mathcal{I}(\mathbf{B})$ is given by $I \prec J$ iff $U(I) \cap J \neq \varnothing$.
(4) $\mathcal{R I}(\mathbf{B})$ is compact and regular.

Proof. (17). This follows from War74, Thm. 3] (see also [Smy92, Thm. 1]).
(2). The first equality follows from [War74, Thm. 3] and the second from Lemma 3.3 .
(3). By definition, $I \prec J$ iff $I^{*} \vee J=B$. By item (2), this is equivalent to $\neg S[U(I)] \vee J=B$, which holds iff there are $a \in S[U(I)]$ and $b \in J$ such that $\neg a \vee b=1$. Since B is a boolean algebra, $\neg a \vee b=1$ iff $a \leq b$. Because $S[U(I)]$ is a filter (see Remark 3.2 22), the existence of $a \in S[U(I)]$ with $a \leq b$ is equivalent to $b \in S[U(I)]$. Thus, $I \prec J$ iff $S[U(I)] \cap J \neq \varnothing$. We have that $S[U(I)] \cap J \neq \varnothing$ iff $U(I) \cap S^{-1}[J] \neq \varnothing$. Since J is a round ideal, this is equivalent to $U(I) \cap J \neq \varnothing$.
(4). That $\mathcal{R} \mathcal{I}(\mathbf{B})$ is compact follows from item (11). It follows from War74, Thm. 3] that the relation on $\mathcal{R} \mathcal{I}(\mathbf{B})$ given by $U(I) \cap J \neq \varnothing$ is approximating. Thus, item (3) implies that the well-inside relation is approximating, and hence $\mathcal{R} \mathcal{I}(\mathbf{B})$ is regular.

Let \mathbf{B}_{1} and \mathbf{B}_{2} be 55 -subordination algebras and $T: \mathbf{B}_{1} \rightarrow \mathbf{B}_{2}$ a compatible subordination. We define $\mathcal{R} \mathcal{I}(T): \mathcal{R} \mathcal{I}\left(\mathbf{B}_{2}\right) \rightarrow \mathcal{R} \mathcal{I}\left(\mathbf{B}_{1}\right)$ by setting $\mathcal{R} \mathcal{I}(T)(I)=T^{-1}[I]$ for each round ideal I of \mathbf{B}_{2}.

Theorem 3.5. $\mathcal{R I}$: $\mathrm{SubS5}^{S} \rightarrow \mathrm{KRFrm}^{\mathrm{P}}$ is a well-defined contravariant functor.

Proof. That $\mathcal{R} \mathcal{I}$ is well defined on objects follows from Theorem 3.44]. We show that it is well defined on morphisms. Let T be a compatible subordination from $\mathbf{B}_{1}=\left(B_{1}, S_{1}\right)$ to $\mathbf{B}_{2}=\left(B_{2}, S_{2}\right)$. Let $I \in \mathcal{R} \mathcal{I}\left(\mathbf{B}_{2}\right)$. Since T is a subordination, it is straightforward to see that $T^{-1}[I]$ is an ideal. Because T is compatible, $S_{1}^{-1} T^{-1}[I]=\left(T \circ S_{1}\right)^{-1}[I]=T^{-1}[I]$, and hence $T^{-1}[I]$ is a round ideal. Thus, $\mathcal{R} \mathcal{I}(T)$ is well defined. To show that $\mathcal{R} \mathcal{I}(T)$ is a preframe homomorphism, we need to prove that it preserves directed joins and finite meets. That it preserves directed joins is straightforward because directed joins are set-theoretic unions in $\mathcal{I}\left(\mathbf{B}_{1}\right)$ and $\mathcal{I}\left(\mathbf{B}_{2}\right)$, and hence also in their subframes $\mathcal{R} \mathcal{I}\left(\mathbf{B}_{1}\right)$ and $\mathcal{R} \mathcal{I}\left(\mathbf{B}_{2}\right)$. Moreover, we have that $T^{-1}\left[B_{2}\right]=B_{1}$ because $a T 1$ for each $a \in B_{1}$. Thus, it remains to show that $\mathcal{R} \mathcal{I}(T)$ preserves binary meets. Let $I, J \in \mathcal{R} \mathcal{I}\left(\mathbf{B}_{2}\right)$. Clearly $T^{-1}[I \cap J] \subseteq T^{-1}[I] \cap T^{-1}[J]$. For the other inclusion, let $a \in T^{-1}[I] \cap T^{-1}[J]$. Then there are $b \in I, c \in J$ such that $a T b$ and $a T c$. Therefore, $a T(b \wedge c) \in I \cap J$ by (S3), and hence $a \in T^{-1}[I \cap J]$.

It is straightforward to show that $\mathcal{R} \mathcal{I}$ preserves identities and reverses compositions. Thus, $\mathcal{R I}$: SubS5 ${ }^{\mathrm{S}} \rightarrow \mathrm{KRFrm}^{\mathrm{P}}$ is a well-defined contravariant functor.

In the next section we will show that $\mathcal{R} \mathcal{I}$ is a dual equivalence.

4. MacNeille completions of S 5 -subordination algebras

In [ABC23] we showed that the categories $\mathrm{SubS5}^{5}$ and DeV^{5} are equivalent. This was done by observing that each of these categories is equivalent to KHaus ${ }^{\mathrm{R}}$. In this section we show that the equivalence can be obtained directly by generalizing the theory of MacNeille completions of boolean algebras to S 5 -subordination algebras.

For a frame L, we recall (see, e.g., [BP96]) that the booleanization of L is

$$
\mathfrak{B} L=\left\{a \in L \mid a=a^{* *}\right\},
$$

and that $(\mathfrak{B} L, \sqcap, \bigsqcup)$ is a boolean frame (complete boolean algebra), where

$$
a \sqcap b=a \wedge b \quad \text { and } \quad \bigsqcup S=(\bigvee S)^{* *}
$$

If L is compact regular, then $(\mathfrak{B} L, \prec)$ is a de Vries algebra, where \prec is the restriction of the well-inside relation on L to $\mathfrak{B} L$. As was shown in [Bez12], this correspondence extends to a covariant functor $\mathfrak{B}: \mathrm{KRFrm} \rightarrow$ DeV which is an equivalence. In the more general setting of $\mathrm{KRFrm}{ }^{P}$ and $\mathrm{DeV}^{\mathrm{S}}$, this correspondence extends to a contravariant functor as follows.

Let $\square: L \rightarrow M$ be a preframe homomorphism. Define the relation $\mathfrak{B}(\square): \mathfrak{B} M \rightarrow \mathfrak{B} L$ by

$$
b \mathfrak{B}(\square) a \Longleftrightarrow b \prec \square a .
$$

Lemma 4.1. If $\square: L \rightarrow M$ is a preframe homomorphism, then the relation $\mathfrak{B}(\square): \mathfrak{B} M \rightarrow \mathfrak{B} L$ is a compatible subordination.

Proof. Let $T=\mathfrak{B}(\square)$. It is straightforward to check that T is a subordination. We only verify (S3). Suppose $b T a, c$. Then $b \prec \square a$ and $b \prec \square c$. Since \square is a preframe homomorphism, we have $b \prec \square a \wedge \square c=\square(a \wedge c)$.

Thus, T satisfies (S3). We next prove that T is compatible. Let $a \in \mathfrak{B} L$ and $b \in \mathfrak{B} M$. We show that $b T a$ iff there is $d \in \mathfrak{B} M$ such that $b \prec d T a$. First suppose that $b T a$, so $b \prec \square a$. Since M is compact regular, there is $d \in \mathfrak{B} M$ such that $b \prec d \prec \square a$ (see, e.g., [Bez12, Rem. 3.2]). Therefore, $b \prec d T a$. Conversely, suppose that $b \prec d T a$. Then $b \prec d \prec \square a$. Thus, $b \prec \square a$, and so $b T a$.

It remains to show that $b T a$ iff there is $c \in \mathfrak{B} L$ such that $b T c \prec a$. For the right-to-left implication, we have that $c \prec a$ implies $c \leq a$, and hence $\square c \leq \square a$ because \square is order-preserving. Since $b \prec \square c$, it follows that $b \prec \square a$, and so $b T a$. For the left-to-right implication, since L is a regular frame, a is the directed join of $\{c \in \mathfrak{B} L \mid c \prec a\}$. Therefore, since \square preserves directed joins, $\square a=\bigvee\{\square c \mid c \in \mathfrak{B} L, c \prec a\}$. Thus, from $b \prec \square a$, using compactness, we find $c \in \mathfrak{B} L$ such that $c \prec a$ and $b \prec \square c$.

We thus define $\mathfrak{B}: \mathrm{KRFrm}^{\mathrm{P}} \rightarrow \mathrm{DeV}^{\mathrm{S}}$ by sending each compact regular frame L to $(\mathfrak{B} L, \prec)$ and each preframe homomorphism $\square: L \rightarrow M$ to $\mathfrak{B}(\square)$.

Proposition 4.2. $\mathfrak{B}: \mathrm{KRFrm}^{\mathrm{P}} \rightarrow \mathrm{DeV}^{\mathrm{S}}$ is a contravariant functor.
Proof. That \mathfrak{B} is well defined on objects follows from [Bez12, Lem. 3.1] and that it is well defined on morphisms from Lemma 4.1. Let L be a compact regular frame. If \square is the identity on L, then $\mathfrak{B}(\square)$ coincides with \prec which is the identity on ($\mathfrak{B} L, \prec)$. Let $\square_{1}: L \rightarrow M$ and $\square_{2}: M \rightarrow N$ be two preframe homomorphisms between compact regular frames. We show that $\mathfrak{B}\left(\square_{2} \circ \square_{1}\right)=\mathfrak{B}\left(\square_{1}\right) \circ \mathfrak{B}\left(\square_{2}\right)$. Let $T_{1}=\mathfrak{B}\left(\square_{1}\right)$ and $T_{2}=\mathfrak{B}\left(\square_{2}\right)$. For $a \in \mathfrak{B} L$ and $c \in \mathfrak{B} N$, if $c\left(T_{1} \circ T_{2}\right) a$, then there is $b \in \mathfrak{B} M$ such that $c T_{2} b$ and $b T_{1} a$. Thus, $c \prec \square_{2} b$ and $b \prec \square_{1} a$. Since $b \prec \square_{1} a$ and \square_{2} is order-preserving, we have $\square_{2} b \leq \square_{2} \square_{1} a$. Therefore, $c \prec \square_{2} \square_{1} a$ which means that $c \mathfrak{B}\left(\square_{2} \circ \square 1\right) a$. Suppose next that $c \mathfrak{B}\left(\square_{2} \circ \square_{1}\right) a$. Therefore, $c \prec \square_{2} \square_{1} a$. By arguing as at the end of the proof of Lemma 4.1, there is $b \in \mathfrak{B} M$ such that $c T_{2} b$ and $b \prec \square_{1} a$. Thus, $c T_{2} b$ and $b T_{1} a$ which means that $c\left(T_{1} \circ T_{2}\right) a$.

Definition 4.3. Let $\mathcal{N} \mathcal{I}=\mathfrak{B} \circ \mathcal{R} \mathcal{I}$.

By Theorem $3.5 \mathcal{R} \mathcal{I}$: $\mathrm{SubS5}^{\mathrm{S}} \rightarrow \mathrm{KRFrm}^{\mathrm{P}}$ is a contravariant functor, and by Proposition $4.2 \mathfrak{B}: \mathrm{KRFrm}^{\mathrm{P}} \rightarrow \mathrm{DeV}^{\mathrm{S}}$ is a contravariant functor. Thus, $\mathcal{N I}:$ SubS5 $^{\mathrm{S}} \rightarrow \mathrm{DeV}^{\mathrm{S}}$ is a covariant functor. In particular, we have

Proposition 4.4. If \mathbf{B} is an S 5 -subordination algebra, then $\mathcal{N I}(\mathbf{B})$ is a de Vries algebra.

Remark 4.5. Since \prec on $\mathcal{N} \mathcal{I}(\mathbf{B})$ is the restriction of \prec on $\mathcal{R} \mathcal{I}(\mathbf{B})$, by Theorem 3.4(3) we have that $I \prec J$ iff $U(I) \cap J \neq \varnothing$ for all $I, J \in \mathcal{N} \mathcal{I}(\mathbf{B})$.

Definition 4.6. Let $\mathbf{B}=(B, S)$ be an S 5 -subordination algebra. We call $\mathcal{N} \mathcal{I}(\mathbf{B})$ the MacNeille completion of \mathbf{B}. We say that a round ideal I of \mathbf{B} is normal if $I \in \mathcal{N I}(\mathbf{B})$.

The next theorem provides a characterization of normal round ideals.
Theorem 4.7. Let $I \in \mathcal{R} \mathcal{I}(\mathbf{B})$. We have

$$
I \in \mathcal{N I} \mathcal{I}(\mathbf{B}) \Longleftrightarrow I=S^{-1}[L(S[U(I)])] .
$$

Proof. By Lemma 3.3 and Theorem 3.4(2),

$$
\begin{aligned}
I^{* *} & =\neg S[U(\neg S[U(I)])]=\neg S[\neg L(S[U(I)])] \\
& =\neg \neg S^{-1}[L(S[U(I)])]=S^{-1}[L(S[U(I)])] .
\end{aligned}
$$

Since $I \in \mathcal{N} \mathcal{I}(\mathbf{B})$ iff $I=I^{* *}$, the result follows.
Remark 4.8. We recall (see, e.g., [Grä78, p. 98]) that an ideal I of a boolean algebra B is normal if $L U(I)=I$, and that the MacNeille completion of B is constructed as the complete boolean algebra of normal ideals of B. Definition 4.6 and Theorem 4.7 are an obvious generalization of this. Indeed, if S is the partial ordering of B, then $I \in \mathcal{N \mathcal { I }}(\mathbf{B})$ iff I is a normal ideal of B. For further connection, see Proposition 4.14.

