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Résumé. Nous explorons la topologie canonique de Grothendieck dans cer-
taines circonstances spécifiques. Tout d’abord, nous utilisons une description
de la topologie canonique pour obtenir une variante du théorème de Giraud,
qui indique quand une catégorie est équivalente à une catégorie de gerbes
sur un site de Grothendieck. Ensuite, nous explorons la topologie canonique
de Grothendieck sur les catégories d’ensembles et d’espaces topologiques.
Nous donnons une base et une présentation pour la topologie canonique sur
la catégorie des ensembles. De plus, puisqu’il existe plusieurs catégories qui
peuvent représenter la catégorie des espaces topologiques, nous explorons
deux de ces catégories : la catégorie de tous les espaces topologiques, et la
catégorie des espaces de Hausdorff faiblement engendrés et compacts. Cette
exploration se concentre sur les différences des topologies canoniques de
Grothendieck résultantes, ainsi que sur leurs bases et présentations. Troisièmement,
nous examinons les topologies canoniques de Grothendieck sur la catégorie
des R-modules. Une attention particulière est accordée à la recherche de
réductions et à la catégorie des groupes abéliens.
Abstract. We explore the canonical Grothendieck topology in some specific
circumstances. First, we use a description of the canonical topology to get
a variant of Giraud’s Theorem, which indicates when a category is equiva-
lent to a category of sheaves on a Grothendieck site. Second, we explore the
canonical Grothendieck topology on the categories of sets and topological
spaces. We give a basis and presentation for the canonical topology on the
category of sets. Additionally, since there are several categories that can rep-
resent “the category of topological spaces,” we explore two such categories:
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the category of all topological spaces, and the category of compactly gener-
ated weakly Hausdorff spaces. This exploration focuses on the differences of
the resulting canonical Grothendieck topologies, along with their bases and
presentations. Third, we look at the canonical Grothendieck topology on the
category of R-modules. A special focus is paid to finding reductions and to
the category of abelian groups.
Keywords. Grothendieck topology, Giraud’s Theorem, colimit, quotient space,
compactly generated weakly Hausdorff, abelian group
Mathematics Subject Classification (2020). 18F10, 18A30, 54B30, 54B15,
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1. Introduction

In SGA 4.2.2 Verdier defined the canonical Grothendieck topology as the
largest Grothendieck topology where all representable presheaves are sheaves.
This paper grew out of an attempt to obtain a precise description of the cov-
ers in this Grothendieck topology in the cases of some familiar categories;
we investigate the question for sets, abelian groups, R-modules, topological
spaces and compactly generated Hausdorff spaces. The category of sets is
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simple enough that we can give a complete answer, and in the two categories
of topological spaces we give a fairly precise description. The question for
abelain groups and R-modules seems to be very subtle, though, and we have
only been able to obtain partial results. Along the way we prove that the
canonical topology has a natural appearance in Giraud’s Theorem, which is
the source for some of our interest in it.

Sieves will be of particular importance in this paper and so we start with
a reminder of its definition; we follow the notation and terminology used by
Mac Lane and Moerdijk in [S. Mac Lane and I. Moerdijk, 2012]. For any
object X of a category C, we call S a sieve on X if S is a collection of mor-
phisms, all of whose codomains are X , that is closed under precomposition,
i.e. if f ∈ S and f ◦ g makes sense, then f ◦ g ∈ S. In particular, we can
view a sieve S on X as a full subcategory of the overcategory (C ↓ X).

By work from [C. Lester, 2019], the canonical Grothendieck topology
can be characterized in terms of colimits. Specifically, the canonical Grothendieck
topology can be described as the collection of all universal colim sieves
where:

Definition 1.1. For a category C, an objectX of C and sieve S onX , we call
S a colim sieve if colim−−−→S

U exists and the canonical map colim−−−→S
U → X is

an isomorphism. (Alternatively, S is a colim sieve if X is the universal
cocone under the diagram U : S → C.) Moreover, we call S a universal
colim sieve if for all arrows α : Y → X in C, α∗S is a colim sieve on Y .

One use of this presentation is the following variant of Giraud’s Theo-
rem:

Proposition 3.14. If E is a ‘nice’ category, then E is equivalent to the cate-
gory of sheaves on E under the canonical topology.

The universal-colim-sieve presentation also affords us an explicit de-
scription of the canonical Grothendieck topology’s covers on the category
of topological spaces:

Proposition 4.6. In the category of all topological spaces, {Aα → X}α∈A is
part of a basis for the canonical topology if and only if α :

∐
α∈AAα → X is
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a universal quotient map (i.e. α and every pullback of α is a quotient map).
Additionally, a sieve S on X is a (universal) colim sieve if and only if there
exists some collection {Aα → X}α∈A ⊂ S such that

∐
α∈AAα → X is a

(universal) quotient map. In particular, T = 〈{f : Y → X}〉 is a (universal)
colim sieve if and only if f is a (universal) quotient map.

Proposition 4.7. In the category of compactly generated weakly Hausdorff
spaces, {Aα → X}α∈A is part of the basis for the canonical topology if and
only if

∐
α∈AAα → X is a quotient map. In particular, a sieve S = 〈{Aα →

X}α∈A〉 on X is in the canonical topology if and only if
∐

α∈AAα → X is a
quotient map. Moreover, every colim sieve is universal.

Furthermore, this presentation allows us to more easily compute examples
and non-examples in the category of topological spaces; for instance,

Example 4.14/Example 4.15. Take Rn → Rn+1 be the closed inclusion
map (x1, . . . , xn) 7→ (x1, . . . , xn, 0) and use R∞ to denote the direct limit
colim−−−→n∈N R

n with maps ιn : Rn → R∞. Then the cover generated by {ιn}n∈N
is not in the canonical topology for the category of all topological spaces but
is in the canonical topology for the category of compactly generated weakly
Hausdorff spaces.

Additionally, we can use the universal-colim-sieve presentation to get a
better idea of the canonical Grothendieck topology’s covers on the category
of R-modules. For example,

Proposition 5.6. Let S be the cover generated by {f1 : M1 → R, f2 : M2 →
R} such that im(fi) = aiR for i = 1, 2. Then S is in the canonical topology
on R-Mod if and only if (a1, a2) = R.

Proposition 5.8. Let R be an infinite principal ideal domain. Let S be the
cover generated by {gi : Rn ↪→ Rn}Mi=1∪{fi : Rmi ↪→ Rn |mi < n}Ni=1. If S
a cover in the canonical topology onR-Mod, then g1⊕· · ·⊕gM : RnM → Rn

is a surjection.
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Proposition 5.24. Let S be the cover generated by {Z ×ai−−→ Z}Ni=1. Then S
is in the canonical topology on Z-Mod if and only if gcd(a1, . . . , aN) = 1.

Proposition 5.25. Let S be the cover generated by {Zn Ai−→ Zn}Ni=1 whereAi
is a diagonal matrix with det(Ai) 6= 0. Then there exists a map β : Z→ Zn
such that β∗S is not a colim sieve in Z-Mod if and only if gcd(det(A1), . . . , det(AN))
does not equal 1.

Organization.
To start this paper we recall some results from [C. Lester, 2019] in Sec-

tion 2. Then in Section 3 we review Giraud’s theorem and prove our Corol-
lary to Giraud’s Theorem, i.e. we prove that that every category C, which
satisfies some hypotheses, is equivalent to the category of sheaves on C with
the canonical topology.

In Section 4 we briefly discuss the canonical topology on the category
of sets before exploring the canonical topology on the category of topolog-
ical spaces. Specifically, we look at the category of all topological spaces
and the category of compactly generated weakly Hausdorff spaces. We are
able to refine our description and obtain a basis for the canonical topology;
this result reduces the question “Is this in the canonical topology?” to the
question “Is a specific map a universal quotient map?” Since universal quo-
tient maps have been studied in-depth (for example by Day and Kelly in
[B.J. Day and G.M. Kelly, 1970]), this reduction becomes our most compu-
tationally agreeable description of the canonical topology and hence we use
it to find some specific examples and non-examples.

Lastly, in Section 5 we investigate the canonical topology on the category
of R-modules and the category of abelian groups, where we work towards
refining our description by making some reductions and obtaining some ex-
clusionary results. While these reductions and results lead us to some spe-
cific examples and non-examples, a basis for the canonical topology remains
elusive.

General Notation.
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Notation 1.2. For any subcategory S of (C ↓ X), we will use U to represent
the forgetful functor S → C. For example, for a sieve S on X , U(f) =
domain f .

Notation 1.3. We say that a sieve S on X is generated by the morphisms
{fα : Aα → X}α∈A and write S = 〈{fα : Aα → X}α∈A〉 if each f ∈ S
factors through one of the fα, i.e. if f ∈ S then there exists an α ∈ A and
morphism g such that f = fα ◦ g.

Acknowledgments
This work is part of the author’s doctoral dissertation at the University of

Oregon. The author is extremely grateful to their advisor, Dan Dugger, for
all of his guidance, wisdom and patience.

