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COMPUTADS AND STRING

DIAGRAMS FOR

N -SESQUICATEGORIES

Manuel Araújo

October 14, 2022

Résumé. Une n-sesquicatégorie est un ensemble n-globulaire avec des opéra-

tions de composition strictement associatives et unitaires, qui ne sont cepen-

dant pas tenues de satisfaire les lois d’échange de Godement qui s’appliquent

aux n-catégories. Dans [6], nous avons montré comment celles-ci peuvent

être dénies comme des algèbres sur une monade T
Ds

n dont les opérations

sont des diagrammes de cordes simples. Dans le présent article, nous donnons

une description explicite des polygraphes pour cette monade et nous prou-

vons que la catégorie associée de computades est une catégorie de préfais-

ceaux. Nous utilisons ceci pour décrire une notation de diagrammes de cordes

pour représenter des composés arbitraires dans des n-sesquicatégories. Ceci

est un pas vers une théorie des diagrammes de cordes pour les n-catégories

semistrictes.

Abstract. An n-sesquicategory is an n-globular set with strictly asso-

ciative and unital composition and whiskering operations, which are

however not required to satisfy the Godement interchange laws which

hold in n-categories. In [6] we showed how these can be dened as al-

gebras over a monad TDs

n whose operations are simple string diagrams.

In the present paper, we give an explicit description of computads for

the monad TDs

n and we prove that the category of computads for this

monad is a presheaf category. We use this to describe a string diagram
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M. ARAÚJO STRING DIAGRAMS FOR n-SESQUICATEGORIES

notation for representing arbitrary composites in n-sesquicategories.

This is a step towards a theory of string diagrams for semistrict n-

categories.

Keywords. String diagrams. Higher categories. Monads. Computads.

Mathematics Subject Classication (2010). 18N20, 18N30.

1. Introduction

The use of string diagram notation as a tool for representing composites in

higher categories is becoming ever more widespread. This paper is part of

a project which aims to give a denition of semistrict n-category based on

a purely algebraic/combinatorial notion of string diagram. In [6] we de-

ned a monad TDs

n on the category of n-globular sets, whose operations

we call simple string diagrams. We give a generators and relations descrip-

tion of TDs

n , which allows us to characterize its algebras, which we call n-

sesquicategories, as n-globular sets equipped with strictly associative and

unital composition and whiskering operations, which however do not satisfy

the Godement interchange laws that hold in a strict n-category. We think of

simple string diagrams as analogous to the globular pasting diagrams used

in the denition of the monad T str
n whose algebras are strict n-categories

([28]). In the present paper we study computads for the monad TDs

n and

show how morphisms in an n-sesquicategory generated by a computad C

can be depicted as general C-labelled string diagrams. We also prove that

the category of computads for this monad is equivalent to the category of

presheaves on a small category of computadic cell shapes. In future work,

we will show how to add coherent weak interchange laws to get a notion of

semistrict n-category,

1.1 Results

We now describe the main result in this paper. Denote by Compn
n+1 the

category of (n+1)-computads for TDs

n , by the terminal (n+1)-computad

and by Fn(C) the free n-sesquicategory generated by an n-computad C.

Cells c ∈ k for k ≤ n + 1 are called k-cell shapes and morphisms d ∈
Fn( )k for k ≤ n are called unlabelled k-diagrams. A morphism x ∈
Fn(C) is said to have shape d if its image in Fn( ) is d. Given such d,
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we construct a computad d̂ with the property that d-shaped morphisms in

a computad D are in canonical bijection with maps d̂ → D. Using this,

we dene a small category Celln+1 whose objects are cell shapes, together

with a fully faithful embedding (−) : Celln+1 → Compn
n+1. From this we

construct the nerve/realization adjunction

 −  : Psh(Cellnn+1) Compn
n+1 : N

⊣

.

Theorem 1.1. The adjunction  −  : Psh(Celln+1) Compn
n+1 : N

⊣

is an equivalence of categories.

We now give an outline of the proof. In [6] we showed that TDs

n has a pre-

sentation with generators On and relations En. We can describe morphisms

in the free n-sesquicategory Fn(C) generated by an n-computad C as equiv-

alence classes of trees whose internal vertices are labelled by generators in

On and whose leaves are labelled by cells in C. The equivalence relation is

generated by the relations in En. We then prove that each of these trees has a

unique normal form in its equivalence class. This allows us to show that for

an unlabelled diagram d the category Compn
n+1(d) of pairs (C, x), where C

is an (n+1)-computad and x is a morphism of shape d, has an initial object,

which we denote (d̂, d̃). This allows us to construct the nerve/relization ad-

junction as mentioned above and then the proof of the Theorem follows by

formal arguments from the fact (ĉ, c̃) is initial, for c ∈ Celln+1.

Remark 1.2. In fact our proof of the Theorem above applies to any globular

operad presented by generators and relations, as long as this presentation

admits a theory of normal forms. See Remark 5.16 for details.

The theory of normal forms also provides an algorithm to decide whether

two morphisms in the free n-sesquicategory Fn(C) generated by C given as

composites of generating cells are actually equal.

After we’ve established this Theorem, we go on to give a description of

the diagrammatic interpretation of morphisms in the n-sesquicategory gen-

erated by C as C-labelled string diagrams. Normal forms are an essential

ingredient in this description.
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1.2 Related work

The string diagrammatic calculus for monoidal categories and bicategories

is by now well established. Generalizations to Gray 3-categories also exist,

in the theory of surface diagrams ([11], [27]). Recently there has been a lot

of progress in extending this to higher dimensions, with the discovery of the

theory of associative n-categories ([19]), later developed into the manifold

diagrams of [20]. These manifold diagrams have a combinatorial counter-

part, which the authors of [20] call trusses, which are in turn equivalent to

the notion of zigzgags introduced in [34] and which forms the basis for an

online proof assistant for diagrammatic calculus in higher categories ([1]).

There are two main differences between the approach above and the one

followed in this paper. The rst is that the input of our theory is the simple

combinatorial notion of simple string diagram introduced in [6], whereas

manifold diagrams start from the geometry and obtain from that a combina-

torial description, by passing to exit path posets. The second is that we want

to produce an algebraic notion of semistrict n-categories, by which we mean

that these will be algebras over a certain monad on n-globular sets. One ad-

vantage of the manifold diagrams approach to semistrict n-categories is that

all coherences are already encoded in the basic cell shapes, whereas we nat-

urally produce a theory of n-sesquicategories, to which we then have to add

coherent weak interchange laws. The main advantage of our approach is its

simplicity, as in a sense everything follows from the combinatorial notion of

simple string diagrams introduced in [6].

Most closely related to our work is [10]. There the authors develop a

framework which is the basis for another proof assistant for diagrammatic

calculus in higher categories ([9]). The authors have a notion of signa-
ture, which corresponds exactly to a computad for TDs

n , and a notion of

diagram over a signature, which corresponds exactly to a morphism in the

n-sesquicatery generated by a computad. In this sense, our work can also be

seen as providing a mathematical foundation for the kinds of higher categor-

ical structures implemented by this proof assistant.

Our work is also related to questions in the general theory of computads

([36], [37], [33], [14], [12], [32]). If one considers the monad T str
n whose

algebras are strict n-categories, then computads consist of presentations for

strict n-categories. Cells of dimension k ≤ n are generating k-morphisms
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and (n + 1)-cells are relations. The cells of the terminal n-computad for

T str
n are the most general n-categorical cell shapes and the morphisms in the

n-category generated by it can be thought of as general unlabelled pasting

diagrams. One would then like to say that the category of computads for T str
n

is a category of presheaves on the cell shapes, but this turns out to be false

([31], [17]), essentially because of the Eckman-Hilton argument. This lead

to the question of nding conditions on monads or restrictions on allowable

cells in the associated computads that guarantee that one obtains a presheaf

category ([13],[26],[18]). Our paper can also be seen as a continuation of

this line of research, providing a monad on n-globular sets which is related

to T str
n and whose category of computads is a presheaf category. On pasting

diagrams, see also [21].

Finally, the motivation for developing this theory was to be able to use

string diagrams to prove results about higher categories. In [3] we develop

a string diagram calculus for strict 4-categories and we use it to prove a

result about brations of mapping 4-groupoids. In [4] and [5] we use this

string diagram calculus to prove coherence results for adjunctions in 3 and

4-categories. In [2], we use a string diagram caculus for strict monoidal 3-

categories to prove a coherence result for 3-dualizable objects in strict sym-

metric monoidal 3-categories.

After the appearance of the present paper on the arXiv, an independent

proof of the fact that computads for n-sesquicategories from a presheaf cat-

egory has appered in [22]. The authors dene n-sesquicategories directly

by generating operations and relations, so their theory does not mention the

combinatorics of simple string diagrams. Their use of rewriting theory to es-

tablish the existence of normal forms is a very interesting alternative to our

methods in Section 4 of the present paper. To go from normal forms to the

main result, they then appeal to Makkai’s criterion for presheaf categories.

Our approach to this in Section 5 gives a shorter and more direct proof.

1.3 Future work

One can construct a monad T ss
n by adding (k+1)-operations (resp. relations)

to TDs

n connecting pairs of simple k-string diagrams that map to the same k-

pasting diagram under the map of monads TDs

n → T str
n , for k ≤ n− 1 (resp.

k = n). By constrution, this comes with a contractible map T ss
n → T str

n .
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In dimensions ≤ n − 1 the monad T ss
n is constructed from TDs

n by freely

adding operations, so the methods in this paper should apply to show that

the associated category of n-computads is a presheaf category (although the

category of (n+1)-computads is not, as relations between n-dimensional op-

erations are added). We can dene semistrict n-categories as T ss
n -algebras.

By construction, they will admit a string diagram calculus. Moreover, a re-

sult conjectured in [25, 6.2.3] suggests a possible way of proving that any

weak n-category is equivalent to a semistrict n-category in this sense. This

is the subject of ongoing research and we will explore it in future papers.

We are also interested in nding nite descriptions of T ss
n . In an upcom-

ing paper, we show how to construct T ss
3 by adding a nite set of generators

and relations to the monad TDs

3 . We then show that its algebras agree with

Gray 3-categories. We are working on extending this to dimension 4.

Once the denitions of semistrict 3 and 4-categories are in place, we can

extend the coherence results for adjunctions of [4] and [5] to this setting. We

will then put this together to extend the coherence result for 3-dualizable ob-

jects of [2] to this setting. An extension of this result to the fully weak setting

would give a nite presentation of the framed fully extended 3-dimensional

bordism category, by the Cobordism Hypothesis ([8],[29],[7],[23]).

2. Background

Denote by gSetn the category of n-globular sets. Given a nitary monad

T : gSetn → gSetn one can dene categories CompT
k of computads for T ,

for k = 0, · · · , n+ 1, together with adjunctions

Fk : CompT
k AlgT : Vk.

⊣

This is done inductively, by dening a k-computad C to be a tuple (Ck, C≤k−1, s, t)
where Ck is a set, which we call the set of k-cells of C, C≤k−1 is a (k − 1)-
computad, and s, t : Ck → Fk−1(C≤k−1)k−1 satisfy the globularity relations
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ss = st and ts = tt. One then denes Fk, for k ≤ n, by the pushout

TDs

n (Ck × ∂θ(k)) TDs

n (Ck × θ(k))

Fk−1(C≤k−1) Fk(C),

⌜

where θ(k) is the globular set represented by k. For k = n + 1, we replace

the inclusion ∂θ(k) → θ(k) by the collpase ∂θ(n+1) → θ(n). Similarly, one

denes Vk by a pullback. See [35] for a detailed exposition of this theory of

computads (for the original references, see [36], [37], [33], [14] and [12]).

Remark 2.1. There are incusion maps CompT
k → CompT

k+1 for k ≤ n,

so we can think of k-computads as (n + 1)-computads. For this reason, we

sometimes write CompT instead of CompT
n+1 and use the term computad to

refer to an (n+ 1)-computad.

In [6] we introduced a monad TDs

n on globular sets, based on a notion

of simple string diagram and we dened an n-sesquicategory as an al-

gebra over this monad. The is a map TDs

n → T str
n to the monad for strict

n-categories, so any strict n-category is an n-sesquicategory. In fact n-

sesquicategories are just strict n-categories without the interchange laws.

Notation 2.2. We denote by Sesqn the category of TDs

n -algebras.

In [6] we gave a presentation of TDs

n by generators On and relations

En. There we think of the generators as simple string diagrams, but here

we interact with the monad TDs

n only through this presentation, so we may

as well view the generators as symbols. There is a generator ◦i,j for each

i, j = 1, · · · , n and a generator ui for each i = 1, · · · , n. Given an n-

sesquicategory C, the generator ◦i,j induces a map ◦Ci,j : Ci ×Cm Cj → CM ,

where m = mini, j and M = maxi, j. We call this composition
when i = j and whiskering when i ̸= j. The generator ui induces a map

uC
i : Ci−1 → Ci and we call uC

i (x) the identity on x. The relations in En

essentially express the associativity and unitality of ◦i,j (these relations also

appear below Denition 3.8).

Notation 2.3. We denote by On and En the sets of generators and relations

for TDs

n introduced in [6] and described in the preceding paragraph.
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Remark 2.4. The monad TDs

n corresponds to an n-globular operad Ds
n and

the presentation by generators and relations corresponds to a presentation of

the globular operad in the sense of [24].

We also characterize n-sesquicategories inductively as categories C equipped

with a lift of the Hom functor

Sesqn−1

=

(−)0

$$

Cop × C

Hom
C

99

HomC

// Set,

but this will not be relevant in the present paper.

We now briey review the generators and relations description of TDs

n ,

which our description of computads in the present paper will build on. This

discussion will be informal, see [6] for details.

Denition 2.5. Let X be an n-graded set. A k-dimensional (On, X)-labelled

tree is a rooted tree T , together with

1. a labelling of its internal vertices I(T ) by generators in On;

2. a labelling of its leaves L(T ) by elements in X;

3. a bijection between the incoming edges at an internal vertex and the

inputs of the associated generator;

such that

1. the root label has dimension k;

2. the source of each incoming edge at an internal vertex has a label of

the appropriate dimension.

We denote the set of k-dimensional (On, X)-labeled trees by TreeOn (X)(k)
or TreeOn (X)k.
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Terminology 2.6. An (On, X)-labelled subtree (or simply subtree for short)

of an (On, X)-labelled tree T consists of all vertices (internal and leaves) that

can be reached from a chosen internal vertex of T (the root of the subtree)

by travelling towards the leaves.

An On-labelled tree is a tree with a labelling of its vertices by On. An

On-labelled subtree of an (On, X)-labelled tree T is a subtree of T in the

usual sense, containing no leaves and inheriting the On-labelling.

When X is an n-globular set, we can dene source and target maps

s, t : TreeOn (X)k → TreeOn (X)k−1, although in general they won’t satisfy

the globularity relation.

Denition 2.7. An n-preglobular set is an n-graded set X =
n

i=0 Xi

equipped with source and target maps s, t : Xk → Xk−1. A globular re-

lation on X is a relation ∼ such that

1. if x ∼ x̃ then s(x) ∼ s(x̃) and t(x) ∼ t(x̃);

2. ss(x) ∼ st(x) and ts(x) ∼ tt(x).

Note that this means the quotient X/∼ is an n-globular set.

So given an n-globular set X , we have an n-preglobular set TreeOn (X).

Denition 2.8. We dene an n-preglobular subset TreeO,E
n (X) ⊂ TreeOn (X)

of
ϵ
=-compatible trees, equipped with a preglobular relation

ϵ
=. The deni-

tion is by induction on height. The relation
ϵ
= is generated by the relations

in En. A tree is
ϵ
=-compatible if for every subtree of the form x → ◦i,j ← y

we have si−m+1(x)
ϵ
= tj−m+1(y), where m = mini, j.

Finally we dene TreeO,E

n (X) := TreeO,E
n (X)/

ϵ
= and we show that this

denes a monad on n-globular sets. We construct a map of monads

φ : TreeO,E

n → TDs

n .

Each generator in On corresponds to a simple string diagram, so one can use

composition of simple string diagrams to produce this map.

Theorem 2.9 ([6]). The map φ : TreeO,E

n → TDs

n is an isomorphism of

monads.
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3. Computads for TD
s

n

We give an explicit description of computads for TDs

n and of the n-sesquicategories

generated by them, which we will later show is equivalent to the notion de-

scribed in the previous section. We will simply call them computads, leaving

the monad TDs

n implicit.

Denition 3.1. Given k ≤ n + 1, an (n, k)-precomputad (or simply k-

precomputad, leaving n implicit) C consists of sets Ci for 0 ≤ i ≤ k,

together with maps s, t : Ci → TreeOn (C≤i−1)i−1 for 1 ≤ i ≤ k.

In the denition below we use the following notation for grafting of trees.

Notation 3.2. Given and (On, C)-labelled tree x ∈ TreeOn (C)i−1 we denote

by

x → ui

the (On, C)-labelled tree obtained by adding a new new vertex to x labelled

by ui and an edge from the root of x to this new vertex. The new vertex

now becomes the root of this new tree. Similarly, given x ∈ TreeOn (C)i and

y ∈ TreeOn (C)j we denote by

x → ◦i,j ← y

the (On, C)-labelled tree obtained by adding a new root labelled by ◦i,j .
Denition 3.3. Given a k-precomputad C, we dene source and target maps

s, t : TreeOn (C)i → TreeOn (C)i−1, for 1 ≤ i ≤ n. For trees of height zero,

these are the maps s, t : Ci → TreeOn (C)i−1. For trees of nonzero height,

we use the following inductive formulas for s, where j < i and x and y are

trees with appropriate dimensions in each case. The map t is dened by the

same formulas, replacing every instance of s with t.

s(x → ui) = x;

s(x → ◦i,i ← y) = s(y);

s(x → ◦j,i ← y) = x → ◦j,i−1 ← s(y);

s(x → ◦i,j ← y) = s(x) → ◦i−1,j ← y.
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Remark 3.4. Since the source or target of a k-cell may be an arbitrary

(On, C)-labelled tree, the source and target maps above can increase the

height of trees. This is in contrast to the situation of [6], where we consid-

ered TreeOn (X) for a globular set X . However, these maps always decrease

the dimension of the tree, so the arguments in [6] which relied on induc-

tion on the height of the tree can now be replaced by simultaneous induction

on both the height and the dimension of the tree, as we will do below in

Denition 3.8.

The following denitions refer to each other and should be interpreted

by mutual induction.

Denition 3.5. Given k ≤ n+1, an (n, k)-computad (or simply k-computad,

leaving n implicit) C consists of sets Ci for 0 ≤ i ≤ k, together with maps

s, t : Ci → TreeO,E
n (C≤i−1)i−1 for 1 ≤ i ≤ k, such that ss(x)

ϵ
= st(x) and

ts(x)
ϵ
= tt(x) for all x ∈ Ci.

Terminology 3.6. A computad is an (n, k)-computad, where n is usually

implicit in the context and k ≤ n+ 1 is arbitrary.

Notation 3.7. Let X be an n-graded set. We denote by

τ≤h Tree
O
n (X) ⊂ TreeOn (X)

the n-graded subset consisting of trees of height at most h.

The denition that follows is almost identical to the analogous one in [6].

The only difference is the one explained in Remark 3.4.

Denition 3.8. Let C be a computad. For each k, we dene, by induction

on h, subsets τ≤h Tree
O,E
n (C)k ⊂ τ≤h Tree

O
n (C)k equipped with a relation

ϵ
=h. Elements in τ≤h Tree

O,E
n (C)k are called

ϵ
=h−1-compatible. We say that

x ∈ TreeOn (C)k is
ϵ
=-compatible if it is

ϵ
=h-compatible for some h and dene

TreeO,E
n (C)k ⊂ TreeOn (C)k the set of

ϵ
=-compatible elements. Finally, we

dene the relation
ϵ
= on TreeO,E

n (C)k by declaring x
ϵ
= x̃ when x

ϵ
=h x̃ for

some h. The denition is by overall induction on k and is presented below.

When h = 0, we let τ≤0 Tree
O,E
n (C)k := τ≤0 Tree

O
n (C)k = Ck and the

relation
ϵ
=0 is =.
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Now consider h ≥ 1. Any x ∈ τ≤h Tree
O
n (C)k of height zero is

ϵ
=h−1-

compatible. Let x ∈ τ≤h−1 Tree
O
n (C)i, y ∈ τ≤h−1 Tree

O
n (C)j and m =

mini, j. Then

◦i,j

x

==

y

aa

is
ϵ
=h−1-compatible if and only if x, y are

ϵ
=h−2-compatible and si−m+1(x)

ϵ
=

tj−m+1(y). Moreover, x → ui+1 is
ϵ
=h−1-compatible if and only if x is

ϵ
=h−2-

compatible. Now we must dene the globular relation
ϵ
=h on τ≤h Tree

O,E
n (C)k.

If x, y ∈ τ≤h Tree
O,E
n (C)k have height zero and x

ϵ
=0 y, then x

ϵ
=h y.

Let i ≤ k, x ∈ τ≤h−2 Tree
O,E
n (C)i−1, y ∈ τ≤h−1 Tree

O,E
n (C)k. If x

ϵ
=

tk−i+1(y), then

(λi,k) :

◦i,k

ui

<<

y

aa

x

OO

ϵ
=h y.

Let i ≤ k, x ∈ τ≤h−1 Tree
O,E
n (C)k, y ∈ τ≤h−2 Tree

O,E
n (C)i−1. If sk−i+1(x)

ϵ
=

y, then

(ρk,i) :

◦k,i

x

==

ui

bb

y

OO

ϵ
=h x.

Let i < k, x ∈ τ≤h−2 Tree
O,E
n (C)i, y ∈ τ≤h−2 Tree

O,E
n (C)k−1. If s(x)

ϵ
=

tk−i(y), then

(ρi,k) :

◦i,k

x

==

uk

bb

y

OO

ϵ
=h

uk

◦i,k−1

OO

x

;;

y

cc

.

Let i < k, x ∈ τ≤h−2 Tree
O,E
n (C)k−1, y ∈ τ≤h−2 Tree

O,E
n (C)i. If sk−i(x)

ϵ
=

t(y), then

122



M. ARAÚJO STRING DIAGRAMS FOR n-SESQUICATEGORIES

(λk,i) :

◦k,i

uk

<<

y

aa

x

OO

ϵ
=h

uk

◦k−1,i

OO

x

;;

y

cc

.

Let k ≥ 1 and x, y, z ∈ τ≤h−2 Tree
O,E
n (C)k. If s(x)

ϵ
= t(y) and s(y)

ϵ
=

t(z), then

(◦k,k,k) :

◦k,k

◦k,k
;;

z

aa

x

==

y

cc

ϵ
=h

◦k,k

x

==

◦k,k
cc

y

;;

z

aa

.

Let i < k, x, y ∈ τ≤h−2 Tree
O,E
n (C)i, z ∈ τ≤h−2 Tree

O,E
n (C)k. If s(x)

ϵ
=

t(y) and s(y)
ϵ
= tk−i+1(z), then

(◦i,i,k) :

◦i,k

◦i,i
<<

z

``

x

>>

y

cc

ϵ
=h

◦i,k

x

==

◦i,k
cc

y

;;

z

aa

.

Let i < k, x, z ∈ τ≤h−2 Tree
O,E
n (C)i, y ∈ τ≤h−2 Tree

O,E
n (C)k. If s(x)

ϵ
=

tk−i+1(y) and sk−i+1(y)
ϵ
= t(z), then

(◦i,k,i) :

◦k,i

◦i,k
;;

z

``

x

==

y

cc

ϵ
=h

◦i,k

x

==

◦k,i
cc

y

;;

z

aa

.

Let i < k, x ∈ τ≤h−2 Tree
O,E
n (C)k, y, z ∈ τ≤h−2 Tree

O,E
n (C)i. If sk−i+1(x)

ϵ
=

t(y) and s(y)
ϵ
= t(z), then

(◦k,i,i) :

◦k,i

◦k,i
;;

z

``

x

==

y

cc

ϵ
=h

◦k,i

x

==

◦i,i
bb

y

;;

z

``

.
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Let i < k, x ∈ τ≤h−2 Tree
O,E
n (C)i, y, z ∈ τ≤h−2 Tree

O,E
n (C)k. If s(x)

ϵ
=

tk−i+1(y) and s(y)
ϵ
= t(z), then

(◦i,k,k) :

◦i,k

x

==

◦k,k
cc

y

;;

z

aa

ϵ
=h

◦k,k

◦i,k
;;

◦i,k
cc

x

==

y x

cc ;;

z

aa

.

Let i < k, x, y ∈ τ≤h−2 Tree
O,E
n (C)k, z ∈ τ≤h−2 Tree

O,E
n (C)i. If s(x)

ϵ
=

t(y) and sk−i+1(y)
ϵ
= t(z), then

(◦k,k,i) :

◦k,i

◦k,k
;;

z

``

x

==

y

cc

ϵ
=h

◦k,k

◦k,i
;;

◦k,i
cc

x

==

z y

cc ;;

z

aa

.

Let i < j < k and take x ∈ τ≤h−2 Tree
O,E
n (C)i, y ∈ τ≤h−2 Tree

O,E
n (C)j

and z ∈ τ≤h−2 Tree
O,E
n (C)k. If s(x)

ϵ
= tj−i+1(y) and s(y)

ϵ
= tk−j+1(z), then

(◦i,j,k) :

◦i,k

x

==

◦j,k
cc

y

;;

z

aa

ϵ
=h

◦j,k

◦i,j
;;

◦i,k
cc

x

==

y x

cc
;;

z

aa

.

Let i < j < k and take x ∈ τ≤h−2 Tree
O,E
n (C)i, y ∈ τ≤h−2 Tree

O,E
n (C)k

and z ∈ τ≤h−2 Tree
O,E
n (C)j . If s(x)

ϵ
= tk−i+1(y) and sk−j+1(y)

ϵ
= t(z), then

(◦i,k,j) :

◦i,k

x

==

◦k,j
cc

y

;;

z

aa

ϵ
=h

◦k,j

◦i,k
;;

◦i,j
cc

x

==

y x

cc ;;

z

aa

.

Let i < j < k and take x ∈ τ≤h−2 Tree
O,E
n (C)j , y ∈ τ≤h−2 Tree

O,E
n (C)k

and z ∈ τ≤h−2 Tree
O,E
n (C)i. If s(x)

ϵ
= tk−j+1(y) and sk−i+1(y)

ϵ
= t(z), then
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(◦j,k,i) :

◦k,i

◦j,k
;;

z

``

x

==

y

cc

ϵ
=h

◦j,k

◦j,i
<<

◦k,i
cc

x

==

z y

cc
;;

z

aa

.

Let i < j < k and take x ∈ τ≤h−2 Tree
O,E
n (C)k, y ∈ τ≤h−2 Tree

O,E
n (C)j

and z ∈ τ≤h−2 Tree
O,E
n (C)i. If sk−j+1(x)

ϵ
= t(y) and sj−i+1(y)

ϵ
= t(z), then

(◦k,j,i) :

◦k,i

◦k,j
;;

z

``

x

==

y

cc

ϵ
=h

◦k,j

◦k,i
;;

◦j,i
cc

x

==

z y

cc
;;

z

``

.

Let x, x̃ ∈ τ≤h−1 Tree
O,E
n (C)k−1. If x

ϵ
=h−1 x̃, then

(uk) :
uk

x

OO ϵ
=h

uk

x̃

OO

.

Let x, x̃ ∈ τ≤h−1 Tree
O,E
n (C)i, y, ỹ ∈ τ≤h−1 Tree

O,E
n (C)j and m =

mini, j. If x
ϵ
=h−1 x̃, y

ϵ
=h−1 ỹ, si−m+1(x)

ϵ
= tj−m+1(y) and si−m+1(x̃)

ϵ
=

tj−m+1(ỹ) then

(◦i,j) :
◦i,j

x

==

y

aa ϵ
=h

◦i,j

x̃

>>

ỹ

``

.

