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Résumé. Les algèbres de subordination S5 sont une généralisation naturelle
des algèbres de de Vries. Il a été prouvé récemment que la catégorie SubS5S

des algèbres de subordination S5 et des relations de subordination compat-
ibles est équivalente à la catégorie des espaces compacts de Hausdorff et
des relations fermées. Nous généralisons la complétion de MacNeille des
algèbres de Boole au cadre des algèbres de subordination S5, et utilisons le
caractère relationnel des morphismes de SubS5S pour prouver que le fonc-
teur de complétion de MacNeille établit une équivalence entre SubS5S et sa
sous-catégorie pleine des algèbres de de Vries. De plus, nous montrons que
le foncteur qui associe à chaque algèbre de subordination S5 le frame de ses
idéaux ronds établit une dualité entre SubS5S et la catégorie des frames com-
pacts réguliers et des homomorphismes de preframes. Nos résultats n’utilisent
pas l’axiome du choix et fournissent un éclairage supplémentaire sur les du-
alités de type Stone pour les espaces compacts de Hausdorff avec différents
types de morphismes. En particulier, nous montrons comment elles se re-
streignent aux sous-catégories amples de SubS5S correspondant aux relations
continues et aux fonctions continues entre espaces compacts de Hausdorff.
Abstract. S5-subordination algebras are a natural generalization of de Vries
algebras. Recently it was proved that the category SubS5S of S5-subordina-
tion algebras and compatible subordination relations between them is equiv-
alent to the category of compact Hausdorff spaces and closed relations. We
generalize MacNeille completions of boolean algebras to the setting of S5-
subordination algebras, and utilize the relational nature of the morphisms in
SubS5S to prove that the MacNeille completion functor establishes an equiv-
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alence between SubS5S and its full subcategory consisting of de Vries alge-
bras. We also show that the functor that associates to each S5-subordination
algebra the frame of its round ideals establishes a dual equivalence between
SubS5S and the category of compact regular frames and preframe homomor-
phisms. Our results are choice-free and provide further insight into Stone-
like dualities for compact Hausdorff spaces with various morphisms between
them. In particular, we show how they restrict to the wide subcategories of
SubS5S corresponding to continuous relations and continuous functions be-
tween compact Hausdorff spaces.
Keywords. Compact Hausdorff space, Gleason cover, closed relation, con-
tinuous relation, de Vries algebra, subordination relation, proximity, Mac-
Neille completion, ideal completion, compact regular frame.
Mathematics Subject Classification (2020). 18F70, 54E05, 06D22, 06E15,
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1. Introduction

With each compact Hausdorff space X , we can associate numerous algebraic
structures that determine X up to homeomorphism. This yields various du-
alities for the category KHaus of compact Hausdorff spaces and continuous
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functions. In this paper we are interested in two dualities for KHaus from
pointfree topology. By Isbell duality [Isb72], KHaus is dually equivalent to
the category KRFrm of compact regular frames and frame homomorphisms;
and by de Vries duality [dV62], KHaus is dually equivalent to the category
DeV of de Vries algebras and de Vries morphisms.

Isbell duality is established by working with the contravariant functor
O : KHaus → KRFrm which associates with each compact Hausdorff space
X the compact regular frame O(X) of open subsets of X , and with each
continuous function f : X → Y the frame homomorphism f−1 : O(Y ) →
O(X). De Vries duality is established by working with the contravari-
ant functor RO : KHaus → DeV. Writing int for the interior and cl for
the closure, RO associates with each X ∈ KHaus the de Vries algebra
(RO(X),≺) of regular open subsets of X , where U ≺ V iff cl(U) ⊆ V ,
and with each continuous function f : X → Y the de Vries morphism
RO(f) : RO(Y ) → RO(X) given by RO(f)(V ) = int(clf−1[V ]) for each
V ∈ RO(Y ).

As a consequence of Isbell and de Vries dualities, KRFrm is equivalent
to DeV. This equivalence can be obtained directly, without first passing to
KHaus [Bez12]. We thus arrive at the following diagram, where the horizon-
tal arrow represents an equivalence and the slanted arrows with the letter d
on top represent dual equivalences.

KHaus

KRFrm DeV

d d

Several authors have considered generalizations of KHaus where func-
tions are replaced by relations. A relation R between two compact Hausdorff
spaces X and Y is closed if R is a closed subset of X × Y and it is contin-
uous if in addition the R-preimage of each open subset of Y is open in X .
A function between compact Hausdorff spaces is closed iff it is continuous.
But for relations this results in two different categories KHausR and KHausC.
In the former, morphisms are closed relations; and in the latter, they are con-
tinuous relations. Clearly KHaus is a wide subcategory of KHausC, which in
turn is a wide subcategory of KHausR.
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In [BGHJ19] KRFrm was generalized to KRFrmC, DeV to DeVC (see
Section 2 for the definitions of these categories), and it was shown that the
commutative diagram above extends to the following commutative diagram.

KHausC

KRFrmC DeVC

d d

On the other hand, in [Tow96, JKM01] the category KRFrm was gener-
alized to KRFrmP, where morphisms are preframe homomorphisms (that is,
they preserve finite meets and directed joins), and it was shown that KRFrmP

is dually equivalent to KHausR. In a recent paper [ABC23] we introduced the
category DeVS whose objects are de Vries algebras and whose morphisms
are compatible subordination relations. We proved that DeVS is equivalent
to KHausR and hence dually equivalent to KRFrmP. Thus, we arrive at the
following commutative diagram that extends the two diagrams above.

KHausR

KRFrmP DeVS

d

d

Our aim here is to give a direct choice-free proof of the duality between
KRFrmP and DeVS. From this we derive a direct choice-free proof of the
equivalence between KRFrmC and DeVC, as well as an alternative choice-
free proof of the equivalence between KRFrm and DeV.

Our main tool is the category SubS5S of S5-subordination algebras intro-
duced in [ABC23]. Objects of SubS5S were already considered by Meenak-
shi [Mee66], who studied proximity relations on an arbitrary boolean al-
gebra. In [ABC23] we used a generalization of Stone duality to closed
relations [Cel18, KMJ23] and the machinery of allegories [FS90] to show
that SubS5S is equivalent to the category StoneER whose objects are Stone
spaces equipped with a closed equivalence relation and whose morphisms
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are special closed relations (see Definition 2.13(1)). Since DeVS is a full
subcategory of SubS5S, restricting this equivalence yields an equivalence be-
tween DeVS and the full subcategory GleR of StoneER consisting of Gleason
spaces. It turns out that these four categories are equivalent to KHausR. Con-
sequently, DeVS is equivalent to SubS5S, but the proof goes through KHausR

and hence uses the axiom of choice.
In this paper we generalize MacNeille completions of boolean algebras

to S5-subordination algebras and give a direct choice-free proof of the equiv-
alence between SubS5S and DeVS. We also specialize the notion of a round
ideal of a proximity lattice [War74] to our setting to obtain a contravariant
functor from SubS5S to KRFrmP, yielding a choice-free proof that SubS5S is
dually equivalent to KRFrmP. We thus arrive at the following commutative
diagram.

SubS5S

KRFrmP DeVS

d

d

We also study the wide subcategories of these categories whose mor-
phisms encode continuous relations and continuous functions between com-
pact Hausdorff spaces.

The paper is organized as follows. In Section 2 we recall the existing
dualities for compact Hausdorff spaces that are relevant for our purposes.
In Section 3 we describe the round ideal functor from SubS5S to KRFrmP.
In Section 4 we define MacNeille completions of S5-subordination algebras
and prove that the resulting functor yields an equivalence between SubS5S

and DeVS. We then use this result to show that the round ideal functor from
SubS5S to KRFrmP is a dual equivalence. In Section 5 we study the wide
subcategories of these categories whose morphisms encode continuous rela-
tions between compact Hausdorff spaces. In Section 6 we further restrict our
attention to the morphisms that encode continuous functions between com-
pact Hausdorff spaces. Finally, in Section 7 we give dual descriptions of the
round ideal and MacNeille completions of S5-subordination algebras.

All the categories considered in this paper are listed in Tables 1 to 4 and
all the equivalences and dual equivalences in Fig. 2 at the end of Section 6.

155



M. ABBADINI, ET AL. SUBORDINATION ALGEBRAS

2. Preliminaries

In this section we briefly recall Isbell duality, de Vries duality, and their
generalizations. We start by recalling some basic definitions from pointfree
topology (see, e.g., [PP12]). A frame or locale is a complete lattice L satis-
fying the join-infinite distributive law

a ∧
∨

S =
∨

{a ∧ s | s ∈ S}.

Each a ∈ L has the pseudocomplement given by a∗ =
∨
{x ∈ L | a∧x = 0}.

We say that a is compact if a ≤
∨
S implies a ≤

∨
T for some finite T ⊆ S,

and that a is well-inside b (written a ≺ b) if a∗∨b = 1. A frame L is compact
if 1 is compact and it is regular if a =

∨
{x ∈ L | x ≺ a} for each a ∈ L.

A frame homomorphism between two frames is a map that preserves ar-
bitrary joins and finite meets. We recall from the introduction that KRFrm is
the category of compact regular frames and frame homomorphisms and that
KHaus is the category of compact Hausdorff spaces and continuous func-
tions.

Theorem 2.1 (Isbell duality). KRFrm is dually equivalent to KHaus.

A preframe homomorphism between two frames is a map that preserves
directed joins and finite meets. We let KRFrmP be the category of compact
regular frames and preframe homomorphisms. Clearly KRFrm is a wide
subcategory of KRFrmP.

We recall that a relation R ⊆ X ×Y between compact Hausdorff spaces
is closed if R is a closed subset of X × Y . As usual, for x ∈ X and y ∈ Y ,
we write

R[x] = {y ∈ Y | x R y} and R−1[y] = {x ∈ X | x R y}.

Also, for F ⊆ X and G ⊆ Y , we write

R[F ] =
⋃

{R[x] | x ∈ F} and R−1[G] =
⋃

{R−1[y] | y ∈ G}.

Then R is closed iff R[F ] is closed for each closed F ⊆ X and R−1[G] is
closed for each closed G ⊆ Y (see, e.g., [BBSV17, Lem. 2.12]). We let
KHausR be the category of compact Hausdorff spaces and closed relations,
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where identities are identity relations and composition is relation composi-
tion. We recall that for two relations R1 ⊆ X1 ×X2 and R2 ⊆ X2 ×X3 the
relation composition R2 ◦R1 ⊆ X1 ×X3 is defined by

x1 (R2 ◦R1) x3 ⇐⇒ ∃x2 ∈ X2 : x1 R1 x2 and x2 R2 x3.

The category KHausR is a full subcategory of the category of stably com-
pact spaces and closed relations introduced and studied in [JKM01]. It is
symmetric in that if R is a closed relation, then its converse R˘: X2 → X1

(defined by y R˘x iff x R y) is also closed. This defines a dagger on KHausR

with which KHausR forms an allegory (see, e.g., [ABC23, Lem. 3.6]). The
following theorem generalizes Isbell duality:

Theorem 2.2 ([Tow96, JKM01]). KRFrmP is dually equivalent to KHausR.

A closed relation R ⊆ X × Y between compact Hausdorff spaces is
continuous if V open in Y implies R−1[V ] is open in X . Let KHausC be the
wide subcategory of KHausR whose morphisms are continuous relations.