An important feature of the MacNeille completion of an S5-subordination algebra \mathbf{B} is that it is isomorphic to \mathbf{B} in $\mathrm{SubS5}^{5}$ (which happens because morphisms in SubS5 ${ }^{\mathrm{S}}$ are not structure-preserving bijections; see [ABC23, Rem. 3.15(4)]). To see this, we need the following lemma. We freely use the fact that if $I, J \in \mathcal{R} \mathcal{I}(\mathbf{B})$, then

$$
\begin{equation*}
I \prec J \Longrightarrow I^{* *} \prec J, \tag{1}
\end{equation*}
$$

which is a consequence of $I^{* * *}=I^{*}$.
Lemma 4.9. Let $a \in \mathbf{B}$ and $J \in \mathcal{R} \mathcal{I}(\mathbf{B})$. Then $a \in J$ iff there is $I \in \mathcal{N I}(\mathbf{B})$ such that $a \in I \prec J$.

Proof. For the right-to-left implication, if $a \in I \prec J$, then $a \in I \subseteq J$, and hence $a \in J$. For the left-to-right implication, since J is a round ideal, there is $b \in J$ such that $a S b$. We have $a \in S^{-1}[b]$ and $b \in U\left(S^{-1}[b]\right)$. Thus, $S^{-1}[b] \prec J$ by Theorem 3.4 (3). Let $I=\left(S^{-1}[b]\right)^{* *}$. Then $I \in \mathcal{N} \mathcal{I}(\mathbf{B})$ and $a \in S^{-1}[b] \subseteq I$. Moreover, by $\mathbb{1} 1, S^{-1}[b] \prec J$ implies $I \prec J$. Consequently, $a \in I \prec J$.

Let $Q_{\mathbf{B}}: \mathbf{B} \rightarrow \mathcal{N} \mathcal{I}(\mathbf{B})$ be the relation defined by

$$
a Q_{\mathrm{B}} I \Longleftrightarrow a \in I
$$

Lemma 4.10. Q_{B} is a morphism in $\mathrm{SubS5}^{\mathrm{S}}$.
Proof. It is easy to see that Q_{B} is a subordination relation. The equality $Q_{\mathbf{B}}=Q_{\mathbf{B}} \circ S$ follows from $I=S^{-1}[I]$, and the equality $\prec \circ Q_{\mathbf{B}}=Q_{\mathrm{B}}$ from Lemma 4.9 .

If $T: \mathbf{B}_{1} \rightarrow \mathbf{B}_{2}$ is a morphism in SubS5 ${ }^{\text {s }}$, define $\widehat{T}: \mathbf{B}_{2} \rightarrow \mathbf{B}_{1}$ by

$$
\begin{equation*}
b \widehat{T} a \Longleftrightarrow \neg a T \neg b . \tag{2}
\end{equation*}
$$

Then the relation \widehat{T} is a morphism in SubS5 ${ }^{\text {s }}$ (see the paragraph before (ABC23, Thm. 3.10]).

Lemma 4.11. $Q_{\mathbf{B}}: \mathbf{B} \rightarrow \mathcal{N \mathcal { I }}(\mathbf{B})$ is an isomorphism.

Proof. Let $T=\widehat{Q_{\mathbf{B}}}: \mathcal{N I}(\mathbf{B}) \rightarrow \mathbf{B}$. By (2) and Theorem 3.4 (2),

$$
\begin{equation*}
I T a \Longleftrightarrow \neg a Q_{\mathbf{B}} I^{*} \Longleftrightarrow \neg a \in \neg S[U(I)] \Longleftrightarrow a \in S[U(I)] . \tag{3}
\end{equation*}
$$

We show that Q_{B} and T are inverses of each other. For this we need to prove that $T \circ Q_{\mathrm{B}}=S$ and $Q_{\mathrm{B}} \circ T=\prec$.

We first show that $T \circ Q_{\mathrm{B}}=S$. For the inclusion \subseteq, let $a, b \in B$, $I \in \mathcal{N I}(\mathbf{B})$, and $a Q_{\mathbf{B}} I T b$. Then $a \in I$ and $b \in S[U(I)]$ by (3). Thus, $a S b$. For the inclusion \supseteq, let $a, b \in B$ with $a S b$. Then $a \in S^{-1}[b]$ and Lemma 4.9 implies that there is $I \in \mathcal{N} \mathcal{I}(\mathbf{B})$ such that $a \in I \prec S^{-1}[b]$. By Remark 4.5 and (3),

$$
I \prec S^{-1}[b] \Longleftrightarrow U(I) \cap S^{-1}[b] \neq \varnothing \Longleftrightarrow b \in S[U(I)] \Longleftrightarrow I T b
$$

Thus, $a Q_{\mathbf{B}} I T b$.
We next show that $Q_{\mathbf{B}} \circ T=\prec$. Let $I, J \in \mathcal{N} \mathcal{I}(\mathbf{B})$. By Remark 4.5 and (3),

$$
\begin{aligned}
I \prec J & \Longleftrightarrow U(I) \cap J \neq \varnothing \Longleftrightarrow U(I) \cap S^{-1}[J] \neq \varnothing \\
& \Longleftrightarrow S[U(I)] \cap J \neq \varnothing \Longleftrightarrow \exists a \in S[U(I)] \cap J \\
& \Longleftrightarrow \exists a \in B: I T a Q_{\mathbf{B}} J \Longleftrightarrow I\left(Q_{\mathbf{B}} \circ T\right) J .
\end{aligned}
$$

Thus, $Q_{\mathbf{B}}: \mathbf{B} \rightarrow \mathcal{N I}(\mathbf{B})$ is an isomorphism.
Proposition 4.12. Let $\Delta: \mathrm{DeV}^{\mathrm{S}} \rightarrow \mathrm{SubS5}^{\mathrm{S}}$ be the inclusion functor. Then $Q: 1_{\text {Subs5s }} \rightarrow \Delta \circ \mathcal{N} \mathcal{I}$ is a natural isomorphism.
Proof. Let $T: \mathbf{B}_{1} \rightarrow \mathbf{B}_{2}$ be a morphism in SubS5 ${ }^{5}$. By Lemma 4.11, it is sufficient to show that $\mathcal{N} \mathcal{I}(T) \circ Q_{\mathbf{B}_{1}}=Q_{\mathbf{B}_{2}} \circ T$. (Since Δ is the inclusion functor, we omit it from the diagram.)

Let $a \in B_{1}$ and $I \in \mathcal{N} \mathcal{I}\left(\mathbf{B}_{2}\right)$. We have

$$
a\left(\mathcal{N I}(T) \circ Q_{\mathbf{B}_{1}}\right) I \Longleftrightarrow \exists J \in \mathcal{N} \mathcal{I}\left(\mathbf{B}_{1}\right): a \in J \text { and } J \prec T^{-1}[I],
$$

and

$$
a\left(Q_{\mathbf{B}_{2}} \circ T\right) I \Longleftrightarrow \exists b \in B_{2}: a T b \text { and } b \in I \Longleftrightarrow a \in T^{-1}[I] .
$$

The two conditions are equivalent by Lemma 4.9 .
Theorem 4.13. $\mathcal{N I}:$ SubS5 $^{\mathrm{S}} \rightarrow \mathrm{DeV}^{\mathrm{S}}$ and $\Delta: \mathrm{DeV}^{\mathrm{S}} \rightarrow \mathrm{SubS5}^{\mathrm{S}}$ are quasiinverses of each other. Thus, SubS5 ${ }^{\mathrm{S}}$ and $\mathrm{DeV}^{\mathrm{S}}$ are equivalent.

Proof. By Proposition 4.12, $Q: 1_{\text {Subs5s }} \rightarrow \Delta \circ \mathcal{N I}$ is a natural isomorphism. For the same reason, we have a natural isomorphism $Q^{\prime}: 1_{\mathrm{DeV}^{s}} \rightarrow \mathcal{N I} \circ \Delta$ whose component on $\mathbf{B} \in \mathrm{DeV}^{\mathrm{S}}$ is $Q_{\mathbf{B}}$. Thus, $\Delta: \mathrm{DeV}^{\mathrm{S}} \rightarrow \mathrm{SubS5}^{\mathrm{S}}$ is a quasi-inverse of $\mathcal{N} \mathcal{I}$.

Theorem 4.13 gives a direct choice-free proof that SubS5 ${ }^{\text {s }}$ is equivalent to $\mathrm{DeV}^{\mathrm{S}}$. We next show that when restricted to compingent algebras, $\mathcal{N} \mathcal{I}$ yields the usual MacNeille completion.

Proposition 4.14. Let $\mathbf{B}=(B, S)$ be an S 5 -subordination algebra.
(1) If \mathbf{B} is a compingent algebra, then there is a boolean isomorphism between $\mathcal{N} \mathcal{I}(\mathbf{B})$ and the usual MacNeille completion \bar{B} of B.
(2) If \mathbf{B} is a de Vries algebra, then there is a structure-preserving bijection between \mathbf{B} and $\mathcal{N} \mathcal{I}(\mathbf{B})$.

Proof. (1). Since B is a compingent algebra, from [dV62, Thm. 1.1.4] it follows that each $b \in B$ is the supremum of $S^{-1}[b]$. We use this fact to prove that

$$
\begin{equation*}
U\left(S^{-1}[I]\right)=U(I) \tag{4}
\end{equation*}
$$

for each ideal I of B. Since $S^{-1}[I] \subseteq I$, we have $U(I) \subseteq U\left(S^{-1}[I]\right)$. For the reverse inclusion, let $a \in U\left(S^{-1}[I]\right)$. We show that $a \in U(I)$. Let $b \in I$. Then $S^{-1}[b] \subseteq S^{-1}[I]$. Therefore, $a \in U\left(S^{-1}[b]\right)$, so $a \geq \bigvee S^{-1}[b]=b$. Thus, $a \in U(I)$. This proves (4). A similar argument proves that

$$
\begin{equation*}
L(S[F])=L(F) \tag{5}
\end{equation*}
$$

for each filter F of B. By (4) and (5), for every normal ideal I of B, we have

$$
L\left(S\left[U\left(S^{-1}[I]\right)\right]\right)=L(S[U(I)])=L(U(I))=I .
$$

Thus, applying S^{-1} to both sides yields

$$
S^{-1}\left[L\left(S\left[U\left(S^{-1}[I]\right)\right]\right)\right]=S^{-1}[I] .
$$

This shows, by Theorem 4.7, that $S^{-1}[I] \in \mathcal{N I}(\mathbf{B})$ for every normal ideal I of B. This defines an order-preserving map $\alpha: \bar{B} \rightarrow \mathcal{N} \mathcal{I}(\mathbf{B})$.

Conversely, for every $I \in \mathcal{N} \mathcal{I}(\mathbf{B})$, we have that $L(U(I))$ is a normal ideal of B. This defines an order-preserving map $\beta: \mathcal{N} \mathcal{I}(\mathbf{B}) \rightarrow \bar{B}$. By (4), for a normal ideal I of B, we have

$$
L\left(U\left(S^{-1}[I]\right)\right)=L(U(I))=I
$$

For a normal round ideal I, by (5) and Theorem 4.7, we have

$$
S^{-1}[L(U(I))]=S^{-1}[L(S[U(I)])=I
$$

Thus, α and β are order-isomorphisms, hence boolean isomorphisms.
(2). It is well known (see, e.g., [GH09, Thm. 22]) that sending b to the downset $\downarrow b:=\{a \in B \mid a \leq b\}$ gives a boolean embedding of B into \bar{B}, which is an isomorphism iff B is complete. Composing with α yields the boolean embedding $\iota: B \rightarrow \mathcal{N} \mathcal{I}(\mathbf{B})$ given by $\iota(b)=S^{-1}[b]$. If \mathbf{B} is a de Vries algebra, then ι becomes a boolean isomorphism by item (1). It is left to prove that $a S b$ iff $\iota(a) \prec \iota(b)$. If $a S b$, then $a \in U(\iota(a)) \cap \iota(b)$, and so $\iota(a) \prec \iota(b)$ by Remark 4.5. Conversely, suppose that $\iota(a) \prec \iota(b)$. Then $U(\iota(a)) \cap \iota(b) \neq \varnothing$, so there exists $c \in U(\iota(a)) \cap \iota(b)$. Since a is the supremum of $\iota(a)=S^{-1}[a]$, we have that $a \leq c S b$, and hence $a S b$. Thus, ι is a structure-preserving bijection between \mathbf{B} and $\mathcal{N I}(\mathbf{B})$.
Remark 4.15. Let $\mathbf{B}=(B, S)$ be a compingent algebra and \bar{B} the MacNeille completion of B. By [BBSV19, Rem. 5.11], (\bar{B}, \triangleleft) is a de Vries algebra, where

$$
I \triangleleft J \Longleftrightarrow U(I) \cap S^{-1}[J] \neq \varnothing
$$

A straightforward verification shows that the boolean isomorphism of Proposition $4.14(1)$ is an isomorphism of de Vries algebras between $\mathcal{N} \mathcal{I}(\mathbf{B})$ and (\bar{B}, \triangleleft).
Remark 4.16. Let \mathbf{B} be a compingent algebra. Then $Q_{\mathbf{B}}: \mathbf{B} \rightarrow \mathcal{N} \mathcal{I}(\mathbf{B})$ and $\iota: \mathbf{B} \rightarrow \mathcal{N} \mathcal{I}(\mathbf{B})$ are related as follows:

$$
a Q_{\mathbf{B}} I \Longleftrightarrow \iota(a) \prec I
$$

for each $a \in B$ and $I \in \mathcal{N \mathcal { I }}(\mathbf{B})$. Indeed, since \mathbf{B} is a compingent algebra, $a=\bigvee S^{-1}[a]$, so $\uparrow a=U\left(S^{-1}[a]\right)$, and hence

$$
\begin{aligned}
a Q_{\mathbf{B}} I & \Longleftrightarrow a \in I \Longleftrightarrow \uparrow a \cap I \neq \varnothing \\
& \Longleftrightarrow U\left(S^{-1}[a]\right) \cap I \neq \varnothing \Longleftrightarrow \iota(a) \prec I .
\end{aligned}
$$