2. Background

This section contains a review of the results from [C. Lester, 2019] that will
be used in this paper.

Lemma 2.1. Suppose C is a category with all pullbacks.
Let S = 〈{gα : Aα → X}α∈A〉 be a sieve on object X of C and f : Y → X
be a morphism in C. Then f ∗S = 〈{Aα ×X Y

π2−→ Y }α∈A〉.

Proposition 2.2. Let C be a cocomplete category. For a sieve in C on X
of the form S = 〈{fα : Aα → X}α∈A〉 such that Ai ×X Aj exists for all
i, j ∈ A,

colim−−−→
S

U ∼= Coeq



∐
(i,j)∈A×A

Ai ×X Aj

∐
k∈A

Ak


where the left and right vertical maps are induced from the projection mor-
phisms π1 : Ai ×X Aj → Ai and π2 : Ai ×X Aj → Aj .
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Lemma 2.3. Let C be a category. Then S is a colim sieve on X if and only
if f ∗S is a colim sieve for any isomorphism f : Y → X .

Recall that a morphism f : Y → X is called an effective epimorphism
provided Y×XY exists, f is an epimorphism and c : Coeq (Y ×X Y −→−→ Y )→
X is an isomorphism. Note that this third condition actually implies the sec-
ond because f = c◦g where g : Y → Coeq (Y ×X Y −→−→ Y ) is the canonical
map. Indeed, g is an epimorphism by an easy exercise and c is an epimor-
phism since it is an isomorphism.

Additionally, f : Y → X is called a universal effective epimorphism if
f is an effective epimorphism with the additional property that for every
pullback diagram

W Y

Z X

πg f

g

πg is also an effective epimorphism.

Corollary 2.4. Let C be a cocomplete category with pullbacks. If

S = 〈{f : Y → X}〉

is a sieve on X , then S is a colim sieve if and only if f is an effective epimor-
phism. Moreover, S is a universal colim sieve if and only if f is a universal
effective epimorphism.

Theorem 2.5. Let C be any category. The collection of all universal colim
sieves on C forms a Grothendieck topology.

Theorem 2.6. For any (locally small) category C, the collection of all uni-
versal colim sieves on C is the canonical topology.

Proposition 2.7. Let C be a cocomplete category with pullbacks. Futher
assume that coproducts and pullbacks commute in C. Then a sieve of the
form S = 〈{fα : Aα → X}α∈A〉 is a (universal) colim sieve if and only if the
sieve T = 〈{

∐
fα :

∐
α∈AAα → X}〉 is a (universal) colim sieve.
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Theorem 2.8. Let C be a cocomplete category with pullbacks whose coprod-
ucts and pullbacks commute. A sieve S on X is a (universal) colim sieve of
C if and only if there exists some {Aα → X}α∈A ⊂ S where

∐
α∈A

Aα → X is

a (universal) effective epimorphism.

Theorem 2.9. Let C be a cocomplete category with stable and disjoint co-
products and all pullbacks. For each X in C, define K(X) by

{Aα → X}α∈A ∈ K(X) ⇐⇒
∐
α∈A

Aα → X is a universal effective epimorphism.

Then K is a Grothendieck basis and generates the canonical topology on C.

3. Giraud’s Theorem and the Canonical Topology

Giraud’s Theorem shows that categories with certain nice properties can be
written as sheaves on a Grothendieck site. We show that in fact, modulo
universe considerations, one may take this site to be the original category
with the canonical topology.

We will use the version of Giraud’s Theorem from [S. Mac Lane and I. Moerdijk, 2012].
In fact, the appendix of [S. Mac Lane and I. Moerdijk, 2012] has a thorough
discussion of Giraud’s theorem and all of the terminology used in it; we will
include the basics of this discussion for completeness. We will begin by re-
calling the definitions used in Mac Lane and Moerdijk’s version of Giraud’s
Theorem.

Throughout this section, let E be a category with small hom-sets and all
finite limits.

DISJOINT AND STABLE COPRODUCTS

Let Eα be a family of objects in E and E = qαEα.

Definition 3.1. The coproduct E is called disjoint if every coproduct inclu-
sion iα : Eα → E is a monomorphism and, whenever α 6= β, Eα ×E Eβ is
the initial object in E.

Definition 3.2. The coproductE is called stable (under pullback) if for every
f : D → E in E, the morphisms jα obtained from the pullback diagrams
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D ×E Eα Eα

D E

jα iα

f

induce an isomorphism
∐

α(D ×E Eα) ∼= D.

Remark 3.3. If every coproduct in E is stable, then the pullback operation
−×ED “commutes” with coproducts, i.e. (

∐
αBα)×ED ∼=

∐
α(Bα×ED).

COEQUALIZER MORPHISMS AND KERNEL PAIRS

Definition 3.4. We call a morphism f : Y → Z in E a coequalizer if there
exists some object X and morphisms ∂0, ∂1 : X → Y such that

X
∂0−→
−→
∂1

Y
f−→ Z

is a coequalizer diagram.

We remark that every coequalizing morphism is an epimorphism but the
converse of this statement is not guaranteed.

Definition 3.5. The pair of morphisms ∂0, ∂1 : X → Y are called a kernel
pair for f : Y → Z if the following is a pullback diagram

X Y

Y Z

∂1

∂0 f

f

EQUIVALENCE RELATIONS AND QUOTIENTS

Definition 3.6. An equivalence relation on the object E of E is a subobject
R of E × E, represented by the monomorphism (∂0, ∂1) : R → E × E,
satisfying the following axioms

1. (reflexive) the diagonal ∆: E → E × E factors through (∂0, ∂1),

2. (symmetric) the map (∂1, ∂0) : R→ E × E factors through (∂0, ∂1),
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3. (transitivity) if R×E R is the pullback

R×E R R

R E

π1

π0 ∂0

∂1

then (∂1π1, ∂0π0) : R×E R→ E × E factors through R.

Definition 3.7. If E is an object of E with equivalence relation R, then the
quotient is denoted E/R and is defined to be

Coeq

(
R

∂0−→
−→
∂1

E

)
provided that this coequalizer exists.

STABLY EXACT FORKS

A diagram is called a fork if it is of the form

X
∂0−→
−→
∂1

Y
q−→ Z. (1)

Definition 3.8. The fork (1) is called exact if ∂0 and ∂1 are the kernel pair
for q, and q is the coequalizer of ∂0 and ∂1.

Definition 3.9. The fork (1) is called stably exact if the pullback of (1) along
any morphism in E yields an exact fork, i.e. if for any Z ′ → Z in E,

X ×Z Z ′ −→−→Y ×Z Z ′
q×1−→ Z ×Z Z ′

is an exact fork.

GENERATING SETS

Definition 3.10. A set of objects {Ai | i ∈ I} of E is said to generate E if for
every object E of E, W = {Ai → E | i ∈ I} is an epimorphic family (in the
sense that for any two parallel arrows u, v : E → E ′, if every w ∈ W yields
the identity uw = vw, then u = v).
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GIRAUD’S THEOREM

Theorem 3.11 (Giraud, [S. Mac Lane and I. Moerdijk, 2012]). A category E
with small hom-sets and all finite limits is a Grothendieck topos if and only if
it has the following properties (which we will refer to as Giraud’s axioms):

(i) E has small coproducts which are disjoint and stable under pullback,

(ii) every epimorphism in E is a coequalizer,

(iii) every equivalence relation R →
→ E in E is a kernel pair and has a

quotient,

(iv) every exact fork R →→ E → Q is stably exact,

(v) there is a small set of objects of E which generate E.

Discussion 3.12. Taken together, Giraud’s axioms (ii) and (iv) imply that for
each epimorphism B

f−→ A, the fork B ×A B →
→ B → A is stably exact. The

exactness implies f is an effective epimorphism and the stability implies f
is a universal effective epimorphism.

Notation 3.13. We use Sh(E, J) to represent the category of sheaves on the
category E under the topology J .

Suppose the category E has small hom-sets and all finite limits, satis-
fies Giraud’s axioms, and whose small set of generators (axiom v) is C.
In [S. Mac Lane and I. Moerdijk, 2012] Mac Lane and Moerdijk specifically
prove E ∼= Sh(C, J) where J is the Grothendieck topology on C defined by:

S ∈ J(X) if and only if
∐

(g : D→X)∈S

D → X is an epimorphism in E.

(In particular, Mac Lane and Moerdijk prove that J is a Grothendieck topol-
ogy.)

Proposition 3.14. Suppose the category E has small hom-sets and all finite
limits, satisfies Giraud’s axioms, and whose small set of generators (axiom
v) is C. Then E is equivalent to Sh(C, C) where C is the canonical topology
on C.
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Proof. Let J be the topology defined above. Additionally, the above dis-
cussion implies that it suffices to show that J is the canonical topology. By
Theorem 2.6, we will instead show that every universal colim sieve is in J
and that every sieve in J is a universal colim sieve.

