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”We shall construct KPn, as a CW-complex, in Section 2 and show that it is

an (n− 1)-ball. This gives an instant one-step proof of Mac Lane’s theorem

in full generality.” – Mikhail M. Kapranov

Résumé. Nous donnons une courte preuve topologique de cohérence pour

les opérades non-symétriques catégorifiées en utilisant le fait que les dia-

grammes impliqués forment le 1-squelette de CW complexes simplement

connexes. Nous obtenons également une preuve topologique ”en une étape”

du théorème de cohérence de Mac Lane pour les catégories monoı̈dales sy-

métriques, tel que suggéré par Kapranov en 1993. Notre analyse est basée

sur une notion combinatoire d’homotopie que nous étudions plus en détail

dans le cas particulier des complexes polyédraux, conduisant à une seconde

preuve géométrique de cohérence qui est très proche de l’argument original

de Mac Lane. Nous utilisons la théorie de Morse pour montrer que cette

seconde méthode est strictement moins générale que la première. Nous four-

nissons une analyse détaillée de la façon dont les deux méthodes nous per-

mettent de déduire ces deux résultats de cohérence catégorielle et discutons

de généralisations possibles aux catégories supérieures.

Abstract. We give a short topological proof of coherence for categorified

non-symmetric operads by using the fact that the diagrams involved form the

1-skeleton of simply connected CW complexes. We also obtain a “one-step”

topological proof of Mac Lane’s coherence theorem for symmetric monoidal

categories, as suggested by Kapranov in 1993. Our analysis is based on a

notion of combinatorial homotopy, which we further study in the special case

of polyhedral complexes, leading to a second geometrical proof of coherence
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which is very close to Mac Lane’s original argument. We use Morse theory

to show that this second method is strictly less general than the first. We pro-

vide a detailed analysis of how both methods allow us to deduce these two

categorical coherence results and discuss possible generalizations to higher

categories.

Keywords. Categorified operads, categorical coherence, Seifert–Van Kam-

pen theorem, polytopes, Mac Lane coherence theorem, rewriting theory, Morse

theory.
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Introduction

The n-dimensional permuto-associahedron, a CW-complex whose faces are

in bijection with parenthesized ordered partitions of n + 1 letters, was first

introduced by M. Kapranov in his study of higher dimensional Yang–Baxter

equations, through the moduli spaces of curvesM0,n+1(R) and the solutions

of the Knizhnik–Zamolodchikov equation [Kap93]. It was later realized as a

convex polytope by V. Reiner and G. M. Ziegler [RZ94], and more recently

through the nested braid fan by F. Castillo and F. Liu in [CL23].

The present study stems from a desire to understand the epigraph, taken

from the introduction of [Kap93]: what is the precise relationship between

the permuto-associahedron and Mac Lane’s coherence theorem for symmet-

ric monoidal categories? We show that the simple connectedness of the for-

mer implies the latter, thereby refining and proving Kapranov’s claim (see

Theorem 2.16).

This is done through a general “topological coherence theorem” which

applies to any simply connected, regular CW complex (Theorem 1.1). Ap-

plying it to the operahedra, another family of polytopes which encodes cat-

egorified non-symmetric operads [DP15, COI19, Lap22], we obtain a “one-

step” proof of the associated coherence theorem as well.

There is little price to pay, though. For both theorems, one needs to

provide a precise bijective correspondence between the 1-skeleton (resp. the

2–cells) on the topological side, and canonical morphisms (resp. bifuncto-

riality, naturality, and applications of coherence conditions) on the categor-

ical side (Propositions 2.13 and 2.6). Since the 2-skeleton of the permuto-
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associahedra corresponds to other basic canonical morphisms and coherence

conditions than those of Mac Lane (hexagons and naturality of the involu-

tive braiding on one hand versus dodecagons on the other hand), one needs

to show that the two presentations are equivalent, which is non-trivial, see

Remark 2.17. There is yet a third equivalent presentation (and hence another

proof of coherence) due to D. Baralić, J. Ivanović and D. Petrić [BIP19], that

matches the 2-skeleton of a different polytope, which unlike the permuto-

associahedron is simple, see Remark 2.14.

We further investigate a topological incarnation of Mac Lane’s original

argument, in the spirit of rewriting theory. We study polyhedral complexes

endowed with a generic orientation vector, or equivalently a Morse func-

tion in the sense of [BB97], whose 1-skeletons naturally feature terminating

and confluent rewriting systems (Proposition 1.12). We focus on the family

of simply connected polyhedral complexes whose outgoing links are con-

nected. The study of directed paths on their 1-skeleton leads to a second

general proof of coherence (Theorem 1.9). In particular, this second theo-

rem can be applied to all polytopes, allowing us to give a second, “rewriting-

theoretic” proof of both previously mentioned coherence results. In the case

of operahedra, our rewriting proof simplifies the original proof of Došen and

Petrić [DP15], see Remark 2.2.

It is worth noting that, while the above polyhedral complexes admit ab-

stract rewriting systems on their 1-skeleton, the family of operahedra (which

includes the associahedra, encoding non-symmetric monoidal categories)

further admits term rewriting systems, which exhibit more structure and are

the subject of a companion paper [CLA24]. In contrast, we shall argue that

the abstract rewriting approach to symmetric monoidal categories is not in-

formative, see Remark 2.18.

Using Morse theory on affine cell complexes [BB97], we relate our two

approaches by showing that the second is (strictly) less general than the first

(Proposition 1.5).

Our two general topological coherence theorems can be used to prove

other categorical results where polytopes appear, such as coherence for monoidal

functors between monoidal categories [Eps66], see Section 3.1. They also

shed light on some statements in the literature, such as the proof of [KV94,

Prop. 3.9], see Section 3.2. This all points towards further investigation of

the relationship between n-categorical coherence and n-connectedness of

359



P.-L. CURIEN AND G. LAPLANTE-A. TOPOLOGICAL COHERENCE

appropriate spaces. While topological proofs of 2-categorical coherence al-

ready appeared in [Gur11], higher dimensional results have been obtained

recently by S. Barkan in the context of ∞-operads [Bar22], for which the

present results could well be the strict, n = 1 case.

1. Topological coherence

1.1 Coherence à la Van Kampen

Let X be a regular CW complex, and let Xk, k ≥ 0 denote its k-skeleton.

For an edge e of X , denote its attaching map fe : S
0 → X0. Consider

the category A(X) with set of objects X0, and generating morphisms αe :
fe(−1) → fe(1) and α−1

e : fe(1) → fe(−1) for each edge e ∈ X1. A

combinatorial path onX is a composable sequence of α and α−1 morphisms

(a word in α and α−1). Two combinatorial paths γ, γ′ ∈ A(X)(x, y) with

the same endpoints are said to be parallel.

Let A be a 2-cell of X , let fA : S
1 → X1 be its attaching map, and

let x ∈ X0 be a vertex in the image of fA. Then fA defines a morphism

γA ∈ A(X)(x, x), given by the sequence of edges e1, . . . , en in its image

starting at x and respecting the anti-clockwise orientation of S1. Here, one

selects αei if the orientation of fA restricted to ei agrees with the one of fei ,
and α−1

ei
otherwise. Two parallel combinatorial paths γ, γ′ are said to be

elementary combinatorially homotopic if they differ exactly by a relation of

the form αeα
−1
e = idfe(1) or α−1

e αe = idfe(−1), or of the form γA = idx,

for some 2-cell A and vertex x as above. That is, one can rewrite γ into

γ′ or γ′ into γ by replacing some (possibly empty) subword of γ with an

equivalent subword using a relation γA = idx. More generally, two parallel

combinatorial paths are combinatorially homotopic if they are related by a

sequence of elementary combinatorial homotopies.

