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Résumé. Soient κ un cardinal régulier, λ < κ un cardinal infini plus

petit, et K une catégorie κ-accessible qui admet les colimites de chaı̂nes

indexées par λ. Nous démontrons que diverses constructions catégoriques

appliquées à K, comme les équifiers et inserters produisent de nouvelles

catégories κ-accessibles E, et que les objets κ-présentables de E admettent

une caractérisation naturelle. En particulier, si C est une catégorie κ-petite,

alors la catégorie des foncteurs C −→ K est aussi κ-accessible et ses objets

κ-présentables sont exactement les foncteurs à valeurs dans la sous-catégorie

des objets κ-présentables de K. Nous discutons aussi la préservation de la

κ-accessibilité par les pseudo-limites coniques, les limites lax et oplax et les

pseudo-limites à poids. Une partie de ces résultats peuvent se retrouver dans

une note non-publiée de Ulmer de 1977. Ce travail est motivé par la théorie

des modules plats et des faisceaux quasi-cohérents.

Abstract. Let κ be a regular cardinal, λ < κ be a smaller infinite cardi-

nal, and K be a κ-accessible category where colimits of λ-indexed chains

exist. We show that various category-theoretic constructions applied to

K, such as the inserter and the equifier, produce κ-accessible categories E

again, and the most obvious expected description of the full subcategory

of κ-presentable objects in E in terms of κ-presentable objects in K holds

true. In particular, if C is a κ-small category, then the category of functors

C −→ K is κ-accessible, and its κ-presentable objects are precisely all the

functors from C to the κ-presentable objects of K. We proceed to discuss

the preservation of κ-accessibility by conical pseudolimits, lax and oplax

limits, and weighted pseudolimits. The results of this paper go back to an
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unpublished 1977 preprint of Ulmer. Our motivation comes from the theory

of flat modules and flat quasi-coherent sheaves.
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Introduction

Let κ be a cardinal and K be a category such that all the objects of K are

κ-filtered colimits of (suitably defined) “objects of small size relative to κ ”.

Suppose E is the category of objects from K or collections of objects from K

with a certain additional structure and/or some equations imposed. Is every

object of E a κ-filtered colimit of objects whose underlying objects from K

have small size relative to κ ?

To specify the context of the discussion, let κ be a regular cardinal and

K be a κ-accessible category (in the sense of [19, §2.1] or [1, Chapter 2]).

Let C be a κ-small category, and let E = Fun(C,K) be the category of func-

tors C −→ K. Ideally, one may wish to claim that the category Fun(C,K)
is κ-accessible and its κ-presentable objects are precisely all the functors

C −→ K<κ, where K<κ is the full subcategory of κ-presentable objects in K.

But is it true?

The “ideal” state of affairs described in the previous paragraph was

claimed as a general result in a 1988 paper [18, Lemma 5.1]. A general

outline of a proof of the lemma was presented in [18]; the details were

declared to be “direct calculations” and omitted. A refutation came in the

recent preprint [12, Theorem 1.3]. The ideal state of affairs does not hold in

general.

The assertions of [12, Theorem 1.3] provide a complete characteriza-

tion of all small categories C such that the “ideal” statement holds for all

κ-accessible categories K. All such categories C are essentially κ-small, but

being essentially κ-small is not enough. The category C needs to be also

well-founded in the sense of the definition in [12].

But are there some κ-accessible categories K that are better behaved
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than some other ones, with respect to the question at hand? Another the-

orem from [12] tells that there are. According to [12, Theorem 1.2], if

the category C is κ-small and the category K is locally κ-presentable (in

the sense of [10] or [1, Chapter 1]), then the functor category Fun(C,K)
is locally κ-presentable and its full subcategory of κ-presentable objects is

Fun(C,K<κ) ⊂ Fun(C,K).
Are there any better behaved κ-accessible categories beyond the locally

κ-presentable ones? The present paper purports to answer this question by

generalizing the result of [12, Theorem 1.2].

We show that the following much weaker version of local presentability

is sufficient to guarantee the “ideal state of affairs”: it is enough to assume

existence of an infinite cardinal λ < κ such that colimits of all λ-indexed

chains of objects and morphisms exist in K. If this is the case and K is

κ-accessible, then for any κ-small category C the category Fun(C,K) is also

κ-accessible, and the κ-presentable objects of Fun(C,K) are precisely all the

functors C −→ K<κ. This is the result of our Theorem 6.1.

Let us mention that the idea of our condition on a category K involving

a pair of cardinals λ < κ is certainly not new. It appeared in the discussion

of pseudopullbacks in [6, Proposition 3.1] and [28, Theorem 2.2] (and our

arguments in this paper bear some similarity to the one in [6]). The fact that

this condition is sufficient for the “ideal” result on accessibility of diagram

categories Fun(C,K) (our Theorem 6.1) seems to be if not quite new, then a

“well-forgotten old” discovery, however.

The discussion in the beginning of this introduction suggests that we

are also interested in other category-theoretic constructions beyond the cat-

egories of functors or diagrams; and indeed we are.

Limits of accessible categories are mentioned in the title of this paper.

There are many relevant concepts of limits of categories, the most general

ones being the weighted pseudolimits or weighted bilimits [19, §5.1], [13],

[5]. All of them can be built from certain elementary building blocks.

We discuss the Cartesian product (easy), the equifier (a representative

case for our techniques), the inserter (difficult), and the pseudopullback (for

which our result is already known in relatively recent literature [6, 28]), as

well as the nonadditive and the additive/k-linear diagram categories. The

pseudopullbacks and the diagram categories are built from the products, the

inserters, and the equifiers.
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In fact, all weighted pseudolimits and weighted bilimits can be built from

products, inserters, and equifiers, up to category equivalence [13, 5]. Hence

the importance of our detailed discussion of the products, the inserters, and

the equifiers in the general context of limits of accessible categories.

In all the settings (with the exception of the trivial case of the Cartesian

products), our results are very similar. The main assumptions are that κ is a

regular cardinal and λ < κ is a smaller infinite cardinal (so the case of finitely

accessible categories, κ = ℵ0, is excluded). The category K is assumed

to be κ-accessible with colimits of λ-indexed chains. If this is the case,

then the category E of (collections of) objects from K with an additional

structure satisfying some equations is also κ-accessible (again with colimits

of λ-indexed chains), and the κ-presentable objects of E are precisely those

whose underlying objects are κ-presentable in K.

We do not dare to speculate on what the author of the paper [18] might

have in mind back in 1988, but the proofs of our results seem to follow the

general outline suggested in [18, proof of Lemma 5.1]. They are, indeed,

“direct calculations” (which, however, get complicated at times).

In fact, our results go back all the way to late 1970s, to an unpub-

lished 1977 preprint of Ulmer [29]. The very concept and terminology of

an accessible category was only introduced by Makkai and Paré in their

1989 book [19]. Accordingly, the exposition in [29] was written mainly in

the generality of locally presentable categories (which had been known since

the 1971 book of Gabriel and Ulmer [10]).

The main results of [29] relevant in our context are [29, Theorem 3.8 and

Corollary 3.9]. These are stated for locally presentable categories, followed

by a remark [29, Remark 3.11(II)] explaining that the assertions are actually

valid for some (what we would now call) accessible categories. This work

of Ulmer was subsequently taken up and developed in the 1984 dissertation

of Bird [4], which was also written in the generality of locally presentable

categories. Ulmer’s remark [29, Remark 3.11(II)] was not taken up, and

apparently remained almost forgotten.

The topic of limits of accessible categories was studied by Makkai and

Paré [19, §5.1] using methods which seem to be quite different from those

of Ulmer. The Limit Theorem of Makkai and Paré [19, Theorem 5.1.6]

claimed that all weighted bilimits of accessible categories are accessible, but

offered no cardinality estimate on the accessibility rank. The fact that a tight
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estimate can be obtained from Ulmer’s results was not realized. See our

Corollary 9.2.

The present author learned about the existence of Ulmer’s preprint

from [28, paragraph after Pseudopullback Theorem 2.2], where the knowl-

edge about Ulmer’s work is attributed to Porst. Still, no traces of such

knowledge can be found in Porst’s own earlier paper [22] (cf. [23, Re-

mark 3.2] and [26]). I only got hold of my copy of Ulmer’s preprint after the

first version of the present paper, with my own detailed proofs of the main

results, was already available on the arXiv.

Let us explain our motivation now. In terms of the intended applications,

we are primarily interested in the “minimal cardinality” case κ = ℵ1 and

λ = ℵ0. The examples we care about arise from flat modules over rings, flat

quasi-coherent sheaves over schemes, flat comodules, and flat contramod-

ules.