By Remark 3.3, coproducts and pullbacks commute and hence for any
collection of morphisms {Ai → X}i∈I in E, the diagrams∐

I2(Ai ×X Aj)

∐
I Ak

and

(
∐

I Ai)×X (
∐

I Aj)

∐
I Ak

are isomorphic. Note: in both diagrams, the two maps down are the obvious
ones induced/obtained from a pullback diagram. Thus

Coeq


∐

I2(Ai ×X Aj)

∐
I Ak

 ∼= Coeq


(
∐

I Ai)×X (
∐

I Aj)

∐
I Ak

 .

But by Proposition 2.2 (which is usable since E is cocomplete),

Coeq


∐

I2(Ai ×X Aj)

∐
I Ak

 ∼= colim−−−→
S

U where S = 〈{Ai → X}i∈I〉

and

Coeq


(
∐

I Ai)×X (
∐

I Aj)

∐
I Ak

 ∼= colim−−−→
TS

U where TS =

〈{(∐
I

Ai

)
→ X

}〉
.
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Hence

colim−−−→
S

U ∼= colim−−−→
TS

U

where S = 〈{Ai → X}i∈I〉 and TS =

〈{(∐
I

Ai

)
→ X

}〉
for any generating set {Ai → X}i∈I of S.

(2)

Suppose S is a universal colim sieve. Since S has the some generating
set, then by the definition of colim sieve and (2),

X ∼= colim−−−→
S

U ∼= colim−−−→
TS

U.

This implies that TS is a colim sieve. Hence
(∐

(g : D→X)∈S D
)
→ X is an

effective epimorphism by Corollary 2.4 and so S ∈ J(X).
For the converse, suppose that S ∈ J(X). Thus ps :

(∐
(g : D→X)∈S D

)
→

X is an epimorphism, which by Discussion 3.12 is a universal effective epi-
morphism. Hence by Corollary 2.4, ps generates a universal colim sieve
called TS . Then by the definition of colim sieve and (2),

X ∼= colim−−−→
TS

U ∼= colim−−−→
S

U.

Therefore S is a colim sieve.
Similar to the last paragraph, we can use (2) to show that f ∗S is a colim

sieve for any morphism f in E if we know that Tf∗S is a colim sieve. So
to finish the proof we will use the fact that TS is a universal colim sieve
to show that Tf∗S is a colim sieve. Let f : Y → X be any morphism
in E. Then by using S as a generating collection for itself and Lemma
2.1, f ∗S = 〈{A×X Y → Y | A→ X ∈ S}〉. Similarly, using Lemma 2.1,
f ∗TS =

〈{(∐
(A→X∈S) A

)
×X Y → Y

}〉
. Then by Remark 3.3

∐
(A→X)∈S

(A×X Y ) ∼=

 ∐
(A→X)∈S

A

×X Y
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over Y . Therefore,
colim−−−→
Tf∗S

U ∼= colim−−−→
f∗TS

U ∼= Y

where the first isomorphism is due to the previous few sentences and the
second isomorphism is due to the fact that TS is a universal colim sieve.
Thus Tf∗S is a colim sieve.

4. Universal Colim Sieves in the Categories of Sets and Topo-
logical Spaces

In this section we examine the canonical topology on the categories of sets,
all topological spaces and compactly generated weakly Haudsdorff spaces.

Notation 4.1. We will use Sets to denote the category of sets. We will use
Top to denote the category of all topological spaces, CG to denote the cate-
gory of compactly generated spaces, and CGWH to denote the category of
compactly generated weakly Hausdorff spaces. When we want to talk about
the category of topological spaces without differentiating between Top and
CGWH, then we will use Spaces; all results about Spaces will hold for both
Top and CGWH.

We will begin with a few reminders about the category of compactly gen-
erated weakly Hausdorff spaces based on the references [N.P. Strickland, 2009]
and [J.P. May, 1999]. Specifically, there are functors k : Top → CG and
h : CG→ CGWH such that

• For a topological space X with topology τ , a subset Y of X is called
k-closed if u−1(Y ) is closed in K for every continuous map u : K →
X and compact Hausdorff space K. The collection of all k-closed
subsets, called k(τ), is a topology.

• The functor k takes X with topology τ to the set X with topology
k(τ).

• k is right adjoint to the inclusion functor ι : CG→ Top.

• h(X) isX/E whereE is the smallest equivalence relation onX closed
in X ×X .
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• h is left adjoint to the inclusion functor ι′ : CGWH→ CG.

• A limit in CGWH is k applied to the limit taken in Top, i.e. for a
diagram F : I → CGWH, the limit of F is k(limI ιι

′F ).

• A colimit in CGWH is h applied to the colimit taken in Top, i.e. for a
diagram F : I → CGWH, the colimit of F is h(colim−−−→I

ιι′F ).

Proposition 4.2. Let S be a sieve on X in either Sets or Top. Let C be
colim−−−→
S

U . Then the natural map ϕ : C → X is an injection.

Proof. Suppose ỹ, z̃ ∈ C and ϕ(ỹ) = x = ϕ(z̃). We can pick a (Y → X) ∈
S and a y ∈ Y that represents ỹ, i.e. where y 7→ ỹ under the natural map
Y → C; similarly, we can pick a (Z → X) ∈ S and a z ∈ Z representing
z̃. Then the inclusion i : {x} ↪→ X factors through both Y and Z by x 7→ y
and x 7→ z respectively. Thus i ∈ S. Hence ỹ = z̃ in C.

Corollary 4.3. Let S be a sieve on X in CGWH. Then the colimit over S
taken in Top is in CGWH, i.e. h(colim−−−→I

ιι′U) = colim−−−→I
ιι′U . Moreover, the

natural map ϕ : colim−−−→S
U → X is an injection.

Proof. We will make use of the following Proposition from [N.P. Strickland, 2009]:
if Z is in CG, then Z is weakly Hausdorff if and only if the diagonal sub-
space ∆Z is closed in Z × Z. Additionally, we remark that colimits of
compactly generated spaces computed in Top are automatically compactly
generated.

Let C = colim−−−→S
ιι′U , i.e. C is the colimit over S taken in Top. By

Proposition 4.2, the natural map ϕ : C → X is an injection; we remark that
it is not the statement of Proposition 4.2 that gives this observation since S is
not a sieve in Top, instead the proof of Proposition 4.2 holds in this situation
since {x} is in CGWH. Since X is CGWH, then ∆X is closed in X × X .
Since ϕ is a continuous injection, then (ϕ × ϕ)−1(∆X) = ∆C is closed in
C × C.

4.1 Basis and Presentation

The categories Sets, Top and CGWH all satisfy the hypotheses of Theorems
2.9 and 2.8. Thus we have the following corollaries of Theorems 2.9 and 2.8
based on what the universal effective epimorphisms are in each category.
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Proposition 4.4. In Sets, {Aα → X}α∈A is part of a basis for the canonical
topology if and only if

∐
α∈AAα → X is a surjection. In particular, a sieve

of the form S = 〈{Aα → X}α∈A〉 on X is in the canonical topology if and
only if

∐
α∈A

Aα → X is a surjection. Moreover, every colim sieve is universal.

Proof. It is easy to see in Sets that the effective epimorphisms are precisely
the surjections. Since pulling back a surjection yields a surjection, then the
universal effective epimorphisms in the category of sets are also the surjec-
tions. Lastly, this implies, by Theorem 2.8, that every colim sieve is univer-
sal.

Remark 4.5. Since Sets is a Grothendieck topos, we can compare Proposi-
tion 4.4 to the proof of Proposition 3.14. Specifically, Proposition 4.4 allows
us to determine if a sieve is in the canonical topology by looking only at the
sieve’s generating set whereas the proof of Proposition 3.14 along with the
Grothendieck topology J require us to look at the entire sieve.

Recall that a quotient map f is called universal if every pullback of f
along a map yields a quotient map.

Proposition 4.6. In Top, {Aα → X}α∈A is part of a basis for the canonical
topology if and only if

∐
α∈AAα → X is a universal quotient map. Addi-

tionally, a sieve S on X is a (universal) colim sieve if and only if there exists
some collection {Aα → X}α∈A ⊂ S such that

∐
α∈A

Aα → X is a (universal)

quotient map. In particular, T = 〈{f : Y → X}〉 is a (universal) colim sieve
if and only if f is a (universal) quotient map.

Proof. It is a well-known fact that in Top the effective epimorphisms are
precisely the quotient maps.

Proposition 4.7. In CGWH, {Aα → X}α∈A is part of the basis for the
canonical topology if and only if

∐
α∈AAα → X is a quotient map. In

particular, a sieve S = 〈{Aα → X}α∈A〉 on X is in the canonical topology
if and only if

∐
α∈A

Aα → X is a quotient map. Moreover, every colim sieve is

universal.
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Proof. This is a consequence of Corollary 2.4, Corollary 4.3, the fact that the
universal effective epimorphisms in Top are precisely the universal quotient
maps, and Proposition 2.36 from [N.P. Strickland, 2009], which states that
every quotient map in CGWH is universal.