In [BGHJ19, Def. 4.3], motivated by Johnstone’s construction of the Vi-
etoris frame of a compact regular frame [Joh82, Sec. III.4], a preframe homo-
morphism □ : L → M between compact regular frames is called continuous
or a c-morphism if there is a join-preserving ♢ : L → M such that

□(a ∨ b) ≤ □a ∨ ♢b and □a ∧ ♢b ≤ ♢(a ∧ b).

Let KRFrmC be the wide subcategory of KRFrmP whose morphisms are c-
morphisms. The duality of Theorem 2.2 then restricts to the following gen-
eralization of Isbell duality:

Theorem 2.3 ([BGHJ19, Thm. 4.8]). The categories KRFrmC and KHausC

are dually equivalent.

Letting ♢ = □, we can identify KRFrm with a wide subcategory of
KRFrmC. Thus, we arrive at the following diagram, where the hook arrows
represent inclusions of wide subcategories and the horizontal arrows dual
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equivalences.

KRFrmP KHausR

KRFrmC KHausC

KRFrm KHaus

d

d

d

Definition 2.4. [ABC23, Def. 2.4] Let A,B be boolean algebras. A relation
S ⊆ A × B is a subordination if S satisfies the following conditions for all
a, b ∈ A and c, d ∈ B:

(S1) 0 S 0 and 1 S 1;

(S2) a, b S c implies (a ∨ b) S c;

(S3) a S c, d implies a S (c ∧ d);

(S4) a ≤ b S c ≤ d implies a S d.

Remark 2.5. The axioms (S1)–(S4) are equivalent to saying that S is a
bounded sublattice of A×B satisfying (S4).

When A = B, we say that S is a subordination on A. These were intro-
duced in [BBSV17] as a counterpart of quasi-modal operators [Cel01] and
precontact relations [DV06, DV07]. As follows from [BBSV17, Thm. 2.22],
subordinations on A correspond to closed relations R on the Stone space of
A. By [Cel01, DV07] (see also [BBSV17, Lem. 4.6]), we can characterize
reflexivity, symmetry, and transitivity of R by the following axioms, where
we write ¬a for the complement of a in A.

(S5) a S b implies a ≤ b;

(S6) a S b implies ¬b S ¬a;

(S7) a S b implies there is c ∈ A with a S c and c S b.
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Following the modal logic nomenclature, the pairs (B, S) where B is a
boolean algebra and S is a subordination on B satisfying (S5)–(S7) were
called S5-subordination algebras in [ABC23].

These algebras were first introduced in [Mee66], where the notion of a
proximity on a set was generalized to an arbitrary boolean algebra. Fur-
ther generalizations include proximity lattices [War74, Smy92], proximity
algebras [GK81], and proximity frames [BH14]. We point out that S5-
subordination algebras are exactly the proximity algebras of [GK81] where
the underlying Heyting algebra is a boolean algebra.

Definition 2.6. Let B = (B, S) be an S5-subordination algebra.

1. [dV62, Def. 1.1.1] We call B a compingent algebra if S satisfies the
following axiom:

(S8) If a ̸= 0, then there is b ̸= 0 with b S a.

2. [Bez10, Def. 3.2] We call B a de Vries algebra if B is a compingent
algebra and B is a complete boolean algebra.

Remark 2.7. As was pointed out in [BH14, Prop. 7.4], de Vries algebras are
exactly those proximity frames where the frame is boolean.

A de Vries morphism between de Vries algebras is a map f : B1 → B2

satisfying the following conditions:

(M1) f(0) = 0;

(M2) f(a ∧ b) = f(a) ∧ f(b);

(M3) a S1 b implies ¬f(¬a) S2 f(b);

(M4) f(a) =
∨
{f(b) | b S1 a}.

The composition of two de Vries morphisms f : B1 → B2 and g : B2 → B3

is the de Vries morphism g ∗ f : B1 → B3 given by

(g ∗ f)(a) =
∨

{gf(b) | b S1 a}

for each a ∈ B1. Let DeV be the category of de Vries algebras and de Vries
morphisms, where identity morphisms are identity functions and composi-
tion is defined as above.
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Theorem 2.8 (de Vries duality). DeV is dually equivalent to KHaus.

In [BGHJ19] de Vries duality was generalized to a duality for KHausC.
For this, the notion of a de Vries additive map from [BBH15] was utilized.
We will instead work with the equivalent notion of a de Vries multiplicative
map.

Definition 2.9. A map □ : B1 → B2 between de Vries algebras is de Vries
multiplicative if □1 = 1 and for all a, b, c, d ∈ B1, we have

a S1 b and c S1 d imply (□a ∧□c) S2 □(b ∧ d).

We call □ lower continuous if in addition

□a =
∨

{□b | b S1 a}

for each a ∈ B1. The composition of two such maps □1 and □2 is given by

(□2 ∗□1)a =
∨

{□2□1b | b S1 a}.

Let DeVC be the category of de Vries algebras and lower continuous de Vries
multiplicative maps, where identity morphisms are identity functions and
composition is defined as above.

Remark 2.10.

1. The results of [BGHJ19] are stated using de Vries additive maps that
are lower continuous, where we recall that ♢ : B1 → B2 is de Vries ad-
ditive if ♢0 = 0 and a S1 b and c S1 d imply ♢(a∨c) S2 (♢b∨♢d) for
all a, b, c, d ∈ B1, and it is lower continuous if ♢a =

∨
{♢b | b S1 a}

for all a ∈ B1. To simplify proofs (see, e.g., Lemma 5.12), we will
work with □ instead of ♢.

2. As observed in [BGHJ19, Rem. 4.11], working with lower continu-
ous de Vries additive maps is equivalent to working with de Vries
multiplicative maps that are upper continuous, i.e. maps □ that sat-
isfy □a =

∧
{□b | a S b}. Analogously, working with de Vries

multiplicative lower continuous maps is equivalent to working with de
Vries additive maps that are upper continuous.
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3. By a slight adjustment of the proofs of [BBH15, Thms. 4.21, 4.22]
it is not difficult to show that the category of de Vries algebras and
de Vries additive upper continuous maps between them is equivalent
to the category of de Vries algebras and de Vries additive lower con-
tinuous maps between them. Similarly, one can show that DeVC is
equivalent to the category of de Vries algebras and upper continuous
de Vries multiplicative maps between them, and hence to the category
of de Vries algebras and lower continuous de Vries additive maps be-
tween them. Thus, the results of [BGHJ19] apply to our setting.

Theorem 2.11 ([BGHJ19, Thm. 4.14]). The categories DeVC and KHausC

are dually equivalent.

In [BGHJ19] obtaining a de Vries like duality for KHausR was left open.
This question was resolved in [ABC23] by working with special subordina-
tion relations between de Vries algebras. To introduce them, we require the
following definition of compatibility.

Definition 2.12. For i = 1, 2 let Ri be a binary relation on a set Xi. We call
a relation T : X1 → X2 compatible if R2 ◦ T = T = T ◦R1.

X1 X2

X1 X2

T

T
R1 R2

T

Let SubS5S be the category of S5-subordination algebras and compati-
ble subordinations between them, where the composition of morphisms is
the usual composition of relations, and the identity morphism on an S5-
subordination algebra (B, S) is the relation S. Let DeVS be the full sub-
category of SubS5S consisting of de Vries algebras.

To connect KHausR with SubS5S, it is convenient to first obtain a Stone-
like representation of S5-subordination algebras.

Definition 2.13.

1. An S5-subordination space is a pair (X,E) where X is a Stone space
and E is a closed equivalence relation on X . We let StoneER be the
category whose objects are S5-subordination spaces and whose mor-
phisms are compatible closed relations between them.
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2. A Gleason space is an S5-subordination space (X,E) such that X is
extremally disconnected (i.e., the closure of an open set is open) and
E is irreducible (i.e., if F is a proper closed subset of X , then so is
E[F ]). We let GleR be the full subcategory of StoneER whose objects
are Gleason spaces.

Theorem 2.14 ([ABC23, Cors. 3.14, 4.7]). KHausR, StoneER, GleR, SubS5S,
and DeVS are equivalent categories.

StoneER SubS5S

KHausR

GleR DeVS

To make the paper self-contained, we briefly describe the functors yield-
ing some of the equivalences of Theorem 2.14.

Remark 2.15.

1. The functor Q : StoneER → KHausR maps an object (X,E) to the
quotient space X/E, and a morphism R : (X1, E1) → (X2, E2) to the
morphism Q(R) : Q(X1, E1) → Q(X2, E2) given by

[x]E1 Q(R) [y]E2 ⇐⇒ x R y

(i.e., Q(R) = π2 ◦R ◦ π1̆ , where π1 and π2 are the quotient maps).

X1 X2

X1/E1 X2/E2

R

π1 π2

Q(R)

2. A quasi-inverse of the functor Q is given by the Gleason cover functor
G : KHausR → StoneER which associates to each compact Hausdorff
space X the pair G(X) = (X̂, E) where g : X̂ → X is the Gleason
cover of X and x E y iff g(x) = g(y) (for Gleason covers see, e.g.,
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[Joh82, Sec. III.3.10]). It also maps a closed relation R : X1 → X2 to
the relation G(R) : G(X1) → G(X2) given by

x G(R) y ⇐⇒ g1(x) R g2(y)

(i.e., G(R) = g2̆ ◦R ◦ g1).

X̂1 X̂2

X1 X2

g1

G(R)

g2

R

3. The functor G is also a quasi-inverse of the restriction of the functor Q
to GleR.

4. The inclusion of GleR into StoneER is an equivalence whose quasi-
inverse is the composition G ◦ Q.

5. The functor Clop : StoneER → SubS5S maps an object (X,E) to
(B, SE), where B is the boolean algebra of clopen subsets of X and
SE is the binary relation on B given by U SE V iff E[U ] ⊆ V . Also,
Clop maps a morphism R : (X1, E1) → (X2, E2) to the compatible
subordination relation SR : Clop(X1, E1) → Clop(X2, E2) given by
U SR V iff R[U ] ⊆ V .

6. A quasi-inverse of the functor Clop is given by the ultrafilter functor
Ult : SubS5S → StoneER which associates to each object (B, S) the
pair Ult(B, S) = (X,RS) where X is the Stone space of ultrafilters
of B and x RS y iff S[x] ⊆ y. We call (X,RS) the S5-subordination
space of (B, S). A morphism T : (B1, S1) → (B2, S2) is mapped by
Ult to the morphism RT : Ult(B1, S1) → Ult(B2, S2) given by x RT y
iff T [x] ⊆ y.

7. The restrictions Clop : GleR → DeVS and Ult : DeVS → GleR are also
quasi-inverses of each other.

It follows from Theorems 2.2 and 2.14 that SubS5S is dually equivalent
to KRFrmP and equivalent to DeVS. The main contribution of this paper is to
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give direct choice-free proofs of these results by generalizing ideal and Mac-
Neille completions of boolean algebras to the setting of S5-subordination al-
gebras, to fill in the empty boxes of the following diagram, and to show that
it commutes up to natural isomorphism. The unlabeled horizontal arrows in
the diagram represent equivalences of categories while the ones labeled with
the letter d represent dual equivalences. The vertical arrows are inclusions
of wide subcategories.