It is shown in the preprint [27, Theorem 2.4] that the category X–Qcohfl
of flat quasi-coherent sheaves on a quasi-compact quasi-separated scheme

X is ℵ1-accessible. More genenerally, the same holds for any countably

quasi-compact, countably quasi-separated scheme [27, Theorem 3.5]. The

ℵ1-presentable objects ofX–Qcohfl are the locally countably presentable flat

quasi-coherent sheaves, i. e., the quasi-coherent sheaves F onX such that the

OX(U)-module F(U) is flat and countably presented for all affine open sub-

schemes U ⊂ X (equivalently, for the affine open subschemes Uα appearing

in some fixed affine open covering X =
⋃
α Uα of the scheme X). Obvi-

ously, all directed colimits, and in particular directed colimits of ℵ0-indexed

chains, exist in K = X–Qcohfl. So the results of this paper are applicable to

this category.

The results of [27] were extended to certain noncommuative stacks and

noncommutative ind-affine ind-schemes in the preprint [23]. Specifically,

let C be a (coassociative, counital) coring over a noncommutative ring A.

According to [23, Theorem 3.1], the category of A-flat left C-comodules

C–ComodA-fl is ℵ1-accessible. The ℵ1-presentable objects of of C–ComodA-fl

are the A-countably presentable A-flat left C-comodules. Once again, it is

obvious that all directed colimits exist in C–ComodA-fl; so the results of the

present paper can be applied. There is also a version for flat contramodules

over certain topological rings [23, Theorem 10.1], where the results of the

present paper are applicable as well.
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Some results about constructing A-pure acyclic complexes of A-flat

C-comodules as ℵ1-filtered colimits of A-pure acyclic complexes of

A-countably presentable A-flat C-comodules are discussed in [23, Sec-

tion 4]. A contramodule version can be found in [23, Section 11]. The

techniques developed in the present paper are used throughout the current

(new) versions of the papers [27] and [23]. The same methods are also used

in the preprint [25], where accessibility of categories of modules of finite flat

dimension and two-sided/F-totally acyclic flat resolutions is discussed, and

in the preprint [26], where we discuss local presentability and accessibility

ranks of the categories of corings and coalgebras over rings.

In the present paper, we do not go into any details on sheaves, comodules,

or contramodules, restricting ourselves to “toy examples” of diagrams and

complexes of modules over a noncommutative ring R. It is easy to see that

the category of flat left R-modules R–Modfl is κ-accessible for any regular

cardinal κ; the κ-presentable objects of R–Modfl are those flat R-modules

that are κ-presentable in the category of arbiratry R-modules R–Mod. Ap-

plying the results of this paper, we obtain descriptions of diagrams of flat

modules and pure acyclic complexes of flat modules as directed colimits (re-

covering, in particular, a weaker version of a result from the papers [9, 21]

with very general category-theoretic methods).
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1. Preliminaries

We use the book [1] as the main background reference source on the foun-

dations of the theory of accessible categories.
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Let κ be a regular cardinal. We refer to [1, Definition 1.4, Theorem 1.5,

Definition 1.13(1), and Remark 1.21] for the discussion of κ-directed posets

vs. κ-filtered categories and, accordingly, κ-directed vs. κ-filtered diagrams

and their colimits.

Let K be a category in which all κ-directed (equivalently, κ-filtered) col-

imits exist. An object S ∈ K is said to be κ-presentable [1, Definitions 1.1

and 1.13(2)] if the functor HomK(S,−) : K −→ Sets preserves κ-directed

colimits. We will denote by K<κ ⊂ K the full subcategory of κ-presentable

objects in K.

A category K with κ-directed colimits is called κ-accessible [1, Defini-

tion 2.1] if there is a set S of κ-presentable objects in K such that every object

of K is a κ-directed colimit of objects from S. In any κ-accessible category,

there is only a set of isomorphism classes of κ-presentable objects; in fact,

the κ-presentable objects of K are precisely the retracts of the objects from S

[1, Remarks 1.9 and 2.2(4)].

Let K be a category and S ⊂ K be a set of objects. For any objectK ∈ K,

the canonical diagram [1, Definition 0.4] of morphisms from objects from S

into K is indexed by the small indexing category ∆ = ∆S,K whose objects

v ∈ ∆ are morphisms v : Dv −→ K into K from objects Dv ∈ S. A

morphism a : v −→ w in ∆ is a morphism a : Dv −→ Dw in K making the

triangular diagram Dv −→ Dw −→ K commutative in K. The canonical

diagram D = DS,K : ∆ −→ K takes an object v ∈ ∆ to the object Dv ∈ K,

and acts on the morphisms in the obvious way.

Lemma 1.1. Let K be a κ-accessible category and S be a set of representa-

tives of isomorphism classes of κ-presentable objects in K. Then, for every

object K ∈ K, the canonical diagram D = DS,K of morphisms from ob-

jects from S into K (or in other words, its indexing category ∆ = ∆S,K) is

κ-filtered. The natural morphism lim
−→v∈∆

Dv −→ K is an isomorphism in K.

Proof. This is [1, Definition 1.23 and Proposition 2.8(i–ii)].

Let K be a category with κ-directed colimits and A ⊂ K be a class of

objects (full subcategory). Then we denote by lim
−→(κ)

A ⊂ K the class of all

objects of K that can be obtained as κ-directed colimits of objects from A.

The following proposition is also essentially well-known. In the particu-

lar case of finitely accessible (κ = ℵ0) additive categories, it was discussed
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in [17, Proposition 2.1], [8, Section 4.1], and [15, Proposition 5.11]. (The

terminology “finitely presented categories” was used in [8, 15] for what are

called finitely accessible categories in [1].)

Proposition 1.2. Let K be a κ-accessible category and S ⊂ K<κ be a set of

κ-presentable objects in K. Then the full subcategory lim
−→(κ)

S ⊂ K is closed

under κ-directed colimits in K. The category lim
−→(κ)

S is κ-accessible; the

full subcategory of all κ-presentable objects of lim
−→(κ)

S consists of all the

retracts of objects from S in K. An object E ∈ K belongs to lim
−→(κ)

S if and

only if, for every κ-presentable object T ∈ K<κ, every morphism T −→ E
in K factorizes through an object from S.

Proof. The key assertion is that if an object E ∈ K has the property that

every morphism T −→ K intoK from an object T ∈ K<κ factorizes through

some object from S, thenE ∈ lim
−→(κ)

S. (All the other assertions follow easily

from this one.)

Indeed, let T denote a representative set of κ-presentable objects in K.

Consider the canonical diagram C : ∆S −→ K of morphisms into E from

objects of S and the canonical diagram D : ∆T −→ K of morphisms into E
from objects of T. Then we have E = lim

−→w∈∆T
Dw by Lemma 1.1, and we

need to show that E = lim
−→v∈∆S

Cv. So it remains to check that the natural

functor between the index categories δ : ∆S −→ ∆T is cofinal in the sense

of [1, Section 0.11].

Let w : Dw −→ E be an object of ∆T. ThenDw ∈ T, and by assumption

the morphism v factorizes as Dw
a
−→ S

v
−→ E with S ∈ S. So v : Cv =

S −→ E is an object of ∆S, and we have a morphism a : w −→ δ(v) in ∆T.

This proves condition (a) from [1, Section 0.11]. Since the category ∆T is

κ-filtered and the functor δ is fully faithful, condition (b) follows automati-

cally.

Any cardinal λ can be considered as a totally ordered set, which is a

particular case of a poset; and any poset I can be viewed as a category (with

the elements of I being the objects, and a unique morphism i −→ j for every

pair of objects i ≤ j ∈ I). A λ-indexed chain (of objects and morphisms)

in a category K is a functor λ −→ K, where λ is viewed as a category as

explained above.
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2. Product

The result of this short section is easy and straightforward; it is only included

here for the sake of completeness of the exposition. It is essentially a trivial

particular case of [12, Theorem 1.3], and also the correct particular case of an

erroneous (generally speaking) argument in [1, proof of Proposition 2.67].

Proposition 2.1. Let κ be a regular cardinal and (Ki)i∈I be a family of

κ-accessible categories. Assume that the cardinality of the indexing set

I is smaller than κ. Then the Cartesian product K =
∏

i∈I Ki is also a

κ-accessible category. An object S ∈ K, S = (Si ∈ Ki)i∈I is κ-presentable

in K if and only if all its components Si are κ-presentable in Ki.

Proof. The condition that the cardinality of I is smaller than κ (which is

missing in [1, proof of Proposition 2.67]) is needed in order to claim that

an object S ∈ K is κ-presentable whenever its components Si ∈ Ki are

κ-presentable for all i. Essentially, this holds because κ-directed colimits

commute with κ-small products in the category of sets (cf. [12, Proposi-

tion 2.1]). Once this is established, it remains to observe that every object

of K is a κ-directed colimit of such objects S, just as [1, proof of Propo-

sition 2.67] tells. Indeed, let K = (Ki)i∈I ∈ K be an object and (Ξi)i∈I
be nonempty κ-filtered categories such that Ki = lim

−→ξi∈Ξi
Si,ξi in Ki for all

i ∈ I with Si,ξi ∈ (Ki)<κ. Then Ξ =
∏

i∈I Ξi is a κ-filtered category and

K = lim
−→ξ∈Ξ

Sξ, where Sξ = (Si,ξi)i∈I whenever ξ = (ξi)i∈I ∈
∏

i∈I Ξi.