The quotient of the category A(X) by the relations αα−1 = α−1α = id
is the free groupoid F(X) generated by the α morphisms. Let C(X) denote

the further quotient of the groupoidF(X) by the relations γA = idx for some

choice of x, for each 2-cell A of X . In other words, C(X) is the quotient of

A(X) by the combinatorial homotopy equivalence relation. Note that the

definition of C(X) does not depend on the choice of x, for every 2-cell A.

Indeed, if x′ ̸= x ∈ A0 defines a relation γ′A = idx′ , we have γ′A = δγAδ
−1
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in F(X), where δ is the morphism in A(X)(x, x′) induced by γA. Thus,

a path γ can be rewritten into γ′ using γA = idx if and only if it can be

rewritten using γ′A = idx′ .

Let Π(X) denote the fundamental groupoid of X , that is the groupoid

with objects the points of X and morphisms the homotopy classes of paths

between them.

Theorem 1.1. Let X be a regular CW complex. Any two parallel combina-

torial paths on X are combinatorially homotopic if and only if every path

component of X is simply connected.

Proof. For Y ⊆ X , let us write Π(X)Y for the full subcategory of the

fundamental groupoid of X spanned by Y . Then, we have an isomorphism

of groupoids

Π(X)X0
∼= C(X) .

To show this, one proceeds in three steps. First, one shows that the funda-

mental groupoid Π(X1)X0 of the 1-skeleton of X is free on the homotopy

classes of maps generated by the attaching maps of the 1-cells, that is, free

on the α-morphisms [Bro06, 9.1.5]. Thus, one gets Π(X1)X0
∼= F(X). Sec-

ond, one shows that the fundamental groupoid Π(X2)X0 of the 2-skeleton

of X is the free groupoid Π(X1)X0 modulo the relations γA = 1, for A a

2-cell of X [Bro06, 9.1.6]. This is done through repeated application of the

Seifert–Van Kampen theorem; one then has Π(X2)X0
∼= C(X). Third, one

shows that the inclusion of X2 in X induces an isomorphism of fundamental

groupoids Π(X2)X0
∼= Π(X)X0 [Bro06, 9.1.7], which concludes the proof

of the isomorphism Π(X)X0
∼= C(X). The theorem then follows, since

every path component of X is simply connected if and only if its fundamen-

tal groupoid Π(X) is trivial, which holds if and only if its full subcategory

Π(X)X0 is trivial.

Note that any CW complex is locally path connected, and therefore is

connected if and only if it is path connected. Therefore, we could have

replaced in the preceding theorem “path component” by “connected compo-

nent”.

Let us say thatX is combinatorially connected if there is a combinatorial

path between any two vertices of X . In the course of the preceding proof,

we have in particular showed the following.
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Corollary 1.2. A regular CW complex is combinatorially connected if and

only if it is connected.

1.2 Coherence à la Morse

Let X ⊂ R
n be a polyhedral complex. Let v⃗ ∈ R

n be generic on the edges

of X , meaning that for any pair of vertices x, y ∈ X belonging to the same

edge of X , we have ⟨v⃗, x⟩ ≠ ⟨v⃗, y⟩. Such a generic vector v⃗ induces a

natural orientation on the edges of X , directed from the source vertex where

the functional ⟨v⃗,−⟩ is minimal to the target vertex where it is maximal.

One of the basic, very useful facts about polyhedral complexes with a

generic vector is that, for any face F ⊆ X of X , there is a unique source

vertex sc(F ) such that all its adjacent edges e ⊆ F are outgoing, and a

unique sink vertex sk(F ) whose adjacent edges are all incoming, see [Zie95,

Thm. 3.7]. More generally a vertex whose adjacent edges e ⊆ X are all

incoming is called a local sink, and when X has only one such vertex, we

call it global sink and denote it by sk(X).
Let H := {y ∈ R

n | ⟨v⃗, y⟩ = 0} be the linear hyperplane orthogonal to v⃗.

For every vertex x ∈ X , choose ε > 0 such that the interval between ⟨v⃗, x⟩
and ⟨v⃗, x⟩ + ε does not contain the image of any other vertex under the

“height” function ⟨v⃗,−⟩.

Definition 1.3. The outgoing link Lk+(x,X) of a vertex x ∈ X is the inter-

sectionF∩(H+x+εv⃗) of the family of facesF(x,X) := {F ⊆ X | sc(F ) =
x} with the affine hyperplane H + x+ εv⃗.

Recall from [Zie95, Sec. 2.1] that the vertex figure P/x of a polytope P
at a vertex x is obtained by cutting P by a hyperplane that cuts off the single

vertex x. Such a cut establishes a bijection between the (k−1)-faces of P/x
and the k-faces of P which contain x [Zie95, Prop. 2.4].

Lemma 1.4. Let X be a polyhedral complex with a generic vector. For any

k ≥ 0, there is a bijection between the k-faces of F(x,X) and the (k − 1)-
faces of Lk+(x,X).

Proof. Each maximal face of F(x,X) with respect to inclusion is a poly-

tope P , for which the intersection P ∩ (H +x+ εv⃗) is the vertex figure P/x
of P at x. By [Zie95, Prop. 2.4], there is a bijection between the k-faces
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of P and the (k − 1)-faces of P/x. Collecting these bijections for all maxi-

mal faces of F(x,X), and making the appropriate identifications, we get the

desired global bijection.

In this section we shall focus on polyhedral complexes whose outgoing

links are connected. The following proposition gives the topological signifi-

cance of this condition.

Proposition 1.5. Let X be a polyhedral complex. If there is a generic vector

such that the outgoing link of every vertex is connected, then every path

component of X is simply connected.

Proof. Let v⃗ ∈ R
n be generic with respect to X , and suppose that the out-

going link of every vertex is connected. Since v⃗ is generic on edges, it de-

fines a Morse function ⟨v⃗,−⟩ on X , in the sense of [BB97, Def. 2.2]. As

in classical Morse theory, one can determine the homotopy type of X by

considering its successive level sets. For t ∈ R denote by Xt the closed sub-

space of X containing points x such that ⟨x, v⃗⟩ is at least t. Let x be a vertex

of X of height h = ⟨x, v⃗⟩. Observe first that Xh+ε, for some small ε > 0,

is homotopy equivalent to Xh′ where h′ > h is the next greater height at

which there is a vertex. That is, the homotopy type of X can only change at

vertices [BB97, Lem. 2.3]. Then, one proves that Xh is homotopy equiva-

lent to the pushout of Xh+ε with the cone over the outgoing link of x along

the outgoing link of x [BB97, Lem. 2.5]. By our assumption, the outgo-

ing link of x is connected, and thus the cone over it is simply connected.

Since the pushout of simply connected spaces over a connected space is al-

ways simply connected (this is an application of the Seifert–Van Kampen

theorem), we obtain by induction that every path component of X is simply

connected [BB97, Point (3) of Cor. 2.6].

The converse of Proposition 1.5 is not true in general: many simply con-

nected polyhedral complexes, as the one represented in Figure 1, have dis-

connected outgoing links, for many (sometimes for all) choices of generic

vectors.

An important class of complexes which have connected outgoing links

are polytopes, which will be our main object of study in the next sections.