4.2 Examples in the category of Spaces

In this section we will use our basis to talk about some specific examples;
including a special circumstance (when a sieve is generated by one function)
and how the canonical topology on the categories CGWH and Top can differ
in this situation.

Definition 4.8. For a category D, we call A ⊂ ob(D) a weakly terminal set
of D if for every object X in D, there exists some A ∈ A and morphism
X → A in D.

Additionally, if F : D → C is a functor and D has a weakly terminal set
A, then we call {F (A)}A∈A a weakly terminal set of F .

For example, if S = 〈{Aα → X}α∈A〉 is a sieve on X then {Aα}α∈A
is the weakly terminal set of U . Or as another example, {Y } is the weakly
terminal set of the diagram Y ×X Y −→−→ Y . One easy consequence of this in
Top is a reduction of the colimit topology: V is open in the colimit if and
only if the preimage of V is open in each member of the weakly terminal set.

Proposition 4.9. Let F : D → Spaces be a functor where D has a weakly
terminal set A. Suppose fA : F (A)→ X is an open map for all A ∈ A, then
the induced map ϕ : colim−−−→D

F → X is an open map. Similarly, if the fA are
all closed and A is a finite set, then ϕ is a closed map.

Proof. Let C = colim−−−→F and iA : F (A) → C be the natural maps. Both
results follow from the easy set equality below for B ⊂ C

ϕ(B) =
⋃
A∈A

fA(i−1
A (B))

since i−1
A , fA and unions respect open/closed sets in their respective scenar-

ios.
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Corollary 4.10. Let S = 〈{fα : Aα → X}α∈A〉 be a sieve on X in Spaces
with the induced map η :

∐
α∈A

Aα → X a surjection. If all of the fα are open

maps or if A is a finite collection and all of the fα are closed maps, then S
is a colim sieve.

Proof. Let ϕ : colim−−−→
S

U → X be the natural map. By Proposition 4.2, Corol-

lary 4.3, and the surjectivity of η, ϕ is a continuous bijection. Then Propo-
sition 4.9 implies that ϕ is open or closed, depending on the case, and hence
an isomorphism.

This corollary leads us to some nice examples of sieves we would hope
are in the canonical topology and actually are!

Example 4.11. Let X be any space and let {Ui}i∈I be an open cover of X .
Then the inclusion maps Ui ↪→ X generate a universal colim sieve, call it S.
Indeed, by Corollary 4.10, S is a colim sieve. Universality is obvious, as the
preimage of an open cover is an open cover.

Example 4.12. Let X be any space and let K1, . . . , Kn be a closed cover
of X . For the exact same reasons as the previous example, the inclusions
Ki ↪→ X generate a sieve in the canonical topology.

Before we give our next example, we provide a rephrasing of Theorem 1
from [B.J. Day and G.M. Kelly, 1970], which completely characterizes uni-
versal quotient maps in Top:

Theorem 4.13 (Day and Kelly, 1970). Let f : Y → X be a quotient map.
Then f is a universal quotient map if and only if for every x ∈ X and cover
{Gα}α∈Λ of f−1(x) by opens in Y , there is a finite set {α1, . . . , αn} ⊂ Λ
such that fGα1 ∪ · · · ∪ fGαn is a neighborhood of x.

Example 4.14. Consider the diagram B1 → B2 → B3 → . . . and the direct
limit B = colim−−−→Bn in Top. Let S = 〈{ιn : Bn → B |n ∈ N}〉 where
ιn are the natural maps into the colimit. By Proposition 4.6, S is a colim
sieve because

∐
n∈NBn → B is obviously a quotient map. However, S is

not necessarily in the canonical topology – we can use Proposition 4.6 on
specific examples to see when S is and is not in the canonical topology.

218



C. LESTER CANONICAL COVERS

For example, suppose there exists an N such that Bm = BN whenever
m > N . ThenB = BN . Hence it is easy to see by Day and Kelly’s condition
that the map

∐
n∈NBn → B is a universal quotient map. Therefore, the S

from this example is in the canonical topology.
As another example, take Bn = Rn and let Bn → Bn+1 be the closed

inclusion map (x1, . . . , xn) 7→ (x1, . . . , xn, 0). Use R∞ to denote the direct
limit. We claim that

∐
n∈N Rn → R∞ is not a universal quotient map. In-

deed, consider Day and Kelly’s condition; take x = 0 ∈ R∞ and the open
cover in

∐
n∈N Rn consisting of open disks Dn ⊂ Rn centered at the ori-

gin with fixed radius ε > 0. Pick any finite collection Dn1 , . . . , Dnk with
n1 < · · · < nk. Then for i = 1, . . . , k we can view Dni as a subset of Rnk .
Hence ∪ki=1ιni(D

ni) is ∪ki=1ιnk(D
ni) ⊂ ιnk(Rnk). However, by dimensional

considerations, we can see that for all b ∈ N, ιb(Rb) contains no open sets of
R∞ and hence ∪ki=1ιni(D

ni) cannot be a neighborhood of x in R∞. Remark:
To see that ιb(Rb) contains no open sets, suppose to the contrary and call
the open set V . Then ι−1

b+1(V ) is open in Rb+1 and in particular, contains an
open ball of dimension b + 1. Thus dimensional considerations imply that
ι−1
b+1(V ) is not contained in the image of Rb in Rb+1. Since each ιn is an

inclusion map, then ιb+1ι
−1
b+1(V ) 6⊂ ιb+1(Rb) and so V is not contained in

ιb(Rb), which is our contradiction. Therefore, the S from this example is not
in the canonical topology.

Example 4.15. Consider the diagram B1 → B2 → B3 → . . . and the direct
limit B = colim−−−→Bn in CGWH. Let S = 〈{ιn : Bn → B |n ∈ N}〉 where
ιn are the natural maps into the colimit. Then by Proposition 4.7, S is a
universal colim sieve because

∐
n∈NBn → B is a quotient map.

Now we shift our focus to sieves that can be generated by one map,
called monogenic sieves. There are many reasons one could focus on these
kinds of sieves, however by Proposition 2.7, if we fully comprehend when
monogenic sieves are in the canonical topology, then we can (in some sense)
completely understand the canonical topology. From this point onward, this
section will be about monogenic sieves; in other words, by Proposition 4.6
and Proposition 4.7, we will be focusing on (universal) quotient maps.

Remark 4.16. Some examples will talk about the space R/Z. In this section,
this space is not a group quotient but instead is the squashing of the subspace
Z to a point.
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Example 4.17. Consider the quotient maps f : Sn → RP n and g : R →
R/Z. There is some subtly, which will depend on the category we are in, in
determining if f or g generate universal colim sieves. Throughout the rest of
this section we will continue to explore this particular example.

MONOGENIC SIEVES IN CGWH

By Proposition 4.7, if X and Y are in CGWH and h : Y → X , then
〈{h}〉 is in the canonical topology if and only if h is a quotient map. There-
fore, we immediately get the following examples:

Example 4.18. Topological manifolds are in CGWH. Thus Sn and RP n are
in CGWH. Hence 〈{f : Sn → RP n}〉 is in the canonical topology.

Example 4.19. Every CW-complex is in CGWH. Thus R and R/Z are in
CGWH. Hence 〈{g : R→ R/Z}〉 is in the canonical topology.

MONOGENIC SIEVES IN TOP

This section will heavily rely on Theorem 4.13 (the Theorem by Day
and Kelly characterizing universal quotient maps in Top) because a mono-
genic sieve generated by f is in the canonical topology if and only if f is a
universal quotient map.

Example 4.20. Day and Kelly’s theorem implies that every open quotient
map is a universal quotient map. Therefore, the quotient map f : Sn →
RP n is a universal quotient map and 〈{f : Sn → RP n}〉 is in the canonical
topology.

Example 4.21. The quotient map g : R → R/Z is not universal. We will
demontrate this in two ways, first by using Day and Kelly’s theorem and
second by directly showing g is not universal. Note: many sets of R/Z will
be written as if they are in R for ease of presentation.

(i) We will look at Day and Kelly’s condition for Z ∈ R/Z with the open
cover (in R) {Gi := (i − m, i + m)}i∈Z for a fixed m ∈

(
0, 1

2

)
. For any

open set U of R/Z containing Z, the quotient topology tells us that g−1(U)
is an open neighborhood of Z ⊂ R. But for any n, g−1(

⋃n
k=1 gGik) =
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Z ∪ (
⋃n
k=1(ik −m, ik +m)) is not a neighborhood of Z ⊂ R. So there

cannot be any open set of R/Z containing Z that is contained in
⋃n
k=1 gGik

for any finite collection of the cover.
(ii) To directly show that g is not universal we need to come up with a

space and map to R/Z where g pulledbacked along this map is not a quotient
map. Our candidate is the following: Let t(R/Z) be the set R/Z with the
topology where U (written as if it is in R) is said to be open if (a) Z 6⊂
U or (b) U contains Z and is a neighborhood (in the typical topology) of
(Z− {finitely many or no points}). Remark: this topology was used in Day
and Kelly’s paper (in the proof of their theorem), however they defined the
topology using a filter and we have merely rephrased it for convenience.