One also needs to use the fact that any retract of an object S ∈ K with

κ-presentable components Si is again an object with κ-presentable compo-

nents.

3. Equifier

Let κ be a regular cardinal and λ be a smaller infinite cardinal, i. e., λ < κ.

Let K and L be κ-accessible categories in which all λ-indexed chains (of ob-

jects and morphisms) have colimits. Let F , G : K ⇒ L be two parallel func-

tors preserving κ-directed colimits and colimits of λ-indexed chains. As-

sume further that the functor F takes κ-presentable objects to κ-presentable

objects. Let φ, ψ : F ⇒ G be two parallel natural transformations of func-

tors.
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Let E ⊂ K be the full subcategory consisting of all objects E ∈ K such

that φE = ψE . This construction of the category E is known as the equi-

fier [13, Section 4], [5, Section 1], [1, Lemma 2.76].

The aim of this section is to prove the following theorem going back

to the unpublished preprint [29, Theorem 3.8, Corollary 3.9, and Re-

mark 3.11(II)].

Theorem 3.1. In the assumptions above, the equifier category E is κ-acces-

sible. The κ-presentable objects of E are precisely all the objects of E that

are κ-presentable as objects of K.

We start with the obvious observations that κ-directed colimits (as well

as colimits of λ-indexed chains) exist in E and are preserved by the inclusion

functor E −→ K (because such colimits exist in K and are preserved by the

functor F ). It follows immediately that any object of E that is κ-presentable

in K is also κ-presentable in E. The proof of the theorem is based the fol-

lowing proposition.

Proposition 3.2. Let E ∈ E be an object and S ∈ K<κ be a κ-presentable

object. Then any morphism S −→ E in K factorizes through an object

U ∈ E ∩ K<κ.

Proof. Let E = lim
−→ξ∈Ξ

Tξ be a representation of the object E as a κ-filtered

colimit of κ-presentable objects in the category K. Then we have G(E) =
lim
−→ξ∈Ξ

G(Tξ) in L and F (S), F (Tξ) ∈ L<κ. There exists an index ξ0 ∈ Ξ

such that the morphism S −→ E factorizes through the morphism Tξ0 −→
E in K.

Since E ∈ E, we have φE = ψE : F (E) −→ G(E). Hence the two

compositions

F (Tξ0)
φ

//

ψ
// G(Tξ0) // G(E)

are equal to each other in L. SinceG(E) = lim
−→ξ∈Ξ

G(Tξ) and F (Tξ0) ∈ L<κ,

it follows that there exists an index ξ1 ∈ Ξ together with an arrow ξ0 −→ ξ1
in Ξ such that the two compositions

F (Tξ0)
φ

//

ψ
// G(Tξ0) // G(Tξ1)
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are equal to each other in L.

Similarly, there exists an index ξ2 ∈ Ξ together with an arrow ξ1 −→ ξ2
in Ξ such that the two compositions

F (Tξ1)
φ

//

ψ
// G(Tξ1) // G(Tξ2)

are equal to each other, etc.

Proceeding in this way, we construct a λ-indexed chain of indices ξi ∈ Ξ
and arrows ξi −→ ξj in Ξ for all 0 ≤ i < j < λ such that, for all ordinals

0 ≤ i < λ, the two compositions

F (Tξi)
φ

//

ψ
// G(Tξi)

// G(Tξi+1
)

are equal to each other in L. Specifically, for a limit ordinal k < λ, we just

pick an index ξk ∈ Ξ and arrows ξi −→ ξk in Ξ for all i < k making the

triangles ξi −→ ξj −→ ξk commutative in Ξ for all i < j < k. This can be

done, because k < κ and the index category Ξ is κ-filtered. For a successor

ordinal k = i + 1 < λ, the same argument as above in this proof provides

the desired arrow ξi −→ ξi+1.

After the construction is finished, it remains to put U = lim
−→i<λ

Tξi . We

have U ∈ K<κ, since λ < κ and the class of all κ-presentable objects in

a category with κ-directed colimits is closed under those κ-small colimits

that exist in the category [1, Proposition 1.16]. We also have φU = ψU by

construction, since F (U) = lim
−→i<λ

F (Tξi); so U ∈ E.

Proof of Theorem 3.1. Combine Propositions 1.2 and 3.2.

Remark 3.3. In applications of Theorem 3.1, one may be interested in the

joint equifier of a family of pairs of natural transformations (cf. [1, Re-

mark 2.76]). Let K be a κ-accessible category and (Li)i∈I be a family of

κ-accessible categories. Let Fi, Gi : K ⇒ Li be a family of pairs of par-

allel functors, all of them preserving κ-directed colimits and colimits of

λ-indexed chains. Assume further that the functors Fi take κ-presentable

objects to κ-presentable objects, and that the cardinality of the indexing set

I is smaller than κ. Let φi, ψi : Fi ⇒ Gi be a family of pairs of parallel

natural transformations.
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Consider the full subcategory E ⊂ K consisting of all objects E ∈ K

such that φi,E = ψi,E for all i ∈ I . Then the category E is κ-accessible,

and the κ-presentable objects of E are precisely all the objects of E that are

κ-presentable as objects of K. This assertion can be deduced from Proposi-

tion 2.1 and Theorem 3.1 by passing to the Cartesian product category L =∏
i∈I Li. The family of functors Fi : K −→ Li defines a functor F : K −→ L,

the family of functors Gi : K −→ Li defines a functor G : K −→ L, and the

family of pairs of natural transformations φi, ψi : Fi ⇒ Gi defines a pair of

natural transformations φ, ψ : F ⇒ G. It follows from Proposition 2.1 that

all the assumptions of Theorem 3.1 are satisfied by the category L and the

pair of functors F , G.

4. Inserter

As in Section 3, we consider a regular cardinal κ and a smaller infinite car-

dinal λ < κ. Let K and L be κ-accessible categories in which all λ-indexed

chains have colimits. Let F , G : K ⇒ L be two parallel functors preserving

κ-directed colimits and colimits of λ-indexed chains; assume further that the

functor F takes κ-presentable objects to κ-presentable objects.

Let E be the category of pairs (K,φ), where K ∈ K is an object and

φ : F (K) −→ G(K) is a morphism in L. This construction of the category

E is known as the inserter [13, Section 4], [5, Section 1], [19, Section 5.1.1],

[1, Section 2.71].

The aim of this section is to prove the following theorem, which also

goes back to the unpublished preprint [29, Theorem 3.8, Corollary 3.9, and

Remark 3.11(II)].

Theorem 4.1. In the assumptions above, the inserter category E is κ-acces-

sible. The κ-presentable objects of E are precisely all the pairs (S, ψ) where

S is a κ-presentable object of K.

We start with the obvious observations that κ-directed colimits (as well

as colimits of λ-indexed chains) exist in E and are preserved by the forgetful

functor E −→ K (because such colimits exists in K and are preserved by the

functor F ).

The proof of the theorem is based on three propositions. It uses the

same idea as the proof of Theorem 3.1 above, but the details are much more
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complicated in the case of Theorem 4.1.

Proposition 4.2. Let (S, ψ) ∈ E be an object such that S ∈ K<κ. Then

(S, ψ) ∈ E<κ.

Proof. The assumptions concerning cardinal λ are not needed for this propo-

sition. Essentially, the assertion holds because κ-directed colimits commute

with finite limits in the category of sets (cf. [12, Proposition 2.1]). To be

more specific, it helps to observe that, given an object (K,φ) in E, the set of

morphisms HomE((S, ψ), (K,φ)) is computed as the equalizer of the natural

pair of maps

HomK(S,K)
f 7→φ◦F (f)

//

f 7→G(f)◦ψ
// HomL(F (S), G(K)).

Then one needs to use the assumptions that the functor G preserves κ-di-

rected colimits and the functor F takes κ-presentable objects to κ-present-

able objects.

Denote by E′

<κ ⊂ E the full subcategory formed by all the pairs (S, ψ) ∈
E with S ∈ K<κ. By Proposition 4.2, we have E′

<κ ⊂ E<κ.

Proposition 4.3. Let E = (K,φ) ∈ E be an object. Consider the canonical

diagramC = DE of morphisms intoE from (representatives of isomorphism

classes of) objects B = (S, ψ) ∈ E′

<κ, with the indexing category ∆ = ∆E .

Then the indexing category ∆ is κ-filtered.

Proposition 4.4. In the context of Proposition 4.3, consider also the canoni-

cal diagram D = DK of morphisms into K from (representatives of isomor-

phism classes of) objects S ∈ K<κ, with the indexing category ∆K . Then the

natural functor between the indexing categories ∆E −→ ∆K is cofinal (in

the sense of [1, Section 0.11]).