Lemma 3.9. The construction above denes an n-preglobular subset TreeO,E
n (C) ⊂

TreeOn (C) with a globular relation
ϵ
=, meaning we have

1. if x ∈ TreeOn (C) is
ϵ
=-compatible, then so are s(x) and t(x);

2. if x
ϵ
= x̃ then s(x)

ϵ
= s(x̃) and t(x)

ϵ
= t(x̃);

3. if x is
ϵ
=-compatible, then ss(x)

ϵ
= st(x) and ts(x)

ϵ
= tt(x).

Proof. The proof is very similar to the one for the analogous result in [6],

the only difference being the one already mentioned in Remark 3.4.
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Denition 3.10. Let 0 ≤ k ≤ n and let C be a k-computad. We write

Tree
O,E

n (C) := TreeO,E
n (C)/

ϵ
= .

Denition 3.11. Let C be an (n+ 1)-computad. We dene a relation
ϵ,C
= on

TreeO,E
n (C) by adding the new equation s(x)

ϵ,C
= t(x) for each x ∈ Cn+1.

Lemma 3.12. Let C be an (n+1)-computad. Then
ϵ,C
= is a globular relation

on TreeO,E
n (C).

Proof. This is easy to check.

Denition 3.13. Let C be an (n+ 1)-computad. We write

Tree
O,E

n (C) := TreeO,E
n (C)/

ϵ,C
= .

Remark 3.14. The fact that
ϵ
= and

ϵ,C
= are globular relations implies Tree

O,E

n (C)

is an n-globular set. Using the isomorphism of monads TreeO,E

n → TDs

n al-

lows us to dene a TDs

n action on Tree
O,E

n (C) by simply grafting trees. We

refer to Tree
O,E

n (C) as the n-sesquicategory presented by C. When C is

an n-computad this is a free n-sesquicategory. When C is an (n + 1)-
computad, this is a quotient of the free n-sesquicaegory generated by C≤n

by the relations in Cn+1.

Denition 3.15. Given k-computads C,D a map f : C → D is a collection

of maps fi : Ci → Di such that s(fi(x))
ϵ
= fi−1(s(x)) and t(fi(x))

ϵ
=

fi−1(t(x)) for all x ∈ Ci, where we have inductively used the map on trees

induced by a map of (k − 1)-computads.

A map f : C → D induces a map f : TreeO,E
n (C) → TreeO,E

n (D) by

applying f to leaf labels.

Denition 3.16. For k ≤ n+1, we denote by Compn
k the category of (n, k)-

computads and (n, k)-computad maps.

Remark 3.17. Adding empty sets of cells provides an inclusion map

Compn
k → Compn

k+1,
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for k ≤ n, so we can think of k-computads as (n + 1)-computads. For

this reason, we sometimes write Compn instead of Compn
n+1 and refer to

(n + 1)-computads simply as computads. In fact we will ususally denote

this category simply by Comp, leaving n implicit.

Lemma 3.18. Let C be a computad. Then the following diagram is a pushout,

for k ≤ n.

TDs

n (Ck × ∂θ(k)) TDs

n (Ck × θ(k))

Tree
O,E

n (C≤k−1) Tree
O,E

n (C≤k)

⌜

Proof. We must show that functors

φ≤k : Tree
O,E

n (C≤k) → C

correspond to pairs (φ≤k−1,φk), where φ≤k−1 : Tree
O,E

n (C≤k−1) → C is a

functor and φk : Ck → Ck is a map, such that φ≤k−1(s(x)) = s(φk(x)) and

φ≤k−1(t(x)) = t(φk(x)) for all x ∈ Ck. This is clear.

Lemma 3.19. Let C be a computad. Then the following diagram is a pushout.

TDs

n (Cn+1 × ∂θ(n+1)) TDs

n (Cn+1 × θ(n))

Tree
O,E

n (C≤n) Tree
O,E

n (C)

⌜

Proof. We must show that functors

φ : Tree
O,E

n (C) → C

correspond to functors φ≤n : Tree
O,E

n (C≤n) → C such that φ≤n(s(x)) =
φ≤n(t(x)) for all x ∈ Cn+1. This is clear.
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Proposition 3.20. For k ≤ n + 1, the canonical map Compn
k → Comp

TDs

n

k

is an equivalence of categories, and the following diagram commutes up to

canonical natural isomorphism.

Compn
k Comp

TDs

n

k

Sesqn
Tree

O,E

n
Fk

≃

Proof. Using induction on k and Lemmas 3.18 and 3.19 we get a canonical

map

Compn
k → Comp

TDs

n

k

such that the above diagram commutes up to canonical natural isomorphism.

To construct an inverse, given a computad C ∈ Comp
TDs

n

k and using

induction on k one can view its source and target maps as

s, t : Ci → Tree
O,E

n (C≤i−1)i−1

for i ≤ k. Using the axiom of choice to obtain a section

Tree
O,E

n (C≤i−1)i−1 → TreeO,E
n (C≤i−1)i−1

of the quotient map, we nally obtain maps s, t : Ci → TreeO.E
n (C≤i−1)i−1

as in Denition 3.1.

Remark 3.21. One can avoid using the axiom of choice by using instead

normal forms, which give an explicit unique representative of each equiva-

lence class in Tree
O,E

n (C).

4. Normal form

In this section, given an n-computad C, we introduce the notion of normal

form for elements of TreeO,E
n (C). Denoting by N(C) ⊂ TreeO,E

n (C) the

n-graded subset of elements in normal form, we prove that for any x ∈
TreeO,E

n (C) there exists a unique n(x) ∈ N(C) such that n(x)
ϵ
= x.
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Remark 4.1. The proof below actually gives an algorithm for nding the

normal form n(x) associated to any term x ∈ TreeO,E
n (C). Thus it gives an

algorithm for deciding whether two such terms are equivalent.

Remark 4.2. If C is an (n + 1)-computad, every term x ∈ TreeO,E
n (C)

still has a unique normal form n(x)
ϵ
= x. However, any nontrivial relation

in Cn+1 will provide terms x, y such that x
ϵ,C
= y and n(x) ̸= n(y) (recall

Denition 3.11). So normal forms apply most naturally to n-computads.

Notation 4.3. We write m(◦i,j) := mini, j. When v is an internal vertex

in an (On, C)-labelled tree with label ◦i,j , we write m(v) = m(◦i,j).

Denition 4.4. An x ∈ TreeOn (C) is m-ordered if for every edge of the form

v → w, where v, w are ◦-labelled, we have m(v) < m(w).

Denition 4.5. An On-labelled tree is m-constant if there are no u-labelled

vertices and for every edge v → w we have m(v) = m(w).

Denition 4.6. An m-constant component of x ∈ TreeOn (C) is a maximal

m-constant On-labelled subtree.

Denition 4.7. An m-constant On-labelled tree is in normal form if it is of

one of the following forms:

1.

◦i,k
· · ·

gg

◦i,k
gg

◦k,i
ff

· · ·
77

◦k,i
77

with i < k;

2.

◦k,k
· · ·

77

◦k,k
77 .

Denition 4.8. An x ∈ TreeOn (C) is in normal form if it is m-ordered, it

contains no edges of the form u → ◦ and each of its m-constant components

is in normal form.
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Denition 4.9. Let x ∈ TreeOn (C). Dene its cell dimension to be the max-

imum of the dimensions of the cells labelling the leaves of x. Denote this by

cd(x).

Lemma 4.10. Let x, x̃ ∈ TreeO,E
n (C) and suppose x

ϵ
= x̃. Then cd(x) =

cd(x̃).

Proof. This is clear.

Lemma 4.11. Given x ∈ TreeO,E
n (C), there exists n(x)

ϵ
= x which is in

normal form.

Proof. One uses the dening equations of
ϵ
= to rearrange generators. The

(λ) and (ρ) relations allow us eliminate all units ui for i ≤ cd(x) and push

the other units towards the root. Then the (◦) relations allow us to pass to

an m-ordered tree and nally to put each m-constant component in normal

form.

Now we need to show that this normal form is unique.

Proposition 4.12. Let x, x̃ ∈ TreeO,E
n (C) be in normal form and suppose

x
ϵ
= x̃. Then x = x̃.

We will prove this below. First we reduce to diagrams without u-labelled

vertices.

Lemma 4.13. Let x, x̃ ∈ TreeO,E
n (C)k be in normal form and suppose x

ϵ
=

x̃. Let cd := cd(x) = cd(x̃). Then x = (x◦ → ucd+1 → · · · → uk) and

x̃ = (x̃◦ → ucd+1 → · · · → uk), where x◦ and x̃◦ are in normal form, have

no u-labelled vertices and x◦
ϵ
= x̃◦.

Proof. It is obvious that one can decompose elements in normal form into a

unit chain and a component containing no units. The only thing that requires

proof is the fact that x◦
ϵ
= x̃◦. This follows from the observation that x◦ =

sk−cd(x) and x̃◦ = sk−cd(x̃).

The above Lemma allows us to reduce the proof of Proposition 4.12 to

the case where x, x̃ have no units. Now we would like to reduce to the case

where one gets from x to x̃ without introducing units along the way.
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Denition 4.14. Dene TreeO(◦)
n (C) ⊂ TreeOn (C) to be the preglobular sub-

set consisting of those trees not containing any u-labelled vertices. We then

dene a preglobular subset TreeO(◦),E(◦)
n (C) ⊂ TreeO(◦)

n (C) of
◦
=-compatible

trees with a globular relation
◦
=, in exactly the same way we dened

ϵ
= and

ϵ
=-compatibility, except we omit all equations involving u.

Denition 4.15. We dene the reduction r(x) ∈ TreeO(◦)
n of x ∈ TreeOn (C)

inductively, as follows. We let r(x) = x when x has height zero. Then, for

i < k, we let r(x → uk) = ∅ and

r(x → ◦k,k ← y) =





r(y) r(x) = ∅;
r(x) r(y) = ∅;
r(x) → ◦k,k ← r(y) otherwise;

r(x → ◦i,k ← y) =





r(y) r(x) = ∅;
∅ r(y) = ∅;
r(x) → ◦i,k ← r(y) otherwise;

r(x → ◦k,i ← y) =





r(x) r(y) = ∅;
∅ r(x) = ∅;
r(x) → ◦k,i ← r(y) otherwise.

Lemma 4.16. If x ∈ TreeO(◦)
n , then r(x) = x.

Proof. This is obvious.

Lemma 4.17. If w ∈ TreeO,E
n (C) and r(w) = ∅ then s(w)

ϵ
= t(w).

Proof. The proof is by induction on the height of w. There are four cases,

corresponding to the four possible root labels: uk, ◦k,k, ◦i,k and ◦k,i, for

i < k. Each of these follows by a simple argument.

Lemma 4.18. Given w, w̃ ∈ TreeO,E
n (C), we have

1. r(w) ∈ TreeO(◦),E(◦)
n (C);

2. if r(w) ̸= ∅, then sr(w)
◦
= rs(w) and tr(w)

◦
= rt(w);
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3. if w
ϵ
= w̃, then r(w)

◦
= r(w̃).

Proof. The proof is by mutual induction on dimension and height. For 1.

there is a case for each possible root label of w: uk, ◦k,k, ◦i,k and ◦k,i (i < k).

Each of these follows from a simple inductive argument.

For 2. there are cases for root labels uk, ◦k,k, ◦k−1,k, ◦k,k−1, ◦i,k and ◦k,i
(i < k − 1). We explain the ◦k,k case and leave the others to the reader. Let

w = (x → ◦k,k ← y). Now

sr(w) =


sr(x) r(y) = ∅
sr(y) r(y) ̸= ∅

and rs(w) = rs(y). If r(y) ̸= ∅, we have rs(y)
◦
= sr(y) by induction, so

rs(w)
◦
= sr(w). When r(y) = ∅, we need to show that sr(x)

◦
= rs(y). We

have r(x) ̸= ∅, because r(w) ̸= ∅. Then sr(x)
◦
= rs(x) by induction. We

also have s(y)
ϵ
= t(y) by Lemma 4.17. Since w is

ϵ
=-compatible, we have

s(x)
ϵ
= t(y), so we have s(x)

ϵ
= s(y) and then using 3. by induction we have

rs(x)
◦
= rs(y), so sr(x)

◦
= rs(y).

To prove 3., there is one case for each of the dening equations of
ϵ
=.

We explain the (◦k,k,k) case, leaving the others to the reader. Let w and w̃

be the left and right hand sides of this equation, respectively. If at least one

of the trees r(x), r(y), r(z) is empty, then we get r(w) = r(w̃) and we

are done. So we may assume they are all nonempty. In this case we get

r(w)
◦
= r(w̃) by the same (◦k,k,k) equation, as long as r(x), r(y), r(z) are

◦
=-compatible, sr(x)

◦
= tr(y) and sr(y)

◦
= tr(z). This rst condition follows

from 1. by induction on height. The second condition follows from 2. and

3. by induction on height and dimension.

Notation 4.19. Given x ∈ TreeOn (C), we denote by L(x) its set of leaves.

Given ℓ ∈ L(x), we denote by ℓ the dimension of the cell labellng ℓ. We

denote by L≥i(x) ⊂ L(x) the set of leaves ℓ such that ℓ ≥ i.

Denition 4.20. Given x ∈ TreeO(◦)
n (C), we dene M(x) = maxj :

L≥j(x) ≥ 2. If x only has one leaf, then M(x) = −∞.

Lemma 4.21. If x
◦
= x̃, then M(x) = M(x̃).
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Proof. One just needs to check that this holds for each of the dening equa-

tions of
◦
=, which is easy.

Denition 4.22. Given w ∈ TreeOn (C), we dene a linear ordering of L(w)
as follows. When w = (x → uk) then L(w) = L(x) and we can just use

induction on height. When w = (x → ◦i,j ← y) then L(w) = L(x)


L(y)
and we dene the linear order on L(w) by using the linear orders on L(x)
and L(y) provided by induction on height, together with the rule that ℓx > ℓy
for any ℓx ∈ L(x) and ℓy ∈ L(y).

Lemma 4.23. Let w, w̃ ∈ TreeO(◦),E(◦)
n (C) and suppose w

◦
= w̃. Let M :=

M(w) = M(w̃). Then there is a (necessarily unique) order preserving iso-

morphism L≥M(w) → L≥M(w̃).

Proof. One just needs to check this for each of the equations dening
◦
=.

The only equations requring some consideration are (◦i,k,k), (◦k,k,i), (◦i,j,k),
(◦i,k,j), (◦j,k,i) and (◦k,j,i), which double some of the leaves. In each case,

one can see that this doubling does not affect leaves in L≥M . For example,

the (◦i,k,k) equation doubles the leaves in the subtree x. But since we have

no u-labelled vertices, the subtrees y and z must both have at least one leaf

labelled by a k-cell, so that w must have at least two leaves labelled by k-

cells, so that M = k. Then i < k implies i < M , so there are no leaves

labelled by cells of dimension ≥ M in x.

Denition 4.24. Let w ∈ TreeO(◦),E(◦)
n (C)k, let M(w) ≤ M ≤ k, and let

ℓ ∈ L≥M(w). We dene σM
ℓ (w) ∈ TreeO(◦)

n (C)|ℓ| by induction on height as

follows. If w has height zero, then it consists of a single leaf ℓ, and we let

σM
ℓ (ℓ) = ℓ.

If w has nonzero height, then we have a case for each possible root label.

For p, q ∈ M, k (with at least one equal to k) and i < M , we let

σM
ℓ (x → ◦p,q ← y) =


σM
ℓ (x), ℓ ∈ L(x);

σM
ℓ (y), ℓ ∈ L(y);

σM
ℓ (x → ◦i,k ← y) = (x → ◦i,|ℓ| ← σM

ℓ (y));
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σM
ℓ (x → ◦k,i ← y) = (σM

ℓ (x) → ◦|ℓ|,i ← y).

Lemma 4.25. Let w ∈ TreeO(◦),E(◦)
n (C)k, let M(w) ≤ M ≤ k and let

ℓ ∈ L≥M(w). Then

1. σM
ℓ (w) is

◦
=-compatible;

2. s|ℓ|−i+1(σM
ℓ (w))

◦
= sk−i+1(w) and t|ℓ|−i+1(σM

ℓ (w))
◦
= tk−i+1(w) for

i < M ;

3. if w
◦
= w̃ and ℓ̃ ∈ L≥M(w̃) is the image of ℓ, then σM

ℓ (w)
◦
= σM

ℓ̃
(w̃).

Proof. The proof is by mutual induction on the height of w. One proves

1. easily by splitting into the cases wich appear in the denition of σM
ℓ and

using 2. on trees of smaller height.

To prove 2., we again split into the cases appearing in the denition of

σM
ℓ . We explain only the case w = (x → ◦p,q ← y), as the others are

simpler. We also do only s, as t is completely analogous. So we compute

s|ℓ|−i+1(σM
ℓ (x → ◦p,q ← y)) =


s|ℓ|−i+1(σM

ℓ (x)), ℓ ∈ L(x)

s|ℓ|−i+1(σM
ℓ (y)), ℓ ∈ L(y)

◦
=


sp−i+1(x), ℓ ∈ L(x)

sq−i+1(y), ℓ ∈ L(y),

where we used induction. On the other hand

sk−i+1(x → ◦p,q ← y) = sq−i+1(y).

Now recall that
◦
= is a globular relation, so ss

◦
= st. Moreover, we have

sp−m+1(x)
◦
= tq−m+1(y), where m = minp, q, because w is

◦
=-compatible.

This allows us to compute

sp−i+1(x) = sm−isp−m+1(x)
◦
= sm−itq−m+1(y)

◦
= sm−isq−m+1(y)

◦
= sq−i+1(y)

so we are done.

For 3. there is one case for each of the dening equations of
◦
=. The

arguments are simple in every case, so we leave them to the reader.
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Denition 4.26. Let w ∈ TreeO(◦),E(◦)
n (C). We dene σℓ(w) := σ

M(w)
ℓ (w).

Denition 4.27. Let x ∈ TreeO(◦)
n (C). We dene

H(x) = m(v) : v ∈ I(T ).

Lemma 4.28. Let x, x̃ ∈ TreeO(◦),E(◦)
n (C) and suppose x

◦
= x̃. Then

H(x) = H(x̃).

Proof. One checks this is true for each of the equations dening
◦
=, which is

easy.

Lemma 4.29. Let x, x̃ ∈ TreeO(◦),E(◦)
n (C) be in normal form and suppose

x
◦
= x̃. Then x = x̃.

Proof. The proof is by induction on H := H(x) = H(x̃). If H = 0, then x,

x̃ both have height zero, so they must be equal as the relation
◦
= is just = on

elements of height zero.

Now suppose H ≥ 1 and let l = L≥M(x) = L≥M(x̃). Then x, x̃ each

consist of a maximal m-constant component containing the root, which we

denote x0 and x̃0, to which are grafted trees x1, · · · , xl and x̃1, · · · , x̃l. More-

over, it is easy to see that xi = σℓi(x) and x̃i = σℓ̃i
(x̃), where L≥M(x) =

ℓ1 < · · · < ℓl and L≥M(x̃) = ℓ̃1 < · · · < ℓ̃l. By Lemma 4.25, we must

have σℓi(x)
◦
= σℓ̃i

(x̃) and so by induction we have σℓi(x) = σℓ̃i
(x̃).

Now we must show x0 = x̃0. If M = k then both must be equal to

◦k,k → · · · → ◦k,k, where there are l− 1 copies of ◦k,k. If M < k, then only

one of the leaves ℓi will be labelled by a k-cell, let it be ℓp. This also means

ℓ̃p must be the only leaf in x̃ labelled by a k-cell. Then both x0 and x̃0 must

be equal to ◦k,M → · · · → ◦k,M → ◦M,k → · · · → ◦M,k where we have

p− 1 copies of ◦k,M and l − p copies of ◦M,k.

Proof of Proposition 4.12. We have x, x̃ ∈ TreeO,E
n (C)k, both in normal

form, and x
ϵ
= x̃. By Lemma 4.13, we can assume that x, x̃ contain no

u-labelled vertices. By Lemmas 4.16 and 4.18, we then have x
◦
= x̃ and we

can apply Lemma 4.29 to conclude x = x̃.

Notation 4.30. We denote by N(C) ⊂ TreeO,E
n (C) the n-graded subset con-

sisting of terms in normal form.
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Corollary 4.31. Let C be an n-computad. Then the map

n : Tree
O,E

n (C) → N(C)

sending an equivalence class to its unique representative in normal from is

an inverse to the map N(C) → TreeO,E
n (C) → Tree

O,E

n (C).

Proof. This follows directly from Proposition 4.12.

We record here two important properties of normal forms.

Lemma 4.32. If x is in normal form then any subtree of x is also in normal

form. If ϕ is a map of computads, then ϕ(x) is in normal form if and only if

x is.

Proof. This is clear.

5. Comp is a presheaf category

We now dene a category Celln+1 of computadic cell shapes of dimension ≤
n+1, with a fully faithful functor Celln+1 → Compn

n+1, which we ususally

denote Cell → Comp. Then we construct the associated nerve/realization

adjunction

 −  : Psh(Cell) Comp : N⊣

and prove that it is an equivalence of categories.

The main ingredient is Proposition 5.5, which uses normal forms in an

essential way. The rest of the section could probably be shortened by ap-

pealing to the theory of familial representability ([16],[26]). We choose to

present the arguments here for the reader’s convenience, as this does not take

too much space.

Denition 5.1. Denote by the terminal computad. One can dene it in-

ductively by saying that it has exactly one 0-cell and exactly one k-cell x

with s(x) = x0 and t(x) = x1 for each ordered pair (x0, x1) of parallel

(k − 1)-morphisms in Fk−1( ≤k−1).

Notation 5.2. For any computad C, we denote by σ : C → the unique

map of computads.
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We think of the cells in as cell shapes and of the morphisms in the free

n-sesquicategory Fn( ) as unlabelled diagrams. Now we show how one

can associate a computad to each unlabelled diagram.

Denition 5.3. Let k ≤ n and let d ∈ Fn( ) be an unlabelled k-diagram. We

dene a category Comp(d) as follows. Its objects are pairs (C, x), where C

is a computad, x ∈ Fn(C) and Fn(σ)(x) = d. A morphism (C, x) → (D, y)
is a map of computads φ : C → D such that Fn(φ)(x) = y.

Now we show that the category Comp(d) has an initial object. For this

we will need to take colimits in Comp. The following result seems to be

well known, but not having found a suitable reference we include a simple

proof here.

Lemma 5.4. Let T : gSetn → gSetn be a nitary monad and let k ≤ n+ 1.

For each m ≤ k, denote by [−]m : CompT
k → Set the functor taking a

k-computad to its set of m-cells. Then the following hold:

1. the category CompT
k is cocomplete;

2. each functor [−]m is cocontinuous;

3. the functors [−]m for m = 0, · · · , k jointly reect isomorphisms.

Proof. Let Γ : I → CompT
k be a diagram. To prove 1. and 2. we may as

well assume m = k, otherwise we can pass to the underlying diagram of m-

computads. We construct, by induction on k, a k-computad C which will be

the colimit of this diagram. Dene its set of k-cells to be Ck := colimi[Γ(i)]k
and its underlying (k − 1)-computad as C≤k−1 := colimi[Γ(i)]≤k−1. Now

dene source and target maps

s, t : colimi[Γ(i)]k → [Fk−1(colimi[Γ(i)]≤k−1)]k−1

by the composite

Γ(i)k → [Fk−1(Γ(i)≤k−1)]k−1 → colimi[Fk−1(Γ(i)≤k−1)]k−1 →

→ [colimi Fk−1(Γ(i)≤k−1)]k−1 = [Fk−1(colimi Γ(i)≤k−1)]k−1
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where the equality comes from the fact that Fk−1 is left adjoint and the last

arrow is induced by the maps

[Fk−1([Γ(i)]≤k−1)]k−1 → [colimi Fk−1([Γ(i)]≤k−1)]k−1

on sets of (k−1)-morphisms associated to the canonical maps of T -algebras

Fk−1([Γ(i)]≤k−1) → colimi Fk−1([Γ(i)]≤k−1). Now one needs to check that

s, t satisfy globularity and that the construction has the right universal prop-

erty. This is straightforward. Point 3. is easy to prove by induction.

Proposition 5.5. For each unlabelled diagram d ∈ Fn( ) the category

Comp(d) has an initial object, which we denote (d̂, d̃).

Proof. We construct (d̂, d̃) by induction on the dimension of d and on the

height of its normal form.

If d is a 0-diagram then it consists of a single 0-cell. Then d̂ is the 0-

computad with a single 0-cell and d̃ is the diagram consisting of that 0-

cell. Now suppose d consists of a single k-cell. By induction on dimension

and the fact that ss(d) = st(d) and ts(d) = tt(d), we have the following

diagram.

s(d)

s2(d) t2(d)

t(d)

We build d̂ by taking the colimit of this diagram in Comp and then adding

a k-cell d̃ : s(d) → t(d). It’s now easy to see, by induction on dimension,

that (d̂, d̃) is an initial object in Comp(d).
Now suppose d has normal form x → ◦i,j ← y. Let m = mini, j and

let x ∩ y = si−m+1(x) = tj−m+1(y). By induction on height and dimension,
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we have a diagram

x ∩ y x̂

ŷ

.

We let d̂ be the pushout of this diagram in Comp and

d̃ = (x̃ → ◦i,j ← ỹ),

where we take x̃, ỹ in normal form. Since d is in normal form, so are x

and y, by Lemma 4.32. Therefore, again by Lemma 4.32 and uniqueness of

normal forms, x̃, ỹ map to x, y in TreeO,E
n ( ). Then (x̃ → ◦i,j ← ỹ) maps to

(x → ◦i,j ← y) in TreeO,E
n ( ) and therefore it is in normal form, by Lemma

4.32. Given (C,m) ∈ Comp(d), a map (d̂, d̃) → (C,m) is given by maps

f : x̂ → C and g : y → C such that

(f(x̃) → ◦i,j ← g(ỹ))
ϵ
= m.

Note that the left hand side is already in normal form, by Lemma 4.32. This

means the normal form of m must be equal to this, by uniqueness of normal

form. This determines f(x̃), g(ỹ) ∈ Fn(C) uniquely, because it determines

their normal forms as the two evident subtrees of the normal form of m.

Then by induction this determines f, g uniquely, so we conclude that (d̂, d̃)
is initial.

Finally suppose d has normal form x → ui. Then take d̂ = x̂ and

d̃ = x̃ → ui.

Remark 5.6. The pair (d̂, d̃) corresponds to what is called a polyplex in

[15] and [26]. In [26], the essential condition for establishing that a certain

class of polygraphs forms a presheaf category is the fact that the groups of

autmorphisms of polyplexes are trivial.

Remark 5.7. In fact, we don’t need normal forms to construct these com-

putads. We only need them to prove that they are initial. One can construct

(x̂, x̃) for any term x ∈ TreeO,E
n ( ≤n) by the same inductive procedure used

above. When x
ϵ
= y is one of the generating equations in En, we obtain an
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isomorphism φ : x̂ → ŷ such that φ(x̃)
ϵ
= ỹ by the same generating equa-

tion. This means (d̂, d̃) is well dened up to isomorphism. If x is in normal

form and φ is an automorphism of x̂ such that φ(x̃)
ϵ
= x̃, then φ(x̃) = x̃,

as they are both in normal form. This implies φ = id. So in the presence

of normal forms there are no automorphisms, so (d̂, d̃) is well dened up to

unique isomorphism and it is initial in Comp(d).

Example 5.8. It is well known ([31],[17]) that, for n ≥ 2, the category of 3-

computads for the monad T str
n whose algebras are strict n-categories, is not

a presehaf category. This example illustrates why the the above Proposition

fails in this case. Denote by the terminal computad for T str
n and let s :

id∗ ⇒ id∗ be the unique 2-cell in whose source and target are the identity

on the unique 0-cell. We construct a diagram d ∈ F2( )2 consisting of

the vertical composite s ◦ s. Consider (d̂, d̃) ∈ CompT str
n (d) dened by

letting d̂ be the computad consisting of a 0-cell ∗, together with two 2-cells

α, β : id∗ ⇒ id∗, and d̃ the vertical composite α◦β. By the Eckmann-Hilton

argument, we have α ◦ β = β ◦ α, so d̂ admits a nontrivial automorphism

which maps d̃ → d̃, namely the one that permutes α and β. If Comp(d) had

an initial object I , then the unique map I → (d̂, d̃) would be invariant under

composition with this automorphism. This would mean that α, β are not in

the image of the map, so I contains only 0-cells, which is absurd.