Proposition 1.6. Let P be a polytope with a generic vector. The outgoing

link of every vertex of P is connected.
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Figure 1: A simply connected polyhedral complex which admits discon-

nected outgoing links for every choice of generic vector.

Proof. Define the linear hyperplane H := {y ∈ R
n | ⟨v⃗, y⟩ = 0}, and con-

sider the two half-spaces H− := {y ∈ R
n | ⟨v⃗, y⟩ < 0} and H+ := {y ∈

R
n | ⟨v⃗, y⟩ < 0}. Since v⃗ is not perpendicular to any edge of P , it defines

a partition of the vertices of the vertex figure P/x into two connected com-

ponents: the vertices that lie in H−, which correspond to incoming edges

of P at x, and the vertices that lie in H+, which correspond to outgoing

edges of P at x. Thus, the outgoing link of x is connected, and the proof is

complete.

From now on we shall suppose that the polyhedral complexes that we

consider are endowed with a regular CW structure and provided with a

generic vector. Combining Proposition 1.5 with Theorem 1.1, we have that

any polyhedral complex X whose outgoing links are connected satisfies the

property that “any two parallel combinatorial paths onX are combinatorially

homotopic”. We shall now derive this same result by following an alterna-

tive, more combinatorial path (indeed!), getting close to the proof of [ML63,

Thm 3.1].

A combinatorial path γ on a polyhedral complex X is directed if for any

pair (e, f) of consective edges in γ, we have that sk(e) = sc(f). When no

ambiguity arises, we will omit the adjective “combinatorial” and say only

“directed path”.

In the rest of this section we shall use the notion of combinatorial con-
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nectedness, which as we have seen in Corollary 1.2 is equivalent to connect-

edness for the spaces we consider.

Lemma 1.7. Let X be a polyhedral complex with generic vector v⃗ such that

the outgoing link of every vertex is combinatorially connected. Let e, e′ be

two edges of X such that sc(e) = sc(e′), and suppose that there are directed

paths from sk(e) and sk(e′) to local sinks s and s′, respectively. Then, we

have s = s′.

Proof. Define the height h(x) of a vertex x as the length of the longest di-

rected path in X starting at x. Since the vector v⃗ is generic and X0 is finite,

this is well-defined. We proceed by induction on h(x). The statement holds

vacuously for vertices x such that h(x) = 0. Suppose that the assertion

above holds for all vertices x ∈ X such that h(x) = n, and consider a

vertex x with h(x) = n + 1. Since the outgoing link Lk+(x,X) is combi-

natorially connected, there is a combinatorial path θ in Lk+(x,X) between

the vertices corresponding to e and e′ (Lemma 1.4). The path θ determines

a sequence of edges e0 := e, e1, . . . , ek, e
′ =: ek+1 of X with sc(ei) = x for

all 0 ≤ i ≤ k + 1. Moreover, each consecutive pair ei, ei+1 determines a

2-face Fi+1 of X . Now, choose for each ei with 1 ≤ i ≤ k, a directed path

of maximal length starting at sk(ei) and passing through sk(Fi). Each of

these paths ends at a local sink si, including s0 := s and sk+1 := s′. Since

we have h(sk(ei)) < h(x) for all 0 ≤ i ≤ k + 1, we can apply induction

to the two directed paths from sk(ei) to si and si+1, which gives si = si+1.

Therefore, we have s = s0 = s1 = · · · = sk = sk+1 = s′, as desired.

Two parallel directed paths are said to be elementary combinatorially ho-

motopic if they are as undirected paths. They are combinatorially homotopic

if they are related by a sequence of elementary combinatorial homotopies

between directed paths.

The following Proposition 1.8 and its consequence Theorem 1.9 express

in topological terms the original proof technique used by Mac Lane in [ML63,

Thm 3.1]. Note that Proposition 1.8 involves first directed paths, while The-

orem 1.9 treats the general, undirected case.

Proposition 1.8. LetX be a polyhedral complex with a generic vector. Con-

sider the following three properties:
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(i) the outgoing link of every vertex is combinatorially connected,

(ii) there is a global sink in every connected component,

(iii) any two parallel directed combinatorial paths on X are combinatori-

ally homotopic.

Then, X satisfies (i) if and only if it satisfies (ii) and (iii).

Proof. First, we prove that (i) implies (ii). Suppose that there are two lo-

cal sinks s1 and s2 in the same connected component of X . Consider a

combinatorial path γ between s1 and s2, whose existence is garanteed by

Corollary 1.2. We proceed by induction on the number of peaks in γ, that

is the number of vertices x which are the source sc(e) = x = sc(e′) of two

edges e, e′ of γ. The path γ has at least a peak, otherwise s1 and s2 would not

be both local sinks. If γ has a unique peak, Lemma 1.7 implies that s1 = s2.
Now suppose that for any k ≤ n, if γ has k peaks, then we have s1 = s2.
If γ has n + 1 peaks, consider the first peak x = sc(e) = sc(e′) of γ. By

Lemma 1.7, there is a directed path δ from sk(e′) to s1. Replacing the ini-

tial section of γ ending in e′ by δ, we get a path with n peaks, and by the

induction hypothesis we get s1 = s2, completing the proof.

Second, we prove that (i) implies (iii). Let us assume thatX is connected,

otherwise we apply the same reasoning to each connected component. From

the preceding paragraph, we know that X has a global sink sk(X). Suppose

that the outgoing link of every vertex is combinatorially connected. Let γ
and γ′ be two parallel directed paths between two vertices x and y. We

prove that they are combinatorially homotopic. We proceed by induction on

the maximal length m of a directed path between x and y in X . Without loss

of generality, we can suppose that y = sk(X), since if y ̸= sk(X) we can

always find a directed path between y and sk(X). The cases whenm = 0 and

m = 1 are trivial. Suppose that the hypothesis holds up tom = k−1, k ≥ 2,

and consider two paths γ and γ′ for which m = k. Let e and e′ denote the

edges of γ and γ′ that are adjacent to x. We examine three cases.

1. If e = e′, we can apply the induction hypothesis to γ \ e and γ′ \ e′.

2. If e ̸= e′ and both edges are on the same 2-face F of X , then using

the induction hypothesis we have that γ and γ′ are respectively combi-

natorially homotopic to the paths δ and δ′ defined as follows: they go
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from x = sc(F ) to sk(F ) by the unique path containing e and e′, re-

spectively, and then from sk(F ) to y along the same arbitrary directed

path. Since δ and δ′ are combinatorially homotopic by definition, the

conclusion follows from the transitivity of the combinatorial homo-

topy equivalence relation.

3. Suppose that e ̸= e′, and that e and e′ are not on the same 2-face of X .

Since the outgoing link of x is combinatorially connected, there exists

a combinatorial path θ between the vertices corresponding to e and e′

in this link (Lemma 1.4). For every edge ei of X in the path θ, choose

a directed path γi in X from x to y = sk(X) going through ei. Now

apply Point (2) above to every pair of parallel directed paths (γi, γi+1)
with ei and ei+1 consecutive in θ, and conclude again by transitivity of

the combinatorial homotopy equivalence relation.

Finally, we prove that (ii) and (iii) imply (i). Suppose that every pair

of parallel directed combinatorial paths are combinatorially homotopic. We

show that for any vertex x, its outgoing link is combinatorially connected.

Indeed, take two edges e, e′ ofX with source x, and consider their extensions

to directed paths γ, γ′ from x to sk(X). By hypothesis, these two paths are

combinatorially homotopic, that is, there is a sequence of parallel directed

paths from γ to γ′. The collection of first edges in each of these paths defines

a combinatorial path between e and e′ in the outgoing link of x. Thus, this

link is combinatorially connected.