The proofs of Propositions 4.3 and 4.4 are based on the following lemma.

Lemma 4.5. Let E = (K,φ) ∈ E be an object, let S, T ∈ K<κ be

κ-presentable objects, and let σ : F (S) −→ G(T ) be a morphism in L. Let
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S −→ T and T −→ K be morphisms in K. Assume that the pentagonal

diagram

F (S) //

σ

��

F (T ) // F (K)

φ

��

G(T ) // G(K)

is commutative in L. Then there exists an object B = (U, ψ) ∈ E′

<κ together

with a morphism (U, ψ) −→ (K,φ) in E and a morphism T −→ U in K

such that the pentagonal diagram

F (S) //

σ

��

F (T ) // F (U)

ψ

��

G(T ) // G(U)

is commutative in L and the triangular diagram T −→ U −→ K is commu-

tative in K.

Proof. Let K = lim
−→ξ∈Ξ

Tξ be a representation of the object K as a κ-filtered

colimit of κ-presentable objects in the category K. Then we have G(K) =
lim
−→ξ∈Ξ

G(Tξ) in L and F (S), F (Tξ) ∈ L<κ. There exists an index ξ0 ∈ Ξ

such that the morphism T −→ K factorizes through the morphism Tξ0 −→
K in K. Then the heptagonal diagram

F (S) //

σ

��

F (T ) // F (Tξ0) // F (K)

φ

��

G(T ) // G(Tξ0) // G(K)

is commutative in L.

Since G(K) = lim
−→ξ∈Ξ

G(Tξ) and F (Tξ0) ∈ L<κ, there exists an index

ξ1 ∈ Ξ such that the composition F (Tξ0) −→ F (K) −→ G(K) factorizes

through the morphism G(Tξ1) −→ G(K) in L:

F (Tξ0) //

ψ0

��

F (K)

φ

��

G(Tξ1) // G(K)
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Moreover, since G(K) = lim
−→ξ∈Ξ

G(Tξ) and F (S) ∈ L<κ, one can choose

the index ξ1 together with an arrow ξ0 −→ ξ1 in Ξ such that the hexagonal

diagram

F (S) //

σ

��

F (T ) // F (Tξ0)

ψ0

��

G(T ) // G(Tξ0) // G(Tξ1)

is commutative in L. Notice that the pentagonal diagram

F (Tξ0) //

ψ0

��

F (Tξ1) // F (K)

φ

��

G(Tξ1) // G(K)

is also commutative in L.

Hence one can choose an index ξ2 ∈ Ξ together with an arrrow ξ1 −→ ξ2
in Ξ such that the composition F (Tξ1) −→ F (K) −→ G(K) factorizes

through the morphism G(Tξ2) −→ G(K):

F (Tξ1) //

ψ1

��

F (K)

φ

��

G(Tξ2) // G(K)

and the square diagram

F (Tξ0) //

ψ0

��

F (Tξ1)

ψ1

��

G(Tξ1) // G(Tξ2)

is commutative in L. Then the pentagonal diagram

F (Tξ1) //

ψ1

��

F (Tξ2) // F (K)

φ

��

G(Tξ2) // G(K)
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is commutative in L.

Proceeding in this way, we construct a λ-indexed chain of indices ξi ∈ Ξ
and arrows ξi −→ ξj in Ξ for all 0 ≤ i < j < λ together with morphisms

ψi : F (Tξi) −→ G(Tξi+1
) in L such that, for all ordinals 0 ≤ i < λ, the

square diagram

F (Tξi)
//

ψi

��

F (K)

φ

��

G(Tξi+1
) // G(K)

is commutative in L and, for all ordinals 0 ≤ i < j < λ, the square diagram

F (Tξi)
//

ψi

��

F (Tξj)

ψj

��

G(Tξi+1
) // G(Tξj+1

)

is commutative in L.

Specifically, similarly to the proof of Proposition 3.2, for a limit ordi-

nal k < λ, we just pick an index ξk ∈ Ξ and arrows ξi −→ ξk in Ξ for

all i < k making the triangles ξi −→ ξj −→ ξk commutative in Ξ for

all i < j < k. For a successor ordinal k = j + 1 < λ, we choose an

index ξj+1 ∈ Ξ together with an arrow ξj −→ ξj+1 in Ξ such that the com-

position F (Tξj) −→ F (K) −→ G(K) factorizes through the morphism

G(Tξj+1
) −→ G(K):

F (Tξj)
//

ψj

��

F (K)

φ

��

G(Tξj+1
) // G(K)

and the square diagram

F (Tξi)
//

ψi

��

F (Tξj)

ψj

��

G(Tξi+1
) // G(Tξj+1

)

405



L. POSITSELSKI ACCESSIBLE CATEGORIES

is commutative in L for all i < j. The latter condition can be satisfied

because the pentagonal diagrams

F (Tξi)
//

ψi

��

F (Tξj)
// F (K)

φ

��

G(Tξi+1
) // G(K)

are commutative in L for all i < j and the index category Ξ is κ-filtered.

After the construction is finished, it remains to put U = lim
−→i<λ

Tξi ,

and define ψ : F (U) −→ G(U) to be the colimit of the morphisms

ψi : F (Tξi) −→ G(Tξi+1
). It is important here that F (U) = lim

−→i<λ
F (Tξi).

We have U ∈ K<κ for the reason explained in the proof of Proposi-

tion 3.2.

Proof of Proposition 4.3. Firstly, let va : (Sa, ψa) −→ (K,φ) be a family of

morphisms into (K,φ) from objects (Sa, ψa) ∈ E′

<κ, with the set of indices a
having cardinality smaller than κ. We need to show that there is a morphism

u : (T, τ) −→ (K,φ) into (K,φ) from an object (T, τ) ∈ E′

<κ such that

all the morphisms va factorize through u. For this purpose, choose a rep-

resentation K = lim
−→ξ∈Ξ

Sξ of the object K ∈ K as a κ-filtered colimit of

κ-presentable objects Sξ ∈ K<κ.

Then there exists an index ξ0 ∈ Ξ such that all the morphisms va : Sa −→
K factorize through the morphism Sξ0 −→ K in K. The hexagonal diagram

F (Sa) //

ψa

��

F (Sξ0) // F (K)

φ

��

G(Sa) // G(Sξ0) // G(K)

is commutative in L for all indices a. Therefore, one can choose an index

ξ1 ∈ Ξ together with an arrow ξ0 −→ ξ1 in Ξ such that the composition

F (Sξ0) −→ F (K) −→ G(K) factorizes through the morphism G(Sξ1) −→
G(K):

F (Sξ0) //

σ

��

F (K)

φ

��

G(Sξ1) // G(K)
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and the pentagonal diagrams

F (Sa) //

ψa

��

F (Sξ0)

σ

��

G(Sa) // G(Sξ0) // G(Sξ1)

are commutative in L for all a. Then the pentagonal diagram

F (Sξ0) //

σ

��

F (Sξ1) // F (K)

φ

��

G(Sξ1) // G(K)

is also commutative in L. It remains to put S = Sξ0 and T = Sξ1 , and use

Lemma 4.5.

Secondly, let v : (P, π) −→ (K,φ) be a morphism into (K,φ) from

an object (P, π) ∈ E′

<κ, and let wa : (R, ρ) −→ (P, π) be a family of

parallel morphisms into (P, π) from an object (R, ρ) ∈ E′

<κ, with the set

of indices a having cardinality smaller than κ. Assume that all the mor-

phisms vwa : (R, ρ) −→ (K,φ) are equal to each other. We need to show

that the morphism v : (P, π) −→ (K,φ) can be factorized as (P, π)
u
−→

(U, ψ) −→ (K,φ) in such a way that (U, ψ) ∈ E′

<κ and all the morphisms

uwa : (R, ρ) −→ (U, ψ) are equal to each other.

For this purpose, choose a representation K = lim
−→ξ∈Ξ

Sξ of the object

K ∈ K as a κ-filtered colimit of κ-presentable objects Sξ ∈ K<κ. Then

there exists an index ξ0 ∈ Ξ such that the morphism v : P −→ K factorizes

through the morphism Sξ0 −→ K and all the compositions R
wa−→ P −→

Sξ0 are equal to each other. The hexagonal diagram

F (P ) //

π

��

F (Sξ0) // F (K)

φ

��

G(P ) // G(Sξ0) // G(K)

is commutative in L.
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Therefore, one can choose an index ξ1 ∈ Ξ together with an arrow ξ0 −→
ξ1 in Ξ such that the composition F (Sξ0) −→ F (K) −→ G(K) factorizes

through the morphism G(Sξ1) −→ G(K):

F (Sξ0) //

σ

��

F (K)

φ

��

G(Sξ1) // G(K)

and the pentagonal diagram

F (P ) //

π

��

F (Sξ0)

σ

��

G(P ) // G(Sξ0) // G(Sξ1)

is commutative in L. Once again, it remains to put S = Sξ0 and T = Sξ1 ,

and refer to Lemma 4.5.