SubS5S DeVS KRFrmP KHausR StoneER GleR

DeVC KRFrmC KHausC

DeV KRFrm KHaus

d d

d d

d d

Figure 1

3. Round ideals of S5-subordination algebras

For a boolean algebra B, let I(B) be the set of ideals of B ordered by inclu-
sion. It is well known that I(B) is a frame, where I ∧ J = I ∩ J and

∨
Iα

is the ideal generated by
⋃

Iα. Moreover, the compact elements of I(B) are
the principal ideals. This in particular implies that I(B) is compact and reg-
ular.1 In this section we generalize these results to the frame of round ideals
of an S5-subordination algebra.

Round ideals have been extensively studied in pointfree topology and
domain theory. In particular, it follows from [War74, Smy92] that the round
ideals of a proximity lattice form a stably compact frame. As we pointed
out in the previous section, S5-subordination algebras (B, S) are exactly
the proximity algebras of [GK81] where the algebra B is a boolean algebra.
This additional feature allows us to show that the round ideals of (B, S) form

1The frame I(B) is even zero-dimensional because every element in I(B) is a join of
complemented elements (see [Ban89]).
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a compact regular frame. Moreover, associating with each S5-subordination
algebra its frame of round ideals defines a contravariant functor from SubS5S

to KRFrmP. In Section 4 we will show that this functor is in fact a dual
equivalence.

Definition 3.1. Let B = (B, S) be an S5-subordination algebra. We call an
ideal I of B a round ideal if a ∈ I implies a S b for some b ∈ I . Let RI(B)
be the set of round ideals of B ordered by inclusion.

Remark 3.2.

1. It is straightforward to see that an ideal I is round iff I = S−1[I], and
that if I is an ideal of B, then S−1[I] is a round ideal of B.

2. The notion of a round filter is dual to that of a round ideal. Therefore,
a filter F is round iff F = S[F ], and if F is a filter of B, then S[F ] is
a round filter of B.

Let B be a boolean algebra and X ⊆ B. We denote by U(X) the set of
upper bounds of X , by L(X) the set of lower bounds of X , and by ¬X the
set {¬x | x ∈ X}. It is well known that U(X) is a filter, L(X) is an ideal,
¬¬X = X , and X is a filter iff ¬X is an ideal. Moreover, ¬U(X) = L(¬X)
and ¬L(X) = U(¬X).

Lemma 3.3. Let B be a boolean algebra and S an S5-subordination on B.
If X ⊆ B, then ¬S[X] = S−1[¬X].

Proof. We have that a ∈ ¬S[X] iff there is x ∈ X such that x S ¬a. By
(S6) this is equivalent to the existence of x ∈ X such that a S ¬x, which
means that a ∈ S−1[¬X].

Theorem 3.4. Let B be an S5-subordination algebra.

(1) RI(B) is a subframe of I(B).

(2) If I ∈ RI(B), then I∗ = S−1[¬U(I)] = ¬S[U(I)].

(3) The well-inside relation on RI(B) is given by I ≺ J iff U(I)∩J ̸= ∅.

(4) RI(B) is compact and regular.
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Proof. (1). This follows from [War74, Thm. 3] (see also [Smy92, Thm. 1]).
(2). The first equality follows from [War74, Thm. 3] and the second from

Lemma 3.3.
(3). By definition, I ≺ J iff I∗ ∨ J = B. By item (2), this is equivalent

to ¬S[U(I)]∨ J = B, which holds iff there are a ∈ S[U(I)] and b ∈ J such
that ¬a∨ b = 1. Since B is a boolean algebra, ¬a∨ b = 1 iff a ≤ b. Because
S[U(I)] is a filter (see Remark 3.2(2)), the existence of a ∈ S[U(I)] with
a ≤ b is equivalent to b ∈ S[U(I)]. Thus, I ≺ J iff S[U(I)] ∩ J ̸= ∅. We
have that S[U(I)]∩ J ̸= ∅ iff U(I)∩S−1[J ] ̸= ∅. Since J is a round ideal,
this is equivalent to U(I) ∩ J ̸= ∅.

(4). That RI(B) is compact follows from item (1). It follows from
[War74, Thm. 3] that the relation on RI(B) given by U(I) ∩ J ̸= ∅ is
approximating. Thus, item (3) implies that the well-inside relation is ap-
proximating, and hence RI(B) is regular.

Let B1 and B2 be S5-subordination algebras and T : B1 → B2 a com-
patible subordination. We define RI(T ) : RI(B2) → RI(B1) by setting
RI(T )(I) = T−1[I] for each round ideal I of B2.

Theorem 3.5. RI : SubS5S → KRFrmP is a well-defined contravariant
functor.

Proof. That RI is well defined on objects follows from Theorem 3.4(4). We
show that it is well defined on morphisms. Let T be a compatible subordina-
tion from B1 = (B1, S1) to B2 = (B2, S2). Let I ∈ RI(B2). Since T is a
subordination, it is straightforward to see that T−1[I] is an ideal. Because T
is compatible, S−1

1 T−1[I] = (T ◦ S1)
−1[I] = T−1[I], and hence T−1[I] is a

round ideal. Thus, RI(T ) is well defined. To show that RI(T ) is a preframe
homomorphism, we need to prove that it preserves directed joins and finite
meets. That it preserves directed joins is straightforward because directed
joins are set-theoretic unions in I(B1) and I(B2), and hence also in their
subframes RI(B1) and RI(B2). Moreover, we have that T−1[B2] = B1 be-
cause a T 1 for each a ∈ B1. Thus, it remains to show that RI(T ) preserves
binary meets. Let I, J ∈ RI(B2). Clearly T−1[I ∩ J ] ⊆ T−1[I] ∩ T−1[J ].
For the other inclusion, let a ∈ T−1[I]∩T−1[J ]. Then there are b ∈ I , c ∈ J
such that a T b and a T c. Therefore, a T (b∧ c) ∈ I ∩J by (S3), and hence
a ∈ T−1[I ∩ J ].
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It is straightforward to show that RI preserves identities and reverses
compositions. Thus, RI : SubS5S → KRFrmP is a well-defined contravari-
ant functor.

In the next section we will show that RI is a dual equivalence.

4. MacNeille completions of S5-subordination algebras

In [ABC23] we showed that the categories SubS5S and DeVS are equiva-
lent. This was done by observing that each of these categories is equivalent
to KHausR. In this section we show that the equivalence can be obtained
directly by generalizing the theory of MacNeille completions of boolean al-
gebras to S5-subordination algebras.

For a frame L, we recall (see, e.g., [BP96]) that the booleanization of L
is

BL = {a ∈ L | a = a∗∗},

and that (BL,⊓,
⊔
) is a boolean frame (complete boolean algebra), where

a ⊓ b = a ∧ b and
⊔

S =
(∨

S
)∗∗

.

If L is compact regular, then (BL,≺) is a de Vries algebra, where ≺ is
the restriction of the well-inside relation on L to BL. As was shown in
[Bez12], this correspondence extends to a covariant functor B : KRFrm →
DeV which is an equivalence. In the more general setting of KRFrmP and
DeVS, this correspondence extends to a contravariant functor as follows.

Let □ : L → M be a preframe homomorphism. Define the relation
B(□) : BM → BL by

b B(□) a ⇐⇒ b ≺ □a.

Lemma 4.1. If □ : L → M is a preframe homomorphism, then the relation
B(□) : BM → BL is a compatible subordination.

Proof. Let T = B(□). It is straightforward to check that T is a subordina-
tion. We only verify (S3). Suppose b T a, c. Then b ≺ □a and b ≺ □c.
Since □ is a preframe homomorphism, we have b ≺ □a ∧ □c = □(a ∧ c).
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Thus, T satisfies (S3). We next prove that T is compatible. Let a ∈ BL and
b ∈ BM . We show that b T a iff there is d ∈ BM such that b ≺ d T a.
First suppose that b T a, so b ≺ □a. Since M is compact regular, there is
d ∈ BM such that b ≺ d ≺ □a (see, e.g., [Bez12, Rem. 3.2]). Therefore,
b ≺ d T a. Conversely, suppose that b ≺ d T a. Then b ≺ d ≺ □a. Thus,
b ≺ □a, and so b T a.

It remains to show that b T a iff there is c ∈ BL such that b T c ≺ a.
For the right-to-left implication, we have that c ≺ a implies c ≤ a, and
hence □c ≤ □a because □ is order-preserving. Since b ≺ □c, it follows
that b ≺ □a, and so b T a. For the left-to-right implication, since L is
a regular frame, a is the directed join of {c ∈ BL | c ≺ a}. Therefore,
since □ preserves directed joins, □a =

∨
{□c | c ∈ BL, c ≺ a}. Thus,

from b ≺ □a, using compactness, we find c ∈ BL such that c ≺ a and
b ≺ □c.

We thus define B : KRFrmP → DeVS by sending each compact regu-
lar frame L to (BL,≺) and each preframe homomorphism □ : L → M to
B(□).

Proposition 4.2. B : KRFrmP → DeVS is a contravariant functor.

Proof. That B is well defined on objects follows from [Bez12, Lem. 3.1] and
that it is well defined on morphisms from Lemma 4.1. Let L be a compact
regular frame. If □ is the identity on L, then B(□) coincides with ≺ which
is the identity on (BL,≺). Let □1 : L → M and □2 : M → N be two
preframe homomorphisms between compact regular frames. We show that
B(□2 ◦ □1) = B(□1) ◦ B(□2). Let T1 = B(□1) and T2 = B(□2). For
a ∈ BL and c ∈ BN , if c (T1 ◦ T2) a, then there is b ∈ BM such that
c T2 b and b T1 a. Thus, c ≺ □2b and b ≺ □1a. Since b ≺ □1a and □2

is order-preserving, we have □2b ≤ □2□1a. Therefore, c ≺ □2□1a which
means that c B(□2 ◦□1) a. Suppose next that c B(□2 ◦□1) a. Therefore,
c ≺ □2□1a. By arguing as at the end of the proof of Lemma 4.1, there is
b ∈ BM such that c T2 b and b ≺ □1a. Thus, c T2 b and b T1 a which
means that c (T1 ◦ T2) a.
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Definition 4.3. Let NI = B ◦ RI.

SubS5S KRFrmP DeVS
RI

NI

B

By Theorem 3.5 RI : SubS5S → KRFrmP is a contravariant functor, and
by Proposition 4.2 B : KRFrmP → DeVS is a contravariant functor. Thus,
NI : SubS5S → DeVS is a covariant functor. In particular, we have

Proposition 4.4. If B is an S5-subordination algebra, then NI(B) is a de
Vries algebra.

Remark 4.5. Since ≺ on NI(B) is the restriction of ≺ on RI(B), by The-
orem 3.4(3) we have that I ≺ J iff U(I) ∩ J ̸= ∅ for all I, J ∈ NI(B).

Definition 4.6. Let B = (B, S) be an S5-subordination algebra. We call
NI(B) the MacNeille completion of B. We say that a round ideal I of B is
normal if I ∈ NI(B).

The next theorem provides a characterization of normal round ideals.

Theorem 4.7. Let I ∈ RI(B). We have

I ∈ NI(B) ⇐⇒ I = S−1[L(S[U(I)])].

Proof. By Lemma 3.3 and Theorem 3.4(2),

I∗∗ = ¬S[U(¬S[U(I)])] = ¬S[¬L(S[U(I)])]

= ¬¬S−1[L(S[U(I)])] = S−1[L(S[U(I)])].

Since I ∈ NI(B) iff I = I∗∗, the result follows.