In order to show that Comp is a presheaf category, what we actually need

is the fact that Comp(c) has an initial object when c ∈ k is a computadic

cell shape. This will fail for any 3-cell shape whose source or target is the

diagram d above.

Denition 5.9. Let c ∈ n+1 be an (n + 1)-cell shape. We dene Comp(c)
to be the category of pais (C, x) where C is a computad and x ∈ Cn+1 is an

(n+ 1)-cell such that σ(x) = c.

Corollary 5.10. For each k ≤ n + 1 and each k-cell c ∈ k the category

Comp(c) has an initial object, denoted (ĉ, c̃).

Proof. For k ≤ n, this is just Proposition 5.5. For an (n + 1)-cell c, we use
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Proposition 5.5 to construct the diagram

s(c)

s2(c) t2(c)

t(c)

and then we take the colimit and add an (n+ 1)-cell c̃ : s(c) → t(c).

Remark 5.11. The pair (ĉ, c̃) corresponds to what is called a plex in [15]

and [26] or a computope in [30].

Denition 5.12. Let Celln+1 be the category whose objects are cell shapes

c ∈ k for k ≤ n + 1, and where a morphism c → d is a map of computads

ĉ → d̂. We usually denote this simply by Cell. It comes with a fully faithful

functor
(−) : Cell → Comp .

Denition 5.13. We dene the nerve functor

N : Comp → Psh(Cell)

as the composite Comp → Psh(Comp) → Psh(Cell) of the Yoneda embed-

ding with the restriction along (−).

Denition 5.14. We dene the realization functor by the following left Kan

extension, which exists because Comp is cocomplete.

Cell Comp

Psh(Cell)

(−)

Y
|−|
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We thus obtain the usual nerve/realization adjunction

 −  : Psh(Cell) Comp : N⊣

.

Theorem 5.15. The adjunction

 −  : Psh(Celln+1) Compn
n+1 : N

⊣
is an equivalence.

Proof. By [18][Proposition 5.14] it is enough to show that the functors

Comp(c,−) : Comp → Set,

for c ∈ Cell, are cocontinuous and jointly reect isomorphisms. This follows

easily from Lemma 5.4 and the fact that for c ∈ k we have

Comp(c, C) = x ∈ Ck : σ(x) = c,

which follows from Corrollary 5.10.

Remark 5.16. All results in this section hold, with the same proofs, for

any n-globular operad given by generators and relations as long as it ad-

mits a suitable theory of normal forms. More precisely, given a presenta-

tion (G,R) for an n-globular operad, what we need is an n-graded subset

N(C) ⊂ TreeG,Rn (C) of terms in normal form, for each n-computad C, with

the following properties:

1. the induced map N(C) → Tree
G,R

n (C) is an n-graded bijection (i.e.

there is a unique term in normal form in each equivalence class);

2. each subtree of a tree in normal from is in normal form;

3. given a map of n-computads ϕ : C → D, we have ϕ(x) ∈ N(D) if

and only if x ∈ N(C).

Remark 5.17. Because of condition 3. in the previous Remark, it is enough

to dene N( ≤n) for the terminal computad ≤n and then let x ∈ N(C) if

and only if σ(x) ∈ N( ≤n). It is also enough to check condition 2. for the

terminal computad. However, it is not enough to check 1. for ≤n, as one

can have x ̸= y in N(C) such that σ(x) = σ(y).
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Remark 5.18. We now describe an alternative approach to showing that

the category of computads for an n-globular operad presented by generators

and relations is a presheaf category. This was inspired by a discussion with

Samuel Mimram about the theory of rewriting.

Denote by ΓG,R
n the free groupoid on the graph with vertices the terms

x ∈ TreeG,Rn ( ≤n) and edges corresponding to the generating equations in

R. In Remark 5.7, we dened a functor (−, −) from ΓG,R
n to the groupoid

whose objects are pairs (C, x) where C is a computad and x ∈ TreeG,Rn (C)
is a term and whose morphisms (C, x) → (D, y) are isomorphisms C → D

such that φ(x)
R
= y. This functor is easily seen to be full, so the group of

automorphisms of (x̂, x̃) is a quotient of the group of automorphisms of x.

In order to show that the category of computads for this n-globular operad is

a presheaf category, it is enough to show that the former is trivial. In Remark

5.7 we showed how one can use normal forms to do this.

On the other hand, one can consider the relation on the arrows of ΓG,R
n

obtained by declaring that the application of a generating equation at any

location in a tree commutes with the application of another equation in a

disjoint location. The functor (−, −) respects this relation. If the automor-

phism groups of the quotient of ΓG,R
n by this relation are trivial, then the

associated category of computads is a preseheaf category. It is an interesting

question whether this is true for n-sesquicategories.

More generally, if one can describe a relation on the arrows of ΓG,R
n

which is preserved by (−, −) and such that the automorphism groups of the

quotient of ΓG,R
n by this relation are trivial, this proves that the associated

category of computads is a preseheaf category.

6. String diagrams for n-sesquicategories

Let C be an n-computad for TDs

n . In this section we explain how to asso-

ciate a C-labelled string diagram to each morphism in Fn(C). This is an

extremely useful graphical notation for describing composites and perform-

ing computations in n-sesquicategories. We will in the future extend this to

semistrict n-categories by adding interchangers, which will allow us to apply

in this more general context the techniques used in [2],[3], [4] and [5] (used

there in the context of strict 3 and 4-categories).
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The essential ingredient here is the theory of normal forms, which will

allow us to describe the graphical notation for a term by induction on the

(On, C)-labelled tree corresponding to its normal form.

It is enough to decribe the unlabelled diagrams corresponding to mor-

phisms in Fn( ), since C-labelled diagrams are then obtained by simply

adding labels at appropriate places.

So let w ∈ Fn( )k. We proceed by induction on k and the height of the

normal form of w. When k = 0, the morphism w simply consists of the

unique 0-cell in . The associated diagram is just a point. In general, when

k is odd (resp. even) we depict a generating k-cell w ∈ k by drawing the

(k − 1)-diagram corresponding to its source on the left (resp. top), the one

corresponding to its target on the right (resp. bottom) and then forming a

double cone on this disjoint union. We denote this double cone by drawing

the cone point in the middle and curves connecting each cell in the source

and target diagrams to the cone point. We need to distinguish lines which

correspond to cells of different codimension, which we can do by using dif-

ferent thickness, transparency, dashing or any other method.

Now suppose w = (x → ◦i,j ← y) is in normal form. By induction,

we already know how to draw the diagrams associated to x and y and the

diagram ◦i,j determines how we should compose these two pictures to ob-

tain the picture for w. Finally, if w = (x → uk) in normal form, then we

draw two copies of x and we draw lines connecting generators, again using

a different notation for generators of different codimension.

We now give some examples. First it is useful to recall fom [6] the graph-

ical notation for the generators ◦i,j . We include here the pictures for i, j ≤ 4.

◦1,1 = ◦1,2 = ◦2,1 = ◦2,2 = ◦1,3 =

◦3,1 = ◦2,3 = ◦3,2 = ◦3,3 =

◦1,4 = ◦4,1 = ◦2,4 = ◦4,2 = ◦3,4 =
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◦4,3 = ◦4,4 =

Now we can move on to examples of unlabelled cells and diagrams. The

unique 1-cell in is denoted . The diagram ∗ → u1 is denoted .

The diagram → ◦1,1 ← is denoted . Here are some 2-cells,

with their source and target 1-diagrams.

: →

: →

: →

The 2-diagrams ∗ → u1 → u2 and → u2 are denoted

: → and : → .

Here is a 2-diagram in normal form, then its normal form where we re-

place each generator by its picture and nally the picture of the diagram

itself.

◦2,2

◦2,1

::

◦1,2

dd

>>

dd ::

``

= = .

Here are some other 2-diagrams.

Here are some 3-cells with their source and target 2-diagrams.
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: →

: →

: →

: →

: →

Notice how the notation distinguishes the 3-cell above from the

diagram

= ( → ◦3,1 ← ).

Here is a 4-cell with its source and target 3-diagrams.

: →
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MACNEILLE COMPLETIONS OF

SUBORDINATION ALGEBRAS

M. Abbadini, G. Bezhanishvili, L. Carai

Résumé. Les algèbres de subordination S5 sont une généralisation naturelle

des algèbres de de Vries. Il a été prouvé récemment que la catégorie SubS5S

des algèbres de subordination S5 et des relations de subordination compat-

ibles est équivalente à la catégorie des espaces compacts de Hausdorff et

des relations fermées. Nous généralisons la complétion de MacNeille des

algèbres de Boole au cadre des algèbres de subordination S5, et utilisons le

caractère relationnel des morphismes de SubS5S pour prouver que le fonc-

teur de complétion de MacNeille établit une équivalence entre SubS5S et sa

sous-catégorie pleine des algèbres de de Vries. De plus, nous montrons que

le foncteur qui associe à chaque algèbre de subordination S5 le frame de ses

idéaux ronds établit une dualité entre SubS5S et la catégorie des frames com-

pacts réguliers et des homomorphismes de preframes. Nos résultats n’utilisent

pas l’axiome du choix et fournissent un éclairage supplémentaire sur les du-

alités de type Stone pour les espaces compacts de Hausdorff avec différents

types de morphismes. En particulier, nous montrons comment elles se re-

streignent aux sous-catégories amples de SubS5S correspondant aux relations

continues et aux fonctions continues entre espaces compacts de Hausdorff.

Abstract. S5-subordination algebras are a natural generalization of de Vries

algebras. Recently it was proved that the category SubS5S of S5-subordina-

tion algebras and compatible subordination relations between them is equiv-

alent to the category of compact Hausdorff spaces and closed relations. We

generalize MacNeille completions of boolean algebras to the setting of S5-

subordination algebras, and utilize the relational nature of the morphisms in

SubS5S to prove that the MacNeille completion functor establishes an equiv-
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alence between SubS5S and its full subcategory consisting of de Vries alge-

bras. We also show that the functor that associates to each S5-subordination

algebra the frame of its round ideals establishes a dual equivalence between

SubS5S and the category of compact regular frames and preframe homomor-

phisms. Our results are choice-free and provide further insight into Stone-

like dualities for compact Hausdorff spaces with various morphisms between

them. In particular, we show how they restrict to the wide subcategories of

SubS5S corresponding to continuous relations and continuous functions be-

tween compact Hausdorff spaces.

Keywords. Compact Hausdorff space, Gleason cover, closed relation, con-

tinuous relation, de Vries algebra, subordination relation, proximity, Mac-

Neille completion, ideal completion, compact regular frame.

Mathematics Subject Classification (2020). 18F70, 54E05, 06D22, 06E15,

54D30, 54G05.
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1. Introduction

With each compact Hausdorff space X , we can associate numerous algebraic

structures that determine X up to homeomorphism. This yields various du-

alities for the category KHaus of compact Hausdorff spaces and continuous
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functions. In this paper we are interested in two dualities for KHaus from

pointfree topology. By Isbell duality [Isb72], KHaus is dually equivalent to

the category KRFrm of compact regular frames and frame homomorphisms;

and by de Vries duality [dV62], KHaus is dually equivalent to the category

DeV of de Vries algebras and de Vries morphisms.

Isbell duality is established by working with the contravariant functor

O : KHaus → KRFrm which associates with each compact Hausdorff space

X the compact regular frame O(X) of open subsets of X , and with each

continuous function f : X → Y the frame homomorphism f−1 : O(Y ) →
O(X). De Vries duality is established by working with the contravari-

ant functor RO : KHaus → DeV. Writing int for the interior and cl for

the closure, RO associates with each X ∈ KHaus the de Vries algebra

(RO(X),≺) of regular open subsets of X , where U ≺ V iff cl(U) ⊆ V ,

and with each continuous function f : X → Y the de Vries morphism

RO(f) : RO(Y ) → RO(X) given by RO(f)(V ) = int(clf−1[V ]) for each

V ∈ RO(Y ).
As a consequence of Isbell and de Vries dualities, KRFrm is equivalent

to DeV. This equivalence can be obtained directly, without first passing to

KHaus [Bez12]. We thus arrive at the following diagram, where the horizon-

tal arrow represents an equivalence and the slanted arrows with the letter d
on top represent dual equivalences.

KHaus

KRFrm DeV

d d

Several authors have considered generalizations of KHaus where func-

tions are replaced by relations. A relation R between two compact Hausdorff

spaces X and Y is closed if R is a closed subset of X × Y and it is contin-

uous if in addition the R-preimage of each open subset of Y is open in X .

A function between compact Hausdorff spaces is closed iff it is continuous.

But for relations this results in two different categories KHausR and KHausC.

In the former, morphisms are closed relations; and in the latter, they are con-

tinuous relations. Clearly KHaus is a wide subcategory of KHausC, which in

turn is a wide subcategory of KHausR.
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In [BGHJ19] KRFrm was generalized to KRFrmC, DeV to DeVC (see

Section 2 for the definitions of these categories), and it was shown that the

commutative diagram above extends to the following commutative diagram.

KHausC

KRFrmC DeVC

d d

On the other hand, in [Tow96, JKM01] the category KRFrm was gener-

alized to KRFrmP, where morphisms are preframe homomorphisms (that is,

they preserve finite meets and directed joins), and it was shown that KRFrmP

is dually equivalent to KHausR. In a recent paper [ABC23] we introduced the

category DeVS whose objects are de Vries algebras and whose morphisms

are compatible subordination relations. We proved that DeVS is equivalent

to KHausR and hence dually equivalent to KRFrmP. Thus, we arrive at the

following commutative diagram that extends the two diagrams above.

KHausR

KRFrmP DeVS

d

d

Our aim here is to give a direct choice-free proof of the duality between

KRFrmP and DeVS. From this we derive a direct choice-free proof of the

equivalence between KRFrmC and DeVC, as well as an alternative choice-

free proof of the equivalence between KRFrm and DeV.

Our main tool is the category SubS5S of S5-subordination algebras intro-

duced in [ABC23]. Objects of SubS5S were already considered by Meenak-

shi [Mee66], who studied proximity relations on an arbitrary boolean al-

gebra. In [ABC23] we used a generalization of Stone duality to closed

relations [Cel18, KMJ23] and the machinery of allegories [FS90] to show

that SubS5S is equivalent to the category StoneER whose objects are Stone

spaces equipped with a closed equivalence relation and whose morphisms
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are special closed relations (see Definition 2.13(1)). Since DeVS is a full

subcategory of SubS5S, restricting this equivalence yields an equivalence be-

tween DeVS and the full subcategory GleR of StoneER consisting of Gleason

spaces. It turns out that these four categories are equivalent to KHausR. Con-

sequently, DeVS is equivalent to SubS5S, but the proof goes through KHausR

and hence uses the axiom of choice.

In this paper we generalize MacNeille completions of boolean algebras

to S5-subordination algebras and give a direct choice-free proof of the equiv-

alence between SubS5S and DeVS. We also specialize the notion of a round

ideal of a proximity lattice [War74] to our setting to obtain a contravariant

functor from SubS5S to KRFrmP, yielding a choice-free proof that SubS5S is

dually equivalent to KRFrmP. We thus arrive at the following commutative

diagram.

SubS5S

KRFrmP DeVS

d

d

We also study the wide subcategories of these categories whose mor-

phisms encode continuous relations and continuous functions between com-

pact Hausdorff spaces.

The paper is organized as follows. In Section 2 we recall the existing

dualities for compact Hausdorff spaces that are relevant for our purposes.

In Section 3 we describe the round ideal functor from SubS5S to KRFrmP.

In Section 4 we define MacNeille completions of S5-subordination algebras

and prove that the resulting functor yields an equivalence between SubS5S

and DeVS. We then use this result to show that the round ideal functor from

SubS5S to KRFrmP is a dual equivalence. In Section 5 we study the wide

subcategories of these categories whose morphisms encode continuous rela-

tions between compact Hausdorff spaces. In Section 6 we further restrict our

attention to the morphisms that encode continuous functions between com-

pact Hausdorff spaces. Finally, in Section 7 we give dual descriptions of the

round ideal and MacNeille completions of S5-subordination algebras.

All the categories considered in this paper are listed in Tables 1 to 4 and

all the equivalences and dual equivalences in Fig. 2 at the end of Section 6.
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2. Preliminaries

In this section we briefly recall Isbell duality, de Vries duality, and their

generalizations. We start by recalling some basic definitions from pointfree

topology (see, e.g., [PP12]). A frame or locale is a complete lattice L satis-

fying the join-infinite distributive law

a ∧
∨

S =
∨

{a ∧ s | s ∈ S}.

Each a ∈ L has the pseudocomplement given by a∗ =
∨
{x ∈ L | a∧x = 0}.

We say that a is compact if a ≤
∨
S implies a ≤

∨
T for some finite T ⊆ S,

and that a is well-inside b (written a ≺ b) if a∗∨b = 1. A frame L is compact

if 1 is compact and it is regular if a =
∨
{x ∈ L | x ≺ a} for each a ∈ L.

A frame homomorphism between two frames is a map that preserves ar-

bitrary joins and finite meets. We recall from the introduction that KRFrm is

the category of compact regular frames and frame homomorphisms and that

KHaus is the category of compact Hausdorff spaces and continuous func-

tions.

Theorem 2.1 (Isbell duality). KRFrm is dually equivalent to KHaus.

A preframe homomorphism between two frames is a map that preserves

directed joins and finite meets. We let KRFrmP be the category of compact

regular frames and preframe homomorphisms. Clearly KRFrm is a wide

subcategory of KRFrmP.

We recall that a relation R ⊆ X ×Y between compact Hausdorff spaces

is closed if R is a closed subset of X × Y . As usual, for x ∈ X and y ∈ Y ,

we write

R[x] = {y ∈ Y | x R y} and R−1[y] = {x ∈ X | x R y}.

Also, for F ⊆ X and G ⊆ Y , we write

R[F ] =
⋃

{R[x] | x ∈ F} and R−1[G] =
⋃

{R−1[y] | y ∈ G}.

Then R is closed iff R[F ] is closed for each closed F ⊆ X and R−1[G] is

closed for each closed G ⊆ Y (see, e.g., [BBSV17, Lem. 2.12]). We let

KHausR be the category of compact Hausdorff spaces and closed relations,
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where identities are identity relations and composition is relation composi-

tion. We recall that for two relations R1 ⊆ X1 ×X2 and R2 ⊆ X2 ×X3 the

relation composition R2 ◦R1 ⊆ X1 ×X3 is defined by

x1 (R2 ◦R1) x3 ⇐⇒ ∃x2 ∈ X2 : x1 R1 x2 and x2 R2 x3.

The category KHausR is a full subcategory of the category of stably com-

pact spaces and closed relations introduced and studied in [JKM01]. It is

symmetric in that if R is a closed relation, then its converse R˘: X2 → X1

(defined by y R˘x iff x R y) is also closed. This defines a dagger on KHausR

with which KHausR forms an allegory (see, e.g., [ABC23, Lem. 3.6]). The

following theorem generalizes Isbell duality:

Theorem 2.2 ([Tow96, JKM01]). KRFrmP is dually equivalent to KHausR.

A closed relation R ⊆ X × Y between compact Hausdorff spaces is

continuous if V open in Y implies R−1[V ] is open in X . Let KHausC be the

wide subcategory of KHausR whose morphisms are continuous relations.

In [BGHJ19, Def. 4.3], motivated by Johnstone’s construction of the Vi-

etoris frame of a compact regular frame [Joh82, Sec. III.4], a preframe homo-

morphism □ : L → M between compact regular frames is called continuous

or a c-morphism if there is a join-preserving ♢ : L → M such that

□(a ∨ b) ≤ □a ∨ ♢b and □a ∧ ♢b ≤ ♢(a ∧ b).

Let KRFrmC be the wide subcategory of KRFrmP whose morphisms are c-

morphisms. The duality of Theorem 2.2 then restricts to the following gen-

eralization of Isbell duality:

Theorem 2.3 ([BGHJ19, Thm. 4.8]). The categories KRFrmC and KHausC

are dually equivalent.

Letting ♢ = □, we can identify KRFrm with a wide subcategory of

KRFrmC. Thus, we arrive at the following diagram, where the hook arrows

represent inclusions of wide subcategories and the horizontal arrows dual
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equivalences.

KRFrmP KHausR

KRFrmC KHausC

KRFrm KHaus

d

d

d

Definition 2.4. [ABC23, Def. 2.4] Let A,B be boolean algebras. A relation

S ⊆ A × B is a subordination if S satisfies the following conditions for all

a, b ∈ A and c, d ∈ B:

(S1) 0 S 0 and 1 S 1;

(S2) a, b S c implies (a ∨ b) S c;

(S3) a S c, d implies a S (c ∧ d);

(S4) a ≤ b S c ≤ d implies a S d.

Remark 2.5. The axioms (S1)–(S4) are equivalent to saying that S is a

bounded sublattice of A× B satisfying (S4).

When A = B, we say that S is a subordination on A. These were intro-

duced in [BBSV17] as a counterpart of quasi-modal operators [Cel01] and

precontact relations [DV06, DV07]. As follows from [BBSV17, Thm. 2.22],

subordinations on A correspond to closed relations R on the Stone space of

A. By [Cel01, DV07] (see also [BBSV17, Lem. 4.6]), we can characterize

reflexivity, symmetry, and transitivity of R by the following axioms, where

we write ¬a for the complement of a in A.

(S5) a S b implies a ≤ b;

(S6) a S b implies ¬b S ¬a;

(S7) a S b implies there is c ∈ A with a S c and c S b.
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Following the modal logic nomenclature, the pairs (B, S) where B is a

boolean algebra and S is a subordination on B satisfying (S5)–(S7) were

called S5-subordination algebras in [ABC23].

These algebras were first introduced in [Mee66], where the notion of a

proximity on a set was generalized to an arbitrary boolean algebra. Fur-

ther generalizations include proximity lattices [War74, Smy92], proximity

algebras [GK81], and proximity frames [BH14]. We point out that S5-

subordination algebras are exactly the proximity algebras of [GK81] where

the underlying Heyting algebra is a boolean algebra.

Definition 2.6. Let B = (B, S) be an S5-subordination algebra.

1. [dV62, Def. 1.1.1] We call B a compingent algebra if S satisfies the

following axiom:

(S8) If a ̸= 0, then there is b ̸= 0 with b S a.

2. [Bez10, Def. 3.2] We call B a de Vries algebra if B is a compingent

algebra and B is a complete boolean algebra.

Remark 2.7. As was pointed out in [BH14, Prop. 7.4], de Vries algebras are

exactly those proximity frames where the frame is boolean.

A de Vries morphism between de Vries algebras is a map f : B1 → B2

satisfying the following conditions:

(M1) f(0) = 0;

(M2) f(a ∧ b) = f(a) ∧ f(b);

(M3) a S1 b implies ¬f(¬a) S2 f(b);

(M4) f(a) =
∨
{f(b) | b S1 a}.

The composition of two de Vries morphisms f : B1 → B2 and g : B2 → B3

is the de Vries morphism g ∗ f : B1 → B3 given by

(g ∗ f)(a) =
∨

{gf(b) | b S1 a}

for each a ∈ B1. Let DeV be the category of de Vries algebras and de Vries

morphisms, where identity morphisms are identity functions and composi-

tion is defined as above.
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Theorem 2.8 (de Vries duality). DeV is dually equivalent to KHaus.

In [BGHJ19] de Vries duality was generalized to a duality for KHausC.

For this, the notion of a de Vries additive map from [BBH15] was utilized.

We will instead work with the equivalent notion of a de Vries multiplicative

map.

Definition 2.9. A map □ : B1 → B2 between de Vries algebras is de Vries

multiplicative if □1 = 1 and for all a, b, c, d ∈ B1, we have

a S1 b and c S1 d imply (□a ∧□c) S2 □(b ∧ d).

We call □ lower continuous if in addition

□a =
∨

{□b | b S1 a}

for each a ∈ B1. The composition of two such maps □1 and □2 is given by

(□2 ∗□1)a =
∨

{□2□1b | b S1 a}.

Let DeVC be the category of de Vries algebras and lower continuous de Vries

multiplicative maps, where identity morphisms are identity functions and

composition is defined as above.

Remark 2.10.

1. The results of [BGHJ19] are stated using de Vries additive maps that

are lower continuous, where we recall that ♢ : B1 → B2 is de Vries ad-

ditive if ♢0 = 0 and a S1 b and c S1 d imply ♢(a∨c) S2 (♢b∨♢d) for

all a, b, c, d ∈ B1, and it is lower continuous if ♢a =
∨
{♢b | b S1 a}

for all a ∈ B1. To simplify proofs (see, e.g., Lemma 5.12), we will

work with □ instead of ♢.

2. As observed in [BGHJ19, Rem. 4.11], working with lower continu-

ous de Vries additive maps is equivalent to working with de Vries

multiplicative maps that are upper continuous, i.e. maps □ that sat-

isfy □a =
∧
{□b | a S b}. Analogously, working with de Vries

multiplicative lower continuous maps is equivalent to working with de

Vries additive maps that are upper continuous.
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3. By a slight adjustment of the proofs of [BBH15, Thms. 4.21, 4.22]

it is not difficult to show that the category of de Vries algebras and

de Vries additive upper continuous maps between them is equivalent

to the category of de Vries algebras and de Vries additive lower con-

tinuous maps between them. Similarly, one can show that DeVC is

equivalent to the category of de Vries algebras and upper continuous

de Vries multiplicative maps between them, and hence to the category

of de Vries algebras and lower continuous de Vries additive maps be-

tween them. Thus, the results of [BGHJ19] apply to our setting.

Theorem 2.11 ([BGHJ19, Thm. 4.14]). The categories DeVC and KHausC

are dually equivalent.

In [BGHJ19] obtaining a de Vries like duality for KHausR was left open.

This question was resolved in [ABC23] by working with special subordina-

tion relations between de Vries algebras. To introduce them, we require the

following definition of compatibility.

Definition 2.12. For i = 1, 2 let Ri be a binary relation on a set Xi. We call

a relation T : X1 → X2 compatible if R2 ◦ T = T = T ◦R1.

X1 X2

X1 X2

T

T
R1 R2

T

Let SubS5S be the category of S5-subordination algebras and compati-

ble subordinations between them, where the composition of morphisms is

the usual composition of relations, and the identity morphism on an S5-

subordination algebra (B, S) is the relation S. Let DeVS be the full sub-

category of SubS5S consisting of de Vries algebras.

To connect KHausR with SubS5S, it is convenient to first obtain a Stone-

like representation of S5-subordination algebras.

Definition 2.13.

1. An S5-subordination space is a pair (X,E) where X is a Stone space

and E is a closed equivalence relation on X . We let StoneER be the

category whose objects are S5-subordination spaces and whose mor-

phisms are compatible closed relations between them.
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2. A Gleason space is an S5-subordination space (X,E) such that X is

extremally disconnected (i.e., the closure of an open set is open) and

E is irreducible (i.e., if F is a proper closed subset of X , then so is

E[F ]). We let GleR be the full subcategory of StoneER whose objects

are Gleason spaces.

Theorem 2.14 ([ABC23, Cors. 3.14, 4.7]). KHausR, StoneER, GleR, SubS5S,

and DeVS are equivalent categories.

StoneER SubS5S

KHausR

GleR DeVS

To make the paper self-contained, we briefly describe the functors yield-

ing some of the equivalences of Theorem 2.14.

Remark 2.15.

1. The functor Q : StoneER → KHausR maps an object (X,E) to the

quotient space X/E, and a morphism R : (X1, E1) → (X2, E2) to the

morphism Q(R) : Q(X1, E1) → Q(X2, E2) given by

[x]E1
Q(R) [y]E2

⇐⇒ x R y

(i.e., Q(R) = π2 ◦R ◦ π1̆ , where π1 and π2 are the quotient maps).