Theorem 1.9. Let X be a polyhedral complex with generic vector such that

the outgoing link of every vertex is combinatorially connected. Then, any

two parallel combinatorial paths on X are combinatorially homotopic.

Proof. Assume that X is connected, otherwise apply the argument to each

connected component. By Proposition 1.8, the polyhedral complex X ad-

mits a global sink sk(X) and the conclusion holds for directed paths. Let

us show that this implies the undirected version. Let γ be an undirected

combinatorial path on X between x and y. For every vertex z along γ, one

can choose a directed path δz from z to sk(X). We observe that for any

edge e : z → z′ of γ, the directed paths δz and δz′e are combinatorially ho-

motopic by hypothesis. Going from x to y inductively one edge at a time and

using transitivity of the homotopy equivalence relation, one obtains that γ is
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combinatorially homotopic to δ−1
y δx. Taking another combinatorial path γ′

parallel to γ, the same argument shows that γ′ is combinatorial homotopic

to δ−1
y δx. Thus γ and γ′ are combinatorially homotopic, which completes

the proof.

As Proposition 1.5 shows, the class of polyhedral complexes to which

Theorem 1.9 applies is a strict subclass of simply connected complexes. This

implies that the converse of Theorem 1.9 does not hold, and thus that Mac

Lane’s original proof is far from reaching the full generality of Theorem 1.1.

However, it will be sufficient for our purposes, since – as we have seen in

Proposition 1.6 – it applies to any polytope.

Another feature of polyhedral complexes with generic vector is that their

1-skeleton defines abstract rewriting systems which are terminating and con-

fluent, as we now show.

1.3 Rewriting systems

We refer to [BN98] for more details on rewriting systems.

Definition 1.10. An abstract rewriting system is a set A together with a

binary relation→.

We denote by
∗
−→ the reflexive and transitive closure of →. We say

that (A,→) is locally confluent (resp. confluent) if for all a, a1, a2 ∈ A

such that a1 ← a → a2 (resp. a1
∗
←− a

∗
−→ a2), there exists a term b with

a1
∗
−→ b

∗
←− a2. The diagram

a

a1 a2

b

∗ ∗

is called a local confluence diagram. A rewriting system is terminating if

every reduction sequence a → a1 → a2 → · · · eventually must terminate.

An element a ∈ A is reducible if there exists an a′ ∈ A such that a → a′;
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otherwise it is called irreducible – the rewriting synonymous of local sink!

We say that b is a normal form of a if a
∗
−→ b and b is irreducible.

Given a polyhedral complex X and a generic vector v⃗, one can consider

the abstract rewriting system defined by v⃗ on the vertices of X .

Definition 1.11. The vertices rewriting system is the pair (X0,→) made

of the set of vertices X0 of X , together with the following relation: we

have x→ y if x and y are vertices of the same edge and ⟨v, x⟩ < ⟨v, y⟩.

According to this definition, we have x
∗
−→ y if and only if there is a

directed path from x to y in X1. The hypothesis of Theorem 1.9 imposes

that the rewriting system (X0,→) is terminating and confluent.

Proposition 1.12. Let X be a polyhedral complex and v⃗ be a generic vec-

tor. If the outgoing link of every vertex is combinatorially connected, the

rewriting system (X0,→) is terminating and confluent.

Proof. Since v⃗ is generic, and thus strictly increasing along edges, it de-

fines a partial order, and since the set X0 is finite, the rewriting system

(X0,→) is terminating. By Proposition 1.8, there is a global sink in each

connected component of X . Confluence then follows: given any pair of

vertices x, y in the same connected component, since v⃗ is generic there are

directed paths x
∗
−→ s

∗
←− y to the global sink s of this connected compo-

nent.

Corollary 1.13. The abstract rewriting system on the vertices of any poly-

tope P is terminating and confluent. Moreover, every pair of vertices admits

a unique normal form sk(P ).

Recall that a polytope P is simple if each vertex of P is incident to pre-

cisely dimP edges.

Lemma 1.14. If a polytope P is simple, then there is a bijection between

the local confluence diagrams of (P0,→) and the oriented boundaries of the

2-faces of P .

Proof. When P is simple, the vertex figure P/x of every vertex x is a sim-

plex [Zie95, Prop. 2.16], with each edge in P/x corresponding to a 2-face

of P (Lemma 1.4). Thus every pair of edges e, e′ with source x = sc(e) =
sc(e′) determines a 2-face of P .
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Not much more can be said at this level of generality. For the specific

familiy of operahedra that we will consider in the next section, the rewrit-

ing systems possess more structure (they are term rewriting system) and are

studied in a companion paper [CLA24].

2. Categorical coherence

2.1 Categorified non-symmetric operad

Throughout this section we consider structures without units. Unless other-

wise stated, the adjective “non-unital” will be implicitly assumed.

Definition 2.1. A categorified non-symmetric operad P is a collection {P(n)}n∈N
of small categories equipped with bifunctors

◦i : P(n)× P(k) −→ P(n+ k − 1) , for 1 ≤ i ≤ n ,

and for each κ ∈ P(m), µ ∈ P(n), ν ∈ P(k), 1 ≤ i ≤ m, 1 ≤ j ≤ n
natural isomorphisms

βκ,µ,ν : (κ ◦i µ) ◦j+i−1 ν
∼=
−→ κ ◦i (µ ◦j ν) ,

θκ,ν,µ : (κ ◦i ν) ◦j+k−1 µ
∼=
−→ (κ ◦j µ) ◦i ν , when i < j ,

such that the following diagrams commute: the pentagonal

((κ ◦ τ) ◦ µ) ◦ ν

(κ ◦ (τ ◦ µ) ◦ ν)

κ ◦ ((τ ◦ µ) ◦ ν)

κ ◦ (τ ◦ (µ ◦ ν))

(κ ◦ τ) ◦ (µ ◦ ν)

βκ,τ,µ ◦ 1ν

βκ,τ◦µ,ν

1κ ◦ βτ,µ,ν

βκ◦τ,µ,ν

βκ,τ,µ◦ν

((κ ◦ τ) ◦ µ) ◦ ν

((κ ◦ τ) ◦ ν) ◦ µ

((κ ◦ ν) ◦ τ) ◦ µ

(κ ◦ ν) ◦ (τ ◦ µ)

(κ ◦ (τ ◦ µ) ◦ ν

θκ◦τ,µ,ν

θκ,τ,ν ◦ 1µ

βκ◦ν,τ,µ

βκ,τ,µ ◦ 1ν

θκ,τ◦µ,ν
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((κ ◦ τ) ◦ µ) ◦ ν

((κ ◦ µ) ◦ τ) ◦ ν

((κ ◦ µ) ◦ ν) ◦ τ

(κ ◦ (µ ◦ ν)) ◦ τ

(κ ◦ τ) ◦ (µ ◦ ν)

θκ,τ,µ ◦ 1ν

θκ◦µ,τ,ν

βκ,µ,ν ◦ 1τ

βκ◦τ,µ,ν

θκ,τ,µ◦ν

and hexagonal identities

((κ ◦ τ) ◦ µ) ◦ ν

(κ ◦ (τ ◦ µ)) ◦ ν

κ ◦ ((τ ◦ µ) ◦ ν)

κ ◦ ((τ ◦ ν) ◦ µ)

((κ ◦ τ) ◦ ν) ◦ µ

(κ ◦ (τ ◦ ν)) ◦ µ

βκ,τ,µ ◦ 1ν

βκ,τ◦µ,ν

1κ ◦ θτ,µ,ν

θκ◦τ,µ,ν

βκ,τ,ν ◦ 1µ

βκ,τ◦ν,µ

((κ ◦ τ) ◦ µ) ◦ ν

((κ ◦ µ) ◦ τ) ◦ ν

((κ ◦ µ) ◦ ν) ◦ τ

((κ ◦ ν) ◦ µ) ◦ τ

((κ ◦ τ) ◦ ν) ◦ µ

((κ ◦ ν) ◦ τ) ◦ µ

θκ,τ,µ ◦ 1ν

θκ◦µ,τ,ν

θκ,µ,ν ◦ 1τ

θκ◦τ,µ,ν

θκ,τ,ν ◦ 1µ

θκ◦ν,τ,µ

.