Remark 4.8. We recall (see, e.g., [Grä78, p. 98]) that an ideal I of a boolean
algebra B is normal if LU(I) = I , and that the MacNeille completion of
B is constructed as the complete boolean algebra of normal ideals of B.
Definition 4.6 and Theorem 4.7 are an obvious generalization of this. Indeed,
if S is the partial ordering of B, then I ∈ NI(B) iff I is a normal ideal of
B. For further connection, see Proposition 4.14.
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An important feature of the MacNeille completion of an S5-subordi-
nation algebra B is that it is isomorphic to B in SubS5S (which happens
because morphisms in SubS5S are not structure-preserving bijections; see
[ABC23, Rem. 3.15(4)]). To see this, we need the following lemma. We
freely use the fact that if I, J ∈ RI(B), then

I ≺ J =⇒ I∗∗ ≺ J, (1)

which is a consequence of I∗∗∗ = I∗.

Lemma 4.9. Let a ∈ B and J ∈ RI(B). Then a ∈ J iff there is I ∈ NI(B)
such that a ∈ I ≺ J .

Proof. For the right-to-left implication, if a ∈ I ≺ J , then a ∈ I ⊆ J , and
hence a ∈ J . For the left-to-right implication, since J is a round ideal, there
is b ∈ J such that a S b. We have a ∈ S−1[b] and b ∈ U(S−1[b]). Thus,
S−1[b] ≺ J by Theorem 3.4(3). Let I = (S−1[b])∗∗. Then I ∈ NI(B) and
a ∈ S−1[b] ⊆ I . Moreover, by (1), S−1[b] ≺ J implies I ≺ J . Conse-
quently, a ∈ I ≺ J .

Let QB : B → NI(B) be the relation defined by

aQB I ⇐⇒ a ∈ I.

Lemma 4.10. QB is a morphism in SubS5S.

Proof. It is easy to see that QB is a subordination relation. The equality
QB = QB ◦ S follows from I = S−1[I], and the equality ≺ ◦ QB = QB

from Lemma 4.9.

If T : B1 → B2 is a morphism in SubS5S, define T̂ : B2 → B1 by

b T̂ a ⇐⇒ ¬a T ¬b. (2)

Then the relation T̂ is a morphism in SubS5S (see the paragraph before
[ABC23, Thm. 3.10]).

Lemma 4.11. QB : B → NI(B) is an isomorphism.
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Proof. Let T = Q̂B : NI(B) → B. By (2) and Theorem 3.4(2),

I T a ⇐⇒ ¬a QB I∗ ⇐⇒ ¬a ∈ ¬S[U(I)] ⇐⇒ a ∈ S[U(I)]. (3)

We show that QB and T are inverses of each other. For this we need to prove
that T ◦QB = S and QB ◦ T =≺.

We first show that T ◦ QB = S. For the inclusion ⊆, let a, b ∈ B,
I ∈ NI(B), and a QB I T b. Then a ∈ I and b ∈ S[U(I)] by (3). Thus,
a S b. For the inclusion ⊇, let a, b ∈ B with a S b. Then a ∈ S−1[b] and
Lemma 4.9 implies that there is I ∈ NI(B) such that a ∈ I ≺ S−1[b]. By
Remark 4.5 and (3),

I ≺ S−1[b] ⇐⇒ U(I) ∩ S−1[b] ̸= ∅ ⇐⇒ b ∈ S[U(I)] ⇐⇒ I T b.

Thus, a QB I T b.
We next show that QB ◦ T =≺. Let I, J ∈ NI(B). By Remark 4.5 and

(3),

I ≺ J ⇐⇒ U(I) ∩ J ̸= ∅ ⇐⇒ U(I) ∩ S−1[J ] ̸= ∅
⇐⇒ S[U(I)] ∩ J ̸= ∅ ⇐⇒ ∃a ∈ S[U(I)] ∩ J

⇐⇒ ∃a ∈ B : I T a QB J ⇐⇒ I (QB ◦ T ) J.

Thus, QB : B → NI(B) is an isomorphism.

Proposition 4.12. Let ∆: DeVS → SubS5S be the inclusion functor. Then
Q : 1SubS5S → ∆ ◦ NI is a natural isomorphism.

Proof. Let T : B1 → B2 be a morphism in SubS5S. By Lemma 4.11, it is
sufficient to show that NI(T ) ◦ QB1 = QB2 ◦ T . (Since ∆ is the inclusion
functor, we omit it from the diagram.)

B1 NI(B1)

B2 NI(B2)

T

QB1

NI(T )

QB2

Let a ∈ B1 and I ∈ NI(B2). We have

a (NI(T ) ◦QB1) I ⇐⇒ ∃J ∈ NI(B1) : a ∈ J and J ≺ T−1[I],

171



M. ABBADINI, ET AL. SUBORDINATION ALGEBRAS

and

a (QB2 ◦ T ) I ⇐⇒ ∃b ∈ B2 : a T b and b ∈ I ⇐⇒ a ∈ T−1[I].

The two conditions are equivalent by Lemma 4.9.

Theorem 4.13. NI : SubS5S → DeVS and ∆: DeVS → SubS5S are quasi-
inverses of each other. Thus, SubS5S and DeVS are equivalent.

Proof. By Proposition 4.12, Q : 1SubS5S → ∆◦NI is a natural isomorphism.
For the same reason, we have a natural isomorphism Q′ : 1DeVS → NI ◦∆
whose component on B ∈ DeVS is QB. Thus, ∆: DeVS → SubS5S is a
quasi-inverse of NI.

Theorem 4.13 gives a direct choice-free proof that SubS5S is equivalent
to DeVS. We next show that when restricted to compingent algebras, NI
yields the usual MacNeille completion.

Proposition 4.14. Let B = (B, S) be an S5-subordination algebra.

(1) If B is a compingent algebra, then there is a boolean isomorphism
between NI(B) and the usual MacNeille completion B of B.

(2) If B is a de Vries algebra, then there is a structure-preserving bijection
between B and NI(B).

Proof. (1). Since B is a compingent algebra, from [dV62, Thm. 1.1.4] it
follows that each b ∈ B is the supremum of S−1[b]. We use this fact to prove
that

U(S−1[I]) = U(I) (4)

for each ideal I of B. Since S−1[I] ⊆ I , we have U(I) ⊆ U(S−1[I]). For
the reverse inclusion, let a ∈ U(S−1[I]). We show that a ∈ U(I). Let b ∈ I .
Then S−1[b] ⊆ S−1[I]. Therefore, a ∈ U(S−1[b]), so a ≥

∨
S−1[b] = b.

Thus, a ∈ U(I). This proves (4). A similar argument proves that

L(S[F ]) = L(F ) (5)

for each filter F of B. By (4) and (5), for every normal ideal I of B, we have

L(S[U(S−1[I])]) = L(S[U(I)]) = L(U(I)) = I.

172



M. ABBADINI, ET AL. SUBORDINATION ALGEBRAS

Thus, applying S−1 to both sides yields

S−1[L(S[U(S−1[I])])] = S−1[I].

This shows, by Theorem 4.7, that S−1[I] ∈ NI(B) for every normal ideal I
of B. This defines an order-preserving map α : B → NI(B).

Conversely, for every I ∈ NI(B), we have that L(U(I)) is a normal
ideal of B. This defines an order-preserving map β : NI(B) → B. By (4),
for a normal ideal I of B, we have

L(U(S−1[I])) = L(U(I)) = I.

For a normal round ideal I , by (5) and Theorem 4.7, we have

S−1[L(U(I))] = S−1[L(S[U(I)]) = I.

Thus, α and β are order-isomorphisms, hence boolean isomorphisms.
(2). It is well known (see, e.g., [GH09, Thm. 22]) that sending b to the

downset ↓b := {a ∈ B | a ≤ b} gives a boolean embedding of B into B,
which is an isomorphism iff B is complete. Composing with α yields the
boolean embedding ι : B → NI(B) given by ι(b) = S−1[b]. If B is a de
Vries algebra, then ι becomes a boolean isomorphism by item (1). It is left
to prove that a S b iff ι(a) ≺ ι(b). If a S b, then a ∈ U(ι(a)) ∩ ι(b),
and so ι(a) ≺ ι(b) by Remark 4.5. Conversely, suppose that ι(a) ≺ ι(b).
Then U(ι(a)) ∩ ι(b) ̸= ∅, so there exists c ∈ U(ι(a)) ∩ ι(b). Since a is the
supremum of ι(a) = S−1[a], we have that a ≤ c S b, and hence a S b. Thus,
ι is a structure-preserving bijection between B and NI(B).

Remark 4.15. Let B = (B, S) be a compingent algebra and B the Mac-
Neille completion of B. By [BBSV19, Rem. 5.11], (B,◁) is a de Vries
algebra, where

I ◁ J ⇐⇒ U(I) ∩ S−1[J ] ̸= ∅.

A straightforward verification shows that the boolean isomorphism of Propo-
sition 4.14(1) is an isomorphism of de Vries algebras between NI(B) and
(B,◁).

Remark 4.16. Let B be a compingent algebra. Then QB : B → NI(B)
and ι : B → NI(B) are related as follows:

a QB I ⇐⇒ ι(a) ≺ I
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for each a ∈ B and I ∈ NI(B). Indeed, since B is a compingent algebra,
a =

∨
S−1[a], so ↑a = U(S−1[a]), and hence

a QB I ⇐⇒ a ∈ I ⇐⇒ ↑a ∩ I ̸= ∅
⇐⇒ U(S−1[a]) ∩ I ̸= ∅ ⇐⇒ ι(a) ≺ I.

We finish the section by proving that both SubS5S and DeVS are dually
equivalent to KRFrmP. Let L ∈ KRFrmP. By [Bez12, Rem. 3.10], the map
fL : L → RI(BL) given by

fL(a) = {b ∈ BL | b ≺ a}

is an isomorphism of frames.

Proposition 4.17. f : 1KRFrmP → RI ◦∆ ◦B is a natural isomorphism.

Proof. Let □ : L → M be a preframe homomorphism. Set T = B(□).
Because each fL is an isomorphism, it is enough to show that RI(T ) ◦ fL =
fM ◦□. (Since ∆ is the inclusion functor, we omit it from the diagram.)

L RI(BL)

M RI(BM)

□

fL

RI(T )

fM

Let a ∈ L. We have

RI(T )(fL(a)) = T−1[fL(a)] = {b ∈ BM | ∃c ∈ BL : b T c, c ≺ a}
= {b ∈ BM | ∃c ∈ BL : b ≺ □c, c ≺ a},

and fM(□a) = {b ∈ BM | b ≺ □a}. An argument similar to the last
paragraph of the proof of Lemma 4.1 yields

{b ∈ BM | ∃c ∈ BL : b ≺ □c, c ≺ a} = {b ∈ BM | b ≺ □a},

completing the proof.
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Theorem 4.18.

(1) RI and ∆◦B form a dual equivalence between SubS5S and KRFrmP.

(2) RI ◦∆ and B form a dual equivalence between DeVS and KRFrmP.

We thus obtain the following diagram of equivalences and dual equivalences
that commutes up to natural isomorphism.

SubS5S

KRFrmP DeVS

RI NI

B

∆

Proof. (1). By definition of NI, we have ∆◦B◦RI = ∆◦NI. Therefore,
Q : 1SubS5S → ∆ ◦ B ◦ RI is a natural isomorphism by Proposition 4.12.
Moreover, f : 1KRFrmP → RI ◦∆ ◦B is a natural isomorphism by Proposi-
tion 4.17. Thus, ∆ ◦B : KRFrmP → SubS5S is a quasi-inverse of RI.