We finish the section by proving that both $\mathrm{SubS5} 5^{\mathrm{S}}$ and $\mathrm{DeV}^{\mathrm{S}}$ are dually equivalent to KRFrm ${ }^{\mathrm{P}}$. Let $L \in \mathrm{KRFrm}^{\mathrm{P}}$. By [Bez12, Rem. 3.10], the map $f_{L}: L \rightarrow \mathcal{R} \mathcal{I}(\mathfrak{B} L)$ given by

$$
f_{L}(a)=\{b \in \mathfrak{B} L \mid b \prec a\}
$$

is an isomorphism of frames.
Proposition 4.17. $f: 1_{\mathrm{KRFrm}^{\mathrm{P}}} \rightarrow \mathcal{R} \mathcal{I} \circ \Delta \circ \mathfrak{B}$ is a natural isomorphism.
Proof. Let $\square: L \rightarrow M$ be a preframe homomorphism. Set $T=\mathfrak{B}(\square)$. Because each f_{L} is an isomorphism, it is enough to show that $\mathcal{R} \mathcal{I}(T) \circ f_{L}=$ $f_{M} \circ \square$. (Since Δ is the inclusion functor, we omit it from the diagram.)

Let $a \in L$. We have

$$
\begin{aligned}
\mathcal{R} \mathcal{I}(T)\left(f_{L}(a)\right)=T^{-1}\left[f_{L}(a)\right] & =\{b \in \mathfrak{B} M \mid \exists c \in \mathfrak{B} L: b T c, c \prec a\} \\
& =\{b \in \mathfrak{B} M \mid \exists c \in \mathfrak{B} L: b \prec \square c, c \prec a\},
\end{aligned}
$$

and $f_{M}(\square a)=\{b \in \mathfrak{B} M \mid b \prec \square a\}$. An argument similar to the last paragraph of the proof of Lemma 4.1 yields

$$
\{b \in \mathfrak{B} M \mid \exists c \in \mathfrak{B} L: b \prec \square c, c \prec a\}=\{b \in \mathfrak{B} M \mid b \prec \square a\},
$$

completing the proof.

Theorem 4.18.

(1) $\mathcal{R I}$ and $\Delta \circ \mathfrak{B}$ form a dual equivalence between $\mathrm{SubS5}^{\mathrm{S}}$ and $\mathrm{KRFrm}{ }^{\mathrm{P}}$.
(2) $\mathcal{R I} \circ \Delta$ and \mathfrak{B} form a dual equivalence between $\mathrm{DeV}^{\mathrm{S}}$ and KRFrm .

We thus obtain the following diagram of equivalences and dual equivalences that commutes up to natural isomorphism.

Proof. (11). By definition of $\mathcal{N} \mathcal{I}$, we have $\Delta \circ \mathfrak{B} \circ \mathcal{R} \mathcal{I}=\Delta \circ \mathcal{N} \mathcal{I}$. Therefore, $Q: 1_{\text {SubS5 }}{ }^{5} \rightarrow \Delta \circ \mathfrak{B} \circ \mathcal{R} \mathcal{I}$ is a natural isomorphism by Proposition 4.12, Moreover, $f: 1_{\mathrm{KRFrm}}{ }^{\mathrm{P}} \rightarrow \mathcal{R I} \circ \Delta \circ \mathfrak{B}$ is a natural isomorphism by Proposition 4.17. Thus, $\Delta \circ \mathfrak{B}: \mathrm{KRFrm}^{\mathrm{P}} \rightarrow \mathrm{SubS5}^{\mathrm{S}}$ is a quasi-inverse of $\mathcal{R} \mathcal{I}$.
(2). By Proposition 4.12, $Q: 1_{\text {Sub55s }} \rightarrow \Delta \circ \mathfrak{B} \circ \mathcal{R} \mathcal{I}$ is a natural isomorphism. For the same reason, we have a natural isomorphism $Q^{\prime}: 1_{\mathrm{DeVs}} \rightarrow$ $\mathfrak{B} \circ \mathcal{R} \mathcal{I} \circ \Delta$ whose component on $\mathbf{B} \in \mathrm{DeV}^{\mathrm{S}}$ is Q_{B}. Thus, $\mathfrak{B}: \mathrm{KRFrm}^{\mathrm{P}} \rightarrow$ $\mathrm{DeV}^{\mathrm{S}}$ is a quasi-inverse of $\mathcal{R} \mathcal{I} \circ \Delta$.

5. Continuous subordinations

In Section 4 we gave a direct choice-free proof that SubS5 ${ }^{5}$ is equivalent to $\mathrm{DeV}^{\mathrm{S}}$ and dually equivalent to $\mathrm{KRFrm}{ }^{\mathrm{P}}$. Morphisms of each of these categories encode closed relations between compact Hausdorff spaces. In this section we study the wide subcategories of these categories whose morphisms encode continuous relations between compact Hausdorff spaces.

Recalling from Remark 2.15 the equivalence \mathcal{Q} : Stone $E^{R} \rightarrow$ KHaus R, we first characterize when $\mathcal{Q}(R)$ is a continuous relation for an arbitrary morphism R in StoneE E^{R}. We then use the equivalence Clop: StoneE $\mathrm{E}^{\mathrm{R}} \rightarrow$ SubS5 ${ }^{S}$ to encode this characterization in the language of S 5 -subordination algebras.

Definition 5.1. Let R be a binary relation on a set X and $U \subseteq X$. Following the standard notation in modal logic, we write $\square_{R} U=X \backslash R^{-1}[X \backslash U]$. If R is an equivalence relation, we say that U is R-saturated if $R[U]=U$.

Remark 5.2.

1. If R is a closed relation and U is open, then $\square_{R} U$ is open.
2. If R is an equivalence relation, then $\square_{R} U=X \backslash R[X \backslash U]$ and is the largest R-saturated subset of U. Therefore, U is R-saturated iff $\square_{R} U=U$.

Lemma 5.3. Let $R:\left(X_{1}, E_{1}\right) \rightarrow\left(X_{2}, E_{2}\right)$ be a morphism in Stone E^{R}. The following are equivalent.
(1) The relation $\mathcal{Q}(R): X_{1} / E_{1} \rightarrow X_{2} / E_{2}$ is a continuous relation.
(2) If V is an E_{2}-saturated open in X_{2}, then $R^{-1}[V]$ is open in X_{1}.
(3) If $B_{1}, B_{2} \subseteq X_{2}$ are clopen with $E_{2}\left[B_{1}\right] \subseteq B_{2}$, then there is a clopen set $A \subseteq X_{1}$ such that $R^{-1}\left[B_{1}\right] \subseteq A \subseteq R^{-1}\left[B_{2}\right]$.
(4) If $B_{1}, B_{2} \subseteq X_{2}$ are clopen with $E_{2}\left[B_{1}\right] \subseteq B_{2}$, then there is a clopen set $A \subseteq X_{1}$ such that $A \in \widehat{S_{R}}\left[B_{1}\right]$ and $\widehat{S_{R}}\left[B_{2}\right] \subseteq S_{E_{1}}[A]$.

Proof. (1) $\Leftrightarrow(2)$. Let $\pi_{i}: X_{i} \rightarrow X_{i} / E_{i}$ be the quotient maps for $i=1,2$.

Then $\mathcal{Q}(R)^{-1}[U]=\pi_{1}\left[R^{-1}\left[\pi_{2}^{-1}[U]\right]\right]$ for each $U \subseteq X_{2} / E_{2}$. The R-inverse image of any subset of X_{2} is E_{1}-saturated by the compatibility of R. Thus, $R^{-1}\left[\pi_{2}^{-1}[U]\right]$ is open iff $\pi_{1}\left[R^{-1}\left[\pi_{2}^{-1}[U]\right]\right]$ is open for each U open of X_{2} / E_{2}. Therefore, $\mathcal{Q}(R)$ is continuous iff $R^{-1}\left[\pi_{2}^{-1}[U]\right]$ is open for each U open of X_{2} / E_{2}. Since V is an E_{2}-saturated open in X_{2} iff $V=\pi_{2}^{-1}[U]$ for some U open of X_{2} / E_{2}, the equivalence follows.
$(2) \Rightarrow(3)$. Suppose $B_{1}, B_{2} \subseteq X_{2}$ are clopens with $E_{2}\left[B_{1}\right] \subseteq B_{2}$. Let $V=\square_{E_{2}} B_{2}$. Then V is an E_{2}-saturated open. Since $E_{2}\left[B_{1}\right] \subseteq B_{2}$, we have that $B_{1} \subseteq V$. Therefore, $R^{-1}\left[B_{1}\right] \subseteq R^{-1}[V]$. The set $R^{-1}\left[B_{1}\right]$ is closed and $R^{-1}[V]$ is open by item (2). Thus, there is a clopen set $A \subseteq X_{1}$ such that $R^{-1}\left[B_{1}\right] \subseteq A \subseteq R^{-1}[V]$. Since $V \subseteq B_{2}$, we have $R^{-1}[V] \subseteq R^{-1}\left[B_{2}\right]$. Hence, $A \subseteq R^{-1}\left[B_{2}\right]$. This proves item (3).
$(3) \Rightarrow(2)$. Let V be an E_{2}-saturated open subset of X_{2}. Since $V=$ $\bigcup\left\{B \in \operatorname{Clop}\left(X_{2}\right) \mid B \subseteq V\right\}$, we have

$$
R^{-1}[V]=\bigcup\left\{R^{-1}[B] \mid B \in \operatorname{Clop}\left(X_{2}\right), B \subseteq V\right\}
$$

Thus, it is enough to prove that for every clopen subset B of X_{2} contained in V, there is an open subset U_{B} of X_{1} such that $R^{-1}[B] \subseteq U_{B} \subseteq R^{-1}[V]$ (because then $R^{-1}[V]=\bigcup\left\{U_{B} \mid B \in \operatorname{Clop}\left(X_{2}\right), B \subseteq V\right\}$). Let B be a clopen subset of X_{2} contained in V. Since V is E_{2}-saturated, $E_{2}[B] \subseteq V$. Because $E_{2}[B]$ is closed and V is open, there is a clopen subset B^{\prime} of X_{2} such that $E_{2}[B] \subseteq B^{\prime} \subseteq V$. By item (3), there is a clopen set $A \subseteq X_{1}$ such that $R^{-1}[B] \subseteq A \subseteq R^{-1}\left[B^{\prime}\right]$. Since $B^{\prime} \subseteq V$, we have $R^{-1}\left[B^{\prime}\right] \subseteq R^{-1}[V]$, so $A \subseteq R^{-1}[V]$. Therefore, we have found an open subset A of X_{1} such that $R^{-1}[B] \subseteq A \subseteq R^{-1}[V]$. Hence, item (2) holds.
(3) $\Leftrightarrow(4)$. This follows from the following two claims.

Claim 5.4. For clopen sets $A \subseteq X_{1}$ and $B \subseteq X_{2}$, we have $R^{-1}[B] \subseteq A$ iff $A \in \widehat{S_{R}}[B]$.

Proof of claim. This follows from the equality $\widehat{S_{R}}=S_{R}$, shown in the proof of [ABC23, Thm. 2.14].

Claim 5.5. For clopen sets $A \subseteq X_{1}$ and $B \subseteq X_{2}$, we have $A \subseteq R^{-1}[B]$ iff $\widehat{S_{R}}[B] \subseteq S_{E_{1}}[A]$.

Proof of claim. Let $A \subseteq X_{1}$ and $B \subseteq X_{2}$ be clopen sets. Then

$$
\begin{aligned}
& \widehat{S_{R}}[B] \subseteq S_{E_{1}}[A] \\
& \quad \Longleftrightarrow \forall A^{\prime} \in \operatorname{Clop}\left(X_{1}\right), B \widehat{S_{R}} A^{\prime} \text { implies } A S_{E_{1}} A^{\prime} \\
& \Longleftrightarrow \not \forall A^{\prime} \in \operatorname{Clop}\left(X_{1}\right), R^{-1}[B] \subseteq A^{\prime} \text { implies } E_{1}[A] \subseteq A^{\prime}
\end{aligned}
$$

(by Claim 5.4)

$$
\left.\left.\begin{array}{lr}
\Longleftrightarrow & E_{1}[A] \subseteq \bigcap\left\{A^{\prime} \in \operatorname{Clop}\left(X_{1}\right) \mid\right.
\end{array} R^{-1}[B] \subseteq A^{\prime}\right\}\right)
$$

This concludes the proof.
The next definition encodes Lemma 5.3(4) in the language of S5-subordination algebras. By Lemma 5.3 11, this condition is equivalent to the corresponding relation between compact Hausdorff spaces being continuous. Because of this, we call such compatible subordinations continuous.