Define κ : t(R/Z) → R/Z by the set identity map; this is a continuous
map. As a set, the pullback of domain(g) along κ is R but since it now has the
limit topology, we denote the pullback as t(R); in particular, t(R) is R with
the discrete topology. Denote the projection maps as g′ : t(R) → t(R/Z)
and κ′ : t(R)→ R.

We claim that g′ is not a quotient map, i.e. there is some non-open set
B in t(R/Z) with (g′)−1(B) open in t(R). Since every (g′)−1(B) is open in
t(R), then we merely need to find a B that is not open in t(R/Z); B = {Z}
obviously works.

The above example shows us that quotient maps of the form X → X/A
may not generate universal colim sieves. So let’s understand these special
quotient maps a little better. Specifically, using Day and Kelly’s theorem,
we can completely state what kinds of subspaces A yield universal quotient
maps X → X/A:

Corollary 4.22. The quotient map π : X → X/A is universal if and only if
both of the following properties hold:

1. If A is not open, then for every open cover {Gα}α∈Λ of (∂A)∩A in X
there is a finite collection {α1, . . . , αn} ⊂ Λ with A∪Gα1 ∪ · · · ∪Gαn

open in X .

2. IfA is not closed, then for every open U inX such that U ∩(A−A) 6=
∅, U ∪ A is open in X .

Proof. We will be using Theorem 4.13 in two ways: first by finding the
necessary conditions for π to be a universal quotient map (i.e. proving the
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forward direction) and then second by checking the sufficient conditions in
the three cases (i) x = A, (ii) x ∈ X − A, and (iii) x ∈ A− A (i.e. proving
the backward direction).

First suppose that π is a universal quotient map. To see that the first
property is necessary, assume that (∂A) ∩ A 6= ∅, i.e. A is not open, and we
have an open cover {Gα}α∈Λ of (∂A)∩A. Then we can expand this cover to
an open cover of A by adding Int(A) to {Gα}α∈Λ. Now by assumption (us-
ing the point A in X/A) there is a finite subcollection Gα1 , . . . , Gαn , Int(A)
such that πGα1 ∪· · ·∪πGαn ∪πInt(A) is a neighborhood of A in X/A. But
πInt(A) ⊂ πGα since Gα ∩ A 6= ∅ and so Int(A) is not necessary in our
finite subcollection. Thus πGα1 ∪ · · · ∪ πGαn is a neighborhood of A; let U
be an open subset of πGα1 ∪ · · · ∪ πGαn containing A. Now by looking at
the preimages of U and

⋃n
i=1 πGαi in X , we get that

A ⊂ π−1(U) ⊂ π−1(
n⋃
i=1

πGαi) = Gα1 ∪ · · · ∪Gαn ∪ A.

Since π−1(U) is open, then the above expression implies A ⊂ Int(Gα1 ∪
· · · ∪Gαn ∪A). But since all of the Gα are open, then Gα1 ∪ · · · ∪Gαn ∪A
is open. Therefore, the first property is necessary.

To see that the second property is necessary, assume that A is not closed
and U is any open neighborhood of a fixed x ∈ A − A in X . Since U is an
open cover of π−1(π(x)) = x, then by Theorem 4.13, πU is a neighborhood
of x; let V be an open subset of πU that contains x. Then by looking at the
preimages of V and πU , we see (using that U intersects A nontrivially) that

A ⊂ π−1(V ) ⊂ π−1(πU) = U ∪ A.

But since π−1(V ) is open, then A ⊂ Int(U ∪ A), i.e. U ∪ A is open.
Therefore, the second condition is necessary.

Second let’s assume the two conditions hold. We will show π is a uni-
versal quotient map by checking that the conditions of Theorem 4.13 hold
in all three locations in X/A (i.e. for (i) x = A, (ii) x ∈ X − A, and (iii)
x ∈ A− A).

(i) For A ∈ X/A, take any open cover {Gα}α∈Λ of A in X . If A is open
inX , then {A} is open inX/A and hence every πGα is a neighborhood. IfA
is not open, let Γ be the finite portion of Λ that property 1 guarantees exists,
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i.e. A ∪
(⋃

i∈Γ Gαi

)
is open in X and each Gαi intersects A nontrivially.

This implies that
⋃
i∈Γ πGαi is an open neighborhood of A in X/A (since its

preimage is A ∪
(⋃

i∈Γ Gαi

)
).

(ii) Any x ∈ X − A has an open neighborhood Ux ⊂ X − A. Notice
that π is a homeomorphism on X − A. Thus for any such x and any open
cover W of π−1(x) = x in X , πW is a neighborhood of x because the open
neighborhood (in X/A) Ux ∩W is contained in πW .

(iii) IfA is closed, then this is trivial so assume thatA is not closed and let
x ∈ A−A. For any open coverW of π−1(x) = x inX , π−1(πW ) = W ∪A,
which is open in X by condition 2. Thus πW is an open neighborhood of x
in X/A.

Therefore, our two conditions ensure that π satisfies Day and Kelly’s
universal quotient map condition.

Corollary 4.22 now gives us a way to produce more examples of sieves
in the canonical topology:

Example 4.23. Every quotient of a Hausdorff space by a compact subspace
is universal. For example, π : Dn → Sn (where Sn = Dn/∂Dn) generates a
universal colim sieve.

Example 4.24. If A is closed, then S = 〈{X → X/A}〉 is always a colim
sieve. Moreover, it is universal if and only if ∂A is compact. For example,
this tells us 〈{R → R/[0,∞)}〉 is in the canonical topology and reaffirms
that 〈{R→ R/Z}〉 is not.

5. Universal Colim Sieves in the Category of R-modules

The category of R-modules does not satisfy the assumptions of Theorem
2.8 or Theorem 2.9. Indeed, coproducts and pullbacks of R-modules do not
commute (for example, let Z(a,b) denote the domain of Z→ Z2, 1 7→ (a, b),
then we see that (Z(1,0) ⊕ Z(0,1)) ×Z2 Z(1,1)

∼= Z but (Z(1,0) ×Z2 Z(1,1)) ⊕
(Z(0,1) ×Z2 Z(1,1)) ∼= 0). Thus we do not have basis and presentation results.
Instead, we have some smaller results, reductions and examples.

Notation 5.1. Let R be a commutative ring with identity. We will use R-
Mod for the category of R-modules and Ab for the category of abelian
groups.
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We start with some basic results.

Corollary 5.2. Any sieve containing a universal effective epimorphism (e.g.
a surjection in R-Mod or in Sets) is a universal colim sieve.

Proof. This is an immediate consequence of Theorem 2.5 and Corollary 2.4.

Lemma 5.3. In R-Mod, if a sieve S on X can be generated by at most two
morphisms, then the canonical map c : colim−−−→

S

U → X is an injection.

Proof. Suppose S = 〈{f : Y → X, g : Z → X}〉 and c(x) = 0. Since every
map in S either factors through f or g, then x, as an element of

⊕
A→X∈S

A,

is really an element (y, z) ∈ Y ⊕ Z in the colimit. So c(x) = 0 implies
that y + z = 0 in X , i.e. (y,−z) ∈ Y ×X Z. Thus y ∈ Y gets identified
with −z ∈ Z in the colimit; hence (y, z) = (0, z − z) = 0 in the colimit.
Therefore, x = 0 in the colimit and the map c is an injection.

Using the fact that 〈{Ai → X}α〉 = 〈{Ai → X}α ∪ {Z
0−→ X}〉, we

can say that any sieve generated by one morphism is also generated by two
morphsims. This completes the proof.

Proposition 5.4. In R-Mod, let

S = 〈{f : Y → X}〉 and T = 〈{g : U → X, h : V → X}〉

be sieves on X . Then

1. S is a universal colim sieve if and only if f is a surjection.

2. T is a colim sieve if and only if g ⊕ h : U ⊕ V → X is a surjection.

Proof. For part 2, Lemma 5.3 tells us that we only need to worry about the
surjectivity of colim−−−→

T

U → X but this is exactly what the above condition is.

For part 1, Lemma 5.3 and Lemma 2.1 tell us that we only need worry
about the surjectivity ofA×X Y

π1−→ A (the generator of k∗S) for every map
k : A→ X . But A×X Y = {(a, y) ∈ A× Y | k(a) = f(y)}. Hence π1 is a
surjection for every map k if and only if f is a surjection.
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Lemma 5.5. In R-Mod, suppose S = 〈{fi : Mi → R}i∈I〉 is a sieve on
R such that for every i ∈ I there exists an ai ∈ R with im(fi) = aiR.
If the ideal (ai | i ∈ I) equals R, then for every R-module homomorphism
g : N → R, the natural map colim−−−→g∗S

U → N is a surjection.