(2). By Proposition 4.12, Q : 1SubS5S → ∆ ◦B ◦RI is a natural isomor-
phism. For the same reason, we have a natural isomorphism Q′ : 1DeVS →
B ◦ RI ◦∆ whose component on B ∈ DeVS is QB. Thus, B : KRFrmP →
DeVS is a quasi-inverse of RI ◦∆.

5. Continuous subordinations

In Section 4 we gave a direct choice-free proof that SubS5S is equivalent
to DeVS and dually equivalent to KRFrmP. Morphisms of each of these
categories encode closed relations between compact Hausdorff spaces. In
this section we study the wide subcategories of these categories whose mor-
phisms encode continuous relations between compact Hausdorff spaces.

Recalling from Remark 2.15 the equivalence Q : StoneER → KHausR,
we first characterize when Q(R) is a continuous relation for an arbitrary
morphism R in StoneER. We then use the equivalence Clop : StoneER →
SubS5S to encode this characterization in the language of S5-subordination
algebras.
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Definition 5.1. Let R be a binary relation on a set X and U ⊆ X . Following
the standard notation in modal logic, we write □RU = X \ R−1[X \ U ]. If
R is an equivalence relation, we say that U is R-saturated if R[U ] = U .

Remark 5.2.

1. If R is a closed relation and U is open, then □RU is open.

2. If R is an equivalence relation, then □RU = X \ R[X \ U ] and is
the largest R-saturated subset of U . Therefore, U is R-saturated iff
□RU = U .

Lemma 5.3. Let R : (X1, E1) → (X2, E2) be a morphism in StoneER. The
following are equivalent.

(1) The relation Q(R) : X1/E1 → X2/E2 is a continuous relation.

(2) If V is an E2-saturated open in X2, then R−1[V ] is open in X1.

(3) If B1, B2 ⊆ X2 are clopen with E2[B1] ⊆ B2, then there is a clopen
set A ⊆ X1 such that R−1[B1] ⊆ A ⊆ R−1[B2].

(4) If B1, B2 ⊆ X2 are clopen with E2[B1] ⊆ B2, then there is a clopen
set A ⊆ X1 such that A ∈ ŜR[B1] and ŜR[B2] ⊆ SE1 [A].

Proof. (1)⇔(2). Let πi : Xi → Xi/Ei be the quotient maps for i = 1, 2.

X1 X2

X1/E1 X2/E2

R

π1 π2

Q(R)

Then Q(R)−1[U ] = π1[R
−1[π−1

2 [U ]]] for each U ⊆ X2/E2. The R-inverse
image of any subset of X2 is E1-saturated by the compatibility of R. Thus,
R−1[π−1

2 [U ]] is open iff π1[R
−1[π−1

2 [U ]]] is open for each U open of X2/E2.
Therefore, Q(R) is continuous iff R−1[π−1

2 [U ]] is open for each U open of
X2/E2. Since V is an E2-saturated open in X2 iff V = π−1

2 [U ] for some U
open of X2/E2, the equivalence follows.
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(2)⇒(3). Suppose B1, B2 ⊆ X2 are clopens with E2[B1] ⊆ B2. Let
V = □E2B2. Then V is an E2-saturated open. Since E2[B1] ⊆ B2, we have
that B1 ⊆ V . Therefore, R−1[B1] ⊆ R−1[V ]. The set R−1[B1] is closed
and R−1[V ] is open by item (2). Thus, there is a clopen set A ⊆ X1 such
that R−1[B1] ⊆ A ⊆ R−1[V ]. Since V ⊆ B2, we have R−1[V ] ⊆ R−1[B2].
Hence, A ⊆ R−1[B2]. This proves item (3).

(3)⇒(2). Let V be an E2-saturated open subset of X2. Since V =⋃
{B ∈ Clop(X2) | B ⊆ V }, we have

R−1[V ] =
⋃

{R−1[B] | B ∈ Clop(X2), B ⊆ V }.

Thus, it is enough to prove that for every clopen subset B of X2 contained
in V , there is an open subset UB of X1 such that R−1[B] ⊆ UB ⊆ R−1[V ]
(because then R−1[V ] =

⋃
{UB | B ∈ Clop(X2), B ⊆ V }). Let B be a

clopen subset of X2 contained in V . Since V is E2-saturated, E2[B] ⊆ V .
Because E2[B] is closed and V is open, there is a clopen subset B′ of X2

such that E2[B] ⊆ B′ ⊆ V . By item (3), there is a clopen set A ⊆ X1 such
that R−1[B] ⊆ A ⊆ R−1[B′]. Since B′ ⊆ V , we have R−1[B′] ⊆ R−1[V ],
so A ⊆ R−1[V ]. Therefore, we have found an open subset A of X1 such that
R−1[B] ⊆ A ⊆ R−1[V ]. Hence, item (2) holds.

(3)⇔(4). This follows from the following two claims.

Claim 5.4. For clopen sets A ⊆ X1 and B ⊆ X2, we have R−1[B] ⊆ A iff
A ∈ ŜR[B].

Proof of claim. This follows from the equality ŜR = SR̆ , shown in the
proof of [ABC23, Thm. 2.14].

Claim 5.5. For clopen sets A ⊆ X1 and B ⊆ X2, we have A ⊆ R−1[B] iff
ŜR[B] ⊆ SE1 [A].

Proof of claim. Let A ⊆ X1 and B ⊆ X2 be clopen sets. Then

ŜR[B] ⊆ SE1 [A]

⇐⇒ ∀A′ ∈ Clop(X1), B ŜR A′ implies A SE1 A
′

⇐⇒ ∀A′ ∈ Clop(X1), R
−1[B] ⊆ A′ implies E1[A] ⊆ A′

(by Claim 5.4)
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⇐⇒ E1[A] ⊆
⋂

{A′ ∈ Clop(X1) | R−1[B] ⊆ A′}

⇐⇒ E1[A] ⊆ R−1[B] (since R−1[B] is closed)
⇐⇒ A ⊆ R−1[B] (since R−1[B] is E1-saturated).

This concludes the proof.

The next definition encodes Lemma 5.3(4) in the language of S5-subor-
dination algebras. By Lemma 5.3(1), this condition is equivalent to the cor-
responding relation between compact Hausdorff spaces being continuous.
Because of this, we call such compatible subordinations continuous.

Definition 5.6. Let T : (B1, S1) → (B2, S2) be a compatible subordination
between S5-subordination algebras. We say that T is continuous if the fol-
lowing holds:

∀b1, b2 ∈ B2

(
b1 S2 b2 ⇒ ∃a ∈ T̂ [b1] : T̂ [b2] ⊆ S1[a]

)
.

Lemma 5.7. Let T : (B1, S1) → (B2, S2) be a compatible subordination.

(1) The following are equivalent:

(a) T is continuous.

(b) ∀b1, b2 ∈ B2

(
b1 S2 b2 ⇒ ∃a ∈ T̂ [b1] : a ∈ L(T̂ [b2])

)
.

(c) ∀b1, b2 ∈ B2

(
b1 S2 b2 ⇒ ∃a ∈ T−1[b2] : a ∈ U(T−1[b1])

)
.

(2) If B1 is complete, then the following are equivalent:

(a) T is continuous.

(b) ∀b1, b2 ∈ B2

(
b1 S2 b2 ⇒ b1 T̂ (

∧
T̂ [b2])

)
.

(c) ∀b1, b2 ∈ B2

(
b1 S2 b2 ⇒ (

∨
T−1 [b1]) T b2

)
.

178



M. ABBADINI, ET AL. SUBORDINATION ALGEBRAS

Proof. (1a)⇔(1b). It is enough to prove that T̂ [b2] ⊆ S1[a] is equivalent to
a ∈ L(T̂ [b2]). For the left-to-right implication, by (S5) we have S1[a] ⊆
U(a), and so T̂ [b2] ⊆ S1[a] implies T̂ [b2] ⊆ U(a), which is equivalent to
a ∈ L(T̂ [b2]). For the right-to-left implication, suppose a ∈ L(T̂ [b2]) and let
a′ ∈ T̂ [b2]. Since T̂ is a compatible subordination, there is a′′ ∈ T̂ [b2] such
that a′′ S1 a′. Therefore, a ≤ a′′ S1 a′, which implies a S1 a′, and hence
a′ ∈ S1[a].

(1b)⇔(1c). Suppose that (1b) holds, and let b1, b2 ∈ B2 be such that
b1 S2 b2. Then, by (S6), ¬b2 S2 ¬b1. Therefore, by (1b) there is a ∈
T̂ [¬b2] such that a ∈ L(T̂ [¬b1]). The condition a ∈ T̂ [¬b2] is equivalent to
¬a ∈ T−1[b2]. Similarly, the condition a ∈ L(T̂ [¬b1]) is equivalent to ¬a ∈
U(T−1[b1]). Thus, (1b) implies (1c), and the converse is proved similarly.

(2). If B is complete, then (1b)⇔(2b) and (1c)⇔(2c). Thus, the result
follows from item (1).

Lemma 5.8.

(1) Let (B, S) be an S5-subordination algebra. The identity morphism
S : (B, S) → (B, S) in SubS5S is continuous.

(2) Let T1 : (B1, S1) → (B2, S2) and T2 : (B2, S2) → (B3, S3) be contin-
uous compatible subordinations between S5-subordination algebras.
Then T2 ◦ T1 : (B1, S1) → (B3, S3) is a continuous compatible subor-
dination.

Proof. (1). Since Ŝ = S, this is immediate from (S7).
(2). It is sufficient to show that T2 ◦ T1 is continuous. Let c1, c2 ∈ B3

be such that c1 S3 c2. By (S7), there is c ∈ B3 such that c1 S3 c S3 c2.
Therefore, since T2 is continuous, there are b1 ∈ T̂2[c1] and b2 ∈ T̂2[c] such
that T̂2[c] ⊆ S2[b1] and T̂2[c2] ⊆ S2[b2]. We have b2 ∈ T̂2[c] ⊆ S2[b1],
and so b1 S2 b2. Thus, since T1 is continuous, there is a ∈ T̂1[b1] such
that T̂1[b2] ⊆ S1[a]. We have c1 T̂2 b1 T̂1 a, and hence a ∈ (T̂1 ◦ T̂2)[c1].
Since T̂1 ◦ T̂2 = T̂2 ◦ T1, it remains to show that (T̂1 ◦ T̂2)[c2] ⊆ S1[a]. Let
a′ ∈ (T̂1 ◦ T̂2)[c2]. Then there is b ∈ B2 such that c2 T̂2 b T̂1 a′. We have
b ∈ T̂2[c2] ⊆ S2[b2], and thus b2 S2 b. From b2 S2 b T̂1 a′ we deduce, using
the compatibility of T̂1, that b2 T̂1 a′. Therefore, a′ ∈ T̂1[b2] ⊆ S1[a], and
hence a′ ∈ S1[a], as desired.
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Definition 5.9. Let SubS5CS be the wide subcategory of SubS5S whose mor-
phisms are continuous compatible subordinations, and define DeVCS simi-
larly.

We next show that Theorem 4.18 restricts to yield the corresponding dual
equivalences for SubS5CS and DeVCS. For this we need the following lemma.