Definition 5.6. Let $T:\left(B_{1}, S_{1}\right) \rightarrow\left(B_{2}, S_{2}\right)$ be a compatible subordination between S 5 -subordination algebras. We say that T is continuous if the following holds:

$$
\forall b_{1}, b_{2} \in B_{2}\left(b_{1} S_{2} b_{2} \Rightarrow \exists a \in \widehat{T}\left[b_{1}\right]: \widehat{T}\left[b_{2}\right] \subseteq S_{1}[a]\right)
$$

Lemma 5.7. Let $T:\left(B_{1}, S_{1}\right) \rightarrow\left(B_{2}, S_{2}\right)$ be a compatible subordination.
(1) The following are equivalent:
(a) T is continuous.
(b) $\forall b_{1}, b_{2} \in B_{2}\left(b_{1} S_{2} b_{2} \Rightarrow \exists a \in \widehat{T}\left[b_{1}\right]: a \in L\left(\widehat{T}\left[b_{2}\right]\right)\right)$.
(c) $\forall b_{1}, b_{2} \in B_{2}\left(b_{1} S_{2} b_{2} \Rightarrow \exists a \in T^{-1}\left[b_{2}\right]: a \in U\left(T^{-1}\left[b_{1}\right]\right)\right)$.
(2) If B_{1} is complete, then the following are equivalent:
(a) T is continuous.
(b) $\forall b_{1}, b_{2} \in B_{2}\left(b_{1} S_{2} b_{2} \Rightarrow b_{1} \widehat{T}\left(\bigwedge \widehat{T}\left[b_{2}\right]\right)\right)$.
(c) $\forall b_{1}, b_{2} \in B_{2}\left(b_{1} S_{2} b_{2} \Rightarrow\left(\bigvee T^{-1}\left[b_{1}\right]\right) T b_{2}\right)$.

Proof. (1a) $\Leftrightarrow 1 \mathrm{~b})$. It is enough to prove that $\widehat{T}\left[b_{2}\right] \subseteq S_{1}[a]$ is equivalent to $a \in L\left(\widehat{T}\left[b_{2}\right]\right)$. For the left-to-right implication, by (S5) we have $S_{1}[a] \subseteq$ $U(a)$, and so $\widehat{T}\left[b_{2}\right] \subseteq S_{1}[a]$ implies $\widehat{T}\left[b_{2}\right] \subseteq U(a)$, which is equivalent to $a \in L\left(\widehat{T}\left[b_{2}\right]\right)$. For the right-to-left implication, suppose $a \in L\left(\widehat{T}\left[b_{2}\right]\right)$ and let $a^{\prime} \in \widehat{T}\left[b_{2}\right]$. Since \widehat{T} is a compatible subordination, there is $a^{\prime \prime} \in \widehat{T}\left[b_{2}\right]$ such that $a^{\prime \prime} S_{1} a^{\prime}$. Therefore, $a \leq a^{\prime \prime} S_{1} a^{\prime}$, which implies $a S_{1} a^{\prime}$, and hence $a^{\prime} \in S_{1}[a]$.
(1b) \Leftrightarrow (1c). Suppose that (1b) holds, and let $b_{1}, b_{2} \in B_{2}$ be such that $b_{1} S_{2} b_{2}$. Then, by (S6), $\neg b_{2} S_{2} \neg b_{1}$. Therefore, by (1b) there is $a \in$ $\widehat{T}\left[\neg b_{2}\right]$ such that $a \in L\left(\widehat{T}\left[\neg b_{1}\right]\right)$. The condition $a \in \widehat{T}\left[\neg b_{2}\right]$ is equivalent to $\neg a \in T^{-1}\left[b_{2}\right]$. Similarly, the condition $a \in L\left(\widehat{T}\left[\neg b_{1}\right]\right)$ is equivalent to $\neg a \in$ $U\left(T^{-1}\left[b_{1}\right]\right)$. Thus, (1b) implies (1c), and the converse is proved similarly.
(2). If B is complete, then $(1 \mathrm{~b}) \Leftrightarrow(2 \mathrm{~b})$ and $(1 \mathrm{C}) \Leftrightarrow(2 \mathrm{C})$. Thus, the result follows from item (1).

Lemma 5.8.

(1) Let (B, S) be an S 5 -subordination algebra. The identity morphism $S:(B, S) \rightarrow(B, S)$ in $\mathrm{SubS5}^{\mathrm{S}}$ is continuous.
(2) Let $T_{1}:\left(B_{1}, S_{1}\right) \rightarrow\left(B_{2}, S_{2}\right)$ and $T_{2}:\left(B_{2}, S_{2}\right) \rightarrow\left(B_{3}, S_{3}\right)$ be continuous compatible subordinations between S 5 -subordination algebras. Then $T_{2} \circ T_{1}:\left(B_{1}, S_{1}\right) \rightarrow\left(B_{3}, S_{3}\right)$ is a continuous compatible subordination.

Proof. (11). Since $\widehat{S}=S$, this is immediate from (S7).
(2). It is sufficient to show that $T_{2} \circ T_{1}$ is continuous. Let $c_{1}, c_{2} \in B_{3}$ be such that $c_{1} S_{3} c_{2}$. By (S7), there is $c \in B_{3}$ such that $c_{1} S_{3} c S_{3} c_{2}$. Therefore, since T_{2} is continuous, there are $b_{1} \in \widehat{T}_{2}\left[c_{1}\right]$ and $b_{2} \in \widehat{T}_{2}[c]$ such that $\widehat{T}_{2}[c] \subseteq S_{2}\left[b_{1}\right]$ and $\widehat{T}_{2}\left[c_{2}\right] \subseteq S_{2}\left[b_{2}\right]$. We have $b_{2} \in \widehat{T}_{2}[c] \subseteq S_{2}\left[b_{1}\right]$, and so $b_{1} S_{2} b_{2}$. Thus, since T_{1} is continuous, there is $a \in \widehat{T}_{1}\left[b_{1}\right]$ such that $\widehat{T}_{1}\left[b_{2}\right] \subseteq S_{1}[a]$. We have $c_{1} \widehat{T}_{2} b_{1} \widehat{T}_{1} a$, and hence $a \in\left(\widehat{T}_{1} \circ \widehat{T}_{2}\right)\left[c_{1}\right]$. Since $\widehat{T}_{1} \circ \widehat{T}_{2}=\widehat{T_{2} \circ T_{1}}$, it remains to show that $\left(\widehat{T}_{1} \circ \widehat{T}_{2}\right)\left[c_{2}\right] \subseteq S_{1}[a]$. Let $a^{\prime} \in\left(\widehat{T}_{1} \circ \widehat{T}_{2}\right)\left[c_{2}\right]$. Then there is $b \in B_{2}$ such that $c_{2} \widehat{T}_{2} b \widehat{T}_{1} a^{\prime}$. We have $b \in \widehat{T}_{2}\left[c_{2}\right] \subseteq S_{2}\left[b_{2}\right]$, and thus $b_{2} S_{2} b$. From $b_{2} S_{2} b \widehat{T}_{1} a^{\prime}$ we deduce, using the compatibility of \widehat{T}_{1}, that $b_{2} \widehat{T}_{1} a^{\prime}$. Therefore, $a^{\prime} \in \widehat{T}_{1}\left[b_{2}\right] \subseteq S_{1}[a]$, and hence $a^{\prime} \in S_{1}[a]$, as desired.

Definition 5.9. Let $\operatorname{SubS5} 5^{C S}$ be the wide subcategory of $\operatorname{SubS5} 5^{S}$ whose morphisms are continuous compatible subordinations, and define $\mathrm{DeV}^{\mathrm{CS}}$ similarly.

We next show that Theorem 4.18 restricts to yield the corresponding dual equivalences for $\mathrm{SubS5} 5^{\mathrm{CS}}$ and $\mathrm{DeV}^{\mathrm{CS}}$. For this we need the following lemma.

Lemma 5.10. Let $\left(B_{1}, S_{1}\right),\left(B_{2}, S_{2}\right) \in \operatorname{SubS5}^{\mathrm{S}}$ and $T: B_{1} \rightarrow B_{2}$ be a morphism in SubS5s. Let also L_{1}, L_{2} be compact regular frames and $\square: L_{1} \rightarrow$ L_{2} a preframe homomorphism.
(1) If $T: B_{1} \rightarrow B_{2}$ is a continuous compatible subordination, then the map $\mathcal{R I}(T): \mathcal{R I}\left(B_{2}, S_{2}\right) \rightarrow \mathcal{R I}\left(B_{1}, S_{1}\right)$ is a c-morphism.
(2) If $\square: L_{1} \rightarrow L_{2}$ is a c-morphism, then $\mathfrak{B}(\square): \mathfrak{B}\left(L_{2}\right) \rightarrow \mathfrak{B}\left(L_{1}\right)$ is continuous.
(3) If $T: B_{1} \rightarrow B_{2}$ is an isomorphism in $\mathrm{SubS5}^{\mathrm{S}}$, then T is an isomorphism in SubS5 ${ }^{\text {CS }}$.
(4) If $\square: L_{1} \rightarrow L_{2}$ is an isomorphism in $\mathrm{KRFrm}^{\mathrm{P}}$, then \square is an isomorphism in $\mathrm{KRFrm}{ }^{\mathrm{C}}$.

Proof. (11). Let $\square=\mathcal{R} \mathcal{I}(T)$. Then \square is a preframe homomorphism by Theorem 3.5. We define $\diamond: \mathcal{R} \mathcal{I}\left(B_{2}, S_{2}\right) \rightarrow \mathcal{R} \mathcal{I}\left(B_{1}, S_{1}\right)$ by

$$
\diamond I=\left\{a \in B_{1} \mid \exists b \in I: a \in L(\widehat{T}[b])\right\} .
$$

We first show that \diamond is well defined. It is straightforward to see that $\diamond I$ is an ideal of B_{1}. To see that $\diamond I$ is a round ideal, let $a \in \diamond I$. Then there is $b \in I$ with $a \in L(\widehat{T}[b])$. Since I is a round ideal, there is $d \in I$ with $b S_{2} d$. Because T is continuous, there is $c \in \widehat{T}[b]$ such that $c \in L(\widehat{T}[d])$ (see Lemma 5.7 (1b)). Therefore, $c \in \diamond I$ since $d \in I$. Because \widehat{T} is compatible, from $b \widehat{T} c$ it follows that there is $c^{\prime} \in \widehat{T}[b]$ with $c^{\prime} S_{1} c$. But then $a \leq c^{\prime}$ since $a \in L(\widehat{T}[b])$. Thus, $a \leq c^{\prime} S_{1} c$, so $a S_{1} c$, and hence $\diamond I$ is a round ideal.

We next show that \diamond preserves arbitrary joins. It is straightforward to see that $I \subseteq J$ implies $\diamond I \subseteq \diamond J$. Therefore, if $\left\{I_{\alpha}\right\} \subseteq \mathcal{R} \mathcal{I}\left(B_{2}, S_{2}\right)$, then $\bigvee \diamond I_{\alpha} \subseteq \diamond\left(\bigvee I_{\alpha}\right)$. For the reverse inclusion, let $x \in \diamond\left(\bigvee I_{\alpha}\right)$. Then there
is $b \in \bigvee I_{\alpha}$ with $x \in L(\widehat{T}[b])$. Since $b \in \bigvee I_{\alpha}$, there exist $\alpha_{1}, \ldots, \alpha_{n}$ and $d_{i} \in I_{\alpha_{i}}$ for $i=1, \ldots, n$ such that $b \leq d_{1} \vee \cdots \vee d_{n}$. Thus, $x \in$ $L\left(\widehat{T}\left[d_{1} \vee \cdots \vee d_{n}\right]\right)$. Because $I_{\alpha_{i}}$ is a round ideal for each i, it follows that there exist $e_{i} \in I_{\alpha_{i}}$ with $d_{i} S_{2} e_{i}$ for each i. By continuity of T, there exist $a_{i} \in \widehat{T}\left[d_{i}\right]$ with $a_{i} \in L\left(\widehat{T}\left[e_{i}\right]\right)$ for each i. So $a_{i} \in \diamond I_{\alpha_{i}}$ for each i and $a_{1} \vee \cdots \vee a_{n} \in \widehat{T}\left[d_{1} \vee \cdots \vee d_{n}\right]$. Since $x \in L\left(\widehat{T}\left[d_{1} \vee \cdots \vee d_{n}\right]\right)$, it follows that $x \leq a_{1} \vee \cdots \vee a_{n}$. Consequently, $x \in \bigvee \diamond I_{\alpha}$.