Proof of Proposition 4.4. Firstly, let P −→ K be a morphism into K from

an object P ∈ K<κ. We need to show that there exists an object (U, ψ) ∈ E′

<κ

together with a morphism (U, ψ) −→ (K,φ) in E and a morphism P −→ U
in K such that the triangular diagram P −→ U −→ K is commutative in K.

For this purpose, choose a representation K = lim
−→ξ∈Ξ

Tξ of the object

K ∈ K as a κ-filtered colimit of κ-presentable objects Tξ ∈ K<κ. Then there

exists an index ξ1 ∈ Ξ such that the morphism P −→ K factorizes through

the morphism Tξ1 −→ K in K and the composition F (P ) −→ F (K) −→
G(K) factorizes through the morphism G(Tξ1) −→ G(K) in L:

F (P ) //

σ

��

F (K)

φ

��

G(Tξ1) // G(K)

It remains to put S = P and T = Tξ1 , and refer to Lemma 4.5.

Secondly, let (R′, ρ′) and (R′′, ρ′′) be two objects of E′

<κ, let

(R′, ρ′) −−→ (K,φ) ←−− (R′′, ρ′′)
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be two morphisms in E, and let R′ ←− P −→ R′′ be two morphisms in K

such that the square diagram

P

~~ !!

R′ // K R′′oo

is commutative in K. We need to show that there exists an object (U, ψ) ∈
E<κ together with two morphisms (R′, ρ′) −→ (U, ψ) ←− (R′′, ρ′′) and a

morphism (U, ψ) −→ (K,φ) in E such that the two triangular diagrams

(R′, ρ′) //

$$

(U, ψ)

��

(R′′, ρ′′)oo

yy

(K,φ)

are commutative in E and the square diagram

P

~~   

R′ // U R′′oo

is commutative in K.

For this purpose, choose a representation K = lim
−→ξ∈Ξ

Sξ of the object

K ∈ K as a κ-filtered colimit of κ-presentable objects Sξ ∈ K<κ. Then

there exists an index ξ0 ∈ Ξ such that both the morphisms R′ −→ K and

R′′ −→ K factorize through the morphism Sξ0 −→ K in K and the square

diagram

P

~~ !!

R′ // Sξ0 R′′oo
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is commutative in K. So the whole diagram

P

~~ !!

R′ //

  

Sξ0

��

R′′oo

}}

K

is commutative. Then the two hexagonal diagrams

F (R′) //

ρ′

��

F (Sξ0) // F (K)

φ

��

F (Sξ0)oo F (R′′)oo

ρ′′

��

G(R′) // G(Sξ0) // G(K) G(Sξ0)oo G(R′′)oo

are commutative in L.

Hence one can choose an index ξ1 ∈ Ξ together with an arrow ξ0 −→ ξ1
in Ξ such that the composition F (Sξ0) −→ F (K) −→ G(K) factorizes

through the morphism G(ξ1) −→ G(K):

F (Sξ0) //

σ

��

F (K)

φ

��

G(Sξ1) // G(K)

and the two pentagonal diagrams

F (R′) //

ρ′

��

F (Sξ0)

σ

��

F (R′′)oo

ρ′′

��

G(R′) // G(Sξ0) // G(Sξ1) G(Sξ0)oo G(R′′)oo

are commutative in L. Then it remains to put S = Sξ0 and T = Sξ1 , and refer

to Lemma 4.5.

Finally, we are ready to prove the theorem.
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Proof of Theorem 4.1. By Proposition 4.2, all the pairs (S, ψ) ∈ E with S ∈
K<κ are κ-presentable in E. It is also clear that the full subcategory E′

<κ of

all such pairs (S, ψ) is closed under retracts in E (since the full subcategory

K<κ is closed under retracts in K). Let S ⊂ E be a set of representatives

of isomorphism classes of objects from E′

<κ. In view of [1, Remarks 1.9

and 2.2(4)] (see the discussion in Section 1), it suffices to prove that, for

every objectE ∈ E, the indexing category ∆ = ∆E of the canonical diagram

C = DE of morphisms into E from objects of S is κ-filtered, and that E =
lim
−→v∈∆

Cv.
The former assertion is the result of Proposition 4.3. To prove the lat-

ter one, notice that by Lemma 1.1 we have K = lim
−→w∈∆K

Dw in K, where

D : ∆K −→ K is the canonical diagram of morphisms into K from repre-

sentatives of isomorphisms classes of objects from K<κ. Since the natural

functor δ : ∆ −→ ∆K between the indexing categories is cofinal by Propo-

sition 4.4, it follows that K = lim
−→v∈∆E

Dδ(v) in K. As the forgetful functor

E −→ K is conservative and preserves κ-filtered colimits, we can conclude

that E = lim
−→v∈∆E

Cv in E.

Remark 4.6. In applications of Theorem 4.1, one may be interested in the

joint inserter of a family of pairs of functors. Let K be a κ-accessible cate-

gory and (Li)i∈I be a family of κ-accessible categories. Let Fi, Gi : K ⇒ Li

be a family of pairs of parallel functors, all of them preserving κ-directed

colimits and colimits of λ-indexed chains. Assume further that the functors

Fi take κ-presentable objects to κ-presentable objects, and that the cardinal-

ity of the indexing set I is smaller than κ.

Let E be the category of pairs (K,φ), where K ∈ K is an object and

φ = (φi)i∈I is a family of morphisms φi : Fi(K) −→ Gi(K) in Li. Then the

category E is κ-accessible, and the κ-presentable objects of E are precisely

all the pairs (S, ψ) where S is a κ-presentable object of K. This assertion

can be deduced from Proposition 2.1 and Theorem 4.1 by passing to the

Cartesian product category L =
∏

i∈I Li. The family of functors Fi : K −→
Li defines a functor F : K −→ L, and the family of functors Gi : K −→ Li

defines a functor G : K −→ L. It follows from Proposition 2.1 that all the

assumptions of Theorem 4.1 are satisfied by the category L and the pair of

functors F , G.
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5. Pseudopullback

As in Sections 3 and 4, we consider a regular cardinal κ and a smaller

infinite cardinal λ < κ. Let A, B, and C be κ-accessible categories in

which all λ-indexed chains (of objects and morphisms) have colimits. Let

ΘA : A −→ C and ΘB : B −→ C be two functors preserving κ-directed col-

imits and colimits of λ-indexed chains, and taking κ-presentable objects to

κ-presentable objects.

Let D be the category of triples (A,B, θ), where A ∈ A and B ∈ B are

objects and θ : ΘA(A) ' ΘB(B) is an isomorphism in C. This construction

of the category D is known as the pseudopullback [6, Proposition 3.1], [28,

Section 2]. The aim of this section is to deduce the following corollary of

Theorems 3.1 and 4.1.

Corollary 5.1. In the assumptions above, the category D is κ-accessible.

The κ-presentable objects of D are precisely all the triples (A,B, θ), where

A is a κ-presentable object of A and B is a κ-presentable object of B.

Proof. This result, going back to [29, Remark 3.2(I), Theorem 3.8, Corol-

lary 3.9, and Remark 3.11(II)], appears in the recent literature as [6, Propo-

sition 3.1], [28, Pseudopullback Theorem 2.2]. So we include this proof for

the sake of completeness of the exposition and for illustrative purposes.

The point is that the pseudopullback can be constructed as a combi-

nation of products, inserters, and equifiers. Put K = A × B and L =
C × C, and consider the following pair of parallel functors F , G : K −→ L.

The functor F takes a pair of objects (A,B) ∈ A × B to the pair of ob-

jects (ΘA(A),ΘB(B)) ∈ C × C. The functor G takes a pair of objects

(A,B) ∈ A × B to the pair of objects (ΘB(B),ΘA(A)) ∈ C × C. Then

the related inserter category E from Section 4 (cf. Remark 4.6) is the cat-

egory of quadruples (A,B, θ′, θ′′), where A ∈ A and B ∈ B are objects,

while θ′ : ΘA(A) −→ ΘB(B) and θ′′ : ΘB(B) −→ ΘA(A) are arbitrary mor-

phisms.

Theorem 4.1 together with Proposition 2.1 tell that the category E is

κ-presentable, and the κ-presentable objects of E are precisely all the quadru-

ples (A,B, θ′, θ′′) such that A is a κ-presentable object of A and B is a

κ-presentable object of B.

It remains to apply the joint equifier construction of Section 3 and Re-

mark 3.3 to the family of two pairs of parallel natural transformations (id, θ′◦
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θ′′) and (id, θ′′ ◦ θ′) of functors E −→ C in order to produce the full subcat-

egory D ⊂ E of all quadruples (A,B, θ′, θ′′) such that θ′ and θ′′ are mutually

inverse isomorphisms ΘA(A) ' ΘB(B). Then Theorem 3.1 tells that the cat-

egory D is κ-accessible and describes its full subcategory of κ-presentable

objects, as desired.