Lemma 5.10. Let (B1, S1), (B2, S2) ∈ SubS5S and T : B1 → B2 be a mor-
phism in SubS5S. Let also L1, L2 be compact regular frames and □ : L1 →
L2 a preframe homomorphism.

(1) If T : B1 → B2 is a continuous compatible subordination, then the
map RI(T ) : RI(B2, S2) → RI(B1, S1) is a c-morphism.

(2) If □ : L1 → L2 is a c-morphism, then B(□) : B(L2) → B(L1) is
continuous.

(3) If T : B1 → B2 is an isomorphism in SubS5S, then T is an isomor-
phism in SubS5CS.

(4) If □ : L1 → L2 is an isomorphism in KRFrmP, then □ is an isomor-
phism in KRFrmC.

Proof. (1). Let □ = RI(T ). Then □ is a preframe homomorphism by
Theorem 3.5. We define ♢ : RI(B2, S2) → RI(B1, S1) by

♢I = {a ∈ B1 | ∃b ∈ I : a ∈ L(T̂ [b])}.

We first show that ♢ is well defined. It is straightforward to see that ♢I is
an ideal of B1. To see that ♢I is a round ideal, let a ∈ ♢I . Then there
is b ∈ I with a ∈ L(T̂ [b]). Since I is a round ideal, there is d ∈ I with
b S2 d. Because T is continuous, there is c ∈ T̂ [b] such that c ∈ L(T̂ [d]) (see
Lemma 5.7(1b)). Therefore, c ∈ ♢I since d ∈ I . Because T̂ is compatible,
from b T̂ c it follows that there is c′ ∈ T̂ [b] with c′ S1 c. But then a ≤ c′

since a ∈ L(T̂ [b]). Thus, a ≤ c′ S1 c, so a S1 c, and hence ♢I is a round
ideal.

We next show that ♢ preserves arbitrary joins. It is straightforward to
see that I ⊆ J implies ♢I ⊆ ♢J . Therefore, if {Iα} ⊆ RI(B2, S2), then∨

♢Iα ⊆ ♢ (
∨

Iα). For the reverse inclusion, let x ∈ ♢ (
∨
Iα). Then there
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is b ∈
∨

Iα with x ∈ L(T̂ [b]). Since b ∈
∨

Iα, there exist α1, . . . , αn

and di ∈ Iαi
for i = 1, . . . , n such that b ≤ d1 ∨ · · · ∨ dn. Thus, x ∈

L(T̂ [d1 ∨ · · · ∨ dn]). Because Iαi
is a round ideal for each i, it follows that

there exist ei ∈ Iαi
with di S2 ei for each i. By continuity of T , there exist

ai ∈ T̂ [di] with ai ∈ L(T̂ [ei]) for each i. So ai ∈ ♢Iαi
for each i and

a1 ∨ · · · ∨ an ∈ T̂ [d1 ∨ · · · ∨ dn]. Since x ∈ L(T̂ [d1 ∨ · · · ∨ dn]), it follows
that x ≤ a1 ∨ · · · ∨ an. Consequently, x ∈

∨
♢Iα.

It is left to prove that □I ∩ ♢J ⊆ ♢(I ∩ J) and □(I ∨ J) ⊆ □I ∨ ♢J
for all I, J ∈ RI(B2, S2). Let x ∈ □I ∩♢J . Since x ∈ □I = T−1[I], there
is a ∈ I with x T a. Because x ∈ ♢J , there is b ∈ J with x ∈ L(T̂ [b]). We
first show that x ∈ L(T̂ [a∧ b]). If e ∈ T̂ [a∧ b], then ¬e T (¬a∨¬b). Since
x T a, it follows that (x∧¬e) T (a∧(¬a∨¬b)). So (x∧¬e) T (a∧¬b), and
hence (x ∧ ¬e) T ¬b. Therefore, ¬x ∨ e ∈ T̂ [b]. Because x ∈ L(T̂ [b]), we
have x ≤ ¬x∨ e, and so x ≤ e. Thus, x ∈ L(T̂ [a∧ b]). Since a∧ b ∈ I ∩ J ,
we conclude that x ∈ ♢(I ∩ J).

Finally, let x ∈ □(I ∨ J) = T−1[I ∨ J ]. Then there is y ∈ I ∨ J with
x T y. Thus, there exist a ∈ I , b ∈ J with y ≤ a ∨ b. Since I and J are
round ideals, there exist a′ ∈ I , b′ ∈ J with a S2 a′ and b S2 b′. Because
¬a′ S2 ¬a and b S2 b

′, the continuity of T yields that there exist c ∈ T̂ [¬a′]
and d ∈ T̂ [b] with c ∈ L(T̂ [¬a]) and d ∈ L(T̂ [b′]). From c ∈ T̂ [¬a′] it
follows that ¬c T a′, so ¬c ∈ T−1[I] = □I . Since d ∈ L(T̂ [b′]) and b′ ∈ J ,
we have d ∈ ♢J . Therefore, ¬c ∨ d ∈ □I ∨ ♢J . We prove that x ≤ ¬c ∨ d,
which is equivalent to c ≤ ¬x∨d. We have x T (a∨b) and ¬d T ¬b because
d ∈ T̂ [b]. Therefore, (x∧¬d) T ((a∨b)∧¬b), and so (x∧¬d) T (a∧¬b) ≤ a.
Thus, ¬x ∨ d ∈ T̂ [¬a]. Since c ∈ L(T̂ [¬a]), we obtain c ≤ ¬x ∨ d.
Consequently, x ∈ □I ∨ ♢J because x ≤ ¬c ∨ d ∈ □I ∨ ♢J .

(2). Let T = B(□). By Lemma 4.1, T : B(L2) → B(L1) is a morphism
in SubS5S. To see that it is continuous, let b1, b2 ∈ B(L1) with b1 ≺ b2. Set
a = ¬□¬b2. Then a ∈ B(L2). We show that b1 T̂ a and a ∈ L(T̂ [b2]).
We have ¬b2 ≺ ¬b1, so □¬b2 ≺ □¬b1 since □ preserves ≺ (see [BBH15,
Lem. 3.6]). The definition of ≺ implies ¬¬□¬b2 ≺ □¬b1. Therefore, ¬a ≺
□¬b1, which gives ¬a T ¬b1. Thus, b1 T̂ a. If x ∈ T̂ [b2], then ¬x T ¬b2,
so ¬x ≺ □¬b2. Therefore, a = ¬□¬b2 ≺ x, and hence a ≤ x. Thus,
a ∈ L(T̂ [b2]), and so T is continuous.

(3). This is a consequence of a stronger result proved in Lemma 6.5(3)
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below.
(4). Since □ is an isomorphism in KRFrmP, it is a poset isomorphism.

Defining ♢ := □ then yields that □ is an isomorphism in KRFrmC.

As an immediate consequence of Theorem 4.18 and Lemma 5.10 we
obtain:

Theorem 5.11.

(1) The dual equivalence between SubS5S and KRFrmP restricts to a dual
equivalence between their wide subcategories SubS5CS and KRFrmC.

(2) The dual equivalence between DeVS and KRFrmP restricts to a dual
equivalence between their wide subcategories DeVCS and KRFrmC.

We conclude this section by showing that DeVCS is dually isomorphic to
DeVC. Let (B1, S1) and (B2, S2) be de Vries algebras. If T : B1 → B2 is a
morphism in DeVCS, we define □T : B2 → B1 by □T b =

∨
T−1[b]. Also, if

□ : B2 → B1 is a morphism in DeVC, we define T□ : B1 → B2 by

a T□ b ⇐⇒ ∃b′ ∈ B2 (a S1 □b′ and b′ S2 b).

Lemma 5.12. Let (B1, S1) and (B2, S2) be de Vries algebras.

(1) If T : B1 → B2 is a morphism in DeVCS, then □T : B2 → B1 is a
morphism in DeVC.

(2) If □ : B2 → B1 is a morphism in DeVC, then T□ : B1 → B2 is a
morphism in DeVCS.

(3) □T□
= □.

(4) T□T
= T .

Proof. (1). We first show that □T is de Vries multiplicative. It is obvious
that □T1 = 1. Let b1 S2 b2 and d1 S2 d2. Since T is continuous and B1 is
complete, by Lemma 5.7(2c)(∨

T−1 [b1]
)
T b2 and

(∨
T−1 [d1]

)
T d2.
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Therefore, (□T b1 ∧ □Td1) T (b2 ∧ d2). Since T is compatible, there is
x ∈ B1 such that (□T b1 ∧□Td1) S1 x T (b2 ∧ d2). Thus,

(□T b1 ∧□Td1) S1 x ≤ □T (b2 ∧ d2),

and hence (□T b1 ∧ □Td1) S1 □T (b2 ∧ d2). Consequently, □T is de Vries
multiplicative. To see that □T is lower continuous, let x ∈ T−1[b]. Since T
is compatible, x T y S2 b for some y ∈ B2. Therefore, x ≤ □Ty, and hence
□T b =

∨
{□Ty | y S2 b}. Thus, □T is a morphism in DeVC.

(2). That 0 T□ 0 is straightforward and that 1 T□ 1 follows from
□1 = 1. Since □ is lower continuous, it is order preserving (see [BBH15,
Prop. 4.15(2)] and Remark 2.10(2)). Suppose a, a′ T□ b. Then there exist b1
and b2 such that a S1 □b1, b1 S2 b, a′ S1 □b2, and b2 S2 b. From a S1 □b1
and a′ S1 □b2 it follows that (a ∨ a′) S1 (□b1 ∨ □b2) ≤ □(b1 ∨ b2), and
so (a ∨ a′) S1 □(b1 ∨ b2). Also, from b1 S2 b and b2 S2 b it follows that
(b1 ∨ b2) S2 b. Thus, (a ∨ a′) T□ b. Next suppose a T□ b, b′. Then there
exist b1 and b2 such that a S1 □b1, b1 S2 b, a S1 □b2, and b2 S2 b′. From
a S1 □b1 and a S1 □b2 it follows that a S1 (□b1 ∧ □b2) = □(b1 ∧ b2)
(see [BBH15, Prop. 4.15(2)] and Remark 2.10(2)). Also, from b1 S2 b and
b2 S2 b

′ it follows that (b1 ∧ b2) S2 (b∧ b′). Thus, a T□ (b∧ b′). Finally, that
a ≤ a′ T□ b′ ≤ b implies a T□ b is straightforward. This gives that T□ is a
subordination.

That T□ ⊆ S2 ◦T□ and T□ ⊆ T□ ◦S1 follow from the fact that S2 and S1

satisfy (S7). The reverse inclusions are obvious, so S2 ◦T□ = T□ = T□ ◦S1.
This yields that T□ is a compatible subordination.

It is left to prove that T□ is continuous. Let b1 S2 b2. Then there is
y ∈ B2 with b1 S2 y S2 b2. Set a = □b1. Since a S1 □y and y S2 b2, we
have a T□ b2, so a ∈ T−1

□ [b2]. Moreover, if x T□ b1, then there is z ∈ B2

such that x S1 □z and z S2 b1. Therefore, x S1 □b1, and so x S1 a. Thus,
a ∈ U(T−1

□ [b1]) by (S5), and hence T□ is continuous by Lemma 5.7(1c).
Consequently, T□ is a morphism in DeVCS.

(3). We have

□T□
b =

∨
T−1
□ [b] =

∨
{a | ∃b′ ∈ B2 (a S1 □b′ and b′ S2 b)}

=
∨

{□b′ | b′ S2 b} = □b,
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where the second to last equality follows from the facts that S2 satisfies (S7)
and b′ S2 b implies □b′ S1 □b, and the last equality from the lower continuity
of □.