It is left to prove that $\square I \cap \diamond J \subseteq \diamond(I \cap J)$ and $\square(I \vee J) \subseteq \square I \vee \diamond J$ for all $I, J \in \mathcal{R} \mathcal{I}\left(B_{2}, S_{2}\right)$. Let $x \in \square I \cap \diamond J$. Since $x \in \square I=T^{-1}[I]$, there is $a \in I$ with $x T a$. Because $x \in \diamond J$, there is $b \in J$ with $x \in L(\widehat{T}[b])$. We first show that $x \in L(\widehat{T}[a \wedge b])$. If $e \in \widehat{T}[a \wedge b]$, then $\neg e T(\neg a \vee \neg b)$. Since $x T a$, it follows that $(x \wedge \neg e) T(a \wedge(\neg a \vee \neg b))$. So $(x \wedge \neg e) T(a \wedge \neg b)$, and hence $(x \wedge \neg e) T \neg b$. Therefore, $\neg x \vee e \in \widehat{T}[b]$. Because $x \in L(\widehat{T}[b])$, we have $x \leq \neg x \vee e$, and so $x \leq e$. Thus, $x \in L(\widehat{T}[a \wedge b])$. Since $a \wedge b \in I \cap J$, we conclude that $x \in \diamond(I \cap J)$.

Finally, let $x \in \square(I \vee J)=T^{-1}[I \vee J]$. Then there is $y \in I \vee J$ with $x T y$. Thus, there exist $a \in I, b \in J$ with $y \leq a \vee b$. Since I and J are round ideals, there exist $a^{\prime} \in I, b^{\prime} \in J$ with $a S_{2} a^{\prime}$ and $b S_{2} b^{\prime}$. Because $\neg a^{\prime} S_{2} \neg a$ and $b S_{2} b^{\prime}$, the continuity of T yields that there exist $c \in \widehat{T}\left[\neg a^{\prime}\right]$ and $d \in \widehat{T}[b]$ with $c \in L(\widehat{T}[\neg a])$ and $d \in L\left(\widehat{T}\left[b^{\prime}\right]\right)$. From $c \in \widehat{T}\left[\neg a^{\prime}\right]$ it follows that $\neg c T a^{\prime}$, so $\neg c \in T^{-1}[I]=\square I$. Since $d \in L\left(\widehat{T}\left[b^{\prime}\right]\right)$ and $b^{\prime} \in J$, we have $d \in \diamond J$. Therefore, $\neg c \vee d \in \square I \vee \diamond J$. We prove that $x \leq \neg c \vee d$, which is equivalent to $c \leq \neg x \vee d$. We have $x T(a \vee b)$ and $\neg d T \neg b$ because $d \in \widehat{T}[b]$. Therefore, $(x \wedge \neg d) T((a \vee b) \wedge \neg b)$, and so $(x \wedge \neg d) T(a \wedge \neg b) \leq a$. Thus, $\neg x \vee d \in \widehat{T}[\neg a]$. Since $c \in L(\widehat{T}[\neg a])$, we obtain $c \leq \neg x \vee d$. Consequently, $x \in \square I \vee \diamond J$ because $x \leq \neg c \vee d \in \square I \vee \diamond J$.
(2). Let $T=\mathfrak{B}(\square)$. By Lemma 4.1, $T: \mathfrak{B}\left(L_{2}\right) \rightarrow \mathfrak{B}\left(L_{1}\right)$ is a morphism in SubS5 ${ }^{\text {s }}$. To see that it is continuous, let $b_{1}, b_{2} \in \mathfrak{B}\left(L_{1}\right)$ with $b_{1} \prec b_{2}$. Set $a=\neg \square \neg b_{2}$. Then $a \in \mathfrak{B}\left(L_{2}\right)$. We show that $b_{1} \widehat{T} a$ and $a \in L\left(\widehat{T}\left[b_{2}\right]\right)$. We have $\neg b_{2} \prec \neg b_{1}$, so $\square \neg b_{2} \prec \square \neg b_{1}$ since \square preserves \prec (see [BBH15, Lem. 3.6]). The definition of \prec implies $\neg \neg \square \neg b_{2} \prec \square \neg b_{1}$. Therefore, $\neg a \prec$ $\square \neg b_{1}$, which gives $\neg a T \neg b_{1}$. Thus, $b_{1} \widehat{T} a$. If $x \in \widehat{T}\left[b_{2}\right]$, then $\neg x T \neg b_{2}$, so $\neg x \prec \square \neg b_{2}$. Therefore, $a=\neg \square \neg b_{2} \prec x$, and hence $a \leq x$. Thus, $a \in L\left(\widehat{T}\left[b_{2}\right]\right)$, and so T is continuous.
(3). This is a consequence of a stronger result proved in Lemma 6.5 (3)
below.
(4). Since \square is an isomorphism in KRFrm $^{\mathrm{P}}$, it is a poset isomorphism. Defining $\diamond:=\square$ then yields that \square is an isomorphism in KRFrm ${ }^{\mathrm{C}}$.

As an immediate consequence of Theorem 4.18 and Lemma 5.10 we obtain:

Theorem 5.11.

(1) The dual equivalence between $\mathrm{SubS5}^{\mathrm{S}}$ and $\mathrm{KRFrm}^{\mathrm{P}}$ restricts to a dual equivalence between their wide subcategories $\mathrm{SubS5} 5^{\mathrm{CS}}$ and KRFrm ${ }^{\mathrm{C}}$.
(2) The dual equivalence between $\mathrm{DeV}^{\mathrm{S}}$ and $\mathrm{KRFrm}{ }^{\mathrm{P}}$ restricts to a dual equivalence between their wide subcategories $\mathrm{DeV}^{\mathrm{CS}}$ and $\mathrm{KRFrm}{ }^{\mathrm{C}}$.

We conclude this section by showing that $\mathrm{DeV}^{\mathrm{CS}}$ is dually isomorphic to $\mathrm{DeV}^{\mathrm{C}}$. Let $\left(B_{1}, S_{1}\right)$ and $\left(B_{2}, S_{2}\right)$ be de Vries algebras. If $T: B_{1} \rightarrow B_{2}$ is a morphism in $\mathrm{DeV}{ }^{\mathrm{CS}}$, we define $\square_{T}: B_{2} \rightarrow B_{1}$ by $\square_{T} b=\bigvee T^{-1}[b]$. Also, if $\square: B_{2} \rightarrow B_{1}$ is a morphism in $\mathrm{DeV}^{\mathrm{C}}$, we define $T_{\square}: B_{1} \rightarrow B_{2}$ by

$$
a T_{\square} b \Longleftrightarrow \exists b^{\prime} \in B_{2}\left(a S_{1} \square b^{\prime} \text { and } b^{\prime} S_{2} b\right)
$$

Lemma 5.12. Let $\left(B_{1}, S_{1}\right)$ and $\left(B_{2}, S_{2}\right)$ be de Vries algebras.
(1) If $T: B_{1} \rightarrow B_{2}$ is a morphism in $\mathrm{DeV}^{\mathrm{CS}}$, then $\square_{T}: B_{2} \rightarrow B_{1}$ is a morphism in $\mathrm{DeV}^{\mathrm{C}}$.
(2) If $\square: B_{2} \rightarrow B_{1}$ is a morphism in $\mathrm{DeV}^{\mathrm{C}}$, then $T_{\square}: B_{1} \rightarrow B_{2}$ is a morphism in $\mathrm{DeV}^{\mathrm{CS}}$.
(3) $\square_{T_{\square}}=$ \qquad
(4) $T_{\square_{T}}=T$.

Proof. (11). We first show that \square_{T} is de Vries multiplicative. It is obvious that $\square_{T} 1=1$. Let $b_{1} S_{2} b_{2}$ and $d_{1} S_{2} d_{2}$. Since T is continuous and B_{1} is complete, by Lemma 5.7(2c)

$$
\left(\bigvee T^{-1}\left[b_{1}\right]\right) T b_{2} \quad \text { and } \quad\left(\bigvee T^{-1}\left[d_{1}\right]\right) T d_{2}
$$

Therefore, $\left(\square_{T} b_{1} \wedge \square_{T} d_{1}\right) T\left(b_{2} \wedge d_{2}\right)$. Since T is compatible, there is $x \in B_{1}$ such that $\left(\square_{T} b_{1} \wedge \square_{T} d_{1}\right) S_{1} x T\left(b_{2} \wedge d_{2}\right)$. Thus,

$$
\left(\square_{T} b_{1} \wedge \square_{T} d_{1}\right) S_{1} x \leq \square_{T}\left(b_{2} \wedge d_{2}\right),
$$

and hence $\left(\square_{T} b_{1} \wedge \square_{T} d_{1}\right) S_{1} \square_{T}\left(b_{2} \wedge d_{2}\right)$. Consequently, \square_{T} is de Vries multiplicative. To see that \square_{T} is lower continuous, let $x \in T^{-1}[b]$. Since T is compatible, $x T$ y $S_{2} b$ for some $y \in B_{2}$. Therefore, $x \leq \square_{T} y$, and hence $\square_{T} b=\bigvee\left\{\square_{T} y \mid y S_{2} b\right\}$. Thus, \square_{T} is a morphism in $\mathrm{DeV}^{\mathrm{C}}$.
(2). That $0 T_{\square} 0$ is straightforward and that $1 T_{\square} 1$ follows from $\square 1=1$. Since \square is lower continuous, it is order preserving (see [BBH15, Prop. 4.15(2)] and Remark 2.10(2)). Suppose $a, a^{\prime} T_{\square} b$. Then there exist b_{1} and b_{2} such that $a S_{1} \square b_{1}, b_{1} S_{2} b, a^{\prime} S_{1} \square b_{2}$, and $b_{2} S_{2} b$. From $a S_{1} \square b_{1}$ and $a^{\prime} S_{1} \square b_{2}$ it follows that $\left(a \vee a^{\prime}\right) S_{1}\left(\square b_{1} \vee \square b_{2}\right) \leq \square\left(b_{1} \vee b_{2}\right)$, and so $\left(a \vee a^{\prime}\right) S_{1} \square\left(b_{1} \vee b_{2}\right)$. Also, from $b_{1} S_{2} b$ and $b_{2} S_{2} b$ it follows that $\left(b_{1} \vee b_{2}\right) S_{2} b$. Thus, $\left(a \vee a^{\prime}\right) T_{\square} b$. Next suppose $a T_{\square} b, b^{\prime}$. Then there exist b_{1} and b_{2} such that $a S_{1} \square b_{1}, b_{1} S_{2} b, a S_{1} \square b_{2}$, and $b_{2} S_{2} b^{\prime}$. From $a S_{1} \square b_{1}$ and $a S_{1} \square b_{2}$ it follows that $a S_{1}\left(\square b_{1} \wedge \square b_{2}\right)=\square\left(b_{1} \wedge b_{2}\right)$ (see [BBH15], Prop. 4.15(2)] and Remark 2.10(2)). Also, from $b_{1} S_{2} b$ and $b_{2} S_{2} b^{\prime}$ it follows that $\left(b_{1} \wedge b_{2}\right) S_{2}\left(b \wedge b^{\prime}\right)$. Thus, $a T_{\square}\left(b \wedge b^{\prime}\right)$. Finally, that $a \leq a^{\prime} T_{\square} b^{\prime} \leq b$ implies $a T_{\square} b$ is straightforward. This gives that T_{\square} is a subordination.

That $T_{\square} \subseteq S_{2} \circ T_{\square}$ and $T_{\square} \subseteq T_{\square} \circ S_{1}$ follow from the fact that S_{2} and S_{1} satisfy (S7). The reverse inclusions are obvious, so $S_{2} \circ T_{\square}=T_{\square}=T_{\square} \circ S_{1}$. This yields that T_{\square} is a compatible subordination.

It is left to prove that T_{\square} is continuous. Let $b_{1} S_{2} b_{2}$. Then there is $y \in B_{2}$ with $b_{1} S_{2}$ y $S_{2} b_{2}$. Set $a=\square b_{1}$. Since $a S_{1} \square y$ and $y S_{2} b_{2}$, we have $a T_{\square} b_{2}$, so $a \in T_{\square}^{-1}\left[b_{2}\right]$. Moreover, if $x T_{\square} b_{1}$, then there is $z \in B_{2}$ such that $x S_{1} \square z$ and $z S_{2} b_{1}$. Therefore, $x S_{1} \square b_{1}$, and so $x S_{1} a$. Thus, $a \in U\left(T_{\square}^{-1}\left[b_{1}\right]\right)$ by (S5), and hence T_{\square} is continuous by Lemma 5.7 (1c). Consequently, T_{\square} is a morphism in $\mathrm{DeV}^{\mathrm{CS}}$.
(3). We have

$$
\begin{aligned}
\square_{T_{\square}} b & =\bigvee T_{\square}^{-1}[b]=\bigvee\left\{a \mid \exists b^{\prime} \in B_{2}\left(a S_{1} \square b^{\prime} \text { and } b^{\prime} S_{2} b\right)\right\} \\
& =\bigvee\left\{\square b^{\prime} \mid b^{\prime} S_{2} b\right\}=\square b,
\end{aligned}
$$

where the second to last equality follows from the facts that S_{2} satisfies (S7) and $b^{\prime} S_{2} b$ implies $\square b^{\prime} S_{1} \square b$, and the last equality from the lower continuity of \square.
(4). We have

$$
\begin{aligned}
a T_{\square_{T}} b & \Longleftrightarrow \exists b^{\prime} \in B_{2}\left(a S_{1} \square_{T} b^{\prime} \text { and } b^{\prime} S_{2} b\right) \\
& \Longleftrightarrow \exists b^{\prime} \in B_{2}\left(a S_{1} \bigvee T^{-1}\left[b^{\prime}\right] \text { and } b^{\prime} S_{2} b\right) .
\end{aligned}
$$

We show that the last condition is equivalent to $a T b$. Since T is a morphism in $\mathrm{DeV}^{\mathrm{CS}}$ and $b^{\prime} S_{2} b$, we have $\left(\bigvee T^{-1}\left[b^{\prime}\right]\right) T b$ by Lemma 5.7 (2c). Therefore, $a S_{1}\left(\bigvee T^{-1}\left[b^{\prime}\right]\right) T b$, and so $a T b$. Conversely, if $a T b$, there are $a^{\prime} \in B_{1}$ and $b^{\prime} \in B_{2}$ such that $a S_{1} a^{\prime} T b^{\prime} S_{2} b$. Thus, $a^{\prime} \leq \bigvee T^{-1}\left[b^{\prime}\right]$, and hence $a S_{1} \bigvee T^{-1}\left[b^{\prime}\right]$.