Remark 5.2. Alternatively, one can consider what we would call the

isomorpher construction for two parallel functors between two categories

P , Q : H ⇒ G. (It appears in the literature under the name of the “iso-

inserter” [13, Section 4], [5, Section 1].) The isomorpher category D

consists of all pairs (H, θ), where H ∈ H is an object and θ : P (H) ' Q(H)
is an isomorphism in G.

One can observe that the pseudopullback and the isomorpher construc-

tions are actually equivalent, in the sense that they can be reduced to one

another. Given a pair of functors ΘA : A −→ C and ΘB : B −→ C, one can

put H = A× B and G = C, and denote by P : H −→ G and Q : H −→ G the

compositions A× B −→ A −→ C and A× B −→ B −→ C. In this context,

the two constructions of the category D agree.

Conversely, given a pair of parallel functors P , Q : H ⇒ G, put A = B =
H and C = H × G. Let the functor ΘA : A −→ C take an object H ′ ∈ H

to the pair (H ′, P (H ′)) ∈ H × G and the functor ΘB : B −→ C take an

object H ′′ ∈ H to the pair (H ′′, Q(H ′′)) ∈ H × G. Then an isomorphism

ΘA(H
′) ' ΘB(H

′′) in C means a pair of isomorphisms H ′ ' H ′′ in H and

P (H ′) ' Q(H ′′) in G. Up to a category equivalence, the datum of two

objects H ′, H ′′ ∈ H endowed with such two isomorphisms is the same thing

as a single objectH ∈ H together with an isomorphism P (H) ' Q(H) in G.

Thus, in this context, the two constructions of the category D agree as well.

Assume that the categories H and G are κ-accessible with colimits of

λ-indexed chains (for a regular cardinal κ and a smaller infinite cardinal

λ < κ). Assume further that the functors F andG preserve κ-directed colim-

its and colimits of λ-indexed chains, and that they take κ-presentable objects

to κ-presentable objects. Then it follows from Proposition 2.1 and Corol-

lary 5.1 that the isomorpher category D is κ-accessible, and the κ-presentable

objects of D are precisely all the pairs (H, θ) with H ∈ H<κ.
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6. Diagram categories

In this section, we discuss two constructions: the category of functors

Fun(C,K) and the category of k-linear functors Funk(A,K). The former

one is of interest to the general category theory, while the latter one is

relevant for additive category theory, module theory, complexes in additive

categories, etc.

Let us start with the nonadditive case. Given a small category C and a

category K, we denote by Fun(C,K) the category of functors C −→ K.

Recall that a category K is called locally κ-presentable [1, Definitions 1.9

and 1.17] if K is κ-accessible and all colimits exist in K. The following

theorem is a generalization of [12, Theorem 1.2] from the case of locally

κ-presentable categories to the case of κ-accessible categories with colimits

of λ-indexed chains (for some fixed infinite cardinal λ < κ). It is also a

correct version of [18, Lemma 5.1] (which was shown to be erroneous in

full generality in [12, Theorem 1.3]).

A category C is said to be κ-small if the cardinality of the set of all objects

and morphisms in C is smaller than κ.

Theorem 6.1. Let κ be a regular cardinal and λ < κ be a smaller infinite

cardinal. Let C be a κ-small category. Let K be a κ-accessible category in

which all λ-indexed chains (of objects and morphisms) have colimits. Then

the category Fun(C,K) is κ-accessible. The full subcategory Fun(C,K<κ) is

precisely the full subcategory of all κ-presentable objects in Fun(C,K).

Proof. Similarly to the proof Corollary 5.1, the point is that the diagram cat-

egory can be constructed as a combination of products, inserters, and equi-

fiers. Let K′ =
∏

c∈C K be the Cartesian product of copies of the category

K indexed by the objects of the category C, and let L′ =
∏

(c→d)∈C K be the

similar product of copies of K indexed by the morphisms of the category C.

Proposition 2.1 tells that the categories K′ and L′ are κ-accessible, and de-

scribes their full subcategories of κ-presentable objects.

Define a pair of parallel functors F ,G : K′ −→ L′ as follows. The functor

F assigns to a collection of objects (Kc ∈ K)c∈C ∈ K′ the collection of

objects (Lc→d)(c→d)∈C ∈ L′ given by the rules Lc→d = Kc for any morphism

c −→ d in C. Similarly, the functor G assigns to a collection of objects

(Kc ∈ K)c∈C ∈ K′ the collection of objects (Lc→d)(c→d)∈C ∈ L′ given by the

rules Lc→d = Kd for any morphism c −→ d in C.
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Then the related inserter category E from Section 4 (cf. Remark 4.6) is

the category of all “nonmultiplicative functors” C −→ K. An object E ∈ E

is a rule assigning to every object c ∈ C an object Ec ∈ K and to every mor-

phism c −→ d in C a morphism Ec −→ Ed in K. The conditions of compat-

ibility with the compositions of morphisms and with the identity morphisms

are not imposed. Morphisms of “nonmultiplicative functors” (i. e., the mor-

phisms in E) are similar to the usual morphisms of functors; so the desired

functor category Fun(C,K) is a full subcategory in E.

Theorem 4.1 tells that the category E is κ-accessible, and describes its

full subcategory of κ-presentable objects. Now the desired full subcategory

Fun(C,K) ⊂ E can be produced as a joint equifier category, as in Section 3

and Remark 3.3. There are two kinds of pairs of parallel natural transforma-

tions to be equified.

Firstly, for every composable pair of morphisms b −→ c −→ d in C,

we have a pair of parallel functors Fb→c→d, Gb→c→d : E ⇒ K and a pair

of parallel natural transformations φb→c→d, ψb→c→d : Fb→c→d ⇒ Gb→c→d.

The functor Fb→c→d takes an object E ∈ E to the object Eb ∈ K, and the

functor Gb→c→d takes an object E ∈ E to the object Ed ∈ K. The natural

transformation φb→c→d acts by the composition of the morphisms Eb −→
Ec −→ Ed in K assigned to the morphisms b −→ c and c −→ d by the datum

of the object E. The natural transformation ψb→c→d acts by the morphism

Eb −→ Ed assigned to the composition of the morphisms b −→ c −→ d in

C by the datum of the object E.

Secondly, for every object c ∈ C, we have a pair of parallel functors Fc =
Gc : E −→ K and a pair of parallel natural transformations φc, ψc : Fc ⇒ Gc.

The functor Fc = Gc takes an object E ∈ E to the object Ec ∈ K. The

natural transformation φc acts by the morphism Ec −→ Ec in K assigned to

the identity morphism idc in C by the datum of the object E; while ψc is the

identity natural transformation.

The resulting joint equifier is the functor category Fun(C,K). Theo-

rem 3.1 tells that this category is κ-accessible, and provides the desired de-

scription of its full subcategory of κ-presentable objects.

Now let k be a commutative ring. A k-linear category A is a category

enriched in k-modules. This means that, for any two objects a and b ∈ A,

the set of morphisms HomA(a, b) is a k-module, and the composition maps
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HomA(b, c)× HomA(a, b) −→ HomA(a, c) are k-bilinear.

Suppose given a set of objects a and, for every pair of objects a, b, a

generating set of morphisms Gen(a, b). Then one can construct the k-linear

category B on the given set of objects freely generated by the given gener-

ating sets of morphisms. For every pair of objects a, b, the free k-module

HomB(a, b) has a basis consisting of all the formal compositions gn · · · g1,
n ≥ 0, where gi ∈ Gen(ci, ci+1), c1 = a, cn+1 = b.

Furthermore, suppose given a set of defining relations Rel(a, b) ⊂
HomB(a, b) for every pair of objects a, b. Then one can construct the

two-sided ideal of morphisms J ⊂ B generated by all the relations, and pass

to the k-linear quotient category A = B/J by the ideal J.

Abusing terminology, we will say that a k-linear category A is κ-pre-

sented if it has the form A = B/J as per the construction above, where the

set of objects {a}, the set of all generators
∐

a,bGen(a, b), and the set of all

relations
∐

a,bRel(a, b) all have the cardinalities smaller than κ. In another

terminology, one could say that A is “the path category of a κ-small quiver

with a κ-small set of relations”.

A k-linear category K is said to be κ-accessible if it is κ-accessible as

an abstract category. Given a small k-linear category A and a k-linear cate-

gory K, we denote by Funk(A,K) the (k-linear) category of k-linear functors

A −→ K. The following theorem is a k-linear version of Theorem 6.1.

Theorem 6.2. Let κ be a regular cardinal and λ < κ be a smaller infinite

cardinal. Let k be a commutative ring, let A be a κ-presented k-linear cat-

egory, and let K be a κ-accessible k-linear category in which all λ-indexed

chains have colimits. Then the category Funk(A,K) is κ-accessible. The full

subcategory Funk(A,K<κ) is precisely the full subcategory of all κ-present-

able objects in Funk(A,K).