(4). We have

a T□T
b ⇐⇒ ∃b′ ∈ B2 (a S1 □T b

′ and b′ S2 b)

⇐⇒ ∃b′ ∈ B2

(
a S1

∨
T−1[b′] and b′ S2 b

)
.

We show that the last condition is equivalent to a T b. Since T is a mor-
phism in DeVCS and b′ S2 b, we have (

∨
T−1[b′]) T b by Lemma 5.7(2c).

Therefore, a S1 (
∨

T−1[b′]) T b, and so a T b. Conversely, if a T b, there
are a′ ∈ B1 and b′ ∈ B2 such that a S1 a′ T b′ S2 b. Thus, a′ ≤

∨
T−1[b′],

and hence a S1

∨
T−1[b′].

As an immediate consequence of Lemma 5.12 we obtain:

Theorem 5.13. DeVCS is dually isomorphic to DeVC.

Putting Theorems 5.11 and 5.13 together yields the following analogue
of the commutative diagram of equivalences and dual equivalences given at
the end of Section 4.

SubS5CS

KRFrmC DeVCS DeVC

RI NI

B

∆

d

Remark 5.14. As we pointed out in Section 2, KRFrmC and DeVC are dually
equivalent to KHausC. Hence, SubS5CS and DeVCS are equivalent to KHausC.
The wide subcategories of StoneER and GleR that are equivalent to KHausC

can be described as follows.
Let (X,E) be an S5-subordination space. A morphism R : X1 → X2 in

StoneER is continuous if R−1[U ] is open for each E2-saturated open U ⊆
X2. Let StoneEC be the wide subcategory of StoneER whose morphisms
are continuous morphisms in StoneER and define GleC similarly. Using
Lemma 5.3 it is straightforward to see that the equivalence between StoneER

and GleR described in Remark 2.15(4) restricts to an equivalence between
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StoneEC and GleC. By [BGHJ19, Thm. 4.16], GleC is equivalent to KHausC.
Thus, each of KHausC, StoneEC, and GleC is equivalent or dually equivalent
to each of the categories in the diagram above.

6. Functional subordinations

In this section we further restrict our attention to those wide subcategories
of SubS5S and KRFrmP that encode continuous functions between compact
Hausdorff spaces. The wide subcategories of SubS5S and StoneER equiva-
lent to KHaus were described in [ABC23, Sec. 6], where it was shown that
they are equivalent to the categories of maps in the allegories SubS5S and
StoneER. This has resulted in the following notion:

Definition 6.1. [ABC23, Def. 6.4]

1. Call a morphism T : (B1, S1) → (B2, S2) in SubS5S functional if

T̂ ◦ T ⊆ S1 and S2 ⊆ T ◦ T̂ .

2. Let SubS5F be the wide subcategory of SubS5S whose morphisms are
functional morphisms, and define DeVF similarly.

Remark 6.2. If T is functional, then T is continuous. Indeed, let b1 S2 b2.
Since T is functional, S2 ⊆ T ◦ T̂ , so there exists a ∈ B1 such that b1 T̂ a
and a T b2. Thus, a ∈ T̂ [b1]. Moreover, if a′ ∈ T̂ [b2], then b2 T̂ a′.
Therefore, a T b2 T̂ a′, so a S1 a

′ because T̂ ◦ T ⊆ S1 by the functionality
of T . Consequently, T is continuous. Thus, SubS5F is a wide subcategory
of SubS5CS. Similarly, DeVF is a wide subcategory of DeVCS.

We now give a characterization of functional morphisms. For another
characterization see [ABC23, Lem. 6.5].

Lemma 6.3. Let T : (B1, S1) → (B2, S2) be a morphism in SubS5S. The
following conditions are equivalent.

(1) T is functional.

(2) The following hold for all a ∈ B1 and b1, b2, b
′
1, b

′
2 ∈ B2:
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(a) If a T 0, then a = 0.

(b) If a T (b1∨b2), b1 S2 b
′
1, and b2 S2 b

′
2, then there are a1, a2 ∈ B1

such that a S1 (a1 ∨ a2), a1 T b′1, and a2 T b′2.

Proof. By [ABC23, Lem. 6.5(1)], T̂ ◦ T ⊆ S1 is equivalent to (2a). There-
fore, it is sufficient to prove that, under these equivalent conditions, S2 ⊆
T ◦ T̂ is equivalent to (2b).

To prove that S2 ⊆ T ◦ T̂ implies (2b), let a T (b1 ∨ b2), b1 S2 b′1, and
b2 S2 b′2. Since S2 ⊆ T ◦ T̂ , from b1 S2 b′1 and b2 S2 b′2 it follows that
there are a1, a2 ∈ B1 such that b1 T̂ a1 T b′1 and b2 T̂ a2 T b′2. Therefore,
a T (b1 ∨ b2) T̂ (a1 ∨ a2). Since T̂ ◦ T ⊆ S1, it follows that a S1 (a1 ∨ a2).

To prove that (2b) implies S2 ⊆ T ◦ T̂ , let b1, b2 ∈ B2 be such that
b1 S2 b2. By (S7), there is b ∈ B2 such that b1 S2 b S2 b2. We have
1 T (¬b ∨ b). By (S6), b1 S2 b implies ¬b S2 ¬b1. Thus, by (2b), there are
a1, a2 ∈ B1 such that 1 S1 (a1 ∨ a2), a1 T ¬b1, and a2 T b2. By (S5), from
1 S1 (a1 ∨ a2) it follows that 1 = a1 ∨ a2, so ¬a1 ≤ a2. Since a1 T ¬b1, we
have b1 T̂ ¬a1 ≤ a2, and hence b1 T̂ a2. Because b1 T̂ a2 T b2, it follows
that b1 (T ◦ T̂ ) b2. Thus, S2 ⊆ T ◦ T̂ , completing the proof.

Our main goal in this section is to show that Theorem 4.18 restricts to
yield the corresponding dual equivalences for SubS5F and DeVF. For this we
need Lemma 6.5, which requires the following:

Remark 6.4. Let T : (B1, S1) → (B2, S2) be a morphism in SubS5S. Since
functional morphisms are maps in the allegory SubS5S [ABC23, Def. 6.4],
it follows from [FS90, p. 199] that T is an isomorphism iff T and T̂ are both
functional, in which case T̂ is the inverse of T .

Lemma 6.5. Let (B1, S1), (B2, S2) ∈ SubS5S and T : B1 → B2 be a mor-
phism in SubS5S. Let also L1, L2 be compact regular frames and □ : L1 →
L2 a preframe homomorphism.

(1) If T : B1 → B2 is functional, then RI(T ) : RI(B2) → RI(B1) is a
frame homomorphism.

(2) If □ : L1 → L2 is a frame homomorphism, then B(□) : BL2 → BL1

is functional.
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(3) If T : B1 → B2 is an isomorphism in SubS5S, then T is an isomor-
phism in SubS5F.

(4) If □ : L1 → L2 is an isomorphism in KRFrmP, then □ is an isomor-
phism in KRFrm.

Proof. (1). Since RI(T ) is a preframe homomorphism (see Theorem 3.5),
it is sufficient to prove that it preserves bottom and binary joins. To see that
RI(T ) preserves bottom, it is enough to show that T−1[{0}] ⊆ {0}, which
follows from Lemma 6.3(2a). To see that RI(T ) preserves binary joins, let
I1, I2 be round ideals of B2. It is sufficient to prove that T−1[I1 ∨ I2] ⊆
T−1[I1] ∨ T−1[I2]. Let a ∈ T−1[I1 ∨ I2]. Then there are b1 ∈ I1, b2 ∈ I2
such that a T (b1 ∨ b2). Since I1 and I2 are round ideals, there are b′1 ∈ I1
and b′2 ∈ I2 such that b1 S2 b′1 and b2 S2 b′2. By Lemma 6.3(2b), there
are a1, a2 ∈ B1 such that a S1 (a1 ∨ a2), a1 T b′1, and a2 T b′2. Thus,
a ∈ T−1[I1] ∨ T−1[I2].

(2). We prove that B(□) satisfies Lemma 6.3(2). To see (2a), let b ∈
BL2 be such that b B(□) 0, so b ≺ □0. Since □ is a frame homomorphism,
□0 = 0. Therefore, b ≺ 0, and hence b = 0 by (S5). To see (2b), let
b ∈ BL2 and a1, a2, a

′
1, a

′
2 ∈ BL1 be such that b B(□) (a1 ∨ a2), a1 ≺ a′1,

and a2 ≺ a′2. Then b ≺ □(a1 ∨ a2). But □(a1 ∨ a2) = □a1 ∨ □a2 because
□ is a frame homomorphism. Therefore, b ≺ □a1 ∨ □a2, and so there is
b′ ∈ B(□) such that b ≺ b′ ≺ □a1∨□a2. Set b1 = b′∧□a1 and b2 = b′∧□a2.
We have ai ≺ a′i implies □ai ≺ □a′i for i ∈ {1, 2}. Thus,

bi = b′ ∧□ai ≤ □ai ≺ □a′i,

so bi ≺ □a′i, and hence bi B(□) a′i. Moreover, b ≺ b′ and b ≺ □a1 ∨ □a2
imply that

b ≺ b′ ∧ (□a1 ∨□a2) = (b′ ∧□a1) ∨ (b′ ∧□a2) = b1 ∨ b2.

This proves (2b).
(3). This follows from Remark 6.4.
(4). In both KRFrmP and KRFrm isomorphisms are order-isomorphisms.

From Theorem 4.18 and Lemma 6.5 we obtain:
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Theorem 6.6.

(1) The dual equivalence between SubS5S and KRFrmP restricts to a dual
equivalence between their wide subcategories SubS5F and KRFrm.

(2) The dual equivalence between DeVS and KRFrmP restricts to a dual
equivalence between their wide subcategories DeVF and KRFrm.

In addition, we have:

Theorem 6.7 ([ABC23, Thm. 6.18]). DeV and DeVF are dually isomorphic.

Consequently, we arrive at the following analogue of the commutative
diagram of equivalences and dual equivalences given at the end of Section 5.

SubS5F

KRFrm DeVF DeV

RI NI

B

∆

d

Remark 6.8. We recall from [ABC23, Def. 6.1] that StoneEF is the wide
subcategory of StoneER whose morphisms R : (X1, E1) → (X2, E2) satisfy
E1 ⊆ R˘ ◦ R and R ◦ R˘ ⊆ E2. We call such morphisms functional and
define Gle similarly. By [ABC23, Thm. 6.9], the categories SubS5F, DeVF,
StoneEF, Gle, and KHaus are equivalent. Thus, each of these is equivalent or
dually equivalent to the categories in the above diagram.

We thus arrive at the following diagram, in which empty boxes of the
diagram in Fig. 1 are filled. The number under each double arrow indicates
the corresponding statement in the body of the paper.