As an immediate consequence of Lemma 5.12 we obtain:
Theorem 5.13. $\mathrm{DeV}^{C S}$ is dually isomorphic to $\mathrm{DeV}^{\mathrm{C}}$.
Putting Theorems 5.11 and 5.13 together yields the following analogue of the commutative diagram of equivalences and dual equivalences given at the end of Section 4

Remark 5.14. As we pointed out in Section $2, K^{\prime} \mathrm{KFrm}^{\mathrm{C}}$ and $\mathrm{DeV}^{\mathrm{C}}$ are dually equivalent to $\mathrm{KHaus}{ }^{\mathrm{C}}$. Hence, $\mathrm{SubS5} 5^{\mathrm{CS}}$ and $\mathrm{DeV}{ }^{C S}$ are equivalent to $\mathrm{KHaus}{ }^{\mathrm{C}}$. The wide subcategories of Stone E^{R} and Gle^{R} that are equivalent to $\mathrm{KHaus}^{\mathrm{C}}$ can be described as follows.

Let (X, E) be an 55 -subordination space. A morphism $R: X_{1} \rightarrow X_{2}$ in Stone E^{R} is continuous if $R^{-1}[U]$ is open for each E_{2}-saturated open $U \subseteq$ X_{2}. Let Stone E^{C} be the wide subcategory of Stone E^{R} whose morphisms are continuous morphisms in Stone E^{R} and define $\mathrm{Gle}^{\mathrm{C}}$ similarly. Using Lemma 5.3 it is straightforward to see that the equivalence between Stone E^{R} and Gl^{R} described in Remark 2.15(4) restricts to an equivalence between

StoneE ${ }^{\mathrm{C}}$ and $\mathrm{Gle}^{\mathrm{C}}$. By [BGHJ19, Thm. 4.16], $\mathrm{Gle}^{\mathrm{C}}$ is equivalent to $\mathrm{KHaus}^{\mathrm{C}}$. Thus, each of $\mathrm{KHaus}^{\mathrm{C}}$, StoneE $^{\mathrm{C}}$, and $\mathrm{Gle}^{\mathrm{C}}$ is equivalent or dually equivalent to each of the categories in the diagram above.

6. Functional subordinations

In this section we further restrict our attention to those wide subcategories of SubS5 ${ }^{\mathrm{S}}$ and KRFrm ${ }^{\mathrm{P}}$ that encode continuous functions between compact Hausdorff spaces. The wide subcategories of $\operatorname{SubS5} 5^{S}$ and Stone E^{R} equivalent to KHaus were described in [ABC23, Sec. 6], where it was shown that they are equivalent to the categories of maps in the allegories $\mathrm{SubS5}^{\mathrm{S}}$ and StoneE E^{R}. This has resulted in the following notion:

Definition 6.1. ABC23, Def. 6.4]

1. Call a morphism $T:\left(B_{1}, S_{1}\right) \rightarrow\left(B_{2}, S_{2}\right)$ in SubS5s functional if

$$
\widehat{T} \circ T \subseteq S_{1} \quad \text { and } \quad S_{2} \subseteq T \circ \widehat{T}
$$

2. Let SubS5 ${ }^{\mathrm{F}}$ be the wide subcategory of $\mathrm{SubS5}^{\mathrm{S}}$ whose morphisms are functional morphisms, and define $\mathrm{DeV}^{\mathrm{F}}$ similarly.

Remark 6.2. If T is functional, then T is continuous. Indeed, let $b_{1} S_{2} b_{2}$. Since T is functional, $S_{2} \subseteq T \circ \widehat{T}$, so there exists $a \in B_{1}$ such that $b_{1} \widehat{T} a$ and $a T b_{2}$. Thus, $a \in \widehat{T}\left[b_{1}\right]$. Moreover, if $a^{\prime} \in \widehat{T}\left[b_{2}\right]$, then $b_{2} \widehat{T} a^{\prime}$. Therefore, $a T b_{2} \widehat{T} a^{\prime}$, so $a S_{1} a^{\prime}$ because $\widehat{T} \circ T \subseteq S_{1}$ by the functionality of T. Consequently, T is continuous. Thus, SubS5 ${ }^{\mathrm{F}}$ is a wide subcategory of SubS5 ${ }^{\mathrm{CS}}$. Similarly, $\mathrm{DeV}^{\mathrm{F}}$ is a wide subcategory of $\mathrm{DeV}^{\mathrm{CS}}$.

We now give a characterization of functional morphisms. For another characterization see $\triangle \mathrm{ABC} 23$, Lem. 6.5].

Lemma 6.3. Let $T:\left(B_{1}, S_{1}\right) \rightarrow\left(B_{2}, S_{2}\right)$ be a morphism in SubS5 ${ }^{\text {S }}$. The following conditions are equivalent.
(1) T is functional.
(2) The following hold for all $a \in B_{1}$ and $b_{1}, b_{2}, b_{1}^{\prime}, b_{2}^{\prime} \in B_{2}$:
(a) If $a T 0$, then $a=0$.
(b) If a $T\left(b_{1} \vee b_{2}\right), b_{1} S_{2} b_{1}^{\prime}$, and $b_{2} S_{2} b_{2}^{\prime}$, then there are $a_{1}, a_{2} \in B_{1}$ such that a $S_{1}\left(a_{1} \vee a_{2}\right), a_{1} T b_{1}^{\prime}$, and $a_{2} T b_{2}^{\prime}$.

Proof. By ABC 23, Lem. 6.5(1)], $\widehat{T} \circ T \subseteq S_{1}$ is equivalent to (2a). Therefore, it is sufficient to prove that, under these equivalent conditions, $S_{2} \subseteq$ $T \circ \widehat{T}$ is equivalent to (2b).

To prove that $S_{2} \subseteq T \circ \widehat{T}$ implies (2b), let $a T\left(b_{1} \vee b_{2}\right), b_{1} S_{2} b_{1}^{\prime}$, and $b_{2} S_{2} b_{2}^{\prime}$. Since $S_{2} \subseteq T \circ \widehat{T}$, from $b_{1} S_{2} b_{1}^{\prime}$ and $b_{2} S_{2} b_{2}^{\prime}$ it follows that there are $a_{1}, a_{2} \in B_{1}$ such that $b_{1} \widehat{T} a_{1} T b_{1}^{\prime}$ and $b_{2} \widehat{T} a_{2} T b_{2}^{\prime}$. Therefore, $a T\left(b_{1} \vee b_{2}\right) \widehat{T}\left(a_{1} \vee a_{2}\right)$. Since $\widehat{T} \circ T \subseteq S_{1}$, it follows that $a S_{1}\left(a_{1} \vee a_{2}\right)$.

To prove that (2b) implies $S_{2} \subseteq T \circ \widehat{T}$, let $b_{1}, b_{2} \in B_{2}$ be such that $b_{1} S_{2} b_{2}$. By (S7), there is $b \in B_{2}$ such that $b_{1} S_{2} b S_{2} b_{2}$. We have $1 T(\neg b \vee b)$. By (S6), $b_{1} S_{2} b$ implies $\neg b S_{2} \neg b_{1}$. Thus, by (2b), there are $a_{1}, a_{2} \in B_{1}$ such that $1 S_{1}\left(a_{1} \vee a_{2}\right), a_{1} T \neg b_{1}$, and $a_{2} T b_{2}$. By (S5), from $1 S_{1}\left(a_{1} \vee a_{2}\right)$ it follows that $1=a_{1} \vee a_{2}$, so $\neg a_{1} \leq a_{2}$. Since $a_{1} T \neg b_{1}$, we have $b_{1} \widehat{T} \neg a_{1} \leq a_{2}$, and hence $b_{1} \widehat{T} a_{2}$. Because $b_{1} \widehat{T} a_{2} T b_{2}$, it follows that $b_{1}(T \circ \widehat{T}) b_{2}$. Thus, $S_{2} \subseteq T \circ \widehat{T}$, completing the proof.

Our main goal in this section is to show that Theorem 4.18 restricts to yield the corresponding dual equivalences for $\mathrm{SubS5}^{\mathrm{F}}$ and $\mathrm{DeV}^{\mathrm{F}}$. For this we need Lemma 6.5, which requires the following:

Remark 6.4. Let $T:\left(B_{1}, S_{1}\right) \rightarrow\left(B_{2}, S_{2}\right)$ be a morphism in SubS5 ${ }^{\text {S }}$. Since functional morphisms are maps in the allegory SubS55 [ABC23, Def. 6.4], it follows from [FS90, p. 199] that T is an isomorphism iff T and \widehat{T} are both functional, in which case \widehat{T} is the inverse of T.

Lemma 6.5. Let $\left(B_{1}, S_{1}\right),\left(B_{2}, S_{2}\right) \in \operatorname{SubS5}^{\mathrm{S}}$ and $T: B_{1} \rightarrow B_{2}$ be a morphism in SubS5s. Let also L_{1}, L_{2} be compact regular frames and $\square: L_{1} \rightarrow$ L_{2} a preframe homomorphism.
(1) If $T: B_{1} \rightarrow B_{2}$ is functional, then $\mathcal{R} \mathcal{I}(T): \mathcal{R} \mathcal{I}\left(B_{2}\right) \rightarrow \mathcal{R} \mathcal{I}\left(B_{1}\right)$ is a frame homomorphism.
(2) If $\square: L_{1} \rightarrow L_{2}$ is a frame homomorphism, then $\mathfrak{B}(\square): \mathfrak{B} L_{2} \rightarrow \mathfrak{B} L_{1}$ is functional.
(3) If $T: B_{1} \rightarrow B_{2}$ is an isomorphism in $\mathrm{SubS5}^{\mathrm{S}}$, then T is an isomorphism in SubS5 ${ }^{F}$.
(4) If $\square: L_{1} \rightarrow L_{2}$ is an isomorphism in $\mathrm{KRFrm}^{\mathrm{P}}$, then \square is an isomorphism in KRFrm.

Proof. (11). Since $\mathcal{R} \mathcal{I}(T)$ is a preframe homomorphism (see Theorem 3.5), it is sufficient to prove that it preserves bottom and binary joins. To see that $\mathcal{R} \mathcal{I}(T)$ preserves bottom, it is enough to show that $T^{-1}[\{0\}] \subseteq\{0\}$, which follows from Lemma 6.3 2a). To see that $\mathcal{R} \mathcal{I}(T)$ preserves binary joins, let I_{1}, I_{2} be round ideals of B_{2}. It is sufficient to prove that $T^{-1}\left[I_{1} \vee I_{2}\right] \subseteq$ $T^{-1}\left[I_{1}\right] \vee T^{-1}\left[I_{2}\right]$. Let $a \in T^{-1}\left[I_{1} \vee I_{2}\right]$. Then there are $b_{1} \in I_{1}, b_{2} \in I_{2}$ such that $a T\left(b_{1} \vee b_{2}\right)$. Since I_{1} and I_{2} are round ideals, there are $b_{1}^{\prime} \in I_{1}$ and $b_{2}^{\prime} \in I_{2}$ such that $b_{1} S_{2} b_{1}^{\prime}$ and $b_{2} S_{2} b_{2}^{\prime}$. By Lemma 6.3 2b), there are $a_{1}, a_{2} \in B_{1}$ such that $a S_{1}\left(a_{1} \vee a_{2}\right), a_{1} T b_{1}^{\prime}$, and $a_{2} T b_{2}^{\prime}$. Thus, $a \in T^{-1}\left[I_{1}\right] \vee T^{-1}\left[I_{2}\right]$.
(2). We prove that $\mathfrak{B}(\square)$ satisfies Lemma 6.3(2). To see (2a), let $b \in$ $\mathfrak{B} L_{2}$ be such that $b \mathfrak{B}(\square) 0$, so $b \prec \square 0$. Since \square is a frame homomorphism, $\square 0=0$. Therefore, $b \prec 0$, and hence $b=0$ by (S5). To see (2b), let $b \in \mathfrak{B} L_{2}$ and $a_{1}, a_{2}, a_{1}^{\prime}, a_{2}^{\prime} \in \mathfrak{B} L_{1}$ be such that $b \mathfrak{B}(\square)\left(a_{1} \vee a_{2}\right), a_{1} \prec a_{1}^{\prime}$, and $a_{2} \prec a_{2}^{\prime}$. Then $b \prec \square\left(a_{1} \vee a_{2}\right)$. But $\square\left(a_{1} \vee a_{2}\right)=\square a_{1} \vee \square a_{2}$ because \square is a frame homomorphism. Therefore, $b \prec \square a_{1} \vee \square a_{2}$, and so there is $b^{\prime} \in \mathfrak{B}(\square)$ such that $b \prec b^{\prime} \prec \square a_{1} \vee \square a_{2}$. Set $b_{1}=b^{\prime} \wedge \square a_{1}$ and $b_{2}=b^{\prime} \wedge \square a_{2}$. We have $a_{i} \prec a_{i}^{\prime}$ implies $\square a_{i} \prec \square a_{i}^{\prime}$ for $i \in\{1,2\}$. Thus,

$$
b_{i}=b^{\prime} \wedge \square a_{i} \leq \square a_{i} \prec \square a_{i}^{\prime},
$$

so $b_{i} \prec \square a_{i}^{\prime}$, and hence $b_{i} \mathfrak{B}(\square) a_{i}^{\prime}$. Moreover, $b \prec b^{\prime}$ and $b \prec \square a_{1} \vee \square a_{2}$ imply that

$$
b \prec b^{\prime} \wedge\left(\square a_{1} \vee \square a_{2}\right)=\left(b^{\prime} \wedge \square a_{1}\right) \vee\left(b^{\prime} \wedge \square a_{2}\right)=b_{1} \vee b_{2} .
$$

This proves (2b).
(3). This follows from Remark 6.4 .
(4). In both KRFrm ${ }^{\mathrm{P}}$ and KRFrm isomorphisms are order-isomorphisms.