The diagrams above hold for all instances of composable β and θ; these

depend on the indices i, j, k, which are omitted for the sake of readability.

Observe that a categorified non-symmetric operad concentrated in arity 1 is

a non-symmetric monoidal category.

As formalized in Proposition 2.6 below, one can picture an object µ ∈
P(n) as a planar tree with one vertex decorated by µ, n leaves and one root

(a corolla). The ◦i bifunctors then correspond to the operation of grafting

a corolla on top of another. Iterated applications of the ◦i can be visualized

as fully nested planar trees, with vertices decorated by objects of P , see

Figure 2. A nesting of a planar tree is a collection of subtrees (nests) which

are either included in one another or disjoint. A nesting is full if its number

of nests is maximal, equal to the number of internal edges of the tree [Lap22,

Def. 2.2].
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κ

τ

µ

ν ρ

1

2

3
4

Figure 2: A fully nested planar tree.

The β and θ arrows correspond to the sequential and parallel axioms

of an operad, and relate the two possible ways of fully nesting a tree with

3 vertices, see Figure 3. Moreover, there is then one coherence diagram

(pentagon or hexagon) for every planar tree with 4 vertices, see Figure 4.

κ

µ

ν

β
−→

κ

µ

ν

κ

µν θ
−→

κ

µν

Figure 3: The β and θ isomorphisms defining a categorified non-symmetric

operad.

Remark 2.2. K. Došen and Z. Petrić introduced in [DP15, Sec. 12] the no-

tion of weak Cat-operad. Despite looking different at first sight, the two no-

tions of categorified non-symmetric operad and weak Cat-operad are in fact

equivalent. The crucial observation is the following: the θ-isomorphisms of

Došen–Petrić comprise both the isomorphisms θ in Definition 2.1 and their

inverses θ−1. Therefore, there are only two pentagonal coherence diagrams

in the definition of a weak Cat-operad, the equations (β pente) and (βθ2e) of

[DP15, Sec. 9]. The set of diagrams of the form (β pente) is the same as the

set of diagrams which arises from the first pentagon in Definition 2.1, while
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κ

τ

µ

ν

κ

τ

µ

ν

κ

τ µ

ν

κ

τ

µ ν

κ

τ µ ν

Figure 4: The five planar trees with four vertices, giving rise to the pentago-

nal (first three) and hexagonal (last two) identites.

the set of diagrams of the form (βθ2e) is partitioned into the sets of diagrams

which arise from the second and third pentagons in Definition 2.1.

We will give in Theorem 2.5 two topological proofs of coherence for

categorified non-symmetric operads. A benefit of our presentation is that,

adopting the oriented approach (see the second proof of Theorem 2.5), we

get a proof of coherence where β and θ are both treated as rewriting rules, in

contrast with the proof in [DP15], which proceeds in two stages, much like

in Mac Lane’s proof of coherence for symmetric monoidal categories (see

Remark 2.18): first get rid of β (rewriting), then deal with θ.

Definition 2.3. A strong morphism of categorified non-symmetric operads

F : P → Q is a collection of functors Fn : P(n) → Q(n) together with

natural isomorphisms

γκ,µ : Fm−1+n(κ ◦i µ)
∼=
−→ Fm(κ) ◦i Fn(µ)

such that the following diagrams commute:

F ((κ ◦ µ) ◦ ν)

F (κ ◦ µ) ◦ F (ν)

(F (κ) ◦ F (µ)) ◦ F (ν)

F (κ) ◦ (F (µ) ◦ F (ν))

F (κ ◦ (µ ◦ ν))

F (κ) ◦ F (µ ◦ ν)

γκ◦µ,ν

γκ◦µ ◦ 1F (ν)

βF (κ),F (µ),F (ν)

F (βκ,µ,ν)

γκ,µ◦ν

1F (κ) ◦ γµ,ν

F ((κ ◦ ν) ◦ µ)

F (κ ◦ ν) ◦ F (µ)

(F (κ) ◦ F (ν)) ◦ F (µ)

(F (κ) ◦ F (µ)) ◦ F (ν)

F ((κ ◦ µ) ◦ ν)

F (κ ◦ µ) ◦ F (ν)

γκ◦ν,µ

γκ,ν ◦ 1F (µ)

θF (κ),F (ν),F (µ)

F (θκ,ν,µ)

γκ◦µ,ν

γκ,ν ◦ 1F (ν)
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It is said to be strict if the natural isomorphisms are identities.

Once again, the diagrams above hold for all instances of β and θ ar-

rows, and we have omitted the (i, j, k)-indices for readability. Observe that

a strong (resp. strict) morphism between categorified non-symmetric oper-

ads concentrated in arity 1 is a strong (resp. strict) monoidal functor between

non-symmetric monoidal categories.

2.2 Coherence for categorified non-symmetric operads

We now aim at the coherence theorem for categorified non-symmetric op-

erads. In order to state the theorem, we construct the free non-symmetric

categorified operad on a family of sets S = {Sn}n≥1. We define a family of

categories S = {Sn}n≥1 whose objects are given by the following rules:

1. if a ∈ Sn, then a is an object of Sn;

2. if t1 ∈ Sm and t2 ∈ Sn, then t1 ◦i t2 is an object of Sm−1+n, for any

1 ≤ i ≤ m.

If an object t1 is in Sn, we say that t1 has arity n. Now we define a set

M of basic morphisms β : (t1 ◦i t2) ◦j+i−1 t3 ↔ t1 ◦i (t2 ◦j t3) : β−1

for every t1 ∈ Sm, t2 ∈ Sn, t3 ∈ Sk, 1 ≤ i ≤ m and 1 ≤ j ≤ n, and

θ : (t1 ◦i t3)◦j−1+k t2 ↔ (t1 ◦j t2)◦i t3 : θ
−1 whenever i < j. We then define

the generating morphisms of the family S by the following rules:

1. if ϕ ∈M , then ϕ is a generating morphism of S;

2. if ϕ : t1 → t2 is a generating morphism in S , and t3 ∈ S , then

ϕ◦i id : t1 ◦i t3 → t2 ◦i t3 and id◦j ϕ : t3 ◦j t1 → t3 ◦j t2 are generating

morphisms, for any i (resp. j) between 1 and the arity of t1 (resp. t3).

Note that by construction, for every morphism ϕ : t1 → t2, the objects t1 and

t2 have the same arity, and we say that ϕ has this arity. We then define Sn as

the free category over all generating morphisms of arity n. This finishes the

construction of our family S of categories.

Definition 2.4. We denote byF(S) the quotient of the family of categories S
by localization (inverting the β and θ morphisms), the axioms of bifunctors

for the ◦i, the naturality conditions for β and θ, and the coherence diagrams

(pentagons and hexagons) defining a categorified non-symmetric operad.