X1 X2

X1/E1 X2/E2

R

π1 π2

Q(R)

2. A quasi-inverse of the functor Q is given by the Gleason cover functor

G : KHausR → StoneER which associates to each compact Hausdorff

space X the pair G(X) = (X̂, E) where g : X̂ → X is the Gleason

cover of X and x E y iff g(x) = g(y) (for Gleason covers see, e.g.,
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[Joh82, Sec. III.3.10]). It also maps a closed relation R : X1 → X2 to

the relation G(R) : G(X1) → G(X2) given by

x G(R) y ⇐⇒ g1(x) R g2(y)

(i.e., G(R) = g2̆ ◦R ◦ g1).

X̂1 X̂2

X1 X2

g1

G(R)

g2

R

3. The functor G is also a quasi-inverse of the restriction of the functor Q
to GleR.

4. The inclusion of GleR into StoneER is an equivalence whose quasi-

inverse is the composition G ◦ Q.

5. The functor Clop : StoneER → SubS5S maps an object (X,E) to

(B, SE), where B is the boolean algebra of clopen subsets of X and

SE is the binary relation on B given by U SE V iff E[U ] ⊆ V . Also,

Clop maps a morphism R : (X1, E1) → (X2, E2) to the compatible

subordination relation SR : Clop(X1, E1) → Clop(X2, E2) given by

U SR V iff R[U ] ⊆ V .

6. A quasi-inverse of the functor Clop is given by the ultrafilter functor

Ult : SubS5S → StoneER which associates to each object (B, S) the

pair Ult(B, S) = (X,RS) where X is the Stone space of ultrafilters

of B and x RS y iff S[x] ⊆ y. We call (X,RS) the S5-subordination

space of (B, S). A morphism T : (B1, S1) → (B2, S2) is mapped by

Ult to the morphism RT : Ult(B1, S1) → Ult(B2, S2) given by x RT y
iff T [x] ⊆ y.

7. The restrictions Clop : GleR → DeVS and Ult : DeVS → GleR are also

quasi-inverses of each other.

It follows from Theorems 2.2 and 2.14 that SubS5S is dually equivalent

to KRFrmP and equivalent to DeVS. The main contribution of this paper is to
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give direct choice-free proofs of these results by generalizing ideal and Mac-

Neille completions of boolean algebras to the setting of S5-subordination al-

gebras, to fill in the empty boxes of the following diagram, and to show that

it commutes up to natural isomorphism. The unlabeled horizontal arrows in

the diagram represent equivalences of categories while the ones labeled with

the letter d represent dual equivalences. The vertical arrows are inclusions

of wide subcategories.

SubS5S DeVS KRFrmP KHausR StoneER GleR

DeVC KRFrmC KHausC

DeV KRFrm KHaus

d d

d d

d d

Figure 1

3. Round ideals of S5-subordination algebras

For a boolean algebra B, let I(B) be the set of ideals of B ordered by inclu-

sion. It is well known that I(B) is a frame, where I ∧ J = I ∩ J and
∨
Iα

is the ideal generated by
⋃
Iα. Moreover, the compact elements of I(B) are

the principal ideals. This in particular implies that I(B) is compact and reg-

ular.1 In this section we generalize these results to the frame of round ideals

of an S5-subordination algebra.

Round ideals have been extensively studied in pointfree topology and

domain theory. In particular, it follows from [War74, Smy92] that the round

ideals of a proximity lattice form a stably compact frame. As we pointed

out in the previous section, S5-subordination algebras (B, S) are exactly

the proximity algebras of [GK81] where the algebra B is a boolean algebra.

This additional feature allows us to show that the round ideals of (B, S) form

1The frame I(B) is even zero-dimensional because every element in I(B) is a join of

complemented elements (see [Ban89]).
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a compact regular frame. Moreover, associating with each S5-subordination

algebra its frame of round ideals defines a contravariant functor from SubS5S

to KRFrmP. In Section 4 we will show that this functor is in fact a dual

equivalence.

Definition 3.1. Let B = (B, S) be an S5-subordination algebra. We call an

ideal I of B a round ideal if a ∈ I implies a S b for some b ∈ I . Let RI(B)
be the set of round ideals of B ordered by inclusion.

Remark 3.2.

1. It is straightforward to see that an ideal I is round iff I = S−1[I], and

that if I is an ideal of B, then S−1[I] is a round ideal of B.

2. The notion of a round filter is dual to that of a round ideal. Therefore,

a filter F is round iff F = S[F ], and if F is a filter of B, then S[F ] is

a round filter of B.

Let B be a boolean algebra and X ⊆ B. We denote by U(X) the set of

upper bounds of X , by L(X) the set of lower bounds of X , and by ¬X the

set {¬x | x ∈ X}. It is well known that U(X) is a filter, L(X) is an ideal,

¬¬X = X , and X is a filter iff ¬X is an ideal. Moreover, ¬U(X) = L(¬X)
and ¬L(X) = U(¬X).

Lemma 3.3. Let B be a boolean algebra and S an S5-subordination on B.

If X ⊆ B, then ¬S[X] = S−1[¬X].

Proof. We have that a ∈ ¬S[X] iff there is x ∈ X such that x S ¬a. By

(S6) this is equivalent to the existence of x ∈ X such that a S ¬x, which

means that a ∈ S−1[¬X].

Theorem 3.4. Let B be an S5-subordination algebra.

(1) RI(B) is a subframe of I(B).

(2) If I ∈ RI(B), then I∗ = S−1[¬U(I)] = ¬S[U(I)].

(3) The well-inside relation on RI(B) is given by I ≺ J iff U(I)∩J ̸= ∅.

(4) RI(B) is compact and regular.
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Proof. (1). This follows from [War74, Thm. 3] (see also [Smy92, Thm. 1]).

(2). The first equality follows from [War74, Thm. 3] and the second from

Lemma 3.3.

(3). By definition, I ≺ J iff I∗ ∨ J = B. By item (2), this is equivalent

to ¬S[U(I)]∨ J = B, which holds iff there are a ∈ S[U(I)] and b ∈ J such

that ¬a∨ b = 1. Since B is a boolean algebra, ¬a∨ b = 1 iff a ≤ b. Because

S[U(I)] is a filter (see Remark 3.2(2)), the existence of a ∈ S[U(I)] with

a ≤ b is equivalent to b ∈ S[U(I)]. Thus, I ≺ J iff S[U(I)] ∩ J ̸= ∅. We

have that S[U(I)]∩ J ̸= ∅ iff U(I)∩S−1[J ] ̸= ∅. Since J is a round ideal,

this is equivalent to U(I) ∩ J ̸= ∅.

(4). That RI(B) is compact follows from item (1). It follows from

[War74, Thm. 3] that the relation on RI(B) given by U(I) ∩ J ̸= ∅ is

approximating. Thus, item (3) implies that the well-inside relation is ap-

proximating, and hence RI(B) is regular.

Let B1 and B2 be S5-subordination algebras and T : B1 → B2 a com-

patible subordination. We define RI(T ) : RI(B2) → RI(B1) by setting

RI(T )(I) = T−1[I] for each round ideal I of B2.

Theorem 3.5. RI : SubS5S → KRFrmP is a well-defined contravariant

functor.

Proof. That RI is well defined on objects follows from Theorem 3.4(4). We

show that it is well defined on morphisms. Let T be a compatible subordina-

tion from B1 = (B1, S1) to B2 = (B2, S2). Let I ∈ RI(B2). Since T is a

subordination, it is straightforward to see that T−1[I] is an ideal. Because T
is compatible, S−1

1 T−1[I] = (T ◦ S1)
−1[I] = T−1[I], and hence T−1[I] is a

round ideal. Thus, RI(T ) is well defined. To show that RI(T ) is a preframe

homomorphism, we need to prove that it preserves directed joins and finite

meets. That it preserves directed joins is straightforward because directed

joins are set-theoretic unions in I(B1) and I(B2), and hence also in their

subframes RI(B1) and RI(B2). Moreover, we have that T−1[B2] = B1 be-

cause a T 1 for each a ∈ B1. Thus, it remains to show that RI(T ) preserves

binary meets. Let I, J ∈ RI(B2). Clearly T−1[I ∩ J ] ⊆ T−1[I] ∩ T−1[J ].
For the other inclusion, let a ∈ T−1[I]∩T−1[J ]. Then there are b ∈ I , c ∈ J
such that a T b and a T c. Therefore, a T (b∧ c) ∈ I ∩J by (S3), and hence

a ∈ T−1[I ∩ J ].
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It is straightforward to show that RI preserves identities and reverses

compositions. Thus, RI : SubS5S → KRFrmP is a well-defined contravari-

ant functor.

In the next section we will show that RI is a dual equivalence.

4. MacNeille completions of S5-subordination algebras

In [ABC23] we showed that the categories SubS5S and DeVS are equiva-

lent. This was done by observing that each of these categories is equivalent

to KHausR. In this section we show that the equivalence can be obtained

directly by generalizing the theory of MacNeille completions of boolean al-

gebras to S5-subordination algebras.

For a frame L, we recall (see, e.g., [BP96]) that the booleanization of L
is

BL = {a ∈ L | a = a∗∗},

and that (BL,⊓,
⊔
) is a boolean frame (complete boolean algebra), where

a ⊓ b = a ∧ b and
⊔

S =
(∨

S
)∗∗

.

If L is compact regular, then (BL,≺) is a de Vries algebra, where ≺ is

the restriction of the well-inside relation on L to BL. As was shown in

[Bez12], this correspondence extends to a covariant functor B : KRFrm →
DeV which is an equivalence. In the more general setting of KRFrmP and

DeVS, this correspondence extends to a contravariant functor as follows.

Let □ : L → M be a preframe homomorphism. Define the relation

B(□) : BM → BL by

b B(□) a ⇐⇒ b ≺ □a.

Lemma 4.1. If □ : L → M is a preframe homomorphism, then the relation

B(□) : BM → BL is a compatible subordination.

Proof. Let T = B(□). It is straightforward to check that T is a subordina-

tion. We only verify (S3). Suppose b T a, c. Then b ≺ □a and b ≺ □c.
Since □ is a preframe homomorphism, we have b ≺ □a ∧ □c = □(a ∧ c).
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Thus, T satisfies (S3). We next prove that T is compatible. Let a ∈ BL and

b ∈ BM . We show that b T a iff there is d ∈ BM such that b ≺ d T a.

First suppose that b T a, so b ≺ □a. Since M is compact regular, there is

d ∈ BM such that b ≺ d ≺ □a (see, e.g., [Bez12, Rem. 3.2]). Therefore,

b ≺ d T a. Conversely, suppose that b ≺ d T a. Then b ≺ d ≺ □a. Thus,

b ≺ □a, and so b T a.

It remains to show that b T a iff there is c ∈ BL such that b T c ≺ a.

For the right-to-left implication, we have that c ≺ a implies c ≤ a, and

hence □c ≤ □a because □ is order-preserving. Since b ≺ □c, it follows

that b ≺ □a, and so b T a. For the left-to-right implication, since L is

a regular frame, a is the directed join of {c ∈ BL | c ≺ a}. Therefore,

since □ preserves directed joins, □a =
∨
{□c | c ∈ BL, c ≺ a}. Thus,

from b ≺ □a, using compactness, we find c ∈ BL such that c ≺ a and

b ≺ □c.

We thus define B : KRFrmP → DeVS by sending each compact regu-

lar frame L to (BL,≺) and each preframe homomorphism □ : L → M to

B(□).

Proposition 4.2. B : KRFrmP → DeVS is a contravariant functor.

Proof. That B is well defined on objects follows from [Bez12, Lem. 3.1] and

that it is well defined on morphisms from Lemma 4.1. Let L be a compact

regular frame. If □ is the identity on L, then B(□) coincides with ≺ which

is the identity on (BL,≺). Let □1 : L → M and □2 : M → N be two

preframe homomorphisms between compact regular frames. We show that

B(□2 ◦ □1) = B(□1) ◦ B(□2). Let T1 = B(□1) and T2 = B(□2). For

a ∈ BL and c ∈ BN , if c (T1 ◦ T2) a, then there is b ∈ BM such that

c T2 b and b T1 a. Thus, c ≺ □2b and b ≺ □1a. Since b ≺ □1a and □2

is order-preserving, we have □2b ≤ □2□1a. Therefore, c ≺ □2□1a which

means that c B(□2 ◦□1) a. Suppose next that c B(□2 ◦□1) a. Therefore,

c ≺ □2□1a. By arguing as at the end of the proof of Lemma 4.1, there is

b ∈ BM such that c T2 b and b ≺ □1a. Thus, c T2 b and b T1 a which

means that c (T1 ◦ T2) a.
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Definition 4.3. Let NI = B ◦ RI.

SubS5S KRFrmP DeVS

RI

NI

B

By Theorem 3.5 RI : SubS5S → KRFrmP is a contravariant functor, and

by Proposition 4.2 B : KRFrmP → DeVS is a contravariant functor. Thus,

NI : SubS5S → DeVS is a covariant functor. In particular, we have

Proposition 4.4. If B is an S5-subordination algebra, then NI(B) is a de

Vries algebra.

Remark 4.5. Since ≺ on NI(B) is the restriction of ≺ on RI(B), by The-

orem 3.4(3) we have that I ≺ J iff U(I) ∩ J ̸= ∅ for all I, J ∈ NI(B).

Definition 4.6. Let B = (B, S) be an S5-subordination algebra. We call

NI(B) the MacNeille completion of B. We say that a round ideal I of B is

normal if I ∈ NI(B).

The next theorem provides a characterization of normal round ideals.

Theorem 4.7. Let I ∈ RI(B). We have

I ∈ NI(B) ⇐⇒ I = S−1[L(S[U(I)])].

Proof. By Lemma 3.3 and Theorem 3.4(2),

I∗∗ = ¬S[U(¬S[U(I)])] = ¬S[¬L(S[U(I)])]

= ¬¬S−1[L(S[U(I)])] = S−1[L(S[U(I)])].

Since I ∈ NI(B) iff I = I∗∗, the result follows.

Remark 4.8. We recall (see, e.g., [Grä78, p. 98]) that an ideal I of a boolean

algebra B is normal if LU(I) = I , and that the MacNeille completion of

B is constructed as the complete boolean algebra of normal ideals of B.

Definition 4.6 and Theorem 4.7 are an obvious generalization of this. Indeed,

if S is the partial ordering of B, then I ∈ NI(B) iff I is a normal ideal of

B. For further connection, see Proposition 4.14.
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An important feature of the MacNeille completion of an S5-subordi-

nation algebra B is that it is isomorphic to B in SubS5S (which happens

because morphisms in SubS5S are not structure-preserving bijections; see

[ABC23, Rem. 3.15(4)]). To see this, we need the following lemma. We

freely use the fact that if I, J ∈ RI(B), then

I ≺ J =⇒ I∗∗ ≺ J, (1)

which is a consequence of I∗∗∗ = I∗.

Lemma 4.9. Let a ∈ B and J ∈ RI(B). Then a ∈ J iff there is I ∈ NI(B)
such that a ∈ I ≺ J .

Proof. For the right-to-left implication, if a ∈ I ≺ J , then a ∈ I ⊆ J , and

hence a ∈ J . For the left-to-right implication, since J is a round ideal, there

is b ∈ J such that a S b. We have a ∈ S−1[b] and b ∈ U(S−1[b]). Thus,

S−1[b] ≺ J by Theorem 3.4(3). Let I = (S−1[b])∗∗. Then I ∈ NI(B) and

a ∈ S−1[b] ⊆ I . Moreover, by (1), S−1[b] ≺ J implies I ≺ J . Conse-

quently, a ∈ I ≺ J .

Let QB : B → NI(B) be the relation defined by

aQB I ⇐⇒ a ∈ I.

Lemma 4.10. QB is a morphism in SubS5S.

Proof. It is easy to see that QB is a subordination relation. The equality

QB = QB ◦ S follows from I = S−1[I], and the equality ≺ ◦ QB = QB

from Lemma 4.9.

If T : B1 → B2 is a morphism in SubS5S, define T̂ : B2 → B1 by

b T̂ a ⇐⇒ ¬a T ¬b. (2)

Then the relation T̂ is a morphism in SubS5S (see the paragraph before

[ABC23, Thm. 3.10]).

Lemma 4.11. QB : B → NI(B) is an isomorphism.
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Proof. Let T = Q̂B : NI(B) → B. By (2) and Theorem 3.4(2),

I T a ⇐⇒ ¬a QB I∗ ⇐⇒ ¬a ∈ ¬S[U(I)] ⇐⇒ a ∈ S[U(I)]. (3)

We show that QB and T are inverses of each other. For this we need to prove

that T ◦QB = S and QB ◦ T =≺.

We first show that T ◦ QB = S. For the inclusion ⊆, let a, b ∈ B,

I ∈ NI(B), and a QB I T b. Then a ∈ I and b ∈ S[U(I)] by (3). Thus,

a S b. For the inclusion ⊇, let a, b ∈ B with a S b. Then a ∈ S−1[b] and

Lemma 4.9 implies that there is I ∈ NI(B) such that a ∈ I ≺ S−1[b]. By

Remark 4.5 and (3),

I ≺ S−1[b] ⇐⇒ U(I) ∩ S−1[b] ̸= ∅ ⇐⇒ b ∈ S[U(I)] ⇐⇒ I T b.

Thus, a QB I T b.
We next show that QB ◦ T =≺. Let I, J ∈ NI(B). By Remark 4.5 and

(3),

I ≺ J ⇐⇒ U(I) ∩ J ̸= ∅ ⇐⇒ U(I) ∩ S−1[J ] ̸= ∅

⇐⇒ S[U(I)] ∩ J ̸= ∅ ⇐⇒ ∃a ∈ S[U(I)] ∩ J

⇐⇒ ∃a ∈ B : I T a QB J ⇐⇒ I (QB ◦ T ) J.

Thus, QB : B → NI(B) is an isomorphism.

Proposition 4.12. Let ∆: DeVS → SubS5S be the inclusion functor. Then

Q : 1SubS5S → ∆ ◦ NI is a natural isomorphism.

Proof. Let T : B1 → B2 be a morphism in SubS5S. By Lemma 4.11, it is

sufficient to show that NI(T ) ◦ QB1
= QB2

◦ T . (Since ∆ is the inclusion

functor, we omit it from the diagram.)

B1 NI(B1)

B2 NI(B2)

T

QB1

NI(T )

QB2

Let a ∈ B1 and I ∈ NI(B2). We have

a (NI(T ) ◦QB1
) I ⇐⇒ ∃J ∈ NI(B1) : a ∈ J and J ≺ T−1[I],
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and

a (QB2
◦ T ) I ⇐⇒ ∃b ∈ B2 : a T b and b ∈ I ⇐⇒ a ∈ T−1[I].

The two conditions are equivalent by Lemma 4.9.

Theorem 4.13. NI : SubS5S → DeVS and ∆: DeVS → SubS5S are quasi-

inverses of each other. Thus, SubS5S and DeVS are equivalent.

Proof. By Proposition 4.12, Q : 1SubS5S → ∆◦NI is a natural isomorphism.

For the same reason, we have a natural isomorphism Q′ : 1DeVS → NI ◦∆
whose component on B ∈ DeVS is QB. Thus, ∆: DeVS → SubS5S is a

quasi-inverse of NI.

Theorem 4.13 gives a direct choice-free proof that SubS5S is equivalent

to DeVS. We next show that when restricted to compingent algebras, NI
yields the usual MacNeille completion.

Proposition 4.14. Let B = (B, S) be an S5-subordination algebra.

(1) If B is a compingent algebra, then there is a boolean isomorphism

between NI(B) and the usual MacNeille completion B of B.

(2) If B is a de Vries algebra, then there is a structure-preserving bijection

between B and NI(B).

Proof. (1). Since B is a compingent algebra, from [dV62, Thm. 1.1.4] it

follows that each b ∈ B is the supremum of S−1[b]. We use this fact to prove

that

U(S−1[I]) = U(I) (4)

for each ideal I of B. Since S−1[I] ⊆ I , we have U(I) ⊆ U(S−1[I]). For

the reverse inclusion, let a ∈ U(S−1[I]). We show that a ∈ U(I). Let b ∈ I .

Then S−1[b] ⊆ S−1[I]. Therefore, a ∈ U(S−1[b]), so a ≥
∨
S−1[b] = b.

Thus, a ∈ U(I). This proves (4). A similar argument proves that

L(S[F ]) = L(F ) (5)

for each filter F of B. By (4) and (5), for every normal ideal I of B, we have

L(S[U(S−1[I])]) = L(S[U(I)]) = L(U(I)) = I.
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Thus, applying S−1 to both sides yields

S−1[L(S[U(S−1[I])])] = S−1[I].

This shows, by Theorem 4.7, that S−1[I] ∈ NI(B) for every normal ideal I
of B. This defines an order-preserving map α : B → NI(B).

Conversely, for every I ∈ NI(B), we have that L(U(I)) is a normal

ideal of B. This defines an order-preserving map β : NI(B) → B. By (4),

for a normal ideal I of B, we have

L(U(S−1[I])) = L(U(I)) = I.

For a normal round ideal I , by (5) and Theorem 4.7, we have

S−1[L(U(I))] = S−1[L(S[U(I)]) = I.

Thus, α and β are order-isomorphisms, hence boolean isomorphisms.

(2). It is well known (see, e.g., [GH09, Thm. 22]) that sending b to the

downset ↓b := {a ∈ B | a ≤ b} gives a boolean embedding of B into B,

which is an isomorphism iff B is complete. Composing with α yields the

boolean embedding ι : B → NI(B) given by ι(b) = S−1[b]. If B is a de

Vries algebra, then ι becomes a boolean isomorphism by item (1). It is left

to prove that a S b iff ι(a) ≺ ι(b). If a S b, then a ∈ U(ι(a)) ∩ ι(b),
and so ι(a) ≺ ι(b) by Remark 4.5. Conversely, suppose that ι(a) ≺ ι(b).
Then U(ι(a)) ∩ ι(b) ̸= ∅, so there exists c ∈ U(ι(a)) ∩ ι(b). Since a is the

supremum of ι(a) = S−1[a], we have that a ≤ c S b, and hence a S b. Thus,

ι is a structure-preserving bijection between B and NI(B).

Remark 4.15. Let B = (B, S) be a compingent algebra and B the Mac-

Neille completion of B. By [BBSV19, Rem. 5.11], (B,◁) is a de Vries

algebra, where

I ◁ J ⇐⇒ U(I) ∩ S−1[J ] ̸= ∅.

A straightforward verification shows that the boolean isomorphism of Propo-

sition 4.14(1) is an isomorphism of de Vries algebras between NI(B) and

(B,◁).

Remark 4.16. Let B be a compingent algebra. Then QB : B → NI(B)
and ι : B → NI(B) are related as follows:

a QB I ⇐⇒ ι(a) ≺ I
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for each a ∈ B and I ∈ NI(B). Indeed, since B is a compingent algebra,

a =
∨
S−1[a], so ↑a = U(S−1[a]), and hence

a QB I ⇐⇒ a ∈ I ⇐⇒ ↑a ∩ I ̸= ∅

⇐⇒ U(S−1[a]) ∩ I ̸= ∅ ⇐⇒ ι(a) ≺ I.

We finish the section by proving that both SubS5S and DeVS are dually

equivalent to KRFrmP. Let L ∈ KRFrmP. By [Bez12, Rem. 3.10], the map

fL : L → RI(BL) given by

fL(a) = {b ∈ BL | b ≺ a}

is an isomorphism of frames.

Proposition 4.17. f : 1KRFrmP → RI ◦∆ ◦B is a natural isomorphism.

Proof. Let □ : L → M be a preframe homomorphism. Set T = B(□).
Because each fL is an isomorphism, it is enough to show that RI(T ) ◦ fL =
fM ◦□. (Since ∆ is the inclusion functor, we omit it from the diagram.)

L RI(BL)

M RI(BM)

□

fL

RI(T )

fM

Let a ∈ L. We have

RI(T )(fL(a)) = T−1[fL(a)] = {b ∈ BM | ∃c ∈ BL : b T c, c ≺ a}

= {b ∈ BM | ∃c ∈ BL : b ≺ □c, c ≺ a},

and fM(□a) = {b ∈ BM | b ≺ □a}. An argument similar to the last

paragraph of the proof of Lemma 4.1 yields

{b ∈ BM | ∃c ∈ BL : b ≺ □c, c ≺ a} = {b ∈ BM | b ≺ □a},

completing the proof.
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Theorem 4.18.

(1) RI and ∆◦B form a dual equivalence between SubS5S and KRFrmP.

(2) RI ◦∆ and B form a dual equivalence between DeVS and KRFrmP.

We thus obtain the following diagram of equivalences and dual equivalences

that commutes up to natural isomorphism.

SubS5S

KRFrmP DeVS

RI
NI

B

∆

Proof. (1). By definition of NI, we have ∆◦B◦RI = ∆◦NI. Therefore,

Q : 1SubS5S → ∆ ◦ B ◦ RI is a natural isomorphism by Proposition 4.12.

Moreover, f : 1KRFrmP → RI ◦∆ ◦B is a natural isomorphism by Proposi-

tion 4.17. Thus, ∆ ◦B : KRFrmP → SubS5S is a quasi-inverse of RI.

(2). By Proposition 4.12, Q : 1SubS5S → ∆ ◦B ◦RI is a natural isomor-

phism. For the same reason, we have a natural isomorphism Q′ : 1DeVS →
B ◦ RI ◦∆ whose component on B ∈ DeVS is QB. Thus, B : KRFrmP →
DeVS is a quasi-inverse of RI ◦∆.

5. Continuous subordinations

In Section 4 we gave a direct choice-free proof that SubS5S is equivalent

to DeVS and dually equivalent to KRFrmP. Morphisms of each of these

categories encode closed relations between compact Hausdorff spaces. In

this section we study the wide subcategories of these categories whose mor-

phisms encode continuous relations between compact Hausdorff spaces.

Recalling from Remark 2.15 the equivalence Q : StoneER → KHausR,

we first characterize when Q(R) is a continuous relation for an arbitrary

morphism R in StoneER. We then use the equivalence Clop : StoneER →
SubS5S to encode this characterization in the language of S5-subordination

algebras.
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Definition 5.1. Let R be a binary relation on a set X and U ⊆ X . Following

the standard notation in modal logic, we write □RU = X \ R−1[X \ U ]. If

R is an equivalence relation, we say that U is R-saturated if R[U ] = U .

Remark 5.2.

1. If R is a closed relation and U is open, then □RU is open.

2. If R is an equivalence relation, then □RU = X \ R[X \ U ] and is

the largest R-saturated subset of U . Therefore, U is R-saturated iff

□RU = U .

Lemma 5.3. Let R : (X1, E1) → (X2, E2) be a morphism in StoneER. The

following are equivalent.

(1) The relation Q(R) : X1/E1 → X2/E2 is a continuous relation.

(2) If V is an E2-saturated open in X2, then R−1[V ] is open in X1.

(3) If B1, B2 ⊆ X2 are clopen with E2[B1] ⊆ B2, then there is a clopen

set A ⊆ X1 such that R−1[B1] ⊆ A ⊆ R−1[B2].

(4) If B1, B2 ⊆ X2 are clopen with E2[B1] ⊆ B2, then there is a clopen

set A ⊆ X1 such that A ∈ ŜR[B1] and ŜR[B2] ⊆ SE1
[A].

Proof. (1)⇔(2). Let πi : Xi → Xi/Ei be the quotient maps for i = 1, 2.

X1 X2

X1/E1 X2/E2

R

π1 π2

Q(R)

Then Q(R)−1[U ] = π1[R
−1[π−1

2 [U ]]] for each U ⊆ X2/E2. The R-inverse

image of any subset of X2 is E1-saturated by the compatibility of R. Thus,

R−1[π−1
2 [U ]] is open iff π1[R

−1[π−1
2 [U ]]] is open for each U open of X2/E2.