From Theorem 4.18 and Lemma 6.5 we obtain:

Theorem 6.6.

(1) The dual equivalence between $\mathrm{SubS5}^{\mathrm{S}}$ and $\mathrm{KRFrm}^{\mathrm{P}}$ restricts to a dual equivalence between their wide subcategories SubS5 ${ }^{\mathrm{F}}$ and KRFrm.
(2) The dual equivalence between $\mathrm{DeV}^{\mathrm{S}}$ and $\mathrm{KRFrm}^{\mathrm{P}}$ restricts to a dual equivalence between their wide subcategories $\mathrm{DeV}^{\mathrm{F}}$ and KRFrm .

In addition, we have:
Theorem 6.7 ($[\overline{\mathrm{ABC} 23}, ~ T h m .6 .18]) . ~ D e V$ and $\mathrm{DeV}^{\mathrm{F}}$ are dually isomorphic.
Consequently, we arrive at the following analogue of the commutative diagram of equivalences and dual equivalences given at the end of Section 5 .

Remark 6.8. We recall from ABC 23 , Def. 6.1] that Stone E^{F} is the wide subcategory of StoneE ${ }^{\mathrm{R}}$ whose morphisms $R:\left(X_{1}, E_{1}\right) \rightarrow\left(X_{2}, E_{2}\right)$ satisfy $E_{1} \subseteq R^{\hookrightarrow} \circ R$ and $R \circ R^{\hookrightarrow} \subseteq E_{2}$. We call such morphisms functional and define Gle similarly. By [ABC23, Thm. 6.9], the categories SubS5 ${ }^{F}$, $\mathrm{DeV}^{\mathrm{F}}$, Stone E^{F}, Gle, and KHaus are equivalent. Thus, each of these is equivalent or dually equivalent to the categories in the above diagram.

We thus arrive at the following diagram, in which empty boxes of the diagram in Fig. 1 are filled. The number under each double arrow indicates the corresponding statement in the body of the paper.

For the reader's convenience we also list all the categories involved in the diagram.

Figure 2

Category	Objects	Morphisms
SubS5	S5-subordination algebras	Compatible subordinations
SubS5 5^{CS}	S5-subordination algebras	Continuous compatible subordinations
SubS5	S5-subordination algebras	Functional compatible subordinations
$\mathrm{DeV}^{\mathrm{F}}$	De Vries algebras	Compatible subordinations
$\mathrm{DeV}^{\mathrm{CS}}$	De Vries algebras	Continuous compatible subordinations
$\mathrm{DeV}^{\mathrm{F}}$	De Vries algebras	Functional compatible subordinations
$\mathrm{DeV} \mathrm{V}^{\mathrm{C}}$	De Vries algebras	Lower continuous de Vries mult. maps
DeV	De Vries algebras	De Vries morphisms

Table 1: Categories of subordination algebras.

Category	Objects	Morphisms
KRFrm $^{\text {P }}$	Compact regular frames	Preframe homomorphisms
KRFrm $^{\mathrm{C}}$	Compact regular frames	Continuous preframe homomorphisms
KRFrm	Compact regular frames	Frame homomorphisms

Table 2: Categories of compact regular frames.

Category	Objects	Morphisms
KHaus R	Compact Hausdorff spaces	Closed relations
KHaus C	Compact Hausdorff spaces	Continuous relations
KHaus	Compact Hausdorff spaces	Continuous functions

Table 3: Categories of compact Hausdorff spaces.

Category	Objects	Morphisms
StoneE	S5-subordination spaces	Compatible closed relations
StoneE C	S5-subordination spaces	Continuous compatible closed relations
StoneE F	S5-subordination spaces	Functional compatible closed relations
Gle R	Gleason spaces	Compatible closed relations
$\mathrm{Gle}^{\mathrm{C}}$	Gleason spaces	Continuous compatible closed relations
Gle	Gleason spaces	Functional compatible closed relations

Table 4: Categories of subordination spaces.

7. Dual descriptions of the completions

In this final section we give dual descriptions of the round ideal and MacNeille completions of S5-subordination algebras.

Recall that if B is a boolean algebra and X is the Stone space of B, then the isomorphism $\varphi: B \rightarrow \operatorname{Clop}(X)$ is given by the Stone map

$$
\varphi(a)=\{x \in X \mid a \in x\} .
$$

This isomorphism induces an order-isomorphism Φ between the frame of ideals of B and the frame of open subsets of X, as well as an order-isomorphism Ψ between the frame of filters of B and the frame of closed subsets of X ordered by reverse inclusion (see, e.g., [GH09, Thm. 33]). The isomorphisms are defined as follows:

$$
\Phi(I)=\bigcup\{\varphi(a) \mid a \in I\} \quad \text { and } \quad \Psi(F)=\bigcap\{\varphi(a) \mid a \in F\} .
$$

It belongs to folklore that for an ideal I and filter F of B, we have

$$
\begin{array}{ll}
\Phi(\neg F)=\Psi(F)^{c}, & \Phi(L(F))=\operatorname{int}(\Psi(F)), \\
\Psi(\neg I)=\Phi(I)^{c}, & \Psi(U(I))=\operatorname{cl}(\Phi(I)) . \tag{6}
\end{array}
$$

For the reader's convenience, we give a proof of $\Psi(U(I))=\mathrm{cl}(\Phi(I))$. The other three equalities are proved similarly. Since $b \in U(I)$ iff $\varphi(a) \subseteq \varphi(b)$ for each $a \in I$, we have

$$
\Psi(U(I))=\bigcap\{\varphi(b) \mid b \in U(I)\}=\bigcap\{\varphi(b) \mid \Phi(I) \subseteq \varphi(b)\}=\mathrm{cl}(\Phi(I))
$$

where the last equality follows from the fact that X is a Stone space, hence the closure of a set is the intersection of the clopen sets containing it.

Let $(B, S) \in$ SubS5 $^{\text {s }}$. We recall from Remark 2.15 6) that the S5subordination space of (B, S) is $\left(X, R_{S}\right)$ where X is the Stone space of B and R_{S} is given by $x R_{S} y$ iff $S[x] \subseteq y$. For simplicity, we write (X, R) instead of $\left(X, R_{S}\right)$.
Lemma 7.1. Let (B, S) be an S 5 -subordination algebra and (X, R) its S 5 subordination space.
(1) If I is an ideal of B, then $\Phi\left(S^{-1}[I]\right)=\square_{R} \Phi(I)$.
(2) If F is a filter of B, then $\Psi(S[F])=R[\Psi(F)]$.

Proof. (11). We have

$$
\begin{aligned}
\Phi\left(S^{-1}[I]\right) & =\bigcup\left\{\varphi(a) \mid a \in S^{-1}[I]\right\}=\bigcup\{\varphi(a) \mid \exists b \in I: a S b\} \\
& =\bigcup\{\varphi(a) \mid \exists b \in I: R[\varphi(a)] \subseteq \varphi(b)\} \\
& =\bigcup\{\varphi(a) \mid R[\varphi(a)] \subseteq \Phi(I)\} \\
& =\bigcup\left\{\varphi(a) \mid \varphi(a) \subseteq \square_{R} \Phi(I)\right\}=\square_{R} \Phi(I),
\end{aligned}
$$

where the third equality follows from the fact that $a S b$ iff $R[\varphi(a)] \subseteq \varphi(b)$ (see, e.g., [BBSV17, Lem. 2.20]); the fourth from the fact that $R[\varphi(a)]$ is closed, hence compact in X; and the last from the fact that $\square_{R} \Phi(I)$ is open and $\{\varphi(a) \mid a \in B\}$ forms a basis for X.
(2). We have:

$$
\begin{array}{rlr}
\Psi(S[F]) & =(\Phi(\neg S[F]))^{c} & (\text { by (6)) } \\
& =\left(\Phi\left(S^{-1}[\neg F]\right)\right)^{c} & \text { (by Lemma 3.3) } \\
& =\left(\square_{R} \Phi(\neg F)\right)^{c} & \text { (by item (1)) } \\
& =\left(\square_{R}\left(\Psi(F)^{c}\right)\right)^{c} & \text { (by (6)) } \\
& =R[\Psi(F)] & \text { (by Remark 5.2 (2)). }
\end{array}
$$

We recall from the introduction that $\mathcal{O}(X)$ denotes the frame of open subsets of a topological space X. Since the set of R-saturated open subsets of an S 5 -subordination space (X, R) forms a subframe of $\mathcal{O}(X)$, it is a frame.

Definition 7.2. For an $\mathrm{S5}$-subordination space $\mathbf{X}=(X, R)$ let $\mathcal{O}_{R}(\mathbf{X})$ be the frame of R-saturated open subsets of X.

Lemma 7.3. Let $\mathbf{B}=(B, S)$ be an $\mathbf{S 5 - s u b o r d i n a t i o n ~ a l g e b r a ~ a n d ~} \mathbf{X}=$ (X, R) its $\mathrm{S5}$-subordination space. An ideal I of B is a round ideal iff $\Phi(I)$ is an R-saturated open subset of X. Therefore, $\mathcal{R} \mathcal{I}(\mathbf{B})$ is isomorphic to $\mathcal{O}_{R}(\mathbf{X})$.

Proof. We have that I is a round ideal iff $I=S^{-1}[I]$. Since Φ is an isomorphism, Lemma 7.1 (1) implies that I is a round ideal iff $\Phi(I)=\square_{R} \Phi(I)$. Therefore, I is a round ideal iff $\Phi(I)$ is R-saturated. Thus, the restriction of Φ is an isomorphism from $\mathcal{R} \mathcal{I}(\mathbf{B})$ to $\mathcal{O}_{R}(\mathbf{X})$.

Let $\mathbf{X}=(X, R)$ be an S5-subordination space and $\pi: X \rightarrow X / R$ the quotient map given by $\pi(x)=[x]$. It is well known that π lifts to an isomorphism between $\mathcal{O}(X / R)$ and $\mathcal{O}_{R}(\mathbf{X})$ (see, e.g., [Eng89, Prop. 2.4.3]). This together with Lemma 7.3 yields the following result, which by Isbell duality gives an alternative proof of Theorem 3.4 44.

Theorem 7.4. Let $\mathbf{B}=(B, S)$ be an $\mathbf{S} 5$-subordination algebra and $\mathbf{X}=$ (X, R) its subordination space. Then $\mathcal{R} \mathcal{I}(\mathbf{B})$ is isomorphic to $\mathcal{O}(X / R)$.

We recall that the MacNeille completion of a boolean algebra B is isomorphic to $\mathcal{R} \mathcal{O}(X)$ where X is the Stone space of B (see, e.g., GH09, Thm. 40]). We will generalize this result to the setting of $S 5$-subordination algebras. Since regular opens are fixpoints of int cl: $\mathcal{O}(X) \rightarrow \mathcal{O}(X)$, we introduce the notion of an R-regular open subset of an S 5 -subordination space (X, R) by replacing int with \square_{R} int and cl with $R \mathrm{cl}$.

Definition 7.5. Let $\mathbf{X}=(X, R)$ be an S 5 -subordination space. We say that an R-saturated open subset of X is R-regular open if it is a fixpoint of \square_{R} int R cl: $\mathcal{O}_{R}(\mathbf{X}) \rightarrow \mathcal{O}_{R}(\mathbf{X})$. Let $\mathcal{R} \mathcal{O}_{R}(\mathbf{X})$ be the poset of R-regular open subsets of X.