374



P.-L. CURIEN AND G. LAPLANTE-A. TOPOLOGICAL COHERENCE

We obtain that F(S) is the free categorified non-symmetric operad on S.

That is, for any categorified non-symmetric operad P , and for any family of

functions ρn : Sn → Ob(P(n)), there is a unique strict morphism of non-

symmetric categorified operads F(S) → P which extends ρ := {ρn}n≥1.

By precomposing it with the quotient map S → F(S), we get a levelwise

functor [[−]] : S → P .

Theorem 2.5 (Coherence theorem). For any categorified non-symmetric op-

erad P , for any family of functions ρ : S → Ob(P), and for any two parallel

morphisms ϕ1, ϕ2 : t1 → t2 in S , we have [[ϕ1]] = [[ϕ2]].

In order to prove this Theorem 2.5, we need to first recall the construction

of the operahedra, a family of polytopes whose faces are in bijection with

the set of all nestings of a planar tree. We refer to [Lap22, Sec. 2] for details,

see also [DP15, Sec. 13] and [COI19]. Given a planar tree t with n internal

edges, and a full nesting N of t, one associates a point M(t,N ) ∈ R
n via a

simple algorithm which is due to J.-L. Loday [Lap22, Sec. 2.2]. The oper-

ahedron Pt ⊂ R
n is the convex hull of the points M(t,N ), for all maximal

nestings N of t. It has dimension n − 1. One then shows that the poset

of nestings of t, ordered by reverse inclusion, is isomorphic to the poset of

faces of Pt [Lap22, Prop. 2.15]. The dimension of a face is given by n minus

the number of nests in the corresponding nesting of t.
Reading a planar tree t from the leaves to the root defines a family of

incoming edges and one outgoing edge at each vertex of t. Given the family

of sets S and a planar tree t, we say that a decoration of the vertices of t by

elements of S is admissible if at every vertex the number of incoming edges

is equal to the arity of the element of S decorating it. Now, let us consider

the collection O(S) of polytopes with one copy of the operahedron Pt for

each admissible decoration of the planar tree t by elements of S.

Proposition 2.6. There are bijections between

1. objects of S and vertices of the operahedra in O(S),

2. generating morphisms of S and edges of the operahedra in O(S),

3. bifunctoriality, naturality and coherence diagrams and 2-faces of the

operahedra in O(S).
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Proof. To each element a of Sn, we associate a planar corolla with n leaves

and vertex decorated by a. Then, we identify a ◦i b with the planar tree ob-

tained from grafting the corolla decorated by b at the ith leaf of the corolla

decorated by a. Continuing in this fashion, and remembering the order in

which we graft the corollas, we obtain all possible fully nested planar trees

with vertices decorated by elements of S (Figure 2). A generating mor-

phism f in S is an application of one of the associativity rules β or θ to a

fully nested tree t, moving only one nest (Figure 3). If t has n internal edges,

forgetting the nest that has been moved gives a nesting of t with n− 1 nests.

We associate to f the edge of the operahedron Pt in O(S) labeled by this

nesting, see [Lap22, Def. 2.8 & Prop. 3.11]. It remains to consider all the

possible diagrams one can obtain by applying two generating morphisms to

a given fully nested tree t with n internal edges. These arise from moving

two different nests in the same fully nested tree. Starting by moving one or

the other of these 2 nests, one faces two types of situations:

(A1) If the two nests are disjoint, one obtains a bifunctoriality square,

(A2) If the two nests are nested, but do not share the same root, one obtains

a naturality square,

(B) If the two nests are nested and share the same root, one obtains either

a pentagon or a hexagon as in Definition 2.1.

To such a diagram, we associate the 2-face of the operahedron Pt in O(S)
corresponding to the nesting of t obtained by forgetting the two nests that

have been moved along the edges. We refer to [CLA24, Sec. 2] for a more

detailed analysis of the 2-faces.

Remark 2.7. The fact that every possible choice of initial moves gives rise

to a 2-face amounts to the fact that the operahedron Pt is a simple poly-

tope [DP11, Sec. 9]. As Lemma 1.14 shows, this property garantees the

correspondence between geometric and rewriting-theoretic proofs of coher-

ence, see [CLA24] for more details on the latter.

The conceptual origin of the bijections of Proposition 2.6 is the fact that

the combinatorics of the faces of the operahedra correspond exactly to the

monad of trees [LV12, Sec. 5.6.1]. Or, said differently, it lies in the fact
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that the operahedra encode (via the cellular chains functor) the minimal res-

olution of the colored symmetric operad whose algebras are non-unital non-

symmetric operads, see [VdL03] and [Lap22, Sec. 4.1].

We are now ready to prove Theorem 2.5, using either our non-oriented

or oriented topological coherence results for polytopes.

Proof of Theorem 2.5. From Point (2) in Proposition 2.6, we have that the

morphisms of S are in bijection with combinatorial paths on the operahedra

of O(S). Two parallel morphisms in S thus define two parallel combina-

torial paths on some operahedron Pt in O(S). Since an operahedron Pt is

simply connected, Theorem 1.1 implies that these two combinatorial paths

are combinatorially homotopic. By Point (3) in Proposition 2.6 the 2-faces

of the operahedra are exactly either a bifunctoriality or naturality square,

a pentagon or a hexagon (witnessing a coherence condition) as in Defini-

tion 2.1. Therefore, two parallel morphisms ϕ1, ϕ2 in S are equal in the

quotient F(S), and thus their images [[ϕ1]], [[ϕ2]] are also equal in P .

Second proof of Theorem 2.5. Alternatively, since the operahedra are poly-

topes, one can use Proposition 1.6 and Theorem 1.9. As shown in [Lap22,

Prop. 3.11], choosing a generic vector v⃗ which has strictly decreasing coor-

dinates gives the orientations of the diagrams given in Definition 2.1 on the

2-faces. One then obtains a topological proof of coherence which follows

closely the original proof of Mac Lane [ML63, Thm. 3.1], suitably general-

ized to categorified operads.

Following Remark 2.2, we have that Theorem 2.5 gives an alternative,

more economical proof of coherence for weak Cat-operads [DP15, Prop. 14.2].

Incidentally, it gives an alternative input to the proof of coherence for cyclic

symmetric categorified operads [CO20].

Restricting the theorem above to non-symmetric operads concentrated

in arity 1, the category F(S) becomes the free non-symmetric monoidal

category on S, and we get the following corollary.

Corollary 2.8 (Mac Lane coherence theorem for non-symmetric monoidal

categories). For any non-symmetric monoidal category C, for any function

ρ : S → Ob(C), and for any two parallel morphisms ϕ1, ϕ2 : t1 → t2 in S ,

we have [[ϕ1]] = [[ϕ2]].
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Remark 2.9. As mentioned at the end of Section 1.3, the rewriting systems

obtained on the vertices of the operahedra by choosing a generic vector with

strictly decreasing coordinates are in fact term rewriting systems. The faces

of type (B) in Point (3) of Proposition 2.6 (the coherence conditions) corre-

spond precisely to the critical pairs of these rewriting systems, see [CLA24,

Sec. 3.4]. Moreover, the associated posets on fully nested planar trees have

recently been shown to be lattices [DS24].