Therefore, Q(R) is continuous iff R−1[π−1
2 [U ]] is open for each U open of

X2/E2. Since V is an E2-saturated open in X2 iff V = π−1
2 [U ] for some U

open of X2/E2, the equivalence follows.
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(2)⇒(3). Suppose B1, B2 ⊆ X2 are clopens with E2[B1] ⊆ B2. Let

V = □E2
B2. Then V is an E2-saturated open. Since E2[B1] ⊆ B2, we have

that B1 ⊆ V . Therefore, R−1[B1] ⊆ R−1[V ]. The set R−1[B1] is closed

and R−1[V ] is open by item (2). Thus, there is a clopen set A ⊆ X1 such

that R−1[B1] ⊆ A ⊆ R−1[V ]. Since V ⊆ B2, we have R−1[V ] ⊆ R−1[B2].
Hence, A ⊆ R−1[B2]. This proves item (3).

(3)⇒(2). Let V be an E2-saturated open subset of X2. Since V =⋃
{B ∈ Clop(X2) | B ⊆ V }, we have

R−1[V ] =
⋃

{R−1[B] | B ∈ Clop(X2), B ⊆ V }.

Thus, it is enough to prove that for every clopen subset B of X2 contained

in V , there is an open subset UB of X1 such that R−1[B] ⊆ UB ⊆ R−1[V ]
(because then R−1[V ] =

⋃
{UB | B ∈ Clop(X2), B ⊆ V }). Let B be a

clopen subset of X2 contained in V . Since V is E2-saturated, E2[B] ⊆ V .

Because E2[B] is closed and V is open, there is a clopen subset B′ of X2

such that E2[B] ⊆ B′ ⊆ V . By item (3), there is a clopen set A ⊆ X1 such

that R−1[B] ⊆ A ⊆ R−1[B′]. Since B′ ⊆ V , we have R−1[B′] ⊆ R−1[V ],
so A ⊆ R−1[V ]. Therefore, we have found an open subset A of X1 such that

R−1[B] ⊆ A ⊆ R−1[V ]. Hence, item (2) holds.

(3)⇔(4). This follows from the following two claims.

Claim 5.4. For clopen sets A ⊆ X1 and B ⊆ X2, we have R−1[B] ⊆ A iff

A ∈ ŜR[B].

Proof of claim. This follows from the equality ŜR = S
R̆

, shown in the

proof of [ABC23, Thm. 2.14].

Claim 5.5. For clopen sets A ⊆ X1 and B ⊆ X2, we have A ⊆ R−1[B] iff

ŜR[B] ⊆ SE1
[A].

Proof of claim. Let A ⊆ X1 and B ⊆ X2 be clopen sets. Then

ŜR[B] ⊆ SE1
[A]

⇐⇒ ∀A′ ∈ Clop(X1), B ŜR A′ implies A SE1
A′

⇐⇒ ∀A′ ∈ Clop(X1), R
−1[B] ⊆ A′ implies E1[A] ⊆ A′

(by Claim 5.4)
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⇐⇒ E1[A] ⊆
⋂

{A′ ∈ Clop(X1) | R
−1[B] ⊆ A′}

⇐⇒ E1[A] ⊆ R−1[B] (since R−1[B] is closed)

⇐⇒ A ⊆ R−1[B] (since R−1[B] is E1-saturated).

This concludes the proof.

The next definition encodes Lemma 5.3(4) in the language of S5-subor-

dination algebras. By Lemma 5.3(1), this condition is equivalent to the cor-

responding relation between compact Hausdorff spaces being continuous.

Because of this, we call such compatible subordinations continuous.

Definition 5.6. Let T : (B1, S1) → (B2, S2) be a compatible subordination

between S5-subordination algebras. We say that T is continuous if the fol-

lowing holds:

∀b1, b2 ∈ B2

(
b1 S2 b2 ⇒ ∃a ∈ T̂ [b1] : T̂ [b2] ⊆ S1[a]

)
.

Lemma 5.7. Let T : (B1, S1) → (B2, S2) be a compatible subordination.

(1) The following are equivalent:

(a) T is continuous.

(b) ∀b1, b2 ∈ B2

(
b1 S2 b2 ⇒ ∃a ∈ T̂ [b1] : a ∈ L(T̂ [b2])

)
.

(c) ∀b1, b2 ∈ B2

(
b1 S2 b2 ⇒ ∃a ∈ T−1[b2] : a ∈ U(T−1[b1])

)
.

(2) If B1 is complete, then the following are equivalent:

(a) T is continuous.

(b) ∀b1, b2 ∈ B2

(
b1 S2 b2 ⇒ b1 T̂ (

∧
T̂ [b2])

)
.

(c) ∀b1, b2 ∈ B2

(
b1 S2 b2 ⇒ (

∨
T−1 [b1]) T b2

)
.
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Proof. (1a)⇔(1b). It is enough to prove that T̂ [b2] ⊆ S1[a] is equivalent to

a ∈ L(T̂ [b2]). For the left-to-right implication, by (S5) we have S1[a] ⊆

U(a), and so T̂ [b2] ⊆ S1[a] implies T̂ [b2] ⊆ U(a), which is equivalent to

a ∈ L(T̂ [b2]). For the right-to-left implication, suppose a ∈ L(T̂ [b2]) and let

a′ ∈ T̂ [b2]. Since T̂ is a compatible subordination, there is a′′ ∈ T̂ [b2] such

that a′′ S1 a′. Therefore, a ≤ a′′ S1 a′, which implies a S1 a′, and hence

a′ ∈ S1[a].
(1b)⇔(1c). Suppose that (1b) holds, and let b1, b2 ∈ B2 be such that

b1 S2 b2. Then, by (S6), ¬b2 S2 ¬b1. Therefore, by (1b) there is a ∈
T̂ [¬b2] such that a ∈ L(T̂ [¬b1]). The condition a ∈ T̂ [¬b2] is equivalent to

¬a ∈ T−1[b2]. Similarly, the condition a ∈ L(T̂ [¬b1]) is equivalent to ¬a ∈
U(T−1[b1]). Thus, (1b) implies (1c), and the converse is proved similarly.

(2). If B is complete, then (1b)⇔(2b) and (1c)⇔(2c). Thus, the result

follows from item (1).

Lemma 5.8.

(1) Let (B, S) be an S5-subordination algebra. The identity morphism

S : (B, S) → (B, S) in SubS5S is continuous.

(2) Let T1 : (B1, S1) → (B2, S2) and T2 : (B2, S2) → (B3, S3) be contin-

uous compatible subordinations between S5-subordination algebras.

Then T2 ◦ T1 : (B1, S1) → (B3, S3) is a continuous compatible subor-

dination.

Proof. (1). Since Ŝ = S, this is immediate from (S7).

(2). It is sufficient to show that T2 ◦ T1 is continuous. Let c1, c2 ∈ B3

be such that c1 S3 c2. By (S7), there is c ∈ B3 such that c1 S3 c S3 c2.
Therefore, since T2 is continuous, there are b1 ∈ T̂2[c1] and b2 ∈ T̂2[c] such

that T̂2[c] ⊆ S2[b1] and T̂2[c2] ⊆ S2[b2]. We have b2 ∈ T̂2[c] ⊆ S2[b1],

and so b1 S2 b2. Thus, since T1 is continuous, there is a ∈ T̂1[b1] such

that T̂1[b2] ⊆ S1[a]. We have c1 T̂2 b1 T̂1 a, and hence a ∈ (T̂1 ◦ T̂2)[c1].

Since T̂1 ◦ T̂2 = T̂2 ◦ T1, it remains to show that (T̂1 ◦ T̂2)[c2] ⊆ S1[a]. Let

a′ ∈ (T̂1 ◦ T̂2)[c2]. Then there is b ∈ B2 such that c2 T̂2 b T̂1 a′. We have

b ∈ T̂2[c2] ⊆ S2[b2], and thus b2 S2 b. From b2 S2 b T̂1 a′ we deduce, using

the compatibility of T̂1, that b2 T̂1 a′. Therefore, a′ ∈ T̂1[b2] ⊆ S1[a], and

hence a′ ∈ S1[a], as desired.
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Definition 5.9. Let SubS5CS be the wide subcategory of SubS5S whose mor-

phisms are continuous compatible subordinations, and define DeVCS simi-

larly.

We next show that Theorem 4.18 restricts to yield the corresponding dual

equivalences for SubS5CS and DeVCS. For this we need the following lemma.

Lemma 5.10. Let (B1, S1), (B2, S2) ∈ SubS5S and T : B1 → B2 be a mor-

phism in SubS5S. Let also L1, L2 be compact regular frames and □ : L1 →
L2 a preframe homomorphism.

(1) If T : B1 → B2 is a continuous compatible subordination, then the

map RI(T ) : RI(B2, S2) → RI(B1, S1) is a c-morphism.

(2) If □ : L1 → L2 is a c-morphism, then B(□) : B(L2) → B(L1) is

continuous.

(3) If T : B1 → B2 is an isomorphism in SubS5S, then T is an isomor-

phism in SubS5CS.

(4) If □ : L1 → L2 is an isomorphism in KRFrmP, then □ is an isomor-

phism in KRFrmC.

Proof. (1). Let □ = RI(T ). Then □ is a preframe homomorphism by

Theorem 3.5. We define ♢ : RI(B2, S2) → RI(B1, S1) by

♢I = {a ∈ B1 | ∃b ∈ I : a ∈ L(T̂ [b])}.

We first show that ♢ is well defined. It is straightforward to see that ♢I is

an ideal of B1. To see that ♢I is a round ideal, let a ∈ ♢I . Then there

is b ∈ I with a ∈ L(T̂ [b]). Since I is a round ideal, there is d ∈ I with

b S2 d. Because T is continuous, there is c ∈ T̂ [b] such that c ∈ L(T̂ [d]) (see

Lemma 5.7(1b)). Therefore, c ∈ ♢I since d ∈ I . Because T̂ is compatible,

from b T̂ c it follows that there is c′ ∈ T̂ [b] with c′ S1 c. But then a ≤ c′

since a ∈ L(T̂ [b]). Thus, a ≤ c′ S1 c, so a S1 c, and hence ♢I is a round

ideal.

We next show that ♢ preserves arbitrary joins. It is straightforward to

see that I ⊆ J implies ♢I ⊆ ♢J . Therefore, if {Iα} ⊆ RI(B2, S2), then∨
♢Iα ⊆ ♢ (

∨
Iα). For the reverse inclusion, let x ∈ ♢ (

∨
Iα). Then there
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is b ∈
∨
Iα with x ∈ L(T̂ [b]). Since b ∈

∨
Iα, there exist α1, . . . , αn

and di ∈ Iαi
for i = 1, . . . , n such that b ≤ d1 ∨ · · · ∨ dn. Thus, x ∈

L(T̂ [d1 ∨ · · · ∨ dn]). Because Iαi
is a round ideal for each i, it follows that

there exist ei ∈ Iαi
with di S2 ei for each i. By continuity of T , there exist

ai ∈ T̂ [di] with ai ∈ L(T̂ [ei]) for each i. So ai ∈ ♢Iαi
for each i and

a1 ∨ · · · ∨ an ∈ T̂ [d1 ∨ · · · ∨ dn]. Since x ∈ L(T̂ [d1 ∨ · · · ∨ dn]), it follows

that x ≤ a1 ∨ · · · ∨ an. Consequently, x ∈
∨
♢Iα.

It is left to prove that □I ∩ ♢J ⊆ ♢(I ∩ J) and □(I ∨ J) ⊆ □I ∨ ♢J
for all I, J ∈ RI(B2, S2). Let x ∈ □I ∩♢J . Since x ∈ □I = T−1[I], there

is a ∈ I with x T a. Because x ∈ ♢J , there is b ∈ J with x ∈ L(T̂ [b]). We

first show that x ∈ L(T̂ [a∧ b]). If e ∈ T̂ [a∧ b], then ¬e T (¬a∨¬b). Since

x T a, it follows that (x∧¬e) T (a∧(¬a∨¬b)). So (x∧¬e) T (a∧¬b), and

hence (x ∧ ¬e) T ¬b. Therefore, ¬x ∨ e ∈ T̂ [b]. Because x ∈ L(T̂ [b]), we

have x ≤ ¬x∨ e, and so x ≤ e. Thus, x ∈ L(T̂ [a∧ b]). Since a∧ b ∈ I ∩ J ,

we conclude that x ∈ ♢(I ∩ J).
Finally, let x ∈ □(I ∨ J) = T−1[I ∨ J ]. Then there is y ∈ I ∨ J with

x T y. Thus, there exist a ∈ I , b ∈ J with y ≤ a ∨ b. Since I and J are

round ideals, there exist a′ ∈ I , b′ ∈ J with a S2 a′ and b S2 b′. Because

¬a′ S2 ¬a and b S2 b
′, the continuity of T yields that there exist c ∈ T̂ [¬a′]

and d ∈ T̂ [b] with c ∈ L(T̂ [¬a]) and d ∈ L(T̂ [b′]). From c ∈ T̂ [¬a′] it

follows that ¬c T a′, so ¬c ∈ T−1[I] = □I . Since d ∈ L(T̂ [b′]) and b′ ∈ J ,

we have d ∈ ♢J . Therefore, ¬c ∨ d ∈ □I ∨ ♢J . We prove that x ≤ ¬c ∨ d,

which is equivalent to c ≤ ¬x∨d. We have x T (a∨b) and ¬d T ¬b because

d ∈ T̂ [b]. Therefore, (x∧¬d) T ((a∨b)∧¬b), and so (x∧¬d) T (a∧¬b) ≤ a.

Thus, ¬x ∨ d ∈ T̂ [¬a]. Since c ∈ L(T̂ [¬a]), we obtain c ≤ ¬x ∨ d.

Consequently, x ∈ □I ∨ ♢J because x ≤ ¬c ∨ d ∈ □I ∨ ♢J .

(2). Let T = B(□). By Lemma 4.1, T : B(L2) → B(L1) is a morphism

in SubS5S. To see that it is continuous, let b1, b2 ∈ B(L1) with b1 ≺ b2. Set

a = ¬□¬b2. Then a ∈ B(L2). We show that b1 T̂ a and a ∈ L(T̂ [b2]).
We have ¬b2 ≺ ¬b1, so □¬b2 ≺ □¬b1 since □ preserves ≺ (see [BBH15,

Lem. 3.6]). The definition of ≺ implies ¬¬□¬b2 ≺ □¬b1. Therefore, ¬a ≺
□¬b1, which gives ¬a T ¬b1. Thus, b1 T̂ a. If x ∈ T̂ [b2], then ¬x T ¬b2,
so ¬x ≺ □¬b2. Therefore, a = ¬□¬b2 ≺ x, and hence a ≤ x. Thus,

a ∈ L(T̂ [b2]), and so T is continuous.

(3). This is a consequence of a stronger result proved in Lemma 6.5(3)
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below.

(4). Since □ is an isomorphism in KRFrmP, it is a poset isomorphism.

Defining ♢ := □ then yields that □ is an isomorphism in KRFrmC.

As an immediate consequence of Theorem 4.18 and Lemma 5.10 we

obtain:

Theorem 5.11.

(1) The dual equivalence between SubS5S and KRFrmP restricts to a dual

equivalence between their wide subcategories SubS5CS and KRFrmC.

(2) The dual equivalence between DeVS and KRFrmP restricts to a dual

equivalence between their wide subcategories DeVCS and KRFrmC.

We conclude this section by showing that DeVCS is dually isomorphic to

DeVC. Let (B1, S1) and (B2, S2) be de Vries algebras. If T : B1 → B2 is a

morphism in DeVCS, we define □T : B2 → B1 by □T b =
∨

T−1[b]. Also, if

□ : B2 → B1 is a morphism in DeVC, we define T□ : B1 → B2 by

a T□ b ⇐⇒ ∃b′ ∈ B2 (a S1 □b′ and b′ S2 b).

Lemma 5.12. Let (B1, S1) and (B2, S2) be de Vries algebras.

(1) If T : B1 → B2 is a morphism in DeVCS, then □T : B2 → B1 is a

morphism in DeVC.

(2) If □ : B2 → B1 is a morphism in DeVC, then T□ : B1 → B2 is a

morphism in DeVCS.

(3) □T□
= □.

(4) T□T
= T .

Proof. (1). We first show that □T is de Vries multiplicative. It is obvious

that □T1 = 1. Let b1 S2 b2 and d1 S2 d2. Since T is continuous and B1 is

complete, by Lemma 5.7(2c)

(∨
T−1 [b1]

)
T b2 and

(∨
T−1 [d1]

)
T d2.
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Therefore, (□T b1 ∧ □Td1) T (b2 ∧ d2). Since T is compatible, there is

x ∈ B1 such that (□T b1 ∧□Td1) S1 x T (b2 ∧ d2). Thus,

(□T b1 ∧□Td1) S1 x ≤ □T (b2 ∧ d2),

and hence (□T b1 ∧ □Td1) S1 □T (b2 ∧ d2). Consequently, □T is de Vries

multiplicative. To see that □T is lower continuous, let x ∈ T−1[b]. Since T
is compatible, x T y S2 b for some y ∈ B2. Therefore, x ≤ □Ty, and hence

□T b =
∨
{□Ty | y S2 b}. Thus, □T is a morphism in DeVC.

(2). That 0 T□ 0 is straightforward and that 1 T□ 1 follows from

□1 = 1. Since □ is lower continuous, it is order preserving (see [BBH15,

Prop. 4.15(2)] and Remark 2.10(2)). Suppose a, a′ T□ b. Then there exist b1
and b2 such that a S1 □b1, b1 S2 b, a′ S1 □b2, and b2 S2 b. From a S1 □b1
and a′ S1 □b2 it follows that (a ∨ a′) S1 (□b1 ∨ □b2) ≤ □(b1 ∨ b2), and

so (a ∨ a′) S1 □(b1 ∨ b2). Also, from b1 S2 b and b2 S2 b it follows that

(b1 ∨ b2) S2 b. Thus, (a ∨ a′) T□ b. Next suppose a T□ b, b′. Then there

exist b1 and b2 such that a S1 □b1, b1 S2 b, a S1 □b2, and b2 S2 b′. From

a S1 □b1 and a S1 □b2 it follows that a S1 (□b1 ∧ □b2) = □(b1 ∧ b2)
(see [BBH15, Prop. 4.15(2)] and Remark 2.10(2)). Also, from b1 S2 b and

b2 S2 b
′ it follows that (b1 ∧ b2) S2 (b∧ b′). Thus, a T□ (b∧ b′). Finally, that

a ≤ a′ T□ b′ ≤ b implies a T□ b is straightforward. This gives that T□ is a

subordination.

That T□ ⊆ S2 ◦T□ and T□ ⊆ T□ ◦S1 follow from the fact that S2 and S1

satisfy (S7). The reverse inclusions are obvious, so S2 ◦T□ = T□ = T□ ◦S1.

This yields that T□ is a compatible subordination.

It is left to prove that T□ is continuous. Let b1 S2 b2. Then there is

y ∈ B2 with b1 S2 y S2 b2. Set a = □b1. Since a S1 □y and y S2 b2, we

have a T□ b2, so a ∈ T−1
□ [b2]. Moreover, if x T□ b1, then there is z ∈ B2

such that x S1 □z and z S2 b1. Therefore, x S1 □b1, and so x S1 a. Thus,

a ∈ U(T−1
□ [b1]) by (S5), and hence T□ is continuous by Lemma 5.7(1c).

Consequently, T□ is a morphism in DeVCS.

(3). We have

□T□
b =

∨
T−1
□ [b] =

∨
{a | ∃b′ ∈ B2 (a S1 □b′ and b′ S2 b)}

=
∨

{□b′ | b′ S2 b} = □b,
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where the second to last equality follows from the facts that S2 satisfies (S7)

and b′ S2 b implies □b′ S1 □b, and the last equality from the lower continuity

of □.

(4). We have

a T□T
b ⇐⇒ ∃b′ ∈ B2 (a S1 □T b

′ and b′ S2 b)

⇐⇒ ∃b′ ∈ B2

(
a S1

∨
T−1[b′] and b′ S2 b

)
.

We show that the last condition is equivalent to a T b. Since T is a mor-

phism in DeVCS and b′ S2 b, we have (
∨
T−1[b′]) T b by Lemma 5.7(2c).

Therefore, a S1 (
∨
T−1[b′]) T b, and so a T b. Conversely, if a T b, there

are a′ ∈ B1 and b′ ∈ B2 such that a S1 a′ T b′ S2 b. Thus, a′ ≤
∨
T−1[b′],

and hence a S1

∨
T−1[b′].

As an immediate consequence of Lemma 5.12 we obtain:

Theorem 5.13. DeVCS is dually isomorphic to DeVC.

Putting Theorems 5.11 and 5.13 together yields the following analogue

of the commutative diagram of equivalences and dual equivalences given at

the end of Section 4.

SubS5CS

KRFrmC DeVCS DeVC

RI
NI

B

∆

d

Remark 5.14. As we pointed out in Section 2, KRFrmC and DeVC are dually

equivalent to KHausC. Hence, SubS5CS and DeVCS are equivalent to KHausC.

The wide subcategories of StoneER and GleR that are equivalent to KHausC

can be described as follows.

Let (X,E) be an S5-subordination space. A morphism R : X1 → X2 in

StoneER is continuous if R−1[U ] is open for each E2-saturated open U ⊆
X2. Let StoneEC be the wide subcategory of StoneER whose morphisms

are continuous morphisms in StoneER and define GleC similarly. Using

Lemma 5.3 it is straightforward to see that the equivalence between StoneER

and GleR described in Remark 2.15(4) restricts to an equivalence between
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StoneEC and GleC. By [BGHJ19, Thm. 4.16], GleC is equivalent to KHausC.

Thus, each of KHausC, StoneEC, and GleC is equivalent or dually equivalent

to each of the categories in the diagram above.

6. Functional subordinations

In this section we further restrict our attention to those wide subcategories

of SubS5S and KRFrmP that encode continuous functions between compact

Hausdorff spaces. The wide subcategories of SubS5S and StoneER equiva-

lent to KHaus were described in [ABC23, Sec. 6], where it was shown that

they are equivalent to the categories of maps in the allegories SubS5S and

StoneER. This has resulted in the following notion:

Definition 6.1. [ABC23, Def. 6.4]

1. Call a morphism T : (B1, S1) → (B2, S2) in SubS5S functional if

T̂ ◦ T ⊆ S1 and S2 ⊆ T ◦ T̂ .

2. Let SubS5F be the wide subcategory of SubS5S whose morphisms are

functional morphisms, and define DeVF similarly.

Remark 6.2. If T is functional, then T is continuous. Indeed, let b1 S2 b2.
Since T is functional, S2 ⊆ T ◦ T̂ , so there exists a ∈ B1 such that b1 T̂ a
and a T b2. Thus, a ∈ T̂ [b1]. Moreover, if a′ ∈ T̂ [b2], then b2 T̂ a′.

Therefore, a T b2 T̂ a′, so a S1 a
′ because T̂ ◦ T ⊆ S1 by the functionality

of T . Consequently, T is continuous. Thus, SubS5F is a wide subcategory

of SubS5CS. Similarly, DeVF is a wide subcategory of DeVCS.

We now give a characterization of functional morphisms. For another

characterization see [ABC23, Lem. 6.5].

Lemma 6.3. Let T : (B1, S1) → (B2, S2) be a morphism in SubS5S. The

following conditions are equivalent.

(1) T is functional.

(2) The following hold for all a ∈ B1 and b1, b2, b
′
1, b

′
2 ∈ B2:
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(a) If a T 0, then a = 0.

(b) If a T (b1∨b2), b1 S2 b
′
1, and b2 S2 b

′
2, then there are a1, a2 ∈ B1

such that a S1 (a1 ∨ a2), a1 T b′1, and a2 T b′2.

Proof. By [ABC23, Lem. 6.5(1)], T̂ ◦ T ⊆ S1 is equivalent to (2a). There-

fore, it is sufficient to prove that, under these equivalent conditions, S2 ⊆
T ◦ T̂ is equivalent to (2b).

To prove that S2 ⊆ T ◦ T̂ implies (2b), let a T (b1 ∨ b2), b1 S2 b′1, and

b2 S2 b′2. Since S2 ⊆ T ◦ T̂ , from b1 S2 b′1 and b2 S2 b′2 it follows that

there are a1, a2 ∈ B1 such that b1 T̂ a1 T b′1 and b2 T̂ a2 T b′2. Therefore,

a T (b1 ∨ b2) T̂ (a1 ∨ a2). Since T̂ ◦ T ⊆ S1, it follows that a S1 (a1 ∨ a2).

To prove that (2b) implies S2 ⊆ T ◦ T̂ , let b1, b2 ∈ B2 be such that

b1 S2 b2. By (S7), there is b ∈ B2 such that b1 S2 b S2 b2. We have

1 T (¬b ∨ b). By (S6), b1 S2 b implies ¬b S2 ¬b1. Thus, by (2b), there are

a1, a2 ∈ B1 such that 1 S1 (a1 ∨ a2), a1 T ¬b1, and a2 T b2. By (S5), from

1 S1 (a1 ∨ a2) it follows that 1 = a1 ∨ a2, so ¬a1 ≤ a2. Since a1 T ¬b1, we

have b1 T̂ ¬a1 ≤ a2, and hence b1 T̂ a2. Because b1 T̂ a2 T b2, it follows

that b1 (T ◦ T̂ ) b2. Thus, S2 ⊆ T ◦ T̂ , completing the proof.

Our main goal in this section is to show that Theorem 4.18 restricts to

yield the corresponding dual equivalences for SubS5F and DeVF. For this we

need Lemma 6.5, which requires the following:

Remark 6.4. Let T : (B1, S1) → (B2, S2) be a morphism in SubS5S. Since

functional morphisms are maps in the allegory SubS5S [ABC23, Def. 6.4],

it follows from [FS90, p. 199] that T is an isomorphism iff T and T̂ are both

functional, in which case T̂ is the inverse of T .

Lemma 6.5. Let (B1, S1), (B2, S2) ∈ SubS5S and T : B1 → B2 be a mor-

phism in SubS5S. Let also L1, L2 be compact regular frames and □ : L1 →
L2 a preframe homomorphism.

(1) If T : B1 → B2 is functional, then RI(T ) : RI(B2) → RI(B1) is a

frame homomorphism.

(2) If □ : L1 → L2 is a frame homomorphism, then B(□) : BL2 → BL1

is functional.
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(3) If T : B1 → B2 is an isomorphism in SubS5S, then T is an isomor-

phism in SubS5F.

(4) If □ : L1 → L2 is an isomorphism in KRFrmP, then □ is an isomor-

phism in KRFrm.

Proof. (1). Since RI(T ) is a preframe homomorphism (see Theorem 3.5),

it is sufficient to prove that it preserves bottom and binary joins. To see that

RI(T ) preserves bottom, it is enough to show that T−1[{0}] ⊆ {0}, which

follows from Lemma 6.3(2a). To see that RI(T ) preserves binary joins, let

I1, I2 be round ideals of B2. It is sufficient to prove that T−1[I1 ∨ I2] ⊆
T−1[I1] ∨ T−1[I2]. Let a ∈ T−1[I1 ∨ I2]. Then there are b1 ∈ I1, b2 ∈ I2
such that a T (b1 ∨ b2). Since I1 and I2 are round ideals, there are b′1 ∈ I1
and b′2 ∈ I2 such that b1 S2 b′1 and b2 S2 b′2. By Lemma 6.3(2b), there

are a1, a2 ∈ B1 such that a S1 (a1 ∨ a2), a1 T b′1, and a2 T b′2. Thus,

a ∈ T−1[I1] ∨ T−1[I2].
(2). We prove that B(□) satisfies Lemma 6.3(2). To see (2a), let b ∈

BL2 be such that b B(□) 0, so b ≺ □0. Since □ is a frame homomorphism,

□0 = 0. Therefore, b ≺ 0, and hence b = 0 by (S5). To see (2b), let

b ∈ BL2 and a1, a2, a
′
1, a

′
2 ∈ BL1 be such that b B(□) (a1 ∨ a2), a1 ≺ a′1,

and a2 ≺ a′2. Then b ≺ □(a1 ∨ a2). But □(a1 ∨ a2) = □a1 ∨ □a2 because

□ is a frame homomorphism. Therefore, b ≺ □a1 ∨ □a2, and so there is

b′ ∈ B(□) such that b ≺ b′ ≺ □a1∨□a2. Set b1 = b′∧□a1 and b2 = b′∧□a2.
We have ai ≺ a′i implies □ai ≺ □a′i for i ∈ {1, 2}. Thus,

bi = b′ ∧□ai ≤ □ai ≺ □a′i,

so bi ≺ □a′i, and hence bi B(□) a′i. Moreover, b ≺ b′ and b ≺ □a1 ∨ □a2
imply that

b ≺ b′ ∧ (□a1 ∨□a2) = (b′ ∧□a1) ∨ (b′ ∧□a2) = b1 ∨ b2.