Proof. By Proposition 2.2 it suffices to show that η : ⊕i Mi ×R N → N is
a surjection. Let πi : Mi ×R N → N be the natural map. Fix x ∈ N . Then
aig(x) ∈ aiR = im(fi) and aig(x) ∈ im(g). Thus ai · x ∈ im(πi) ⊂ N for
all i ∈ I . Therefore, x = 1R · x is in ⊕iim(πi) = im(η) since R is a unital
ring and (ai | i ∈ I) = R.

Proposition 5.6. Suppose S = 〈{f1 : M1 → R, f2 : M2 → R}〉 is a sieve on
R such that im(fi) = aiR for i = 1, 2. Then S is in the canonical topology
on R-Mod if and only if (a1, a2) = R.

Proof. If S is in the canonical topology, then S is a colim sieve and hence
by Proposition 5.4, a1R⊕ a2R = R.

If (a1, a2) = R, then by Proposition 5.4, S is a colim sieve. The uni-
versality of S follows immediately from Lemma 2.1, Proposition 5.4 and
Lemma 5.5.

Next we include two results that can help us identify when a sieve is not
in the canonical topology.

Proposition 5.7. LetR be any nonzero ring. Let S = 〈{fi : Ai → X}i∈I〉 be
any sieve onX for any nonzeroR-moduleX . If there exists a nonzero b ∈ X
such that spanR(b) ⊂ (X−∪IIm(fi))∪{0}, then S is not a universal colim
sieve.

Proof. Suppose such a b ∈ X exists. Define g : R → X by 1 → b. Then
Im(g) ∩ Im(fi) = {0} for all i. Thus for all i, the pullback R ×X Ai =
ker(g)× ker(fi) and the image of the natural map R×X Ai → R is ker(g).
In particular, Im (⊕iR×X Ai → R) = ker(g), which by construction is not
R. Therefore, colim−−−→g∗S

U → R is not surjective and so g∗S not a colim sieve
on R.

Proposition 5.8. Let R be an infinite principal ideal domain. Let

S = 〈{gi : Rn ↪→ Rn}Mi=1 ∪ {fi : Rmi ↪→ Rn |mi < n}Ni=1〉
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be a sieve onRn. If S is a universal colim sieve, then g1⊕· · ·⊕gM : RnM →
Rn is a surjection.

Proof. Let G = g1 ⊕ · · · ⊕ gM . Suppose that G is not a surjection. We will
produce a map φ that shows S is not universal.

By a change of basis (which is allowable by Lemma 2.3) we may assume
that G = diag(d1, d2, . . . , dn) with di|di+1. Because G is not surjectve, then
dn is not a unit. Indeed, if dn was a unit, then all of the di’s would also
be units and thus G would be surjective. By Lemma 5.9 below, there exists
an x ∈ Rn−1 so that spanR{(x, 1)} ∩ Im(fi) = {0} for all i = 1, . . . , N .
Additionally, since dn is not a unit, then (x, 1) 6∈ Im(G).

Define φ : R→ Rn by 1 7→ (x, 1). We will show that φ∗S is not a colim
sieve. First we will simplify the generating set of φ∗S. By the choice of x,
the pullback module of Rmi along φ is {0} for all i = 1, . . . , N . Therefore,
we can write φ∗S as φ∗S = 〈{πi : Rn×Rn R→ R}Mi=1〉 where the πi are the
pullbacks of the gi along φ. Since (x, 1) 6∈ Im(G) and we have the following
commutative diagram

⊕Mi=1R
n
i ×Rn R R

⊕Mi=1R
n
i Rn

⊕Mi=1πi

φ

G

then 1 6∈ Im(π1 ⊕ · · · ⊕ πM). Therefore, η : colim−−−→
φ∗S

U → R is not surjective;

hence φ∗S is not a colim sieve.

Lastly, for completeness we include the linear algebra result referenced
in Proposition 5.8.

Lemma 5.9. Let R be an infinite principal ideal domain. For any finite
collection V1, . . . , VN of submodules of Rn with dim(Vi) < n, there exists an
x ∈ Rn−1 such that spanR{(x, 1)} ∩ Vi = {0} for all i.

Proof. Let F be the quotient field of R. Let

Wi = Vi ⊗R F.

We will use F n−1 to refer to the subspace {(a1, . . . , an−1, 0) | ai ∈ F} in
F n. For each Vi 6⊂ F n−1, fix an element νi ∈ Vi such that νi 6∈ F n−1 and
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write νi = (vi1, . . . , vin). Let ν0
i = (vi1, . . . , vi(n−1), 0). Lastly, for each Vi 6⊂

F n−1, define a vector space map φi : Wi → F n−1 by w = (w1, . . . , wn) 7→
w − wn

vin
νi

Ideally, we will find an x such that (x, 1) 6∈ Wi for all i. So first, let’s see
what kinds of (z, 1) are in Wi by computing φi(z, 1).

φi(z, 1) = (z, 1)− 1

vin
νi

= z − 1

vin
ν0
i

Thus
z = φi(z, 1) +

1

vin
ν0
i .

Therefore, if (z, 1) ∈ Wi, then z = φi(z, 1) + 1
vin
ν0
i . Based on this result,

define Γi = im(φi)⊕ spanF{ν0
i }. So (z, 1) ∈ Wi implies z ∈ Γi.

For each index i exactly one of the following is true:

1. Wi ⊂ F n−1,

2. Wi 6⊂ F n−1 and dimF (Γi) < n− 1,

3. Wi 6⊂ F n−1 and Γi = F n−1.

For every index j in collection 1, every x ∈ Rn−1 satisfies the equation
spanR{(x, 1)} ∩ Vj = {0}. Thus when picking our x, we only need to
consider the indices in collections 2 and 3.

For each index i in collection 2, Γi is a proper subspace of F n−1. Since
there are only finitely many Γi and F is an infinite field, then there exists a
y = (y1, . . . , yn−1) such that y 6= 0 and spanF{(y, 0)} ∩ Γi = {0} for all
i in collection 2. By multiplying y by an appropriate s ∈ F we can clear
denominators and so we may assume that y ∈ Rn−1. In particular, for all
r ∈ R, ry 6∈ Γi, which implies that (ry, 1) 6∈ Wi. Therefore, for all r ∈ R,
spanR{(ry, 1)} ∩ Vi = {0} for all indices in collection 2.

Continuing with the y from the previous paragraph, we now consider
the indices k in collection 3 and their corresponding Γk. In this situation,
(y, 0) ∈ Γk, i.e. y = φk(z) + ukν

0
k for some z ∈ Wk and uk ∈ F . Since R

is an infinite ring and collection 3 contains finitely many indices k, we can
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pick a nonzero ρ ∈ R such that for all k, ρuk ∈ R and ρuk 6= 1
vkn

. Thus
ρy 6= φk(a) + 1

vkn
ν0
k for any a ∈ Wk, which implies that (ρy, 1) 6∈ Wk.

Therefore, spanR{(ρy, 1)} ∩ Vk = {0} for all indices in collection 3.
We can take x = ρy.

EXAMPLES

Here we include a few examples and non-examples of sieves in the canon-
ical topology for various rings R.

Example 5.10. In the category ofR-modules every surjective map generates
a universal colim sieve (see Proposition 5.4). As more specific examples, the
sieve 〈{Z π−→ Z/nZ | 1 7→ 1}〉 is in the canonical topology on Ab, and in
R-Mod the sieve 〈{Rn → R | (a1, . . . , an) 7→ a1}〉 is in the canonical
topology.

Example 5.11. By Proposition 5.6, 〈{R a−→ R,R
b−→ R}〉 is in the canon-

ical topology if and only if (a, b) = R. As more specific examples, the
sieve 〈{Z 2−→ Z,Z 3−→ Z}〉 is in the canonical topology on Ab; when the
function ·g(x) : C∞(R) → C∞(R) is the map f(x) 7→ (g · f)(x), then the

sieve 〈{C∞(R)
·x−→ C∞(R), C∞(R)

· sin(x)−→ C∞(R)}〉 is not in the canonical
topology on C∞(R)-modules.

Example 5.12. The sieve S = 〈{R i1→ R2, R
i2→ R2}〉 where i1(1) = (1, 0)

and i2(1) = (0, 1) (in the category of R-modules for nontrivial R) is not in
the canonical topology. By Proposition 5.4, S is clearly a colim sieve so to
see that S is not universal consider the map ∆: R → R2, 1 7→ (1, 1). Then
for k = 1, 2, ik pulled back along ∆ yields the zero map z : 0 → R. Hence
Lemma 2.1 says ∆∗S = 〈{z : 0→ R}〉, which is clearly not a colim sieve.

Similarly 〈{R ik→ Rn | k = 1, . . . , n}〉 is a colim sieve but is not in the
canonical topology. (This is also a consequence of Proposition 5.7.)