2.3 Symmetric monoidal categories

We now formulate and prove Mac Lane’s coherence theorem for symmetric

monoidal categories in the same style as above. Recall that in a symmetric

monoidal category C, in addition to the natural isomorphisms β, with com-

ponents βκ,µ,ν : (κ ⊗ µ) ⊗ ν → κ ⊗ (µ ⊗ ν), there are involutive natural

transformations τ , with components τµ,ν : µ ⊗ ν → ν ⊗ µ. Here, we use

κ, µ, ν, . . . to range over the objects of the category, consistently with the

notation used in Sections 2.1 and 2.2. In addition to the pentagons, obtained

from the first pentagon in Definition 2.1 by replacing ◦ with ⊗, there are

hexagons

(κ⊗ µ)⊗ ν

κ⊗ (µ⊗ ν)

(µ⊗ ν)⊗ κ

µ⊗ (ν ⊗ κ)

(µ⊗ κ)⊗ ν

µ⊗ (κ⊗ ν)

β

τ

β

τ ⊗ 1

β

1⊗ τ

for all objects κ, µ, ν in C.

In order to state the coherence theorem, we construct a free category on

a set S of generating objects. We define a small category SML whose set of

objects

TS =
⋃
{TA | A is a non-empty finite subset of S}
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is defined as follows:

1. if a ∈ S, then a ∈ T{a};

2. if t1 ∈ TA and t2 ∈ TB, and if A ∩ B = ∅, then t1 ⊗ t2 ∈ TA∪B.

We can see the objects of SML as fully parenthesized words over S where

letters are not repeated. We then define a set MML of basic morphisms β :
(t1 ⊗ t2) ⊗ t3 ↔ t1 ⊗ (t2 ⊗ t3) : β

−1 and τ : t1 ⊗ t2 ↔ t2 ⊗ t1, for every

t1, t2, t3 ∈ TS . We then define the generating morphisms of SML by the

following rules:

1. if ϕ ∈MML, then ϕ is a generating morphism;

2. if ϕ : t1 → t2 is a generating morphism and t3 ∈ TS , then ϕ ⊗ id :
t1 ⊗ t3 → t2 ⊗ t3 and id ⊗ ϕ : t3 ⊗ t1 → t3 ⊗ t2 are generating

morphisms.

We then define SML as the free category over all generating morphisms. This

finishes the construction of the category SML.

Definition 2.10. We denote by F(S) the quotient of SML by localization

(inverting the β morphisms), by the axioms τt1,t2 ◦ τt2,t1 = 1, by the axioms

of bifunctors, by the naturality conditions for β and τ , and by the coherence

conditions of symmetric monoidal categories.

By freeness, we have that for any symmetric monoidal category C, and

for any function ρ : S → Ob(C), there is a unique functor [[−]]ML :
SML → C which extends ρ and sends the formal basic morphisms to the

actual canonical morphisms of C. This functor factorizes through the quo-

tient map [−]ML : SML → F(S).
It turns out that Kapranov’s topological proof is not based on the above

presentation of F(S), but on another presentation of this category, that is

made explicit in [BIP19, Sec. 2]. Let us recall this presentation. We define

another category SK as follows. Its objects are the same as those of SML. We

define a set MK of basic morphisms β : (t1⊗ t2)⊗ t3 ↔ t1⊗ (t2⊗ t3) : β
−1

for every t1, t2, t3 ∈ TS , and τ : a ⊗ b ↔ b ⊗ a for every a, b ∈ S, i.e., we

limit τ to generating objects. Generating morphisms are defined in the same

way as for SML. We note that by construction SK is a wide subcategory

of SML.
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Definition 2.11. We denote by F(S)K the quotient of SK by localization

(inverting the β morphisms), by the axioms τa,b ◦ τb,a = 1, by the axioms of

bifunctors, by the naturality conditions for β, by the coherence conditions of

monoidal categories, and by the axioms in dodecagonal form given by the

solid arrows in Figure 5 (left), for a, b, c ranging over S only.

Figure 5: Kapranov dodecagons.

We pause here to reflect on the difference between the two presentations.

In the second one, we have less generators, and we have lost hexagons. For

an intuition, here is how Mac Lane himself motivated his hexagonal axioms

(verbatim, just changing the notation to fit with ours) in [ML63]:

The instance τκ⊗µ,ν interchanges the block κµ with the single

letter ν; the hexagon condition states that this interchange may

be replaced by two instances of τ which interchange single let-

ters with ν. Repeated such replacement using instances of the

hexagon shows that any interchange of successive blocks may

be replaced by interchanges of successive letters.
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In other words, hexagons are now taken as definitions rather than axioms.

But how do we guarantee that the general τ morphisms defined in this way

define a natural transformation? This is what the dodecagons are for.

Let C be a symmetric monoidal category. By freeness again, any function

ρ : S → Ob(C) extends uniquely to a functor [[−]]K : SK → C. This functor

is the restriction of [[−]]ML to SK, and factorizes through the quotient functor

[−]K : SK → F(S)K.

Theorem 2.12 (Kapranov coherence theorem for symmetric monoidal cat-

egories). For any two parallel morphisms ϕ1, ϕ2 : t1 → t2 in SK, we

have [ϕ1]
K = [ϕ2]

K.

In order to prove this “Kapranov style” coherence, we need to first recall

the construction of the permuto-associahedra, a family of polytopes whose

faces are in bijection with parenthesized ordered partitions of a finite set. We

refer to [Zie95, Sec. 9.3] for details, see also [Kap93] and [RZ94]. Given a

finite set A of cardinal n and a parenthesized permutation σ of its elements,

one associates a section γσ of the projection from the n-cube to the cyclic

polygon with n + 1 vertices [Zie95, Ex. 9.14], whose integral over the base

gives a pointM(σ) in R
n. The permuto-associahedron PA is the convex hull

of the points M(σ), for all parenthesized permutations σ of the elements of

A. It has dimension n − 1. One then shows that the poset of parenthesized

ordered partitions of A, ordered according to the rules below, is isomorphic

to the poset of faces of PA [Zie95, Thm. 9.15].

Parenthesized ordered partitions ofA can be drawn as planar trees whose

leaves are decorated with the parts of a partition ofA. The subface relation≺
is defined by two clauses: one can contract an edge of the tree, or remove

a node all of whose incoming edges are leaves and decorate its outcoming

edge – now a leaf – with the union of the decorations of those incoming

edges. The maximal face is A. For example, with A = {a1, . . . , a7}, the

following is a face:

({a1} {a4} {a2, a6}) {a3, a5, a7}

which is covered by the following two elements.

({a1} {a4} {a2, a6}) {a3, a5, a7} ≺ {a1} {a4} {a2, a6} {a3, a5, a7}
({a1} {a4} {a2, a6}) {a3, a5, a7} ≺ {a1, a2, a4, a6} {a3, a5, a7} .
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Given the set S, let us consider the collection P(S) of polytopes with one

copy of the permuto-associahedron PA for each finite subset A ⊆ S.

Proposition 2.13. There are bijections between

1. objects of SK and vertices of the permuto-associahedra in P(S),

2. generating morphisms of SK and edges of the permuto-associahedra

in P(S),

3. bifunctoriality, naturality and coherence diagrams and 2-faces of the

permuto-associahedra in P(S).

Proof. The 0-dimensional faces of PA are fully parenthesized words whose

letters are singletons, and are in obvious bijective correspondence with the

elements of TA. The 1-dimensional faces are

• either fully parenthesized words whose letters are singletons but for one

letter which is a two-element set {ai, aj} and feature an application of the

basic morphism τai,aj ,

• or an “almost” fully parenthesized word of singletons, with just one paren-

thesis removed, yielding a subword ({ai} {aj} {ak}), featuring an appli-

cation of the basic morphism βai,aj ,ak or β−1
ai,aj ,ak

– the orientation of the

edge being “decided” by the shape of its end vertices.