This proves (2b).

(3). This follows from Remark 6.4.

(4). In both KRFrmP and KRFrm isomorphisms are order-isomorphisms.

From Theorem 4.18 and Lemma 6.5 we obtain:
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Theorem 6.6.

(1) The dual equivalence between SubS5S and KRFrmP restricts to a dual

equivalence between their wide subcategories SubS5F and KRFrm.

(2) The dual equivalence between DeVS and KRFrmP restricts to a dual

equivalence between their wide subcategories DeVF and KRFrm.

In addition, we have:

Theorem 6.7 ([ABC23, Thm. 6.18]). DeV and DeVF are dually isomorphic.

Consequently, we arrive at the following analogue of the commutative

diagram of equivalences and dual equivalences given at the end of Section 5.

SubS5F

KRFrm DeVF DeV

RI
NI

B

∆

d

Remark 6.8. We recall from [ABC23, Def. 6.1] that StoneEF is the wide

subcategory of StoneER whose morphisms R : (X1, E1) → (X2, E2) satisfy

E1 ⊆ R˘ ◦ R and R ◦ R˘ ⊆ E2. We call such morphisms functional and

define Gle similarly. By [ABC23, Thm. 6.9], the categories SubS5F, DeVF,

StoneEF, Gle, and KHaus are equivalent. Thus, each of these is equivalent or

dually equivalent to the categories in the above diagram.

We thus arrive at the following diagram, in which empty boxes of the

diagram in Fig. 1 are filled. The number under each double arrow indicates

the corresponding statement in the body of the paper.

For the reader’s convenience we also list all the categories involved in

the diagram.

188



M. ABBADINI, ET AL. SUBORDINATION ALGEBRAS

SubS5S DeVS KRFrmP KHausR StoneER GleR

SubS5CS DeVCS DeVC KRFrmC KHausC StoneEC GleC

SubS5F DeVF DeV KRFrm KHaus StoneEF Gle

4.13

d

4.18

d

2.2 2.14 2.14

5.11

d

5.13 2.3
2.11

d

2.3 5.14 5.14

6.6

d

6.7 2.1
2.8

d

2.1 6.8 6.8

Figure 2

Category Objects Morphisms

SubS5S S5-subordination algebras Compatible subordinations

SubS5CS S5-subordination algebras Continuous compatible subordinations

SubS5F S5-subordination algebras Functional compatible subordinations

DeVS De Vries algebras Compatible subordinations

DeVCS De Vries algebras Continuous compatible subordinations

DeVF De Vries algebras Functional compatible subordinations

DeVC De Vries algebras Lower continuous de Vries mult. maps

DeV De Vries algebras De Vries morphisms

Table 1: Categories of subordination algebras.

Category Objects Morphisms

KRFrmP Compact regular frames Preframe homomorphisms

KRFrmC Compact regular frames Continuous preframe homomorphisms

KRFrm Compact regular frames Frame homomorphisms

Table 2: Categories of compact regular frames.
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Category Objects Morphisms

KHausR Compact Hausdorff spaces Closed relations

KHausC Compact Hausdorff spaces Continuous relations

KHaus Compact Hausdorff spaces Continuous functions

Table 3: Categories of compact Hausdorff spaces.

Category Objects Morphisms

StoneER S5-subordination spaces Compatible closed relations

StoneEC S5-subordination spaces Continuous compatible closed relations

StoneEF S5-subordination spaces Functional compatible closed relations

GleR Gleason spaces Compatible closed relations

GleC Gleason spaces Continuous compatible closed relations

Gle Gleason spaces Functional compatible closed relations

Table 4: Categories of subordination spaces.

7. Dual descriptions of the completions

In this final section we give dual descriptions of the round ideal and Mac-

Neille completions of S5-subordination algebras.

Recall that if B is a boolean algebra and X is the Stone space of B, then

the isomorphism ϕ : B → Clop(X) is given by the Stone map

ϕ(a) = {x ∈ X | a ∈ x}.

This isomorphism induces an order-isomorphism Φ between the frame of

ideals of B and the frame of open subsets of X , as well as an order-isomor-

phism Ψ between the frame of filters of B and the frame of closed subsets of

X ordered by reverse inclusion (see, e.g., [GH09, Thm. 33]). The isomor-

phisms are defined as follows:

Φ(I) =
⋃

{ϕ(a) | a ∈ I} and Ψ(F ) =
⋂

{ϕ(a) | a ∈ F}.

It belongs to folklore that for an ideal I and filter F of B, we have

Φ(¬F ) = Ψ(F )c, Φ(L(F )) = int (Ψ(F )),
Ψ(¬I) = Φ(I)c, Ψ(U(I)) = cl (Φ(I)).

(6)
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For the reader’s convenience, we give a proof of Ψ(U(I)) = cl (Φ(I)). The

other three equalities are proved similarly. Since b ∈ U(I) iff ϕ(a) ⊆ ϕ(b)
for each a ∈ I , we have

Ψ(U(I)) =
⋂

{ϕ(b) | b ∈ U(I)} =
⋂

{ϕ(b) | Φ(I) ⊆ ϕ(b)} = cl(Φ(I)),

where the last equality follows from the fact that X is a Stone space, hence

the closure of a set is the intersection of the clopen sets containing it.

Let (B, S) ∈ SubS5S. We recall from Remark 2.15(6) that the S5-

subordination space of (B, S) is (X,RS) where X is the Stone space of

B and RS is given by x RS y iff S[x] ⊆ y. For simplicity, we write (X,R)
instead of (X,RS).

Lemma 7.1. Let (B, S) be an S5-subordination algebra and (X,R) its S5-

subordination space.

(1) If I is an ideal of B, then Φ(S−1[I]) = □RΦ(I).

(2) If F is a filter of B, then Ψ(S[F ]) = R[Ψ(F )].

Proof. (1). We have

Φ(S−1[I]) =
⋃

{ϕ(a) | a ∈ S−1[I]} =
⋃

{ϕ(a) | ∃ b ∈ I : a S b}

=
⋃

{ϕ(a) | ∃ b ∈ I : R[ϕ(a)] ⊆ ϕ(b)}

=
⋃

{ϕ(a) | R[ϕ(a)] ⊆ Φ(I)}

=
⋃

{ϕ(a) | ϕ(a) ⊆ □RΦ(I)} = □RΦ(I),

where the third equality follows from the fact that a S b iff R[ϕ(a)] ⊆ ϕ(b)
(see, e.g., [BBSV17, Lem. 2.20]); the fourth from the fact that R[ϕ(a)] is

closed, hence compact in X; and the last from the fact that □RΦ(I) is open

and {ϕ(a) | a ∈ B} forms a basis for X .

(2). We have:

Ψ(S[F ]) = (Φ(¬S[F ]))c (by (6))

= (Φ(S−1[¬F ]))c (by Lemma 3.3)

= (□RΦ(¬F ))c (by item (1))

= (□R(Ψ(F )c))c (by (6))

= R[Ψ(F )] (by Remark 5.2(2)).
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We recall from the introduction that O(X) denotes the frame of open

subsets of a topological space X . Since the set of R-saturated open subsets of

an S5-subordination space (X,R) forms a subframe of O(X), it is a frame.

Definition 7.2. For an S5-subordination space X = (X,R) let OR(X) be

the frame of R-saturated open subsets of X .

Lemma 7.3. Let B = (B, S) be an S5-subordination algebra and X =
(X,R) its S5-subordination space. An ideal I of B is a round ideal iff Φ(I)
is an R-saturated open subset of X . Therefore, RI(B) is isomorphic to

OR(X).

Proof. We have that I is a round ideal iff I = S−1[I]. Since Φ is an isomor-

phism, Lemma 7.1(1) implies that I is a round ideal iff Φ(I) = □RΦ(I).
Therefore, I is a round ideal iff Φ(I) is R-saturated. Thus, the restriction of

Φ is an isomorphism from RI(B) to OR(X).

Let X = (X,R) be an S5-subordination space and π : X → X/R the

quotient map given by π(x) = [x]. It is well known that π lifts to an isomor-

phism between O(X/R) and OR(X) (see, e.g., [Eng89, Prop. 2.4.3]). This

together with Lemma 7.3 yields the following result, which by Isbell duality

gives an alternative proof of Theorem 3.4(4).

Theorem 7.4. Let B = (B, S) be an S5-subordination algebra and X =
(X,R) its subordination space. Then RI(B) is isomorphic to O(X/R).

We recall that the MacNeille completion of a boolean algebra B is iso-

morphic to RO(X) where X is the Stone space of B (see, e.g., [GH09,

Thm. 40]). We will generalize this result to the setting of S5-subordination

algebras. Since regular opens are fixpoints of int cl : O(X) → O(X), we in-

troduce the notion of an R-regular open subset of an S5-subordination space

(X,R) by replacing int with □R int and cl with R cl.

Definition 7.5. Let X = (X,R) be an S5-subordination space. We say

that an R-saturated open subset of X is R-regular open if it is a fixpoint

of □R intR cl : OR(X) → OR(X). Let ROR(X) be the poset of R-regular

open subsets of X .
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Lemma 7.6. Let X = (X,R) be an S5-subordination space. We equip

ROR(X) with the relation ≺ given by

U ≺ V ⇐⇒ R[cl(U)] ⊆ V.

Then ROR(X) is a de Vries algebra isomorphic to RO(X/R).

Proof. As we pointed out in the paragraph before Theorem 7.4, π : X →
X/R lifts to an isomorphism f : OR(X) → O(X/R) given by f(U) =
π[U ]. We show that for each U ∈ OR(X) we have

U ∈ ROR(X) ⇐⇒ π[U ] ∈ RO(X/R).

On the one hand,

U ∈ ROR(X) ⇐⇒ U = □R(int(R[cl(U)]))

⇐⇒ π[U ] = π[□R(int(R[cl(U)]))].

On the other hand,

π[U ] ∈ RO(X/R) ⇐⇒ π[U ] = int(cl(π[U ])).

Therefore, it is enough to prove that

π[□R(int(R[cl(U)]))] = int(cl(π[U ])).

Since π : X → X/R is a quotient map and X/R is compact Hausdorff, π is

a closed map. Thus, for each R-saturated subset G of X we have

π[R[cl(G)]] = π[cl(G)] = cl(π[G]). (7)

Moreover, since G is R-saturated,

π[Gc] = π[G]c. (8)

Therefore, if H is an R-saturated subset of X , then

π[□R(int(H))] = π[R[cl(Hc)]c]

= π[R[cl(Hc)]]c (by (8))

= cl(π[Hc])c (by (7))

= int(π[Hc]c)

= int(π[H]) (by (8)).

193



M. ABBADINI, ET AL. SUBORDINATION ALGEBRAS

This equation together with (7) yields

π[□R(int(R[cl(U)]))] = int(π[R[cl(U)]]) = int(cl(π[U ])).

Thus, f restricts to a poset isomorphism and hence a boolean isomorphism

between ROR(X) and RO(X/R). By (7), f also preserves and reflects the

relation:

U ≺ V ⇐⇒ R[cl(U)] ⊆ V ⇐⇒ π[R[cl(U)]] ⊆ π[V ]

⇐⇒ cl(π[U ]) ⊆ π[V ] ⇐⇒ π[U ] ≺ π[V ].

Therefore, f is a structure-preserving bijection, hence an isomorphism of de

Vries algebras by [dV62, Prop. 1.5.5].

Proposition 7.7. Let B = (B, S) be an S5-subordination algebra and X =
(X,R) its S5-subordination space. For a round ideal I of B, we have:

(1) Φ(I∗) = □Rint(Φ(I)
c).

(2) Φ(I∗∗) = □Rint(R[clΦ(I)]).

(3) I is a normal round ideal iff Φ(I) is an R-regular open subset.

Consequently, NI(B) is isomorphic to ROR(X).

Proof. (1). We have

Φ(I∗) = Φ(¬S[U(I)]) (by Theorem 3.4(2))

= (Ψ(S[U(I)]))c (by (6))

= (R[Ψ(U(I))])c (by Lemma 7.1(2))

= (R[clΦ(I)])c (by (6))

= □Rint(Φ(I)
c),

where the last equality follows from the fact that clU = (int(U c))c for each

U ⊆ X .

(2). By the proof of item (1), if I is a round ideal, then

Φ(I∗) = (R[clΦ(I)])c = □Rint(Φ(I)
c).
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Thus,

Φ(I∗∗) = □Rint(Φ(I
∗)c) = □Rint(((R[clΦ(I)])c)c) = □Rint(R[clΦ(I)]).

(3). Since I is normal iff I = I∗∗, this follows from item (2) and Defini-

tion 7.5.

Finally, since Φ is an order-isomorphism, its restriction is an isomor-

phism of the boolean algebras NI(B) and ROR(X). Moreover, if I, J ∈
NI(B), then

I ≺ J ⇐⇒ I∗ ∨ J = B

⇐⇒ Φ(I∗ ∨ J) = X

⇐⇒ Φ(I∗) ∪ Φ(J) = X

⇐⇒ R[clΦ(I)]c ∪ Φ(J) = X (by the proof of item (1))

⇐⇒ R[clΦ(I)] ⊆ Φ(J)

⇐⇒ Φ(I) ≺ Φ(J).

Therefore, Φ is an isomorphism of de Vries algebras.

Combining Lemma 7.6 and Proposition 7.7 yields the following result,

which gives an alternative proof of Proposition 4.4.

Theorem 7.8. Let B = (B, S) be an S5-subordination algebra and X =
(X,R) its S5-subordination space. Then NI(B) is isomorphic to RO(X/R).
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COVERS IN THE CANONICAL

GROTHENDIECK TOPOLOGY

Cynthia Lester

Résumé. Nous explorons la topologie canonique de Grothendieck dans cer-

taines circonstances spécifiques. Tout d’abord, nous utilisons une description

de la topologie canonique pour obtenir une variante du théorème de Giraud,

qui indique quand une catégorie est équivalente à une catégorie de gerbes

sur un site de Grothendieck. Ensuite, nous explorons la topologie canonique

de Grothendieck sur les catégories d’ensembles et d’espaces topologiques.

Nous donnons une base et une présentation pour la topologie canonique sur

la catégorie des ensembles. De plus, puisqu’il existe plusieurs catégories qui

peuvent représenter la catégorie des espaces topologiques, nous explorons

deux de ces catégories : la catégorie de tous les espaces topologiques, et la

catégorie des espaces de Hausdorff faiblement engendrés et compacts. Cette

exploration se concentre sur les différences des topologies canoniques de

Grothendieck résultantes, ainsi que sur leurs bases et présentations. Troisièmement,

nous examinons les topologies canoniques de Grothendieck sur la catégorie

des R-modules. Une attention particulière est accordée à la recherche de

réductions et à la catégorie des groupes abéliens.

Abstract. We explore the canonical Grothendieck topology in some specific

circumstances. First, we use a description of the canonical topology to get

a variant of Giraud’s Theorem, which indicates when a category is equiva-

lent to a category of sheaves on a Grothendieck site. Second, we explore the

canonical Grothendieck topology on the categories of sets and topological

spaces. We give a basis and presentation for the canonical topology on the

category of sets. Additionally, since there are several categories that can rep-

resent “the category of topological spaces,” we explore two such categories:
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the category of all topological spaces, and the category of compactly gener-

ated weakly Hausdorff spaces. This exploration focuses on the differences of

the resulting canonical Grothendieck topologies, along with their bases and

presentations. Third, we look at the canonical Grothendieck topology on the

category of R-modules. A special focus is paid to finding reductions and to

the category of abelian groups.

Keywords. Grothendieck topology, Giraud’s Theorem, colimit, quotient space,

compactly generated weakly Hausdorff, abelian group

Mathematics Subject Classification (2020). 18F10, 18A30, 54B30, 54B15,

20K25, 54B40, 18A20, 16D10.
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1. Introduction

In SGA 4.2.2 Verdier defined the canonical Grothendieck topology as the

largest Grothendieck topology where all representable presheaves are sheaves.

This paper grew out of an attempt to obtain a precise description of the cov-

ers in this Grothendieck topology in the cases of some familiar categories;

we investigate the question for sets, abelian groups, R-modules, topological

spaces and compactly generated Hausdorff spaces. The category of sets is
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simple enough that we can give a complete answer, and in the two categories

of topological spaces we give a fairly precise description. The question for

abelain groups and R-modules seems to be very subtle, though, and we have

only been able to obtain partial results. Along the way we prove that the

canonical topology has a natural appearance in Giraud’s Theorem, which is

the source for some of our interest in it.

Sieves will be of particular importance in this paper and so we start with

a reminder of its definition; we follow the notation and terminology used by

Mac Lane and Moerdijk in [S. Mac Lane and I. Moerdijk, 2012]. For any

object X of a category C, we call S a sieve on X if S is a collection of mor-

phisms, all of whose codomains are X , that is closed under precomposition,

i.e. if f ∈ S and f ◦ g makes sense, then f ◦ g ∈ S. In particular, we can

view a sieve S on X as a full subcategory of the overcategory (C ↓ X).
By work from [C. Lester, 2019], the canonical Grothendieck topology

can be characterized in terms of colimits. Specifically, the canonical Grothendieck

topology can be described as the collection of all universal colim sieves

where:

Definition 1.1. For a category C, an object X of C and sieve S on X , we call

S a colim sieve if colim−−−→S
U exists and the canonical map colim−−−→S

U → X is

an isomorphism. (Alternatively, S is a colim sieve if X is the universal

cocone under the diagram U : S → C.) Moreover, we call S a universal

colim sieve if for all arrows α : Y → X in C, α∗S is a colim sieve on Y .

One use of this presentation is the following variant of Giraud’s Theo-

rem:

Proposition 3.14. If E is a ‘nice’ category, then E is equivalent to the cate-

gory of sheaves on E under the canonical topology.

The universal-colim-sieve presentation also affords us an explicit de-

scription of the canonical Grothendieck topology’s covers on the category

of topological spaces:

Proposition 4.6. In the category of all topological spaces, {Aα → X}α∈A is

part of a basis for the canonical topology if and only if α :
∐

α∈AAα → X is
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a universal quotient map (i.e. α and every pullback of α is a quotient map).

Additionally, a sieve S on X is a (universal) colim sieve if and only if there

exists some collection {Aα → X}α∈A ⊂ S such that
∐

α∈AAα → X is a

(universal) quotient map. In particular, T = 〈{f : Y → X}〉 is a (universal)

colim sieve if and only if f is a (universal) quotient map.

Proposition 4.7. In the category of compactly generated weakly Hausdorff

spaces, {Aα → X}α∈A is part of the basis for the canonical topology if and

only if
∐

α∈AAα → X is a quotient map. In particular, a sieve S = 〈{Aα →
X}α∈A〉 on X is in the canonical topology if and only if

∐

α∈AAα → X is a

quotient map. Moreover, every colim sieve is universal.

Furthermore, this presentation allows us to more easily compute examples

and non-examples in the category of topological spaces; for instance,

Example 4.14/Example 4.15. Take Rn → Rn+1 be the closed inclusion

map (x1, . . . , xn) 7→ (x1, . . . , xn, 0) and use R∞ to denote the direct limit

colim−−−→n∈N
Rn with maps ιn : R

n → R∞. Then the cover generated by {ιn}n∈N
is not in the canonical topology for the category of all topological spaces but

is in the canonical topology for the category of compactly generated weakly

Hausdorff spaces.

Additionally, we can use the universal-colim-sieve presentation to get a

better idea of the canonical Grothendieck topology’s covers on the category

of R-modules. For example,

Proposition 5.6. Let S be the cover generated by {f1 : M1 → R, f2 : M2 →
R} such that im(fi) = aiR for i = 1, 2. Then S is in the canonical topology

on R-Mod if and only if (a1, a2) = R.

Proposition 5.8. Let R be an infinite principal ideal domain. Let S be the

cover generated by {gi : R
n ↪→ Rn}Mi=1∪{fi : R

mi ↪→ Rn |mi < n}Ni=1. If S
a cover in the canonical topology on R-Mod, then g1⊕· · ·⊕gM : RnM → Rn

is a surjection.
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Proposition 5.24. Let S be the cover generated by {Z
×ai−−→ Z}Ni=1. Then S

is in the canonical topology on Z-Mod if and only if gcd(a1, . . . , aN) = 1.

Proposition 5.25. Let S be the cover generated by {Zn Ai−→ Zn}Ni=1 where Ai

is a diagonal matrix with det(Ai) 6= 0. Then there exists a map β : Z → Zn

such that β∗S is not a colim sieve in Z-Mod if and only if gcd(det(A1), . . . , det(AN))
does not equal 1.

Organization.

To start this paper we recall some results from [C. Lester, 2019] in Sec-

tion 2. Then in Section 3 we review Giraud’s theorem and prove our Corol-

lary to Giraud’s Theorem, i.e. we prove that that every category C, which

satisfies some hypotheses, is equivalent to the category of sheaves on C with

the canonical topology.

In Section 4 we briefly discuss the canonical topology on the category

of sets before exploring the canonical topology on the category of topolog-

ical spaces. Specifically, we look at the category of all topological spaces

and the category of compactly generated weakly Hausdorff spaces. We are

able to refine our description and obtain a basis for the canonical topology;

this result reduces the question “Is this in the canonical topology?” to the

question “Is a specific map a universal quotient map?” Since universal quo-

tient maps have been studied in-depth (for example by Day and Kelly in

[B.J. Day and G.M. Kelly, 1970]), this reduction becomes our most compu-

tationally agreeable description of the canonical topology and hence we use

it to find some specific examples and non-examples.

Lastly, in Section 5 we investigate the canonical topology on the category

of R-modules and the category of abelian groups, where we work towards

refining our description by making some reductions and obtaining some ex-

clusionary results. While these reductions and results lead us to some spe-

cific examples and non-examples, a basis for the canonical topology remains

elusive.

General Notation.
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Notation 1.2. For any subcategory S of (C ↓ X), we will use U to represent

the forgetful functor S → C. For example, for a sieve S on X , U(f) =
domain f .

Notation 1.3. We say that a sieve S on X is generated by the morphisms

{fα : Aα → X}α∈A and write S = 〈{fα : Aα → X}α∈A〉 if each f ∈ S
factors through one of the fα, i.e. if f ∈ S then there exists an α ∈ A and

morphism g such that f = fα ◦ g.

Acknowledgments
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2. Background

This section contains a review of the results from [C. Lester, 2019] that will

be used in this paper.

Lemma 2.1. Suppose C is a category with all pullbacks.

Let S = 〈{gα : Aα → X}α∈A〉 be a sieve on object X of C and f : Y → X
be a morphism in C. Then f ∗S = 〈{Aα ×X Y

π2−→ Y }α∈A〉.

Proposition 2.2. Let C be a cocomplete category. For a sieve in C on X
of the form S = 〈{fα : Aα → X}α∈A〉 such that Ai ×X Aj exists for all

i, j ∈ A,

colim−−−→
S

U ∼= Coeq





















∐

(i,j)∈A×A

Ai ×X Aj

∐

k∈A

Ak





















where the left and right vertical maps are induced from the projection mor-

phisms π1 : Ai ×X Aj → Ai and π2 : Ai ×X Aj → Aj .
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Lemma 2.3. Let C be a category. Then S is a colim sieve on X if and only

if f ∗S is a colim sieve for any isomorphism f : Y → X .

Recall that a morphism f : Y → X is called an effective epimorphism

provided Y×XY exists, f is an epimorphism and c : Coeq (Y ×X Y −→
−→ Y ) →

X is an isomorphism. Note that this third condition actually implies the sec-

ond because f = c◦g where g : Y → Coeq (Y ×X Y −→
−→ Y ) is the canonical

map. Indeed, g is an epimorphism by an easy exercise and c is an epimor-

phism since it is an isomorphism.

Additionally, f : Y → X is called a universal effective epimorphism if

f is an effective epimorphism with the additional property that for every

pullback diagram

W Y

Z X

πg f

g

πg is also an effective epimorphism.

Corollary 2.4. Let C be a cocomplete category with pullbacks. If

S = 〈{f : Y → X}〉

is a sieve on X , then S is a colim sieve if and only if f is an effective epimor-

phism. Moreover, S is a universal colim sieve if and only if f is a universal

effective epimorphism.

Theorem 2.5. Let C be any category. The collection of all universal colim

sieves on C forms a Grothendieck topology.

Theorem 2.6. For any (locally small) category C, the collection of all uni-

versal colim sieves on C is the canonical topology.

Proposition 2.7. Let C be a cocomplete category with pullbacks. Futher

assume that coproducts and pullbacks commute in C. Then a sieve of the

form S = 〈{fα : Aα → X}α∈A〉 is a (universal) colim sieve if and only if the

sieve T = 〈{
∐

fα :
∐

α∈AAα → X}〉 is a (universal) colim sieve.
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Theorem 2.8. Let C be a cocomplete category with pullbacks whose coprod-

ucts and pullbacks commute. A sieve S on X is a (universal) colim sieve of

C if and only if there exists some {Aα → X}α∈A ⊂ S where
∐

α∈A

Aα → X is

a (universal) effective epimorphism.

Theorem 2.9. Let C be a cocomplete category with stable and disjoint co-

products and all pullbacks. For each X in C, define K(X) by

{Aα → X}α∈A ∈ K(X) ⇐⇒
∐

α∈A

Aα → X is a universal effective epimorphism.

Then K is a Grothendieck basis and generates the canonical topology on C.

3. Giraud’s Theorem and the Canonical Topology

Giraud’s Theorem shows that categories with certain nice properties can be

written as sheaves on a Grothendieck site. We show that in fact, modulo

universe considerations, one may take this site to be the original category

with the canonical topology.

We will use the version of Giraud’s Theorem from [S. Mac Lane and I. Moerdijk, 2012].

In fact, the appendix of [S. Mac Lane and I. Moerdijk, 2012] has a thorough

discussion of Giraud’s theorem and all of the terminology used in it; we will

include the basics of this discussion for completeness. We will begin by re-

calling the definitions used in Mac Lane and Moerdijk’s version of Giraud’s

Theorem.

Throughout this section, let E be a category with small hom-sets and all

finite limits.

DISJOINT AND STABLE COPRODUCTS

Let Eα be a family of objects in E and E = qαEα.

Definition 3.1. The coproduct E is called disjoint if every coproduct inclu-

sion iα : Eα → E is a monomorphism and, whenever α 6= β, Eα ×E Eβ is

the initial object in E.

Definition 3.2. The coproduct E is called stable (under pullback) if for every

f : D → E in E, the morphisms jα obtained from the pullback diagrams
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D ×E Eα Eα

D E

jα iα

f

induce an isomorphism
∐

α(D ×E Eα) ∼= D.

Remark 3.3. If every coproduct in E is stable, then the pullback operation

−×ED “commutes” with coproducts, i.e. (
∐

α Bα)×ED ∼=
∐

α(Bα×ED).

COEQUALIZER MORPHISMS AND KERNEL PAIRS

Definition 3.4. We call a morphism f : Y → Z in E a coequalizer if there

exists some object X and morphisms ∂0, ∂1 : X → Y such that

X
∂0
−→
−→
∂1

Y
f

−→ Z

is a coequalizer diagram.

We remark that every coequalizing morphism is an epimorphism but the

converse of this statement is not guaranteed.