For the reader’s convenience we also list all the categories involved in
the diagram.
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SubS5S DeVS KRFrmP KHausR StoneER GleR

SubS5CS DeVCS DeVC KRFrmC KHausC StoneEC GleC

SubS5F DeVF DeV KRFrm KHaus StoneEF Gle

4.13

d

4.18

d

2.2 2.14 2.14

5.11

d

5.13 2.3
2.11

d

2.3 5.14 5.14

6.6

d

6.7 2.1
2.8

d

2.1 6.8 6.8

Figure 2

Category Objects Morphisms
SubS5S S5-subordination algebras Compatible subordinations
SubS5CS S5-subordination algebras Continuous compatible subordinations
SubS5F S5-subordination algebras Functional compatible subordinations
DeVS De Vries algebras Compatible subordinations
DeVCS De Vries algebras Continuous compatible subordinations
DeVF De Vries algebras Functional compatible subordinations
DeVC De Vries algebras Lower continuous de Vries mult. maps
DeV De Vries algebras De Vries morphisms

Table 1: Categories of subordination algebras.

Category Objects Morphisms
KRFrmP Compact regular frames Preframe homomorphisms
KRFrmC Compact regular frames Continuous preframe homomorphisms
KRFrm Compact regular frames Frame homomorphisms

Table 2: Categories of compact regular frames.
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Category Objects Morphisms
KHausR Compact Hausdorff spaces Closed relations
KHausC Compact Hausdorff spaces Continuous relations
KHaus Compact Hausdorff spaces Continuous functions

Table 3: Categories of compact Hausdorff spaces.

Category Objects Morphisms
StoneER S5-subordination spaces Compatible closed relations
StoneEC S5-subordination spaces Continuous compatible closed relations
StoneEF S5-subordination spaces Functional compatible closed relations
GleR Gleason spaces Compatible closed relations
GleC Gleason spaces Continuous compatible closed relations
Gle Gleason spaces Functional compatible closed relations

Table 4: Categories of subordination spaces.

7. Dual descriptions of the completions

In this final section we give dual descriptions of the round ideal and Mac-
Neille completions of S5-subordination algebras.

Recall that if B is a boolean algebra and X is the Stone space of B, then
the isomorphism φ : B → Clop(X) is given by the Stone map

φ(a) = {x ∈ X | a ∈ x}.
This isomorphism induces an order-isomorphism Φ between the frame of
ideals of B and the frame of open subsets of X , as well as an order-isomor-
phism Ψ between the frame of filters of B and the frame of closed subsets of
X ordered by reverse inclusion (see, e.g., [GH09, Thm. 33]). The isomor-
phisms are defined as follows:

Φ(I) =
⋃

{φ(a) | a ∈ I} and Ψ(F ) =
⋂

{φ(a) | a ∈ F}.

It belongs to folklore that for an ideal I and filter F of B, we have

Φ(¬F ) = Ψ(F )c, Φ(L(F )) = int (Ψ(F )),
Ψ(¬I) = Φ(I)c, Ψ(U(I)) = cl (Φ(I)).

(6)
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For the reader’s convenience, we give a proof of Ψ(U(I)) = cl (Φ(I)). The
other three equalities are proved similarly. Since b ∈ U(I) iff φ(a) ⊆ φ(b)
for each a ∈ I , we have

Ψ(U(I)) =
⋂

{φ(b) | b ∈ U(I)} =
⋂

{φ(b) | Φ(I) ⊆ φ(b)} = cl(Φ(I)),

where the last equality follows from the fact that X is a Stone space, hence
the closure of a set is the intersection of the clopen sets containing it.

Let (B, S) ∈ SubS5S. We recall from Remark 2.15(6) that the S5-
subordination space of (B, S) is (X,RS) where X is the Stone space of
B and RS is given by x RS y iff S[x] ⊆ y. For simplicity, we write (X,R)
instead of (X,RS).

Lemma 7.1. Let (B, S) be an S5-subordination algebra and (X,R) its S5-
subordination space.

(1) If I is an ideal of B, then Φ(S−1[I]) = □RΦ(I).

(2) If F is a filter of B, then Ψ(S[F ]) = R[Ψ(F )].

Proof. (1). We have

Φ(S−1[I]) =
⋃

{φ(a) | a ∈ S−1[I]} =
⋃

{φ(a) | ∃ b ∈ I : a S b}

=
⋃

{φ(a) | ∃ b ∈ I : R[φ(a)] ⊆ φ(b)}

=
⋃

{φ(a) | R[φ(a)] ⊆ Φ(I)}

=
⋃

{φ(a) | φ(a) ⊆ □RΦ(I)} = □RΦ(I),

where the third equality follows from the fact that a S b iff R[φ(a)] ⊆ φ(b)
(see, e.g., [BBSV17, Lem. 2.20]); the fourth from the fact that R[φ(a)] is
closed, hence compact in X; and the last from the fact that □RΦ(I) is open
and {φ(a) | a ∈ B} forms a basis for X .

(2). We have:

Ψ(S[F ]) = (Φ(¬S[F ]))c (by (6))
= (Φ(S−1[¬F ]))c (by Lemma 3.3)
= (□RΦ(¬F ))c (by item (1))
= (□R(Ψ(F )c))c (by (6))
= R[Ψ(F )] (by Remark 5.2(2)).
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We recall from the introduction that O(X) denotes the frame of open
subsets of a topological space X . Since the set of R-saturated open subsets of
an S5-subordination space (X,R) forms a subframe of O(X), it is a frame.

Definition 7.2. For an S5-subordination space X = (X,R) let OR(X) be
the frame of R-saturated open subsets of X .

Lemma 7.3. Let B = (B, S) be an S5-subordination algebra and X =
(X,R) its S5-subordination space. An ideal I of B is a round ideal iff Φ(I)
is an R-saturated open subset of X . Therefore, RI(B) is isomorphic to
OR(X).

Proof. We have that I is a round ideal iff I = S−1[I]. Since Φ is an isomor-
phism, Lemma 7.1(1) implies that I is a round ideal iff Φ(I) = □RΦ(I).
Therefore, I is a round ideal iff Φ(I) is R-saturated. Thus, the restriction of
Φ is an isomorphism from RI(B) to OR(X).

Let X = (X,R) be an S5-subordination space and π : X → X/R the
quotient map given by π(x) = [x]. It is well known that π lifts to an isomor-
phism between O(X/R) and OR(X) (see, e.g., [Eng89, Prop. 2.4.3]). This
together with Lemma 7.3 yields the following result, which by Isbell duality
gives an alternative proof of Theorem 3.4(4).

Theorem 7.4. Let B = (B, S) be an S5-subordination algebra and X =
(X,R) its subordination space. Then RI(B) is isomorphic to O(X/R).

We recall that the MacNeille completion of a boolean algebra B is iso-
morphic to RO(X) where X is the Stone space of B (see, e.g., [GH09,
Thm. 40]). We will generalize this result to the setting of S5-subordination
algebras. Since regular opens are fixpoints of int cl : O(X) → O(X), we in-
troduce the notion of an R-regular open subset of an S5-subordination space
(X,R) by replacing int with □R int and cl with R cl.

Definition 7.5. Let X = (X,R) be an S5-subordination space. We say
that an R-saturated open subset of X is R-regular open if it is a fixpoint
of □R intR cl : OR(X) → OR(X). Let ROR(X) be the poset of R-regular
open subsets of X .
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Lemma 7.6. Let X = (X,R) be an S5-subordination space. We equip
ROR(X) with the relation ≺ given by

U ≺ V ⇐⇒ R[cl(U)] ⊆ V.

Then ROR(X) is a de Vries algebra isomorphic to RO(X/R).

Proof. As we pointed out in the paragraph before Theorem 7.4, π : X →
X/R lifts to an isomorphism f : OR(X) → O(X/R) given by f(U) =
π[U ]. We show that for each U ∈ OR(X) we have

U ∈ ROR(X) ⇐⇒ π[U ] ∈ RO(X/R).

On the one hand,

U ∈ ROR(X) ⇐⇒ U = □R(int(R[cl(U)]))

⇐⇒ π[U ] = π[□R(int(R[cl(U)]))].

On the other hand,

π[U ] ∈ RO(X/R) ⇐⇒ π[U ] = int(cl(π[U ])).

Therefore, it is enough to prove that

π[□R(int(R[cl(U)]))] = int(cl(π[U ])).

Since π : X → X/R is a quotient map and X/R is compact Hausdorff, π is
a closed map. Thus, for each R-saturated subset G of X we have

π[R[cl(G)]] = π[cl(G)] = cl(π[G]). (7)

Moreover, since G is R-saturated,

π[Gc] = π[G]c. (8)

Therefore, if H is an R-saturated subset of X , then

π[□R(int(H))] = π[R[cl(Hc)]c]

= π[R[cl(Hc)]]c (by (8))
= cl(π[Hc])c (by (7))
= int(π[Hc]c)

= int(π[H]) (by (8)).
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This equation together with (7) yields

π[□R(int(R[cl(U)]))] = int(π[R[cl(U)]]) = int(cl(π[U ])).

Thus, f restricts to a poset isomorphism and hence a boolean isomorphism
between ROR(X) and RO(X/R). By (7), f also preserves and reflects the
relation:

U ≺ V ⇐⇒ R[cl(U)] ⊆ V ⇐⇒ π[R[cl(U)]] ⊆ π[V ]

⇐⇒ cl(π[U ]) ⊆ π[V ] ⇐⇒ π[U ] ≺ π[V ].

Therefore, f is a structure-preserving bijection, hence an isomorphism of de
Vries algebras by [dV62, Prop. 1.5.5].

Proposition 7.7. Let B = (B, S) be an S5-subordination algebra and X =
(X,R) its S5-subordination space. For a round ideal I of B, we have:

(1) Φ(I∗) = □Rint(Φ(I)
c).

(2) Φ(I∗∗) = □Rint(R[clΦ(I)]).

(3) I is a normal round ideal iff Φ(I) is an R-regular open subset.

Consequently, NI(B) is isomorphic to ROR(X).

Proof. (1). We have

Φ(I∗) = Φ(¬S[U(I)]) (by Theorem 3.4(2))
= (Ψ(S[U(I)]))c (by (6))
= (R[Ψ(U(I))])c (by Lemma 7.1(2))
= (R[clΦ(I)])c (by (6))
= □Rint(Φ(I)

c),

where the last equality follows from the fact that clU = (int(U c))c for each
U ⊆ X .

(2). By the proof of item (1), if I is a round ideal, then

Φ(I∗) = (R[clΦ(I)])c = □Rint(Φ(I)
c).
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Thus,

Φ(I∗∗) = □Rint(Φ(I
∗)c) = □Rint(((R[clΦ(I)])c)c) = □Rint(R[clΦ(I)]).

(3). Since I is normal iff I = I∗∗, this follows from item (2) and Defini-
tion 7.5.

Finally, since Φ is an order-isomorphism, its restriction is an isomor-
phism of the boolean algebras NI(B) and ROR(X). Moreover, if I, J ∈
NI(B), then

I ≺ J ⇐⇒ I∗ ∨ J = B

⇐⇒ Φ(I∗ ∨ J) = X

⇐⇒ Φ(I∗) ∪ Φ(J) = X

⇐⇒ R[clΦ(I)]c ∪ Φ(J) = X (by the proof of item (1))
⇐⇒ R[clΦ(I)] ⊆ Φ(J)

⇐⇒ Φ(I) ≺ Φ(J).

Therefore, Φ is an isomorphism of de Vries algebras.

Combining Lemma 7.6 and Proposition 7.7 yields the following result,
which gives an alternative proof of Proposition 4.4.

Theorem 7.8. Let B = (B, S) be an S5-subordination algebra and X =
(X,R) its S5-subordination space. Then NI(B) is isomorphic to RO(X/R).
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