Proof. The argument is similar to the proof of Theorem 6.1, with the only

difference that one works with the generating morphisms and defining re-

lations in A instead of all morphisms and all compositions in C. Let K′ =∏
a∈A K be the Cartesian product of copies of the category K indexed by

the objects of the category A, and let L′ =
∏

a,b∈A

∏
(a→b)∈Gen(a,b) K be

the similar product of copies of K indexed by the set of generating mor-

phisms
∐

a,bGen(a, b). Proposition 2.1 tells that the categories K′ and L′ are

κ-accessible, and describes their full subcategories of κ-presentable objects.
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Define a pair of parallel functors F , G : K′ −→ L′ as follows. The func-

tor F assigns to a collection of objects (Ka ∈ K)a∈A ∈ K′ the collection

of objects (La→b)(a→b)∈Gen(a,b), a,b∈A ∈ L′ given by the rules La→b = Ka for

any generating morphism (a → b) ∈ Gen(a, b). Similarly, the functor G
assigns to a collection of objects (Ka ∈ K)a∈A ∈ K′ the collection of ob-

jects (La→b)(a→b)∈Gen(a,b), a,b∈A ∈ L′ given by the rules La→b = Kb for any

generating morphism (a→ b) ∈ Gen(a, b).
Then the related inserter category E from Section 4 (cf. Remark 4.6) is

naturally equivalent to the category Funk(B,K), where B is the “path cat-

egory of the quiver without relations” constructed in the discussion pre-

ceding the formulation of the theorem. Theorem 4.1 tells that the cate-

gory E is κ-accessible, and defines its full subcategory of κ-presentable ob-

jects. The category Funk(A,K) we are interested in is a full subcategory in

E = Funk(B,K) consisting of all the “quiver representations in K for which

the relations are satisfied”. The full subcategory Funk(A,K) ⊂ Funk(B,K)
can be produced as a joint equifier category, as in Section 3 and Remark 3.3.

The pairs of parallel natural transformations to be equified are indexed

by elements of the set of defining relations
∐

a,bRel(a, b). Given a defining

relation r ∈ Rel(a, b), we have a pair of parallel functors Fr, Gr : E ⇒

K and a pair of natural transformations φr, ψr : Fr ⇒ Gr. The functor

Fr : Funk(B,K) −→ K takes a functor E : B −→ K to the object E(a) ∈
K, and the functor Gr takes the functor E to the object E(b) ∈ K. The

natural transformation φr acts by the morphism E(r) : E(a) −→ E(b). The

natural transformation ψr acts by the zero morphism 0: E(a) −→ E(b) in

the k-linear category K.

The resulting joint equifier is the category of k-linear functors

Funk(A,K). Theorem 3.1 tells that this category is κ-accessible, and

provides the desired description of its full subcategory of κ-presentable

objects.

7. Brief preliminaries on 2-categories

The aim of this section is to provide a very brief and mostly terminological

preliminary discussion for the purposes of the next two Sections 8–9. The

reader can find the details by following the references.

Throughout the three sections, for the most part we adopt the policy of
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benign neglect with respect to set-theoretical issues of size (i. e., the distinc-

tion between sets and classes). When specific restrictions on the size matter,

we mention them.

In the terminology of higher category theory, the prefix “2-” means strict

concepts, while the prefix “bi-” refers to relaxed ones. So 2-categories are

strict, while bicategories are relaxed [3].

A 2-category is a category enriched in the category of categories Cat

(with the monoidal structure on Cat given by the Cartesian product) [14]. In

particular, there is the important 2-category of categories Cat: categories are

the objects, functors are the 1-cells, natural transformations are the 2-cells.

In the terminology of the bicategory theory, one speaks of morphisms

of bicategories (which are multiplicative and unital on 1-cells up to coher-

ent families of 2-cells) or homomorphisms of bicategories (which are multi-

plicative and unital on 1-cells up to coherent families of invertible 2-cells) [3,

Section 4]. Even when one is only interested in 2-categories, the notion of

a 2-functor may be too strict, and one may want to relax it by considering

morphisms of 2-categories (known as lax functors), or homomorphisms of

2-categories (known as pseudofunctors).

Let Γ and ∆ be two 2-categories. Then 2-functors Γ −→ ∆ form a

2-category [Γ,∆]. The objects of [Γ,∆] are the 2-functors Γ −→ ∆, the

1-cells of [Γ,∆] are the 2-natural transformations, and the 2-cells of [Γ,∆]
are called modifications [14, Section 1.4]. A 2-functor Γ −→ ∆ is a rule

assigning to every object of Γ an object of ∆, to every 1-cell of Γ a 1-cell

of ∆, and to every 2-cell of Γ a 2-cell of ∆. A 2-natural transformation is

a rule assiging to every object of Γ a 1-cell in ∆. A modification is a rule

assigning to every object of Γ a 2-cell in ∆. 2-categories and 2-functors form

the 3-category of 2-categories: 2-categories are the objects, 2-functors are

the 1-cells, 2-natural transformations are the 2-cells, and modifications are

the 3-cells.

Even when one is only interested in 2-functors rather than the more re-

laxed concepts of lax functors or pseudofunctors, the notion of a 2-natural

transformation may be too strict, and one may want to relax it. Then one

can consider lax natural transformations (compatible with the action of the

2-functors on 1-cells in Γ up to a coherent family of 2-cells in ∆) or pseu-

donatural transformations (compatible with the action of the 2-functors on

the 1-cells in Γ up to a coherent family of invertible 2-cells in ∆). In
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the terminology of [19, §4.1], lax natural transformations are called “trans-

formations”, pseudonatural transformations are called “strong transforma-

tions”, and 2-natural transformations are called “strict transformations”. The

2-category of 2-functors Γ −→ ∆, pseudonatural transformations, and mod-

ifications is denoted by Psd[Γ,∆] in [4], [13, Section 5], [5, Section 2].

In connection with the “lax” notions, the choice of the direction of the

(possibly noninvertible) 2-cells providing the relaxed compatibility becomes

important. When the direction is reversed, the correspoding notions are

called “oplax”. For “pseudo” notions, the compatibility 2-cells are assumed

to be invertible, and so the choice of the direction in which they act no longer

matters.

8. Conical pseudolimits, lax limits, and oplax limits

We denote by Cat the 2-category of small categories and by CAT the

2-category of locally small categories (i. e., large categories in which mor-

phisms between any fixed pair of objects form a set). So the categories of

morphisms in CAT need not be even locally small; this will present no

problem for our constructions.

Let Γ be a small 2-category and H : Γ −→ CAT be a 2-functor. The

(conical) lax limit of H is a category L whose objects are the following sets

of data:

i. for every object γ ∈ Γ, an object Lγ ∈ H(γ) of the category H(γ) is

given;

ii. for every 1-cell a : γ −→ δ in Γ, a morphism la : H(a)(Lγ) −→ Lδ in

the category H(δ) is given.

Here H(a) : H(γ) −→ H(δ) is the functor assigned to the 1-cell a : γ −→ δ
by the 2-functor H .

The set of data (i–ii) must satisfy the following conditions:

iii. for every identity 1-cell a = idγ : γ −→ γ in Γ, one has lidγ =
idLγ

: Lγ −→ Lγ;

iv. for every composable pair of 1-cells a : γ −→ δ and b : δ −→ ε in Γ,

one has lba = lb ◦H(b)(la) in the category H(ε);
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v. for every 2-cell t : a −→ b, where a, b : γ ⇒ δ is a pair of parallel

1-cells in Γ, the triangular diagram

H(a)(Lγ)

H(t)Lγ

��

la

$$

Lδ

H(b)(Lγ)

lb

::

is commutative in the category H(δ).

Here H(t) : H(a) −→ H(b) is the morphism of functors from the cate-

gory H(γ) to the category H(δ) assigned to the 2-cell t : a −→ b by the

2-functor H .

A morphism L −→ M in the category L is the datum of a morphism

Lγ −→ Mγ in the category H(γ) for every object γ ∈ Γ, satisfying the

obvious compatibility condition with the data (ii) for the objects L and M .

The (conical) oplax limit of the 2-functor H is the category M whose

objects are the following sets of data:

i∗. for every object γ ∈ Γ, an object Mγ ∈ H(γ) of the category H(γ) is

given;

ii∗. for every 1-cell a : γ −→ δ in Γ, a morphism ma : Mδ −→ H(a)(Mγ)
in the category H(δ) is given.

The set of data (i∗–ii∗) must satisfy the following conditions:

iii∗. for every identity 1-cell a = idγ : γ −→ γ in Γ, one has midγ =
idMγ

: Mγ −→Mγ;

iv∗. for every composable pair of 1-cells a : γ −→ δ and b : δ −→ ε in Γ,

one has mba = H(b)(ma) ◦mb in the category H(ε);

v∗. for every 2-cell t : a −→ b, where a, b : γ ⇒ δ is a pair of parallel
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1-cells in Γ, the triangular diagram

H(a)(Mγ)

H(t)Mγ

��

Mδ

ma

99

mb
%%

H(b)(Mγ)

is commutative in the category H(δ).