Definition 3.5. The pair of morphisms ∂0, ∂1 : X → Y are called a kernel

pair for f : Y → Z if the following is a pullback diagram

X Y

Y Z

∂1

∂0 f

f

EQUIVALENCE RELATIONS AND QUOTIENTS

Definition 3.6. An equivalence relation on the object E of E is a subobject

R of E × E, represented by the monomorphism (∂0, ∂1) : R → E × E,

satisfying the following axioms

1. (reflexive) the diagonal ∆: E → E × E factors through (∂0, ∂1),

2. (symmetric) the map (∂1, ∂0) : R → E × E factors through (∂0, ∂1),
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3. (transitivity) if R×E R is the pullback

R×E R R

R E

π1

π0 ∂0

∂1

then (∂1π1, ∂0π0) : R×E R → E × E factors through R.

Definition 3.7. If E is an object of E with equivalence relation R, then the

quotient is denoted E/R and is defined to be

Coeq

(

R
∂0
−→
−→
∂1

E

)

provided that this coequalizer exists.

STABLY EXACT FORKS

A diagram is called a fork if it is of the form

X
∂0
−→
−→
∂1

Y
q

−→ Z. (1)

Definition 3.8. The fork (1) is called exact if ∂0 and ∂1 are the kernel pair

for q, and q is the coequalizer of ∂0 and ∂1.

Definition 3.9. The fork (1) is called stably exact if the pullback of (1) along

any morphism in E yields an exact fork, i.e. if for any Z ′ → Z in E,

X ×Z Z ′ −→
−→Y ×Z Z ′ q×1

−→ Z ×Z Z ′

is an exact fork.

GENERATING SETS

Definition 3.10. A set of objects {Ai | i ∈ I} of E is said to generate E if for

every object E of E, W = {Ai → E | i ∈ I} is an epimorphic family (in the

sense that for any two parallel arrows u, v : E → E ′, if every w ∈ W yields

the identity uw = vw, then u = v).
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GIRAUD’S THEOREM

Theorem 3.11 (Giraud, [S. Mac Lane and I. Moerdijk, 2012]). A category E

with small hom-sets and all finite limits is a Grothendieck topos if and only if

it has the following properties (which we will refer to as Giraud’s axioms):

(i) E has small coproducts which are disjoint and stable under pullback,

(ii) every epimorphism in E is a coequalizer,

(iii) every equivalence relation R →
→ E in E is a kernel pair and has a

quotient,

(iv) every exact fork R →
→ E → Q is stably exact,

(v) there is a small set of objects of E which generate E.

Discussion 3.12. Taken together, Giraud’s axioms (ii) and (iv) imply that for

each epimorphism B
f
−→ A, the fork B ×A B →

→ B → A is stably exact. The

exactness implies f is an effective epimorphism and the stability implies f
is a universal effective epimorphism.

Notation 3.13. We use Sh(E, J) to represent the category of sheaves on the

category E under the topology J .

Suppose the category E has small hom-sets and all finite limits, satis-

fies Giraud’s axioms, and whose small set of generators (axiom v) is C.

In [S. Mac Lane and I. Moerdijk, 2012] Mac Lane and Moerdijk specifically

prove E ∼= Sh(C, J) where J is the Grothendieck topology on C defined by:

S ∈ J(X) if and only if
∐

(g : D→X)∈S

D → X is an epimorphism in E.

(In particular, Mac Lane and Moerdijk prove that J is a Grothendieck topol-

ogy.)

Proposition 3.14. Suppose the category E has small hom-sets and all finite

limits, satisfies Giraud’s axioms, and whose small set of generators (axiom

v) is C. Then E is equivalent to Sh(C, C) where C is the canonical topology

on C.
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Proof. Let J be the topology defined above. Additionally, the above dis-

cussion implies that it suffices to show that J is the canonical topology. By

Theorem 2.6, we will instead show that every universal colim sieve is in J
and that every sieve in J is a universal colim sieve.

By Remark 3.3, coproducts and pullbacks commute and hence for any

collection of morphisms {Ai → X}i∈I in E, the diagrams

∐

I2(Ai ×X Aj)

∐

I Ak

and

(
∐

I Ai)×X (
∐

I Aj)

∐

I Ak

are isomorphic. Note: in both diagrams, the two maps down are the obvious

ones induced/obtained from a pullback diagram. Thus

Coeq













∐

I2(Ai ×X Aj)

∐

I Ak













∼= Coeq













(
∐

I Ai)×X (
∐

I Aj)

∐

I Ak













.

But by Proposition 2.2 (which is usable since E is cocomplete),

Coeq













∐

I2(Ai ×X Aj)

∐

I Ak













∼= colim−−−→
S

U where S = 〈{Ai → X}i∈I〉

and

Coeq













(
∐

I Ai)×X (
∐

I Aj)

∐

I Ak













∼= colim−−−→
TS

U where TS =

〈{(

∐

I

Ai

)

→ X

}〉

.

212



C. LESTER CANONICAL COVERS

Hence

colim−−−→
S

U ∼= colim−−−→
TS

U

where S = 〈{Ai → X}i∈I〉 and TS =

〈{(

∐

I

Ai

)

→ X

}〉

for any generating set {Ai → X}i∈I of S.

(2)

Suppose S is a universal colim sieve. Since S has the some generating

set, then by the definition of colim sieve and (2),

X ∼= colim−−−→
S

U ∼= colim−−−→
TS

U.

This implies that TS is a colim sieve. Hence
(

∐

(g : D→X)∈S D
)

→ X is an

effective epimorphism by Corollary 2.4 and so S ∈ J(X).

For the converse, suppose that S ∈ J(X). Thus ps :
(

∐

(g : D→X)∈S D
)

→

X is an epimorphism, which by Discussion 3.12 is a universal effective epi-

morphism. Hence by Corollary 2.4, ps generates a universal colim sieve

called TS . Then by the definition of colim sieve and (2),

X ∼= colim−−−→
TS

U ∼= colim−−−→
S

U.

Therefore S is a colim sieve.

Similar to the last paragraph, we can use (2) to show that f ∗S is a colim

sieve for any morphism f in E if we know that Tf∗S is a colim sieve. So

to finish the proof we will use the fact that TS is a universal colim sieve

to show that Tf∗S is a colim sieve. Let f : Y → X be any morphism

in E. Then by using S as a generating collection for itself and Lemma

2.1, f ∗S = 〈{A×X Y → Y | A → X ∈ S}〉. Similarly, using Lemma 2.1,

f ∗TS =
〈{(

∐

(A→X∈S) A
)

×X Y → Y
}〉

. Then by Remark 3.3

∐

(A→X)∈S

(A×X Y ) ∼=





∐

(A→X)∈S

A



×X Y
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over Y . Therefore,

colim−−−→
Tf∗S

U ∼= colim−−−→
f∗TS

U ∼= Y

where the first isomorphism is due to the previous few sentences and the

second isomorphism is due to the fact that TS is a universal colim sieve.

Thus Tf∗S is a colim sieve.

4. Universal Colim Sieves in the Categories of Sets and Topo-

logical Spaces

In this section we examine the canonical topology on the categories of sets,

all topological spaces and compactly generated weakly Haudsdorff spaces.

Notation 4.1. We will use Sets to denote the category of sets. We will use

Top to denote the category of all topological spaces, CG to denote the cate-

gory of compactly generated spaces, and CGWH to denote the category of

compactly generated weakly Hausdorff spaces. When we want to talk about

the category of topological spaces without differentiating between Top and

CGWH, then we will use Spaces; all results about Spaces will hold for both

Top and CGWH.

We will begin with a few reminders about the category of compactly gen-

erated weakly Hausdorff spaces based on the references [N.P. Strickland, 2009]

and [J.P. May, 1999]. Specifically, there are functors k : Top → CG and

h : CG → CGWH such that

• For a topological space X with topology τ , a subset Y of X is called

k-closed if u−1(Y ) is closed in K for every continuous map u : K →
X and compact Hausdorff space K. The collection of all k-closed

subsets, called k(τ), is a topology.

• The functor k takes X with topology τ to the set X with topology

k(τ).

• k is right adjoint to the inclusion functor ι : CG → Top.

• h(X) is X/E where E is the smallest equivalence relation on X closed

in X ×X .
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• h is left adjoint to the inclusion functor ι′ : CGWH → CG.

• A limit in CGWH is k applied to the limit taken in Top, i.e. for a

diagram F : I → CGWH, the limit of F is k(limI ιι
′F ).

• A colimit in CGWH is h applied to the colimit taken in Top, i.e. for a

diagram F : I → CGWH, the colimit of F is h(colim−−−→I
ιι′F ).

Proposition 4.2. Let S be a sieve on X in either Sets or Top. Let C be

colim−−−→
S

U . Then the natural map ϕ : C → X is an injection.

Proof. Suppose ỹ, z̃ ∈ C and ϕ(ỹ) = x = ϕ(z̃). We can pick a (Y → X) ∈
S and a y ∈ Y that represents ỹ, i.e. where y 7→ ỹ under the natural map

Y → C; similarly, we can pick a (Z → X) ∈ S and a z ∈ Z representing

z̃. Then the inclusion i : {x} ↪→ X factors through both Y and Z by x 7→ y
and x 7→ z respectively. Thus i ∈ S. Hence ỹ = z̃ in C.

Corollary 4.3. Let S be a sieve on X in CGWH. Then the colimit over S
taken in Top is in CGWH, i.e. h(colim−−−→I

ιι′U) = colim−−−→I
ιι′U . Moreover, the

natural map ϕ : colim−−−→S
U → X is an injection.

Proof. We will make use of the following Proposition from [N.P. Strickland, 2009]:

if Z is in CG, then Z is weakly Hausdorff if and only if the diagonal sub-

space ∆Z is closed in Z × Z. Additionally, we remark that colimits of

compactly generated spaces computed in Top are automatically compactly

generated.

Let C = colim−−−→S
ιι′U , i.e. C is the colimit over S taken in Top. By

Proposition 4.2, the natural map ϕ : C → X is an injection; we remark that

it is not the statement of Proposition 4.2 that gives this observation since S is

not a sieve in Top, instead the proof of Proposition 4.2 holds in this situation

since {x} is in CGWH. Since X is CGWH, then ∆X is closed in X × X .

Since ϕ is a continuous injection, then (ϕ × ϕ)−1(∆X) = ∆C is closed in

C × C.

4.1 Basis and Presentation

The categories Sets, Top and CGWH all satisfy the hypotheses of Theorems

2.9 and 2.8. Thus we have the following corollaries of Theorems 2.9 and 2.8

based on what the universal effective epimorphisms are in each category.
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Proposition 4.4. In Sets, {Aα → X}α∈A is part of a basis for the canonical

topology if and only if
∐

α∈AAα → X is a surjection. In particular, a sieve

of the form S = 〈{Aα → X}α∈A〉 on X is in the canonical topology if and

only if
∐

α∈A

Aα → X is a surjection. Moreover, every colim sieve is universal.

Proof. It is easy to see in Sets that the effective epimorphisms are precisely

the surjections. Since pulling back a surjection yields a surjection, then the

universal effective epimorphisms in the category of sets are also the surjec-

tions. Lastly, this implies, by Theorem 2.8, that every colim sieve is univer-

sal.

Remark 4.5. Since Sets is a Grothendieck topos, we can compare Proposi-

tion 4.4 to the proof of Proposition 3.14. Specifically, Proposition 4.4 allows

us to determine if a sieve is in the canonical topology by looking only at the

sieve’s generating set whereas the proof of Proposition 3.14 along with the

Grothendieck topology J require us to look at the entire sieve.

Recall that a quotient map f is called universal if every pullback of f
along a map yields a quotient map.

Proposition 4.6. In Top, {Aα → X}α∈A is part of a basis for the canonical

topology if and only if
∐

α∈AAα → X is a universal quotient map. Addi-

tionally, a sieve S on X is a (universal) colim sieve if and only if there exists

some collection {Aα → X}α∈A ⊂ S such that
∐

α∈A

Aα → X is a (universal)

quotient map. In particular, T = 〈{f : Y → X}〉 is a (universal) colim sieve

if and only if f is a (universal) quotient map.

Proof. It is a well-known fact that in Top the effective epimorphisms are

precisely the quotient maps.

Proposition 4.7. In CGWH, {Aα → X}α∈A is part of the basis for the

canonical topology if and only if
∐

α∈AAα → X is a quotient map. In

particular, a sieve S = 〈{Aα → X}α∈A〉 on X is in the canonical topology

if and only if
∐

α∈A

Aα → X is a quotient map. Moreover, every colim sieve is

universal.
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Proof. This is a consequence of Corollary 2.4, Corollary 4.3, the fact that the

universal effective epimorphisms in Top are precisely the universal quotient

maps, and Proposition 2.36 from [N.P. Strickland, 2009], which states that

every quotient map in CGWH is universal.

4.2 Examples in the category of Spaces

In this section we will use our basis to talk about some specific examples;

including a special circumstance (when a sieve is generated by one function)

and how the canonical topology on the categories CGWH and Top can differ

in this situation.

Definition 4.8. For a category D, we call A ⊂ ob(D) a weakly terminal set

of D if for every object X in D, there exists some A ∈ A and morphism

X → A in D.

Additionally, if F : D → C is a functor and D has a weakly terminal set

A, then we call {F (A)}A∈A a weakly terminal set of F .

For example, if S = 〈{Aα → X}α∈A〉 is a sieve on X then {Aα}α∈A
is the weakly terminal set of U . Or as another example, {Y } is the weakly

terminal set of the diagram Y ×X Y −→
−→ Y . One easy consequence of this in

Top is a reduction of the colimit topology: V is open in the colimit if and

only if the preimage of V is open in each member of the weakly terminal set.

Proposition 4.9. Let F : D → Spaces be a functor where D has a weakly

terminal set A. Suppose fA : F (A) → X is an open map for all A ∈ A, then

the induced map ϕ : colim−−−→D
F → X is an open map. Similarly, if the fA are

all closed and A is a finite set, then ϕ is a closed map.

Proof. Let C = colim−−−→F and iA : F (A) → C be the natural maps. Both

results follow from the easy set equality below for B ⊂ C

ϕ(B) =
⋃

A∈A

fA(i
−1
A (B))

since i−1
A , fA and unions respect open/closed sets in their respective scenar-

ios.
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Corollary 4.10. Let S = 〈{fα : Aα → X}α∈A〉 be a sieve on X in Spaces

with the induced map η :
∐

α∈A

Aα → X a surjection. If all of the fα are open

maps or if A is a finite collection and all of the fα are closed maps, then S
is a colim sieve.

Proof. Let ϕ : colim−−−→
S

U → X be the natural map. By Proposition 4.2, Corol-

lary 4.3, and the surjectivity of η, ϕ is a continuous bijection. Then Propo-

sition 4.9 implies that ϕ is open or closed, depending on the case, and hence

an isomorphism.

This corollary leads us to some nice examples of sieves we would hope

are in the canonical topology and actually are!

Example 4.11. Let X be any space and let {Ui}i∈I be an open cover of X .

Then the inclusion maps Ui ↪→ X generate a universal colim sieve, call it S.

Indeed, by Corollary 4.10, S is a colim sieve. Universality is obvious, as the

preimage of an open cover is an open cover.

Example 4.12. Let X be any space and let K1, . . . , Kn be a closed cover

of X . For the exact same reasons as the previous example, the inclusions

Ki ↪→ X generate a sieve in the canonical topology.

Before we give our next example, we provide a rephrasing of Theorem 1

from [B.J. Day and G.M. Kelly, 1970], which completely characterizes uni-

versal quotient maps in Top:

Theorem 4.13 (Day and Kelly, 1970). Let f : Y → X be a quotient map.

Then f is a universal quotient map if and only if for every x ∈ X and cover

{Gα}α∈Λ of f−1(x) by opens in Y , there is a finite set {α1, . . . , αn} ⊂ Λ
such that fGα1

∪ · · · ∪ fGαn
is a neighborhood of x.

Example 4.14. Consider the diagram B1 → B2 → B3 → . . . and the direct

limit B = colim−−−→Bn in Top. Let S = 〈{ιn : Bn → B |n ∈ N}〉 where

ιn are the natural maps into the colimit. By Proposition 4.6, S is a colim

sieve because
∐

n∈N Bn → B is obviously a quotient map. However, S is

not necessarily in the canonical topology – we can use Proposition 4.6 on

specific examples to see when S is and is not in the canonical topology.
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For example, suppose there exists an N such that Bm = BN whenever

m > N . Then B = BN . Hence it is easy to see by Day and Kelly’s condition

that the map
∐

n∈N Bn → B is a universal quotient map. Therefore, the S
from this example is in the canonical topology.

As another example, take Bn = Rn and let Bn → Bn+1 be the closed

inclusion map (x1, . . . , xn) 7→ (x1, . . . , xn, 0). Use R∞ to denote the direct

limit. We claim that
∐

n∈N R
n → R∞ is not a universal quotient map. In-

deed, consider Day and Kelly’s condition; take x = 0 ∈ R∞ and the open

cover in
∐

n∈N R
n consisting of open disks Dn ⊂ Rn centered at the ori-

gin with fixed radius ε > 0. Pick any finite collection Dn1 , . . . , Dnk with

n1 < · · · < nk. Then for i = 1, . . . , k we can view Dni as a subset of Rnk .

Hence ∪k
i=1ιni

(Dni) is ∪k
i=1ιnk

(Dni) ⊂ ιnk
(Rnk). However, by dimensional

considerations, we can see that for all b ∈ N, ιb(R
b) contains no open sets of

R∞ and hence ∪k
i=1ιni

(Dni) cannot be a neighborhood of x in R∞. Remark:

To see that ιb(R
b) contains no open sets, suppose to the contrary and call

the open set V . Then ι−1
b+1(V ) is open in Rb+1 and in particular, contains an

open ball of dimension b + 1. Thus dimensional considerations imply that

ι−1
b+1(V ) is not contained in the image of Rb in Rb+1. Since each ιn is an

inclusion map, then ιb+1ι
−1
b+1(V ) 6⊂ ιb+1(R

b) and so V is not contained in

ιb(R
b), which is our contradiction. Therefore, the S from this example is not

in the canonical topology.

Example 4.15. Consider the diagram B1 → B2 → B3 → . . . and the direct

limit B = colim−−−→Bn in CGWH. Let S = 〈{ιn : Bn → B |n ∈ N}〉 where

ιn are the natural maps into the colimit. Then by Proposition 4.7, S is a

universal colim sieve because
∐

n∈N Bn → B is a quotient map.

Now we shift our focus to sieves that can be generated by one map,

called monogenic sieves. There are many reasons one could focus on these

kinds of sieves, however by Proposition 2.7, if we fully comprehend when

monogenic sieves are in the canonical topology, then we can (in some sense)

completely understand the canonical topology. From this point onward, this

section will be about monogenic sieves; in other words, by Proposition 4.6

and Proposition 4.7, we will be focusing on (universal) quotient maps.

Remark 4.16. Some examples will talk about the space R/Z. In this section,

this space is not a group quotient but instead is the squashing of the subspace

Z to a point.
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Example 4.17. Consider the quotient maps f : Sn → RP n and g : R →
R/Z. There is some subtly, which will depend on the category we are in, in

determining if f or g generate universal colim sieves. Throughout the rest of

this section we will continue to explore this particular example.

MONOGENIC SIEVES IN CGWH

By Proposition 4.7, if X and Y are in CGWH and h : Y → X , then

〈{h}〉 is in the canonical topology if and only if h is a quotient map. There-

fore, we immediately get the following examples:

Example 4.18. Topological manifolds are in CGWH. Thus Sn and RP n are

in CGWH. Hence 〈{f : Sn → RP n}〉 is in the canonical topology.

Example 4.19. Every CW-complex is in CGWH. Thus R and R/Z are in

CGWH. Hence 〈{g : R → R/Z}〉 is in the canonical topology.

MONOGENIC SIEVES IN TOP

This section will heavily rely on Theorem 4.13 (the Theorem by Day

and Kelly characterizing universal quotient maps in Top) because a mono-

genic sieve generated by f is in the canonical topology if and only if f is a

universal quotient map.

Example 4.20. Day and Kelly’s theorem implies that every open quotient

map is a universal quotient map. Therefore, the quotient map f : Sn →
RP n is a universal quotient map and 〈{f : Sn → RP n}〉 is in the canonical

topology.

Example 4.21. The quotient map g : R → R/Z is not universal. We will

demontrate this in two ways, first by using Day and Kelly’s theorem and

second by directly showing g is not universal. Note: many sets of R/Z will

be written as if they are in R for ease of presentation.

(i) We will look at Day and Kelly’s condition for Z ∈ R/Z with the open

cover (in R) {Gi := (i − m, i + m)}i∈Z for a fixed m ∈
(

0, 1
2

)

. For any

open set U of R/Z containing Z, the quotient topology tells us that g−1(U)
is an open neighborhood of Z ⊂ R. But for any n, g−1(

⋃n

k=1 gGik) =
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Z ∪ (
⋃n

k=1(ik −m, ik +m)) is not a neighborhood of Z ⊂ R. So there

cannot be any open set of R/Z containing Z that is contained in
⋃n

k=1 gGik

for any finite collection of the cover.

(ii) To directly show that g is not universal we need to come up with a

space and map to R/Z where g pulledbacked along this map is not a quotient

map. Our candidate is the following: Let t(R/Z) be the set R/Z with the

topology where U (written as if it is in R) is said to be open if (a) Z 6⊂
U or (b) U contains Z and is a neighborhood (in the typical topology) of

(Z− {finitely many or no points}). Remark: this topology was used in Day

and Kelly’s paper (in the proof of their theorem), however they defined the

topology using a filter and we have merely rephrased it for convenience.

Define κ : t(R/Z) → R/Z by the set identity map; this is a continuous

map. As a set, the pullback of domain(g) along κ is R but since it now has the

limit topology, we denote the pullback as t(R); in particular, t(R) is R with

the discrete topology. Denote the projection maps as g′ : t(R) → t(R/Z)
and κ′ : t(R) → R.

We claim that g′ is not a quotient map, i.e. there is some non-open set

B in t(R/Z) with (g′)−1(B) open in t(R). Since every (g′)−1(B) is open in

t(R), then we merely need to find a B that is not open in t(R/Z); B = {Z}
obviously works.

The above example shows us that quotient maps of the form X → X/A
may not generate universal colim sieves. So let’s understand these special

quotient maps a little better. Specifically, using Day and Kelly’s theorem,

we can completely state what kinds of subspaces A yield universal quotient

maps X → X/A:

Corollary 4.22. The quotient map π : X → X/A is universal if and only if

both of the following properties hold:

1. If A is not open, then for every open cover {Gα}α∈Λ of (∂A)∩A in X
there is a finite collection {α1, . . . , αn} ⊂ Λ with A∪Gα1

∪ · · · ∪Gαn

open in X .

2. If A is not closed, then for every open U in X such that U ∩(A−A) 6=
∅, U ∪ A is open in X .

Proof. We will be using Theorem 4.13 in two ways: first by finding the

necessary conditions for π to be a universal quotient map (i.e. proving the
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forward direction) and then second by checking the sufficient conditions in

the three cases (i) x = A, (ii) x ∈ X − A, and (iii) x ∈ A− A (i.e. proving

the backward direction).

First suppose that π is a universal quotient map. To see that the first

property is necessary, assume that (∂A) ∩ A 6= ∅, i.e. A is not open, and we

have an open cover {Gα}α∈Λ of (∂A)∩A. Then we can expand this cover to

an open cover of A by adding Int(A) to {Gα}α∈Λ. Now by assumption (us-

ing the point A in X/A) there is a finite subcollection Gα1
, . . . , Gαn

, Int(A)
such that πGα1

∪· · ·∪πGαn
∪πInt(A) is a neighborhood of A in X/A. But

πInt(A) ⊂ πGα since Gα ∩ A 6= ∅ and so Int(A) is not necessary in our

finite subcollection. Thus πGα1
∪ · · · ∪ πGαn

is a neighborhood of A; let U
be an open subset of πGα1

∪ · · · ∪ πGαn
containing A. Now by looking at

the preimages of U and
⋃n

i=1 πGαi
in X , we get that

A ⊂ π−1(U) ⊂ π−1(
n
⋃

i=1

πGαi
) = Gα1

∪ · · · ∪Gαn
∪ A.

Since π−1(U) is open, then the above expression implies A ⊂ Int(Gα1
∪

· · · ∪Gαn
∪A). But since all of the Gα are open, then Gα1

∪ · · · ∪Gαn
∪A

is open. Therefore, the first property is necessary.

To see that the second property is necessary, assume that A is not closed

and U is any open neighborhood of a fixed x ∈ A − A in X . Since U is an

open cover of π−1(π(x)) = x, then by Theorem 4.13, πU is a neighborhood

of x; let V be an open subset of πU that contains x. Then by looking at the

preimages of V and πU , we see (using that U intersects A nontrivially) that

A ⊂ π−1(V ) ⊂ π−1(πU) = U ∪ A.

But since π−1(V ) is open, then A ⊂ Int(U ∪ A), i.e. U ∪ A is open.

Therefore, the second condition is necessary.

Second let’s assume the two conditions hold. We will show π is a uni-

versal quotient map by checking that the conditions of Theorem 4.13 hold

in all three locations in X/A (i.e. for (i) x = A, (ii) x ∈ X − A, and (iii)

x ∈ A− A).

(i) For A ∈ X/A, take any open cover {Gα}α∈Λ of A in X . If A is open

in X , then {A} is open in X/A and hence every πGα is a neighborhood. If A
is not open, let Γ be the finite portion of Λ that property 1 guarantees exists,
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i.e. A ∪
(
⋃

i∈Γ Gαi

)

is open in X and each Gαi
intersects A nontrivially.

This implies that
⋃

i∈Γ πGαi
is an open neighborhood of A in X/A (since its

preimage is A ∪
(
⋃

i∈Γ Gαi

)

).

(ii) Any x ∈ X − A has an open neighborhood Ux ⊂ X − A. Notice

that π is a homeomorphism on X − A. Thus for any such x and any open

cover W of π−1(x) = x in X , πW is a neighborhood of x because the open

neighborhood (in X/A) Ux ∩W is contained in πW .

(iii) If A is closed, then this is trivial so assume that A is not closed and let

x ∈ A−A. For any open cover W of π−1(x) = x in X , π−1(πW ) = W ∪A,

which is open in X by condition 2. Thus πW is an open neighborhood of x
in X/A.

Therefore, our two conditions ensure that π satisfies Day and Kelly’s

universal quotient map condition.

Corollary 4.22 now gives us a way to produce more examples of sieves

in the canonical topology:

Example 4.23. Every quotient of a Hausdorff space by a compact subspace

is universal. For example, π : Dn → Sn (where Sn = Dn/∂Dn) generates a

universal colim sieve.

Example 4.24. If A is closed, then S = 〈{X → X/A}〉 is always a colim

sieve. Moreover, it is universal if and only if ∂A is compact. For example,

this tells us 〈{R → R/[0,∞)}〉 is in the canonical topology and reaffirms

that 〈{R → R/Z}〉 is not.

5. Universal Colim Sieves in the Category of R-modules

The category of R-modules does not satisfy the assumptions of Theorem

2.8 or Theorem 2.9. Indeed, coproducts and pullbacks of R-modules do not

commute (for example, let Z(a,b) denote the domain of Z → Z2, 1 7→ (a, b),
then we see that (Z(1,0) ⊕ Z(0,1)) ×Z2 Z(1,1)

∼= Z but (Z(1,0) ×Z2 Z(1,1)) ⊕
(Z(0,1) ×Z2 Z(1,1)) ∼= 0). Thus we do not have basis and presentation results.

Instead, we have some smaller results, reductions and examples.

Notation 5.1. Let R be a commutative ring with identity. We will use R-

Mod for the category of R-modules and Ab for the category of abelian

groups.
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We start with some basic results.

Corollary 5.2. Any sieve containing a universal effective epimorphism (e.g.

a surjection in R-Mod or in Sets) is a universal colim sieve.

Proof. This is an immediate consequence of Theorem 2.5 and Corollary 2.4.

Lemma 5.3. In R-Mod, if a sieve S on X can be generated by at most two

morphisms, then the canonical map c : colim−−−→
S

U → X is an injection.