Example 5.13. Let S = 〈{fk : Q→ Q[t] | fk(1) = 1+t+· · ·+tk}∞k=1〉 in the
category of rational vector spaces. This S is not in the canonical topology.
(This is a direct consequence of Proposition 5.7 using b = t.)
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Example 5.14. Let F be an infinite field. In the category of F vector spaces,
a sieve of the form S = 〈{Fmi ↪→ F n | mi ≤ n}Mi=1〉 is in the canonical
topology if and only if mi = n for some i if and only if S contains an
isomorphism. (This is a consequence of Proposition 5.8.)

Proposition 5.15. Consider the diagram B1 ↪→ B2 ↪→ B3 ↪→ . . . made
with only injective maps and the direct limit B := colim−−−→Bn in R-mod. Let
the maps ιn : Bn → B be the natural maps into the colimit. Then the sieve
〈{ιn |n ∈ N}〉 is a universal colim sieve.

Proof. Let Γ: N → S by n 7→ ιn. Notice that Γ is a final functor; this is
easy to see since the injectivity of ιn and the maps in our diagram imply that
Bi ×B Bj

∼= Bmin(i,j). Thus colim−−−→S
U exists and colim−−−→S

U ∼= colim−−−→N
UΓ ∼=

B. Therefore, S is a colim sieve.
To see that S is universal, let f : X → B and set Xi := X ×B Bi. For

each n ∈ N, ιn and Bn → Bn+1 are both injective maps; this implies that the
natural maps Xn → Xn+1 and Xn → X are also injective maps since the
pullback of an injection in R-Mod is an injection and Xi

∼= Xi+1 ×Bi+1
Bi.

Additionally, it is an easy exercise to see that the direct limit colim−−−→Xi is
isomorphic to X . In other words, f ∗S is the type of sieve described in the
assumptions of this proposition and proved to be a colim sieve in the previous
paragraph.

Example 5.16. Take Bn = Rn and let Bn → Bn+1 be the inclusion map
(x1, . . . , xn) 7→ (x1, . . . , xn, 0). Use R∞ to denote the direct limit. Then the
above proposition shows that 〈{Rn ↪→ R∞}n∈N〉 is in the canonical topology
on the category of R vector spaces. (Compare this to Example 4.14.)

REDUCTIONS

In this part we prove some reductions that allow us to limit our view (of
sieve generating sets and the maps universality must be checked over) to the
non-full subcategory of free modules with injective maps when R is ‘nice.’
The first reduction will be reducing the types of sieves we need to look at:

Proposition 5.17 (Reduction 1). In R-Mod, let S be a sieve on X . Then the
following are equivalent

1. S is a universal colim sieve
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2. f ∗S is a universal colim sieve for every surjection f : Y → X

3. f ∗S is a universal colim sieve for some surjection f : Y → X

Proof. It is obvious that 1 implies 2 and 2 implies 3, so it suffices to show 3
implies 1.

Assume f ∗S is a universal colim sieve for some fixed surjection f : Y →
X . Set T = 〈{f : Y → X}〉. By Proposition 5.4, T is a universal colim sieve
since f is a surjection. We will now use T together with the Grothendieck
topology’s transitivity axiom to show that S is a universal colim sieve. No-
tice that S satisfies the hypotheses of this axiom with respect to T . Indeed,
since every g ∈ T factors as f◦k for some k, then g∗S = (fk)∗S = k∗(f ∗S),
which implies that g∗S is a universal colim sieve (as f ∗S is universal) for ev-
ery g ∈ T . Therefore, by the transitivity axiom of a Grothendieck topology,
S is a universal colim sieve.

To rephrase our first reduction: S is a universal colim sieve on X if and
only if f ∗S is a universal colim on Rn where f : Rn → X is a surjection
(note that n is not necessarily assumed to be finite). This reduction means
that we can restrict our view to free modules (not necessarily finitely gener-
ated). Specifically, we only need to look at sieves on free modules and check
the universality condition on free modules. Indeed, S is a universal colim
sieve on X if and only if for all g : Y → X , g∗S is a universal colim sieve
on Y if and only if for all g : Y → X , (gf)∗S is a universal colim sieve on
Rn for some surjection f : Rn → Y .

Proposition 5.18 (Reduction 2). In R-Mod when R is a principal ideal do-
main, every sieve on Rn equals a sieve of the form

〈{gi : Rmi ↪→ Rn : mi ≤ n}i∈I〉

where the gi are injections.

Proof. Let S = 〈{fi : Ai → Rn}i∈I〉 be a sieve on Rn. Set

T = 〈{gi : Im(fi)→ Rn}i∈I〉

where the gi’s are inclusion maps. SinceR is a PID and Im(fi) is a submod-
ule of Rn, then Im(fi) ∼= Rmi for some mi ≤ n. Thus T is of the desired
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form and we will show that S = T . First notice that S ⊂ T . To get that T
is a subcollection of S, notice that f̃i : Ai → Im(fi) (i.e. fi with a different
codomain) is split because f̃i is a surjective map onto a projective module;
call the splitting χi. Hence gi = gi ◦ f̃i ◦χi = fi ◦χi implies that T ⊂ S and
completes the proof.

To rephrase our second reduction: when talking about sieves on Rn, we
only need to talk about sieves generated by injections of free modules. Thus
we can restrict our view of sieve generating sets to the non-full subcategory
of free modules with injective morphisms.

Our next reduction will also assume R is a principal ideal domain. In
particular, fix n and a map f : X → Rn for some R-module X . Then since
R is a PID, we may write

X ∼= Rm ⊕K for some m ≤ n, where

Rm ∼= Im(f), K = ker(f), f = g + z with

g : Rm → Rn an injection and z : K → Rn the zero map.

Proposition 5.19 (Reduction 3). Let R be a principal ideal domain, S be a
sieve on Rn in R-Mod and f : X → Rn. Then, using the set-up described in
the previous paragraph,

colim−−−→
f∗S

U ∼=

(
colim−−−→
g∗S

U

)
⊕

(
colim−−−→
z∗S

U

)
.

Moreover, z∗S is a universal colim sieve; hence f ∗S is a colim sieve if and
only if g∗S is a colim sieve.

Sketch of Proof. By Proposition 5.18, we may assume that S can be written
in the form S = 〈{ηi : Rpi ↪→ Rn : pi ≤ n}i∈I〉. Consider the diagrams X,
R and K defined as:

X =


⊕

i∈I(R
pi ×Rn X)×X (Rpi ×Rn X)

⊕
i∈I(R

pi ×Rn X)

,
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R =


⊕

i∈I(R
pi ×Rn Rm)×Rm (Rpi ×Rn Rm)

⊕
i∈I(R

pi ×Rn Rm)

 , and

K =


⊕

i∈I(R
pi ×Rn K)×K (Rpi ×Rn K)

⊕
i∈I(R

pi ×Rn K)


First we look at the objects of X. Since each ηi is injective, then for all i

Rpi ×Rn X ∼= (Rpi ×Rn Rm)⊕ (Rpi ×Rn K)

and for all i, q

(Rpi ×Rn X)×X (Rpq ×Rn X)
∼= ((Rpi ×Rn Rm)×Rm (Rpq ×Rn Rm))⊕ ((Rpi ×Rn K)×K (Rpq ×Rn K)).

In other words, X ∼= R ⊕ K. But since colimits “commute” with colimits,
then Coeq(X) ∼= Coeq(R)⊕Coeq(K). Now by Lemma 2.1 and Proposition
2.2, the first part has been proven, i.e.

colim−−−→
f∗S

U ∼=

(
colim−−−→
g∗S

U

)
⊕

(
colim−−−→
z∗S

U

)
.

Next we notice that z∗S is a universal colim sieve. Indeed, since ηi is an
injection and z is the zero map, it easily follows that z∗S = 〈{id : K → K}〉.

To complete the proof, notice that we have the following commutative
diagram

Coeq(X) ∼= Coeq(R)⊕ Coeq(K)

X ∼= Rm ⊕K

ρχ κ

where the vertical maps are the obvious canonical maps. This χ = ρ ⊕ κ
is an isomorphism if and only if both ρ and κ are isomorphisms. We have
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already shown that κ is an isomorphism (as z∗S is a universal colim sieve),
thus this diagram implies that χ is an isomorphism if and only if ρ is; hence
f ∗S is colim sieve if and only if g∗S is a colim sieve.

Lastly, we rephrase our third reduction:

Corollary 5.20. When R is a PID, a sieve on Rn is a universal colim sieve
if and only if f ∗S is a colim sieve for every injection f : Rm → Rn.

All together our reductions basically allow us to work in the subcategory
of free modules with injective morphisms instead of in R-Mod.

5.1 The Category of Abelian Groups

This section will be primarily made up of examples. Additionally, we in-
clude a characterization of sieves on Z and one result for sieves on larger
free abelian groups.

Example 5.21. By Corollary 5.6, 〈{Z ×a−→ Z,Z ×b−→ Z}〉 is a universal colim
sieve if and only if a and b are relatively prime.