Finally, the 2-dimensional faces can be analyzed much in the same way as

in Proposition 2.6, and seen to correspond to bifunctoriality, naturality of β,

and to the pentagons and dodecagons. We have pictured the poset view of

the latter in Figure 5 (right). The reader can also convince himself on this

figure how the orientation of the β arrows on the left can be reconstructed

from the non-oriented dodecagon on the right.

Proof of Theorem 2.12. Having Proposition 2.13 in hand, the proof is simi-

lar to the proof of Theorem 2.5, using either the Van Kampen (Theorem 1.1)

or the Morse (Proposition 1.6 and Theorem 1.9) technique.

Remark 2.14. Alternatively, one could use the same strategy with the simple

permutoassociahedra from [BIP19], involving yet another equivalent pre-

sentation of symmetric monoidal categories.
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The following proposition establishes relations between the Mac Lane

and Kapranov presentations of symmetric monoidal categories.

Proposition 2.15 (Kapranov–Mac Lane comparison).

1. Let ϕ1, ϕ2 : t1 → t2 be parallel morphisms of SK. If we have [ϕ1]
K =

[ϕ2]
K, then we have [ϕ1]

ML = [ϕ2]
ML.

2. For any morphism ϕ of SML, there is a morphism ψ of SK such that

[ϕ]ML = [ψ]ML.

Proof. The proof of Point (1) is visualized in Figure 5 (left). The two dot-

ted lines delimit two Mac Lane hexagons on the top and at the bottom and

a naturality square in the middle. Explicitly, the two dotted τ -morphisms

are τa,b⊗c and τa,c⊗b. As for Point (2), we observe that a morphism ψ as in the

statement can be obtained by repeatedly applying the procedure described by

Mac Lane in the quotation which follows Definition 2.11 above.

Theorem 2.16 (Mac Lane coherence theorem for symmetric monoidal cate-

gories). For any symmetric monoidal category C, for any function ρ : S →
Ob(C), and for any two parallel morphisms ϕ1, ϕ2 : t1 → t2 in SML, we

have [[ϕ1]]
ML = [[ϕ2]]

ML.

Proof. Since the functor [[−]]ML factorizes through the functor [−]ML, it is

enough to prove that [ϕ1]
ML = [ϕ2]

ML. By Point (2) of Proposition 2.15,

there exist ψ1 and ψ2 in SK such that [ψ1]
ML = [ϕ1]

ML and [ψ2]
ML = [ϕ2]

ML.

In particular ψ1 and ψ2 are parallel, so by Theorem 2.12 we get [ψ1]
K =

[ψ2]
K, and by Point (1) of Proposition 2.15 we have [ψ1]

ML = [ψ2]
ML. Thus,

we have [ϕ1]
ML = [ψ1]

ML = [ψ2]
ML = [ϕ2]

ML, which concludes the proof.

Remark 2.17. One can see easily that this proof also shows that the cate-

gories F(S)K and F(S) are isomorphic. The statement of this fact is un-

related to coherence issues, but its proof relies on Kapranov style coher-

ence. In other words, the proof that Kapranov’s conditions imply Mac Lane’s

conditions is non-trivial, in contrast to the converse direction (cf. Proposi-

tion 2.15); a result of the magic of polytopes!
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Remark 2.18. Note that contrary to the case of the operahedra, there does not

seem to exist a generic vector whose induced orientation on the edges of the

permuto-associahedra coincides with a consistent orientation of the β and τ
arrows based on conventions independent of the orientation vector. This fol-

lows from the observation that the dodecagon (Figure 5, left) involves β−1 ar-

rows. The same remarks apply to the simple permuto-associahedra of [BIP19].

As for the original presentation of Mac Lane (for which no polytopal corre-

spondence is known), one could still hope to have an associated term rewrit-

ing system. But instead Mac Lane’s proof (rightly!) proceeds in two stages:

first using rewriting for the monoidal part (β only), and then dealing with

the symmetric part using Coxeter’s presentation of the symmetric groups. It

seems that one cannot do better. Indeed, even if Mac Lane’s hexagon does

not involve β−1 arrows, the latter would pop up when taking the combina-

torics of orientation of the τ arrows into account. As an illustration, suppose

that we decide to move parentheses to the right for β, fix a total order on S
and split the involutive τ into τ and τ−1 according to where the maximum

lies. Then, for µ < κ < ν the hexagon becomes

(κ⊗ µ)⊗ ν

κ⊗ (µ⊗ ν)

(µ⊗ ν)⊗ κ

µ⊗ (ν ⊗ κ)

(µ⊗ κ)⊗ ν

µ⊗ (κ⊗ ν)

β

τ

β

τ ⊗ 1

β

1⊗ τ

and a local confluence diagram for the pair of rewritings out of (µ⊗ ν)⊗ κ
cannot be completed without inverting β arrows.
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3. Perspectives

3.1 Further applications

One can also use the same strategy to prove coherence for unital non-symmetric

monoidal categories, using the unital associahedra of F. Muro and A. Tonks [MT14].

It is natural to ask if the construction of unital associahedra could be ex-

tended to the permutoassociahedra, in such a way as to provide a topological

proof of coherence for unital symmetric monoidal categories. The question

of the existence of these constructions at the operadic level (i.e. does there

exist unital operahedra, symmetric operahedra, and unital symmetric opera-

hedra?) is, to our knowledge, still open as well.

Another immediate application of Theorem 1.1 is the coherence of strong

non-symmetric monoidal functors between non-symmetric monoidal cate-

gories [Eps66]. The corresponding topological objects are in this case the

family of multiplihedra [Sta70, For08]. The generalization to strong mor-

phisms between non-symmetric categorified operads also goes through, in-

volving this time the family of multiploperahedra described at the end of the

introduction in [LM23].

In the same spirit as in Theorem 2.5, one could obtain coherence results

for categorifications of many operad-like structures, for instance the ones

described in [BMO23]: categorified modular operads, wheeled properads,

and permutads (shuffle algebras), among others. In order to treat cyclic and

symmetric structures, one could take inspiration from the reduction process

followed in [CO20] for the case of cyclic symmetric categorified operads.

3.2 Higher categories

Theorem 1.1 shows the precise relationship between coherence and connect-

edness. In addition to Kapranov’s claim [Kap93], it clarifies other state-

ments in the literature, such as the proof of [KV94, Prop. 3.9]. There, the

incipit “since Pn is a convex polytope” could be replaced by a more precise

“since Pn is simply connected”.

In the case of (symmetric) monoidal categories, Theorem 1.1 demon-

strates that coherence is equivalent to the vanishing of the first homotopy

groups of the (permuto-)associahedra. Since the (permuto-)associahedra are
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contractible, and therefore all their homotopy groups vanish, one could hope

for a topological proof of higher dimensional coherence theorems.

One dimension higher, N. Gurski has shown in [Gur11, Thms. 22 &

23] that coherence for (braided) monoidal bicategories is equivalent to the

vanishing of fundamental 2-groupoids of braid groups. Recent results of S.

Barkan provide evidence for higher dimensional statements, relating coher-

ence diagrams of∞-operads to the connectivity of certain operadic partition

complexes [Bar22]. It seems likely that the present results could be inter-

preted as a strict version and a special case of [Bar22, Thm. B]. It would

be interesting to see how the permuto-associahedra arise in the strictification

process, and how they are related to operadic partition complexes.
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