Proof. Suppose S = 〈{f : Y → X, g : Z → X}〉 and c(x) = 0. Since every

map in S either factors through f or g, then x, as an element of
⊕

A→X∈S

A,

is really an element (y, z) ∈ Y ⊕ Z in the colimit. So c(x) = 0 implies

that y + z = 0 in X , i.e. (y,−z) ∈ Y ×X Z. Thus y ∈ Y gets identified

with −z ∈ Z in the colimit; hence (y, z) = (0, z − z) = 0 in the colimit.

Therefore, x = 0 in the colimit and the map c is an injection.

Using the fact that 〈{Ai → X}α〉 = 〈{Ai → X}α ∪ {Z
0
−→ X}〉, we

can say that any sieve generated by one morphism is also generated by two

morphsims. This completes the proof.

Proposition 5.4. In R-Mod, let

S = 〈{f : Y → X}〉 and T = 〈{g : U → X, h : V → X}〉

be sieves on X . Then

1. S is a universal colim sieve if and only if f is a surjection.

2. T is a colim sieve if and only if g ⊕ h : U ⊕ V → X is a surjection.

Proof. For part 2, Lemma 5.3 tells us that we only need to worry about the

surjectivity of colim−−−→
T

U → X but this is exactly what the above condition is.

For part 1, Lemma 5.3 and Lemma 2.1 tell us that we only need worry

about the surjectivity of A×X Y
π1−→ A (the generator of k∗S) for every map

k : A → X . But A×X Y = {(a, y) ∈ A× Y | k(a) = f(y)}. Hence π1 is a

surjection for every map k if and only if f is a surjection.
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Lemma 5.5. In R-Mod, suppose S = 〈{fi : Mi → R}i∈I〉 is a sieve on

R such that for every i ∈ I there exists an ai ∈ R with im(fi) = aiR.

If the ideal (ai | i ∈ I) equals R, then for every R-module homomorphism

g : N → R, the natural map colim−−−→g∗S
U → N is a surjection.

Proof. By Proposition 2.2 it suffices to show that η : ⊕i Mi ×R N → N is

a surjection. Let πi : Mi ×R N → N be the natural map. Fix x ∈ N . Then

aig(x) ∈ aiR = im(fi) and aig(x) ∈ im(g). Thus ai · x ∈ im(πi) ⊂ N for

all i ∈ I . Therefore, x = 1R · x is in ⊕iim(πi) = im(η) since R is a unital

ring and (ai | i ∈ I) = R.

Proposition 5.6. Suppose S = 〈{f1 : M1 → R, f2 : M2 → R}〉 is a sieve on

R such that im(fi) = aiR for i = 1, 2. Then S is in the canonical topology

on R-Mod if and only if (a1, a2) = R.

Proof. If S is in the canonical topology, then S is a colim sieve and hence

by Proposition 5.4, a1R⊕ a2R = R.

If (a1, a2) = R, then by Proposition 5.4, S is a colim sieve. The uni-

versality of S follows immediately from Lemma 2.1, Proposition 5.4 and

Lemma 5.5.

Next we include two results that can help us identify when a sieve is not

in the canonical topology.

Proposition 5.7. Let R be any nonzero ring. Let S = 〈{fi : Ai → X}i∈I〉 be

any sieve on X for any nonzero R-module X . If there exists a nonzero b ∈ X
such that spanR(b) ⊂ (X−∪IIm(fi))∪{0}, then S is not a universal colim

sieve.

Proof. Suppose such a b ∈ X exists. Define g : R → X by 1 → b. Then

Im(g) ∩ Im(fi) = {0} for all i. Thus for all i, the pullback R ×X Ai =
ker(g)× ker(fi) and the image of the natural map R×X Ai → R is ker(g).
In particular, Im (⊕iR×X Ai → R) = ker(g), which by construction is not

R. Therefore, colim−−−→g∗S
U → R is not surjective and so g∗S not a colim sieve

on R.

Proposition 5.8. Let R be an infinite principal ideal domain. Let

S = 〈{gi : R
n ↪→ Rn}Mi=1 ∪ {fi : R

mi ↪→ Rn | mi < n}Ni=1〉
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be a sieve on Rn. If S is a universal colim sieve, then g1⊕· · ·⊕gM : RnM →
Rn is a surjection.

Proof. Let G = g1 ⊕ · · · ⊕ gM . Suppose that G is not a surjection. We will

produce a map φ that shows S is not universal.

By a change of basis (which is allowable by Lemma 2.3) we may assume

that G = diag(d1, d2, . . . , dn) with di|di+1. Because G is not surjectve, then

dn is not a unit. Indeed, if dn was a unit, then all of the di’s would also

be units and thus G would be surjective. By Lemma 5.9 below, there exists

an x ∈ Rn−1 so that spanR{(x, 1)} ∩ Im(fi) = {0} for all i = 1, . . . , N .

Additionally, since dn is not a unit, then (x, 1) 6∈ Im(G).
Define φ : R → Rn by 1 7→ (x, 1). We will show that φ∗S is not a colim

sieve. First we will simplify the generating set of φ∗S. By the choice of x,

the pullback module of Rmi along φ is {0} for all i = 1, . . . , N . Therefore,

we can write φ∗S as φ∗S = 〈{πi : R
n ×Rn R → R}Mi=1〉 where the πi are the

pullbacks of the gi along φ. Since (x, 1) 6∈ Im(G) and we have the following

commutative diagram

⊕M
i=1R

n
i ×Rn R R

⊕M
i=1R

n
i Rn

⊕M
i=1

πi

φ

G

then 1 6∈ Im(π1 ⊕ · · · ⊕ πM). Therefore, η : colim−−−→
φ∗S

U → R is not surjective;

hence φ∗S is not a colim sieve.

Lastly, for completeness we include the linear algebra result referenced

in Proposition 5.8.

Lemma 5.9. Let R be an infinite principal ideal domain. For any finite

collection V1, . . . , VN of submodules of Rn with dim(Vi) < n, there exists an

x ∈ Rn−1 such that spanR{(x, 1)} ∩ Vi = {0} for all i.

Proof. Let F be the quotient field of R. Let

Wi = Vi ⊗R F.

We will use F n−1 to refer to the subspace {(a1, . . . , an−1, 0) | ai ∈ F} in

F n. For each Vi 6⊂ F n−1, fix an element νi ∈ Vi such that νi 6∈ F n−1 and
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write νi = (vi1, . . . , vin). Let ν0
i = (vi1, . . . , vi(n−1), 0). Lastly, for each Vi 6⊂

F n−1, define a vector space map φi : Wi → F n−1 by w = (w1, . . . , wn) 7→
w − wn

vin
νi

Ideally, we will find an x such that (x, 1) 6∈ Wi for all i. So first, let’s see

what kinds of (z, 1) are in Wi by computing φi(z, 1).

φi(z, 1) = (z, 1)−
1

vin
νi

= z −
1

vin
ν0
i

Thus

z = φi(z, 1) +
1

vin
ν0
i .

Therefore, if (z, 1) ∈ Wi, then z = φi(z, 1) +
1
vin

ν0
i . Based on this result,

define Γi = im(φi)⊕ spanF{ν
0
i }. So (z, 1) ∈ Wi implies z ∈ Γi.

For each index i exactly one of the following is true:

1. Wi ⊂ F n−1,

2. Wi 6⊂ F n−1 and dimF (Γi) < n− 1,

3. Wi 6⊂ F n−1 and Γi = F n−1.

For every index j in collection 1, every x ∈ Rn−1 satisfies the equation

spanR{(x, 1)} ∩ Vj = {0}. Thus when picking our x, we only need to

consider the indices in collections 2 and 3.

For each index i in collection 2, Γi is a proper subspace of F n−1. Since

there are only finitely many Γi and F is an infinite field, then there exists a

y = (y1, . . . , yn−1) such that y 6= 0 and spanF{(y, 0)} ∩ Γi = {0} for all

i in collection 2. By multiplying y by an appropriate s ∈ F we can clear

denominators and so we may assume that y ∈ Rn−1. In particular, for all

r ∈ R, ry 6∈ Γi, which implies that (ry, 1) 6∈ Wi. Therefore, for all r ∈ R,

spanR{(ry, 1)} ∩ Vi = {0} for all indices in collection 2.

Continuing with the y from the previous paragraph, we now consider

the indices k in collection 3 and their corresponding Γk. In this situation,

(y, 0) ∈ Γk, i.e. y = φk(z) + ukν
0
k for some z ∈ Wk and uk ∈ F . Since R

is an infinite ring and collection 3 contains finitely many indices k, we can
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pick a nonzero ρ ∈ R such that for all k, ρuk ∈ R and ρuk 6= 1
vkn

. Thus

ρy 6= φk(a) +
1

vkn
ν0
k for any a ∈ Wk, which implies that (ρy, 1) 6∈ Wk.

Therefore, spanR{(ρy, 1)} ∩ Vk = {0} for all indices in collection 3.

We can take x = ρy.

EXAMPLES

Here we include a few examples and non-examples of sieves in the canon-

ical topology for various rings R.

Example 5.10. In the category of R-modules every surjective map generates

a universal colim sieve (see Proposition 5.4). As more specific examples, the

sieve 〈{Z
π

−→ Z/nZ | 1 7→ 1}〉 is in the canonical topology on Ab, and in

R-Mod the sieve 〈{Rn → R | (a1, . . . , an) 7→ a1}〉 is in the canonical

topology.

Example 5.11. By Proposition 5.6, 〈{R
a

−→ R,R
b

−→ R}〉 is in the canon-

ical topology if and only if (a, b) = R. As more specific examples, the

sieve 〈{Z
2

−→ Z,Z
3

−→ Z}〉 is in the canonical topology on Ab; when the

function ·g(x) : C∞(R) → C∞(R) is the map f(x) 7→ (g · f)(x), then the

sieve 〈{C∞(R)
·x

−→ C∞(R), C∞(R)
· sin(x)
−→ C∞(R)}〉 is not in the canonical

topology on C∞(R)-modules.

Example 5.12. The sieve S = 〈{R
i1→ R2, R

i2→ R2}〉 where i1(1) = (1, 0)
and i2(1) = (0, 1) (in the category of R-modules for nontrivial R) is not in

the canonical topology. By Proposition 5.4, S is clearly a colim sieve so to

see that S is not universal consider the map ∆: R → R2, 1 7→ (1, 1). Then

for k = 1, 2, ik pulled back along ∆ yields the zero map z : 0 → R. Hence

Lemma 2.1 says ∆∗S = 〈{z : 0 → R}〉, which is clearly not a colim sieve.

Similarly 〈{R
ik→ Rn | k = 1, . . . , n}〉 is a colim sieve but is not in the

canonical topology. (This is also a consequence of Proposition 5.7.)

Example 5.13. Let S = 〈{fk : Q → Q[t] | fk(1) = 1+t+· · ·+tk}∞k=1〉 in the

category of rational vector spaces. This S is not in the canonical topology.

(This is a direct consequence of Proposition 5.7 using b = t.)
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Example 5.14. Let F be an infinite field. In the category of F vector spaces,

a sieve of the form S = 〈{Fmi ↪→ F n | mi ≤ n}Mi=1〉 is in the canonical

topology if and only if mi = n for some i if and only if S contains an

isomorphism. (This is a consequence of Proposition 5.8.)

Proposition 5.15. Consider the diagram B1 ↪→ B2 ↪→ B3 ↪→ . . . made

with only injective maps and the direct limit B := colim−−−→Bn in R-mod. Let

the maps ιn : Bn → B be the natural maps into the colimit. Then the sieve

〈{ιn |n ∈ N}〉 is a universal colim sieve.

Proof. Let Γ: N → S by n 7→ ιn. Notice that Γ is a final functor; this is

easy to see since the injectivity of ιn and the maps in our diagram imply that

Bi ×B Bj
∼= Bmin(i,j). Thus colim−−−→S

U exists and colim−−−→S
U ∼= colim−−−→N

UΓ ∼=
B. Therefore, S is a colim sieve.

To see that S is universal, let f : X → B and set Xi := X ×B Bi. For

each n ∈ N, ιn and Bn → Bn+1 are both injective maps; this implies that the

natural maps Xn → Xn+1 and Xn → X are also injective maps since the

pullback of an injection in R-Mod is an injection and Xi
∼= Xi+1 ×Bi+1

Bi.

Additionally, it is an easy exercise to see that the direct limit colim−−−→Xi is

isomorphic to X . In other words, f ∗S is the type of sieve described in the

assumptions of this proposition and proved to be a colim sieve in the previous

paragraph.

Example 5.16. Take Bn = Rn and let Bn → Bn+1 be the inclusion map

(x1, . . . , xn) 7→ (x1, . . . , xn, 0). Use R∞ to denote the direct limit. Then the

above proposition shows that 〈{Rn ↪→ R∞}n∈N〉 is in the canonical topology

on the category of R vector spaces. (Compare this to Example 4.14.)

REDUCTIONS

In this part we prove some reductions that allow us to limit our view (of

sieve generating sets and the maps universality must be checked over) to the

non-full subcategory of free modules with injective maps when R is ‘nice.’

The first reduction will be reducing the types of sieves we need to look at:

Proposition 5.17 (Reduction 1). In R-Mod, let S be a sieve on X . Then the

following are equivalent

1. S is a universal colim sieve
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2. f ∗S is a universal colim sieve for every surjection f : Y → X

3. f ∗S is a universal colim sieve for some surjection f : Y → X

Proof. It is obvious that 1 implies 2 and 2 implies 3, so it suffices to show 3

implies 1.

Assume f ∗S is a universal colim sieve for some fixed surjection f : Y →
X . Set T = 〈{f : Y → X}〉. By Proposition 5.4, T is a universal colim sieve

since f is a surjection. We will now use T together with the Grothendieck

topology’s transitivity axiom to show that S is a universal colim sieve. No-

tice that S satisfies the hypotheses of this axiom with respect to T . Indeed,

since every g ∈ T factors as f◦k for some k, then g∗S = (fk)∗S = k∗(f ∗S),
which implies that g∗S is a universal colim sieve (as f ∗S is universal) for ev-

ery g ∈ T . Therefore, by the transitivity axiom of a Grothendieck topology,

S is a universal colim sieve.

To rephrase our first reduction: S is a universal colim sieve on X if and

only if f ∗S is a universal colim on Rn where f : Rn → X is a surjection

(note that n is not necessarily assumed to be finite). This reduction means

that we can restrict our view to free modules (not necessarily finitely gener-

ated). Specifically, we only need to look at sieves on free modules and check

the universality condition on free modules. Indeed, S is a universal colim

sieve on X if and only if for all g : Y → X , g∗S is a universal colim sieve

on Y if and only if for all g : Y → X , (gf)∗S is a universal colim sieve on

Rn for some surjection f : Rn → Y .

Proposition 5.18 (Reduction 2). In R-Mod when R is a principal ideal do-

main, every sieve on Rn equals a sieve of the form

〈{gi : R
mi ↪→ Rn : mi ≤ n}i∈I〉

where the gi are injections.

Proof. Let S = 〈{fi : Ai → Rn}i∈I〉 be a sieve on Rn. Set

T = 〈{gi : Im(fi) → Rn}i∈I〉

where the gi’s are inclusion maps. Since R is a PID and Im(fi) is a submod-

ule of Rn, then Im(fi) ∼= Rmi for some mi ≤ n. Thus T is of the desired
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form and we will show that S = T . First notice that S ⊂ T . To get that T
is a subcollection of S, notice that f̃i : Ai → Im(fi) (i.e. fi with a different

codomain) is split because f̃i is a surjective map onto a projective module;

call the splitting χi. Hence gi = gi ◦ f̃i ◦χi = fi ◦χi implies that T ⊂ S and

completes the proof.

To rephrase our second reduction: when talking about sieves on Rn, we

only need to talk about sieves generated by injections of free modules. Thus

we can restrict our view of sieve generating sets to the non-full subcategory

of free modules with injective morphisms.

Our next reduction will also assume R is a principal ideal domain. In

particular, fix n and a map f : X → Rn for some R-module X . Then since

R is a PID, we may write

X ∼= Rm ⊕K for some m ≤ n, where

Rm ∼= Im(f), K = ker(f), f = g + z with

g : Rm → Rn an injection and z : K → Rn the zero map.

Proposition 5.19 (Reduction 3). Let R be a principal ideal domain, S be a

sieve on Rn in R-Mod and f : X → Rn. Then, using the set-up described in

the previous paragraph,

colim−−−→
f∗S

U ∼=

(

colim−−−→
g∗S

U

)

⊕

(

colim−−−→
z∗S

U

)

.

Moreover, z∗S is a universal colim sieve; hence f ∗S is a colim sieve if and

only if g∗S is a colim sieve.

Sketch of Proof. By Proposition 5.18, we may assume that S can be written

in the form S = 〈{ηi : R
pi ↪→ Rn : pi ≤ n}i∈I〉. Consider the diagrams X,

R and K defined as:

X =













⊕

i∈I(R
pi ×Rn X)×X (Rpi ×Rn X)

⊕

i∈I(R
pi ×Rn X)













,
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R =













⊕

i∈I(R
pi ×Rn Rm)×Rm (Rpi ×Rn Rm)

⊕

i∈I(R
pi ×Rn Rm)













, and

K =













⊕

i∈I(R
pi ×Rn K)×K (Rpi ×Rn K)

⊕

i∈I(R
pi ×Rn K)













First we look at the objects of X. Since each ηi is injective, then for all i

Rpi ×Rn X ∼= (Rpi ×Rn Rm)⊕ (Rpi ×Rn K)

and for all i, q

(Rpi ×Rn X)×X (Rpq ×Rn X)
∼= ((Rpi ×Rn Rm)×Rm (Rpq ×Rn Rm))⊕ ((Rpi ×Rn K)×K (Rpq ×Rn K)).

In other words, X ∼= R ⊕ K. But since colimits “commute” with colimits,

then Coeq(X) ∼= Coeq(R)⊕Coeq(K). Now by Lemma 2.1 and Proposition

2.2, the first part has been proven, i.e.

colim−−−→
f∗S

U ∼=

(

colim−−−→
g∗S

U

)

⊕

(

colim−−−→
z∗S

U

)

.

Next we notice that z∗S is a universal colim sieve. Indeed, since ηi is an

injection and z is the zero map, it easily follows that z∗S = 〈{id : K → K}〉.
To complete the proof, notice that we have the following commutative

diagram

Coeq(X) ∼= Coeq(R)⊕ Coeq(K)

X ∼= Rm ⊕K

ρχ κ

where the vertical maps are the obvious canonical maps. This χ = ρ ⊕ κ
is an isomorphism if and only if both ρ and κ are isomorphisms. We have
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already shown that κ is an isomorphism (as z∗S is a universal colim sieve),

thus this diagram implies that χ is an isomorphism if and only if ρ is; hence

f ∗S is colim sieve if and only if g∗S is a colim sieve.

Lastly, we rephrase our third reduction:

Corollary 5.20. When R is a PID, a sieve on Rn is a universal colim sieve

if and only if f ∗S is a colim sieve for every injection f : Rm → Rn.

All together our reductions basically allow us to work in the subcategory

of free modules with injective morphisms instead of in R-Mod.

5.1 The Category of Abelian Groups

This section will be primarily made up of examples. Additionally, we in-

clude a characterization of sieves on Z and one result for sieves on larger

free abelian groups.

Example 5.21. By Corollary 5.6, 〈{Z
×a
−→ Z,Z

×b
−→ Z}〉 is a universal colim

sieve if and only if a and b are relatively prime.

Example 5.22. The sieve S = 〈{Z
×1
−→ Z/4Z,Z/2Z

×2
−→ Z/4Z}〉 is a uni-

versal colim sieve on Z/4Z by Corollary 5.2. Additionally, S is not mono-

genic, i.e. it cannot be written as a sieve generated by one morphism.

Example 5.23. Let S = 〈{g : Zn ↪→ Zn} ∪ {fi : Z
mi ↪→ Zn | mi < n}Ni=1〉

be a sieve on Zn. Then S is a universal colim sieve if and only if g is a

surjection, i.e. g is an isomorphism. (This is a direct corollary of Proposition

5.8 and Corollary 5.2.)

Ideally, we would like to know a ‘nice’ basis for the canonical topology

on Ab, like the bases in Section 4.1; to start moving towards this ideal, we

look at the simplest free group, Z. In Example 5.21 we see that a relative

prime pair of numbers will generate a universal colim sieve; this is actually

true in general, specifically:

Proposition 5.24. Let S = 〈{Z
×ai−−→ Z}Ni=1〉 be a sieve on Z. Then S is a

universal colim sieve if and only if gcd(a1, . . . , aN) = 1.
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Proof. First assume that S is a universal colim sieve. In particular, the map

colim−−−→S
U → Z is a surjection, i.e. ZN → Z, (x1, . . . , xN) 7→ a1x1 +

· · ·+ aNxN is a surjection. Therefore, (a1, . . . , aN) = Z and this proves the

forward direction.

Now assume that gcd(a1, . . . , aN) = 1. We will break the proof that S
is a universal colim sieve up into several pieces. First we will reduce the

proof to showing that S is a colim sieve. By the reductions (Propositions

5.17, 5.18 and 5.19), universality only needs to be checked along maps of

the form f : Z
×k
−→ Z where k 6= 0. Fix k 6= 0, i.e. fix f , and write Zb

for the domain of Z
×b
−→ Z. By Lemma 2.1, f ∗S = 〈{πi : Zai ×Z Zk →

Zk}
N
i=1〉. Moreover, it is easy to see that the pullback Zai ×Z Zk

∼= Z and

πi must be multiplication by ai
gcd(ai,k)

. Since gcd(a1, . . . , aN) equals 1, then

gcd
(

a1
gcd(a1,k)

, . . . , aN
gcd(aN ,k)

)

= 1 and hence f ∗S has the same form as S.

Specifically, any argument showing that S is a colim sieve will similarly

show that f ∗S is a colim sieve. Therefore, it suffices to show that S is a

colim sieve.

To see that S is a colim sieve, i.e. to see that the map colim−−−→S
U → Z

induced by a1, . . . , aN is an isomorphism, let α = N(N−1)
2

and notice that

colim−−−→
S

U ∼= Coeq













⊕α
i=1Z

⊕N
i=1Z













∼= Cokernel
(

φ : Zα → ZN
)

for some map φ where the first isomorphism comes from Lemma 2.2 and the

last isomorphism comes from the fact that we are working in an abelian cat-

egory. Now this map φ happens to be the third map in the Taylor resolution

of Z, i.e. φ1 in [J. Mermini, 2012]. We make two remarks about this previ-

ous sentence: (1) we will not prove that our φ is [J. Mermini, 2012]’s φ1, al-

though this is easy to observe, and (2) the Taylor resolution in [J. Mermini, 2012]

is specifically for polynomial rings, not Z, however, both the definition of the

Taylor resolution and the proof that it is in fact a free resolution are analo-
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gous. Here is the end of the Taylor resolution:

· · · → Zα φ
−→ ZN (a1 ... aN )

−−−−−−→ Z → Z/(a1, . . . , aN)Z → 0

Since gcd(a1, . . . , aN) = 1, then it follows that (a1 . . . aN) is a surjection

and Z/(a1, . . . , aN)Z ∼= 0. Thus we obtain 0 → Im(φ) → ZN → Z → 0,

which is an exact sequence and hence implies that the cokernel of φ is Z.

Additionally, since (a1 . . . aN) induced our map colim−−−→S
U → Z, then this

short exact sequence also says that S is a colim sieve.

Because of Proposition 5.24, we can now easily determine when a sieve

on Z is in the canonical topology and we can easily come up with examples;

for example, 〈{Z
×15
−−→ Z,Z

×10
−−→ Z,Z

×12
−−→ Z}〉 is in the canonical topology

whereas the sieve 〈{Z
×15
−−→ Z,Z

×50
−−→ Z,Z

×20
−−→ Z}〉 is not. One may hope

for a similar outcome for sieves on Zn when n ≥ 2, however, the Taylor

resolution used in the proof of Proposition 5.24 does not seem to generalize

in a suitable manner. Instead, we have a proposition that may tell us when a

potential sieve is not in the canonical topology.

Proposition 5.25. Let S = 〈{Zn Ai−→ Zn}Ni=1〉 where Ai is a diagonal matrix

with det(Ai) 6= 0. Then there exists a map β : Z → Zn such that β∗S is not

a colim sieve if and only if gcd(det(A1), . . . , det(AN)) 6= 1.

Proof. First we set up some notation: Let Ai = diag(a1i, . . . , ani) and Zn
i

be the domain of Ai.

To prove the backward direction, suppose that gcd(det(A1), . . . , det(AN))
does not equal 1. We can rephrase the assumptions as aik 6= 0 for all k and

there exists a prime q such that q divides the product a1i . . . ani for all i. Set

β equal to the diagonal embedding, i.e. 1 7→ (1, . . . , 1). Then by Lemma

2.1, β∗S = 〈{fi : Z
n
i ×Zn Z → Z}Ni=1〉. Let ki = lcm(a1i, . . . , ani) and

χi : Z → Zn, 1 7→
(

ki
a1i

, . . . , ki
ani

)

, then

Z Zn

Z Zn

ki

χi

Ai

β
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is a pullback diagram. Moreover, the prime q divides ki for all i since it

divides a1i . . . ani for all i. Thus gcd(k1, . . . , kN) 6= 1. Now by Proposition

5.24, we can see that β∗S = 〈{Z
×ki−−→ Z}Ni=1〉 is not a universal colim sieve.

In particular, the first part of the proof of Proposition 5.24 shows that β∗S is

not a colim sieve.

To prove the forward direction, we will prove the contrapositive state-

ment. So suppose that gcd(det(A1), . . . , det(AN)) = 1. Let β : Z → Zn be

given as the matrix







b1
...

bn






. To see that β∗S = 〈{fi : Z

n
i ×Zn Z → Z}Ni=1〉 is

a colim sieve, notice that we have the pullback diagram

Z Zn

Z Zn

ki Ai

β

where ki = lcm
(

a1i
gcd(a1i,b1)

, . . . , ani

gcd(ani,bn)

)

. Hence, ki divides det(Ai). This

implies that gcd(k1, . . . , kn) divides gcd(det(A1), . . . , det(AN)) and hence

equals 1. Now by Proposition 5.24, we can see that β∗S = 〈{Z
×ki−−→ Z}Ni=1〉

is a universal colim sieve.

Example 5.26. Based on Proposition 5.25 we can automatically say that the

sieve

〈{(

4 0
0 14

)

,

(

21 0
0 2

)

,

(

1 0
0 49

)}〉

on Z2 is not in the canonical

topology because each matrix has a multiple of 7 somewhere on its diagonal.

Suppose, like in Proposition 5.25, S = 〈{Zn Ai−→ Zn}Ni=1〉 where each

Ai is a diagonal matrix and gcd(det(A1), . . . , det(AN)) = 1. In order to

determine if S is a universal colim sieve, we (only) need to check if f ∗S is

a colim sieve for all f : Zm ↪→ Zn, 2 ≤ m ≤ n. However, this is still a

fair amount of work and it would be nice if this process could be simplified

further.

Now we finish this section with a few more examples. Note: we will not

prove any assertions in these examples, however, they are all basic compu-

tations that can be checked using undergraduate linear algebra.
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Example 5.27. The sieve S1 =

〈{(

7 0
1 4

)

,

(

21 0
1 18

)

,

(

24 0
6 5

)}〉

on

Z2 is not in the canonical topology although it is a colim sieve. In particular,

S1 is not universal because f ∗S1 is not a colim sieve for f : Z → Z2, f(1) =
(1, 0).

If we take the generating set of S1 and change the 1 in the first matrix to

a 0, then we get the following example:

Example 5.28. The sieve S2 =

〈{(

7 0
0 4

)

,

(

21 0
1 18

)

,

(

24 0
6 5

)}〉

on

Z2 is not a colim sieve since colim−−−→S
U ∼= Z2 ⊕ Z/2Z. Therefore, S2 is also

not in the canonical topology.

Finally, if take the generating set of S2 and change the 18 in the second

matrix to a 9, then we get:

Example 5.29. The sieve S3 =

〈{(

7 0
0 4

)

,

(

21 0
1 9

)

,

(

24 0
6 5

)}〉

on

Z2 is a colim sieve, however, whether or not this sieve is in the canonical

topology is unknown.
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