Example 5.22. The sieve S = 〈{Z ×1−→ Z/4Z,Z/2Z ×2−→ Z/4Z}〉 is a uni-
versal colim sieve on Z/4Z by Corollary 5.2. Additionally, S is not mono-
genic, i.e. it cannot be written as a sieve generated by one morphism.

Example 5.23. Let S = 〈{g : Zn ↪→ Zn} ∪ {fi : Zmi ↪→ Zn | mi < n}Ni=1〉
be a sieve on Zn. Then S is a universal colim sieve if and only if g is a
surjection, i.e. g is an isomorphism. (This is a direct corollary of Proposition
5.8 and Corollary 5.2.)

Ideally, we would like to know a ‘nice’ basis for the canonical topology
on Ab, like the bases in Section 4.1; to start moving towards this ideal, we
look at the simplest free group, Z. In Example 5.21 we see that a relative
prime pair of numbers will generate a universal colim sieve; this is actually
true in general, specifically:

Proposition 5.24. Let S = 〈{Z ×ai−−→ Z}Ni=1〉 be a sieve on Z. Then S is a
universal colim sieve if and only if gcd(a1, . . . , aN) = 1.
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Proof. First assume that S is a universal colim sieve. In particular, the map
colim−−−→S

U → Z is a surjection, i.e. ZN → Z, (x1, . . . , xN) 7→ a1x1 +
· · ·+ aNxN is a surjection. Therefore, (a1, . . . , aN) = Z and this proves the
forward direction.

Now assume that gcd(a1, . . . , aN) = 1. We will break the proof that S
is a universal colim sieve up into several pieces. First we will reduce the
proof to showing that S is a colim sieve. By the reductions (Propositions
5.17, 5.18 and 5.19), universality only needs to be checked along maps of
the form f : Z ×k−→ Z where k 6= 0. Fix k 6= 0, i.e. fix f , and write Zb
for the domain of Z ×b−→ Z. By Lemma 2.1, f ∗S = 〈{πi : Zai ×Z Zk →
Zk}Ni=1〉. Moreover, it is easy to see that the pullback Zai ×Z Zk ∼= Z and
πi must be multiplication by ai

gcd(ai,k)
. Since gcd(a1, . . . , aN) equals 1, then

gcd
(

a1
gcd(a1,k)

, . . . , aN
gcd(aN ,k)

)
= 1 and hence f ∗S has the same form as S.

Specifically, any argument showing that S is a colim sieve will similarly
show that f ∗S is a colim sieve. Therefore, it suffices to show that S is a
colim sieve.

To see that S is a colim sieve, i.e. to see that the map colim−−−→S
U → Z

induced by a1, . . . , aN is an isomorphism, let α = N(N−1)
2

and notice that

colim−−−→
S

U ∼= Coeq


⊕αi=1Z

⊕Ni=1Z


∼= Cokernel

(
φ : Zα → ZN

)
for some map φ where the first isomorphism comes from Lemma 2.2 and the
last isomorphism comes from the fact that we are working in an abelian cat-
egory. Now this map φ happens to be the third map in the Taylor resolution
of Z, i.e. φ1 in [J. Mermini, 2012]. We make two remarks about this previ-
ous sentence: (1) we will not prove that our φ is [J. Mermini, 2012]’s φ1, al-
though this is easy to observe, and (2) the Taylor resolution in [J. Mermini, 2012]
is specifically for polynomial rings, not Z, however, both the definition of the
Taylor resolution and the proof that it is in fact a free resolution are analo-
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gous. Here is the end of the Taylor resolution:

· · · → Zα φ−→ ZN (a1 ... aN )−−−−−−→ Z→ Z/(a1, . . . , aN)Z→ 0

Since gcd(a1, . . . , aN) = 1, then it follows that (a1 . . . aN) is a surjection
and Z/(a1, . . . , aN)Z ∼= 0. Thus we obtain 0 → Im(φ) → ZN → Z → 0,
which is an exact sequence and hence implies that the cokernel of φ is Z.
Additionally, since (a1 . . . aN) induced our map colim−−−→S

U → Z, then this
short exact sequence also says that S is a colim sieve.

Because of Proposition 5.24, we can now easily determine when a sieve
on Z is in the canonical topology and we can easily come up with examples;
for example, 〈{Z ×15−−→ Z,Z ×10−−→ Z,Z ×12−−→ Z}〉 is in the canonical topology
whereas the sieve 〈{Z ×15−−→ Z,Z ×50−−→ Z,Z ×20−−→ Z}〉 is not. One may hope
for a similar outcome for sieves on Zn when n ≥ 2, however, the Taylor
resolution used in the proof of Proposition 5.24 does not seem to generalize
in a suitable manner. Instead, we have a proposition that may tell us when a
potential sieve is not in the canonical topology.

Proposition 5.25. Let S = 〈{Zn Ai−→ Zn}Ni=1〉 where Ai is a diagonal matrix
with det(Ai) 6= 0. Then there exists a map β : Z→ Zn such that β∗S is not
a colim sieve if and only if gcd(det(A1), . . . , det(AN)) 6= 1.

Proof. First we set up some notation: Let Ai = diag(a1i, . . . , ani) and Zni
be the domain of Ai.

To prove the backward direction, suppose that gcd(det(A1), . . . , det(AN))
does not equal 1. We can rephrase the assumptions as aik 6= 0 for all k and
there exists a prime q such that q divides the product a1i . . . ani for all i. Set
β equal to the diagonal embedding, i.e. 1 7→ (1, . . . , 1). Then by Lemma
2.1, β∗S = 〈{fi : Zni ×Zn Z → Z}Ni=1〉. Let ki = lcm(a1i, . . . , ani) and
χi : Z→ Zn, 1 7→

(
ki
a1i
, . . . , ki

ani

)
, then

Z Zn

Z Zn
ki

χi

Ai

β
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is a pullback diagram. Moreover, the prime q divides ki for all i since it
divides a1i . . . ani for all i. Thus gcd(k1, . . . , kN) 6= 1. Now by Proposition
5.24, we can see that β∗S = 〈{Z ×ki−−→ Z}Ni=1〉 is not a universal colim sieve.
In particular, the first part of the proof of Proposition 5.24 shows that β∗S is
not a colim sieve.

To prove the forward direction, we will prove the contrapositive state-
ment. So suppose that gcd(det(A1), . . . , det(AN)) = 1. Let β : Z → Zn be

given as the matrix

b1
...
bn

. To see that β∗S = 〈{fi : Zni ×Zn Z→ Z}Ni=1〉 is

a colim sieve, notice that we have the pullback diagram

Z Zn

Z Zn
ki Ai

β

where ki = lcm
(

a1i
gcd(a1i,b1)

, . . . , ani
gcd(ani,bn)

)
. Hence, ki divides det(Ai). This

implies that gcd(k1, . . . , kn) divides gcd(det(A1), . . . , det(AN)) and hence
equals 1. Now by Proposition 5.24, we can see that β∗S = 〈{Z ×ki−−→ Z}Ni=1〉
is a universal colim sieve.

Example 5.26. Based on Proposition 5.25 we can automatically say that the

sieve
〈{(

4 0
0 14

)
,

(
21 0
0 2

)
,

(
1 0
0 49

)}〉
on Z2 is not in the canonical

topology because each matrix has a multiple of 7 somewhere on its diagonal.

Suppose, like in Proposition 5.25, S = 〈{Zn Ai−→ Zn}Ni=1〉 where each
Ai is a diagonal matrix and gcd(det(A1), . . . , det(AN)) = 1. In order to
determine if S is a universal colim sieve, we (only) need to check if f ∗S is
a colim sieve for all f : Zm ↪→ Zn, 2 ≤ m ≤ n. However, this is still a
fair amount of work and it would be nice if this process could be simplified
further.

Now we finish this section with a few more examples. Note: we will not
prove any assertions in these examples, however, they are all basic compu-
tations that can be checked using undergraduate linear algebra.
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Example 5.27. The sieve S1 =

〈{(
7 0
1 4

)
,

(
21 0
1 18

)
,

(
24 0
6 5

)}〉
on

Z2 is not in the canonical topology although it is a colim sieve. In particular,
S1 is not universal because f ∗S1 is not a colim sieve for f : Z→ Z2, f(1) =
(1, 0).

If we take the generating set of S1 and change the 1 in the first matrix to
a 0, then we get the following example:

Example 5.28. The sieve S2 =

〈{(
7 0
0 4

)
,

(
21 0
1 18

)
,

(
24 0
6 5

)}〉
on

Z2 is not a colim sieve since colim−−−→S
U ∼= Z2 ⊕ Z/2Z. Therefore, S2 is also

not in the canonical topology.

Finally, if take the generating set of S2 and change the 18 in the second
matrix to a 9, then we get:

Example 5.29. The sieve S3 =

〈{(
7 0
0 4

)
,

(
21 0
1 9

)
,

(
24 0
6 5

)}〉
on

Z2 is a colim sieve, however, whether or not this sieve is in the canonical
topology is unknown.
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