Lemma 7.6. Let $\mathbf{X}=(X, R)$ be an S 5 -subordination space. We equip $\mathcal{R} \mathcal{O}_{R}(\mathbf{X})$ with the relation \prec given by

$$
U \prec V \Longleftrightarrow R[\mathrm{cl}(U)] \subseteq V .
$$

Then $\mathcal{R} \mathcal{O}_{R}(\mathbf{X})$ is a de Vries algebra isomorphic to $\mathcal{R} \mathcal{O}(X / R)$.
Proof. As we pointed out in the paragraph before Theorem 7.4, $\pi: X \rightarrow$ X / R lifts to an isomorphism $f: \mathcal{O}_{R}(X) \rightarrow \mathcal{O}(X / R)$ given by $f(U)=$ $\pi[U]$. We show that for each $U \in \mathcal{O}_{R}(X)$ we have

$$
U \in \mathcal{R} \mathcal{O}_{R}(X) \Longleftrightarrow \pi[U] \in \mathcal{R} \mathcal{O}(X / R)
$$

On the one hand,

$$
\begin{aligned}
U \in \mathcal{R} \mathcal{O}_{R}(X) & \Longleftrightarrow U=\square_{R}(\operatorname{int}(R[\operatorname{cl}(U)])) \\
& \Longleftrightarrow \pi[U]=\pi\left[\square_{R}(\operatorname{int}(R[\operatorname{cl}(U)]))\right]
\end{aligned}
$$

On the other hand,

$$
\pi[U] \in \mathcal{R} \mathcal{O}(X / R) \Longleftrightarrow \pi[U]=\operatorname{int}(\mathrm{cl}(\pi[U]))
$$

Therefore, it is enough to prove that

$$
\pi\left[\square_{R}(\operatorname{int}(R[\mathrm{cl}(U)]))\right]=\operatorname{int}(\mathrm{cl}(\pi[U]))
$$

Since $\pi: X \rightarrow X / R$ is a quotient map and X / R is compact Hausdorff, π is a closed map. Thus, for each R-saturated subset G of X we have

$$
\begin{equation*}
\pi[R[\mathrm{cl}(G)]]=\pi[\mathrm{cl}(G)]=\operatorname{cl}(\pi[G]) \tag{7}
\end{equation*}
$$

Moreover, since G is R-saturated,

$$
\begin{equation*}
\pi\left[G^{c}\right]=\pi[G]^{c} \tag{8}
\end{equation*}
$$

Therefore, if H is an R-saturated subset of X, then

$$
\begin{aligned}
\pi\left[\square_{R}(\operatorname{int}(H))\right] & =\pi\left[R\left[\mathrm{cl}\left(H^{c}\right)\right]^{c}\right] & & \\
& =\pi\left[R\left[\mathrm{cl}\left(H^{c}\right)\right]\right]^{c} & & (\text { by }(\mathbb{8}) \\
& =\operatorname{cl}\left(\pi\left[H^{c}\right]\right)^{c} & & (\text { by }(7)) \\
& =\operatorname{int}\left(\pi\left[H^{c}\right]^{c}\right) & & \\
& =\operatorname{int}(\pi[H]) & & (\text { by }(8)) .
\end{aligned}
$$

This equation together with (7) yields

$$
\pi\left[\square_{R}(\operatorname{int}(R[\mathrm{cl}(U)]))\right]=\operatorname{int}(\pi[R[\mathrm{cl}(U)]])=\operatorname{int}(\mathrm{cl}(\pi[U])) .
$$

Thus, f restricts to a poset isomorphism and hence a boolean isomorphism between $\mathcal{R} \mathcal{O}_{R}(X)$ and $\mathcal{R O}(X / R)$. By (7), f also preserves and reflects the relation:

$$
\begin{aligned}
U \prec V & \Longleftrightarrow R[\mathrm{cl}(U)] \subseteq V \Longleftrightarrow \pi[R[\mathrm{cl}(U)]] \subseteq \pi[V] \\
& \Longleftrightarrow \mathrm{cl}(\pi[U]) \subseteq \pi[V] \Longleftrightarrow \pi[U] \prec \pi[V] .
\end{aligned}
$$

Therefore, f is a structure-preserving bijection, hence an isomorphism of de Vries algebras by [dV62, Prop. 1.5.5].

Proposition 7.7. Let $\mathbf{B}=(B, S)$ be an $\mathbf{S 5 - s u b o r d i n a t i o n ~ a l g e b r a ~ a n d ~} \mathbf{X}=$ (X, R) its $\mathbf{S 5 - s u b o r d i n a t i o n ~ s p a c e . ~ F o r ~ a ~ r o u n d ~ i d e a l ~ I ~ o f ~} \mathbf{B}$, we have:
(1) $\Phi\left(I^{*}\right)=\square_{R} \operatorname{int}\left(\Phi(I)^{c}\right)$.
(2) $\Phi\left(I^{* *}\right)=\square_{R} \operatorname{int}(R[\mathrm{cl} \Phi(I)])$.
(3) I is a normal round ideal iff $\Phi(I)$ is an R-regular open subset.

Consequently, $\mathcal{N I}(\mathbf{B})$ is isomorphic to $\mathcal{R} \mathcal{O}_{R}(\mathbf{X})$.
Proof. (1). We have

$$
\begin{aligned}
& \left.\Phi\left(I^{*}\right)=\Phi(\neg S[U(I)]) \quad \text { (by Theorem 3.4,22) }\right) \\
& =(\Psi(S[U(I)]))^{c} \\
& =(R[\Psi(U(I))])^{c} \quad(\text { by Lemma 7.1](2) }) \\
& =(R[\mathrm{cl} \Phi(I)])^{c} \\
& =\square_{R} \operatorname{int}\left(\Phi(I)^{c}\right) \text {, } \\
& \text { (by (6) }
\end{aligned}
$$

where the last equality follows from the fact that $\mathrm{cl} U=\left(\operatorname{int}\left(U^{c}\right)\right)^{c}$ for each $U \subseteq X$.
(2). By the proof of item (1), if I is a round ideal, then

$$
\Phi\left(I^{*}\right)=(R[\mathrm{cl} \Phi(I)])^{c}=\square_{R} \operatorname{int}\left(\Phi(I)^{c}\right) .
$$

Thus,

$$
\Phi\left(I^{* *}\right)=\square_{R} \operatorname{int}\left(\Phi\left(I^{*}\right)^{c}\right)=\square_{R} \operatorname{int}\left(\left((R[\mathrm{cl} \Phi(I)])^{c}\right)^{c}\right)=\square_{R} \operatorname{int}(R[\mathrm{cl} \Phi(I)])
$$

(3). Since I is normal iff $I=I^{* *}$, this follows from item (2) and Definition 7.5

Finally, since Φ is an order-isomorphism, its restriction is an isomorphism of the boolean algebras $\mathcal{N I}(\mathbf{B})$ and $\mathcal{R} \mathcal{O}_{R}(\mathbf{X})$. Moreover, if $I, J \in$ $\mathcal{N I}(\mathbf{B})$, then

$$
\begin{aligned}
I \prec J & \Longleftrightarrow I^{*} \vee J=B \\
& \Longleftrightarrow \Phi\left(I^{*} \vee J\right)=X \\
& \Longleftrightarrow \Phi\left(I^{*}\right) \cup \Phi(J)=X \\
& \Longleftrightarrow R[\mathrm{cl} \Phi(I)]^{c} \cup \Phi(J)=X \quad \text { (by the proof of item (1)) } \\
& \Longleftrightarrow R[\mathrm{cl} \Phi(I)] \subseteq \Phi(J) \\
& \Longleftrightarrow \Phi(I) \prec \Phi(J) .
\end{aligned}
$$

Therefore, Φ is an isomorphism of de Vries algebras.
Combining Lemma 7.6 and Proposition 7.7 yields the following result, which gives an alternative proof of Proposition 4.4.
Theorem 7.8. Let $\mathbf{B}=(B, S)$ be an S 5 -subordination algebra and $\mathbf{X}=$ (X, R) its $\mathrm{S5}$-subordination space. Then $\mathcal{N} \mathcal{I}(\mathbf{B})$ is isomorphic to $\mathcal{R O}(X / R)$.

Acknowledgements

We are very thankful to the referee for careful reading and useful comments which have improved the paper considerably.

Marco Abbadini was supported by the Italian Ministry of University and Research through the PRIN project n. 20173WKCM5 Theory and applications of resource sensitive logics and by UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee (grant number EP/Y015029/1, Project "DCPOS").

Luca Carai was supported by the Italian Ministry of University and Research through the PRIN project n. 20173WKCM5 Theory and applications of resource sensitive logics and by the Spanish Ministry of Science and Innovation (MCIN) and the European Union through the Juan de la CiervaFormación 2021 programme (FJC2021-046977-I).

References

[ABC23] M. Abbadini, G. Bezhanishvili, and L. Carai. A generalization of de Vries duality to closed relations between compact Hausdorff spaces. Topology Appl., 337:Paper No. 108641, 2023.
[Ban89] B. Banaschewski. Universal zero-dimensional compactifications. In Categorical topology and its relation to analysis, algebra and combinatorics (Prague, 1988), pages 257-269. World Sci. Publ., Teaneck, NJ, 1989.
[BBH15] G. Bezhanishvili, N. Bezhanishvili, and J. Harding. Modal compact Hausdorff spaces. J. Logic Comput., 25(1):1-35, 2015.
[BBSV17] G. Bezhanishvili, N. Bezhanishvili, S. Sourabh, and Y. Venema. Irreducible equivalence relations, Gleason spaces, and de Vries duality. Appl. Categ. Structures, 25(3):381-401, 2017.
[BBSV19] G. Bezhanishvili, N. Bezhanishvili, T. Santoli, and Y. Venema. A strict implication calculus for compact Hausdorff spaces. Ann. Pure Appl. Logic, 170(11), 2019. 102714.
[Bez10] G. Bezhanishvili. Stone duality and Gleason covers through de Vries duality. Topology Appl., 157(6):1064-1080, 2010.
[Bez12] G. Bezhanishvili. De Vries algebras and compact regular frames. Appl. Categ. Structures, 20(6):569-582, 2012.
[BGHJ19] G. Bezhanishvili, D. Gabelaia, J. Harding, and M. Jibladze. Compact Hausdorff spaces with relations and Gleason spaces. Appl. Categ. Structures, 27(6):663-686, 2019.
[BH14] G. Bezhanishvili and J. Harding. Proximity frames and regularization. Appl. Categ. Structures, 22(1):43-78, 2014.
[BP96] B. Banaschewski and A. Pultr. Booleanization. Cah. Topol. Géom. Différ. Catég., 37(1):41-60, 1996.
[Cel01] S. A. Celani. Quasi-modal algebras. Math. Bohem., 126(4):721736, 2001.
[Cel18] S. A. Celani. Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras. Miskolc Math. Notes, 19(1):171-189, 2018.
[dV62] H. de Vries. Compact spaces and compactifications. An algebraic approach. PhD thesis, University of Amsterdam, 1962.
[DV06] G. Dimov and D. Vakarelov. Topological representation of precontact algebras. In Relational Methods in Computer Science, volume 3929 of Lecture Notes in Comput. Sci., pages 1-16. Springer, Berlin, 2006.
[DV07] I. Düntsch and D. Vakarelov. Region-based theory of discrete spaces: A proximity approach. Ann. Math. Artif. Intell., 49(1-4):5-14, 2007.
[Eng89] R. Engelking. General topology, volume 6 of Sigma Series in Pure Mathematics. Heldermann Verlag, Berlin, second edition, 1989.
[FS90] P. J. Freyd and A. Scedrov. Categories, allegories, volume 39 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, 1990.
[GH09] S. Givant and P. Halmos. Introduction to Boolean algebras. Undergraduate Texts in Mathematics. Springer, New York, 2009.
[GK81] G. Gierz and K. Keimel. Continuous ideal completions and compactifications. In B. Banaschewski and R.-E. Hoffmann, editors, Continuous Lattices, pages 97-124, Berlin, Heidelberg, 1981. Springer Berlin Heidelberg.
[Grä78] G. Grätzer. General lattice theory, volume Band 52 of Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe. Birkhäuser Verlag, Basel-Stuttgart, 1978.
[Isb72] J. Isbell. Atomless parts of spaces. Math. Scand., 31:5-32, 1972.
[JKM01] A. Jung, M. Kegelmann, and M. A. Moshier. Stably compact spaces and closed relations. In MFPS 2001. Papers from the 17th Conference on the Mathematical Foundations of Programming Semantics, Aarhus University, Aarhus, Denmark, May 23-26, 2001, pages 209-231. Amsterdam: Elsevier, 2001.
[Joh82] P. T. Johnstone. Stone spaces, volume 3 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1982.
[KMJ23] A. Kurz, A. Moshier, and A. Jung. Stone duality for relations. In A. Palmigiano and M. Sadrzadeh, editors, Samson Abramsky on Logic and Structure in Computer Science and Beyond, pages 159-215. Springer International Publishing, Cham, 2023.
[Mee66] K. N. Meenakshi. Proximity structures in Boolean algebras. Acta Sci. Math. (Szeged), 27:85-92, 1966.
[PP12] J. Picado and A. Pultr. Frames and locales: Topology without points. Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel, 2012.
[Smy92] M. B. Smyth. Stable compactification. I. J. London Math. Soc. (2), 45(2):321-340, 1992.
[Tow96] C. F. Townsend. Preframe techniques in constructive locale theory. PhD thesis, Imperial College London (University of London), 1996.
[War74] A. J. Ward. Representations of proximity lattices. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 17:41-57, 1974.

Marco Abbadini
School of Computer Science
University of Birmingham
B15 2TT Birmingham (UK)
marco.abbadini.uni@gmail.com

Guram Bezhanishvili
Department of Mathematical Sciences
New Mexico State University
Las Cruces NM 88003 (USA)
guram@nmsu.edu
Luca Carai
Dipartimento di Matematica
Università degli Studi di Milano
20133 Milan (Italy)
luca.carai.uni@gmail.com

[^0]: ${ }^{1}$ The frame $\mathcal{I}(B)$ is even zero-dimensional because every element in $\mathcal{I}(B)$ is a join of complemented elements (see [Ban89]).