A morphism L −→ M in the category M is the datum of a morphism

Lγ −→ Mγ in the category H(γ) for every object γ ∈ Γ, satisfying the

obvious compatibility condition with the data (ii∗) for the objects L and M .

The pseudolimit of the 2-functorH is the full subcategory E ⊂ L consist-

ing of all the objects E ∈ L such that the morphism ea : H(a)(Eγ) −→ Eδ
in (ii) is an isomorphism in H(δ) for every 1-cell a : γ −→ δ in Γ. Equiv-

alently, the pseudolimit E can be defined as the full subcategory E ⊂ M

consisting of all the objects E ∈ M such that the morphism ea : Eδ −→
H(a)(Eγ) in (ii∗) is an isomorphism in H(δ) for every 1-cell a : γ −→ δ
in Γ.

Let κ be a regular cardinal and λ < κ be a smaller infinite cardinal. De-

note by ACCλ,κ ⊂ CAT the following 2-subcategory in CAT. The objects

of ACCλ,κ are all the κ-accessible categories with colimits of λ-indexed

chains. The 1-cells of ACCλ,κ are the functors preserving κ-directed colim-

its and colimits of λ-indexed chains. The 2-cells of ACCλ,κ are the (arbi-

trary) natural transformations.

As usual, we will say that a 2-category is κ-small if it has less than κ ob-

jects, less than κ 1-cells, and less than κ 2-cells.

Theorem 8.1. Let κ be a regular cardinal and λ < κ be a smaller infi-

nite cardinal. Let Γ be a κ-small 2-category and H : Γ −→ ACCλ,κ be a

2-functor. Then the oplax limit M of the 2-functor H (computed in CAT,

as per the construction above) belongs to ACCλ,κ. For every object γ ∈ Γ,

the natural forgetful/projection functor M −→ H(γ) belongs to ACCλ,κ.

An object S ∈ M is κ-presentable if and only if, for every object γ ∈ Γ, the

image Sγ of S in H(γ) is κ-presentable.
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Proof. Similarly to the proofs of Corollary 5.1 and Theorems 6.1–6.2, one

constructs the oplax limit M as a combination of products, inserters, and

equifiers.

Let K =
∏

γ∈ΓH(γ) be the Cartesian product of the categories H(γ)
taken over all objects γ ∈ Γ, and let L =

∏
(a:γ→δ)∈ΓH(δ) be the Cartesian

product of the categories H(δ) taken over all the 1-cells a : γ −→ δ in Γ.

Consider the following pair of parallel functors F , G : K −→ L. The functor

F takes a collection of objects (Mγ ∈ H(γ))γ∈Γ ∈ K to the collection of

objects (Mδ ∈ H(δ))(a:γ→δ) ∈ L. The functor G takes the same collection

of objects (Mγ ∈ H(γ))γ∈Γ ∈ K to the collection of objects (F (a)(Mγ) ∈
H(δ))(a:γ→δ) ∈ L.

Then the related inserter category E from Section 4 (cf. Remark 4.6) is

the category of all sets of data (i∗–ii∗) from the definition of the oplax limit

above. The conditions (iii∗–v∗) have not been imposed yet.

Theorem 4.1 tells that E is a κ-accessible category and describes its full

subcategory of κ-presentable objects. The desired oplax limit M is a full

subcategory M ⊂ E which can be produced as a joint equifier category,

as in Section 3 and Remark 3.3. There are three kinds of pairs of paral-

lel natural transformations to be equified, corresponding to the three condi-

tions (iii∗–v∗).

Firstly, for every object γ ∈ Γ, we have a pair of parallel functors

Fγ = Gγ : E −→ H(γ) and a pair of parallel natural transformations φγ ,

ψγ : Fγ −→ Gγ . The functor Fγ = Gγ takes an object E ∈ E to the

object Eγ ∈ H(γ). The natural transformation φγ acts by the morphism

eidγ : Eγ −→ Eγ assigned to the identity 1-cell idγ : γ −→ γ in Γ by the

datum (ii∗) for the object E ∈ E; while ψγ is the identity natural transforma-

tion.

Secondly, for every composable pair of 1-cells a : γ −→ δ and b : δ −→ ε
in Γ, we have a pair of parallel functors Fa,b, Ga,b : E ⇒ H(ε) and a pair of

parallel natural transformations φa,b, ψa,b : Fa,b ⇒ Ga,b. The functor Fa,b
takes an object E ∈ E to the object Eε ∈ H(ε). The functor Ga,b takes an

object E ∈ E to the object H(ba)(Eγ) ∈ H(ε). The natural transforma-

tion φa,b acts by the morphism eba : Eε −→ H(ba)(Eγ). The natural trans-

formation ψa,b acts by the composition of morphisms H(b)(ea) ◦ eb : Eε −→
H(b)(Eδ) −→ H(ba)(Eγ).

Thirdly, for every 2-cell t : a −→ b, where a, b : γ ⇒ δ is a pair of
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parallel 1-cells in Γ, we have a pair of parallel functors Ft, Gt : E ⇒ H(δ)
and a pair of parallel natural transformations φt, ψt : Ft ⇒ Gt. The functor

Ft takes an object E ∈ E to the object Eδ ∈ H(δ). The functor Gt takes an

object E ∈ E to the object H(b)(Eγ) ∈ H(δ). The natural transformation φt
acts by the composition of morphisms H(t)Eγ

◦ ea : Eδ −→ H(a)(Eγ) −→
H(b)(Eγ). The natural transformation ψt acts by the morphism eb : Eδ −→
H(b)(Eγ).

The resulting joint equifier is the oplax limit M. Theorem 3.1 tells that

this category is κ-accessible, and provides the desired description of its full

subcategory of κ-presentable objects. This proves the first and the third as-

sertions of the theorem, while the second assertion is easy.

Denote by ACC
κ
λ,κ ⊂ ACCλ,κ the following 2-subcategory in CAT.

The objects of ACC
κ
λ,κ are the same as the objects of ACCλ,κ, i. e., all

the κ-accessible categories with colimits of λ-indexed chains. The 1-cells

of ACC
κ
λ,κ are the functors preserving κ-directed colimits and colimits of

λ-indexed chains, and taking κ-presentable objects to κ-presentable objects.

The 2-cells of ACC
κ
λ,κ are the (arbitrary) natural transformations.

Theorem 8.2. Let κ be a regular cardinal and λ < κ be a smaller infi-

nite cardinal. Let Γ be a κ-small 2-category and H : Γ −→ ACC
κ
λ,κ be a

2-functor. Then the lax limit L of the 2-functor H (computed in CAT, as

per the construction above) belongs to ACC
κ
λ,κ. For every object γ ∈ Γ,

the natural forgetful/projection functor L −→ H(γ) belongs to ACC
κ
λ,κ. An

object S ∈ L is κ-presentable if and only if, for every object γ ∈ Γ, the

image Sγ of S in H(γ) is κ-presentable.

Proof. Similar to the proof of Theorem 8.1, with the directions of some ar-

rows suitably reversed as needed.

Theorem 8.3. Let κ be a regular cardinal and λ < κ be a smaller infi-

nite cardinal. Let Γ be a κ-small 2-category and H : Γ −→ ACC
κ
λ,κ be a

2-functor. Then the pseudolimit E of the 2-functor H (computed in CAT,

as per the construction above) belongs to ACC
κ
λ,κ. For every object γ ∈ Γ,

the natural forgetful/projection functor E −→ H(γ) belongs to ACC
κ
λ,κ. An

object S ∈ E is κ-presentable if and only if, for every object γ ∈ Γ, the

image Sγ of S in H(γ) is κ-presentable.

423



L. POSITSELSKI ACCESSIBLE CATEGORIES

Proof. Similar to the proofs of Theorems 8.1 and 8.2, with the only differ-

ence that it is convenient to use the isomorpher construction of Remark 5.2

instead of the inserter construction of Theorem 4.1. The equifier construc-

tion of Theorem 3.1 still needs to be used. (Cf. [13, Propositions 4.4 and 5.1]

and [5, Proposition 2.1].)

Remark 8.4. The notions of (op)lax limit and pseudolimit are somewhat

relaxed. The related strict notion is the 2-limit of categories. 2-limits of cat-

egories are not well-behaved in connection with accessible categories, gen-

erally speaking [19, paragraph after Proposition 5.1.1], [1, Example 2.68].

The well-behaved ones among the (weighted) 2-limits are called flexible lim-

its in [5]. Still, the (op)lax limits and pseudolimits are strict enough to be de-

fined up to isomorphism of categories (as per the constructions above) rather

than just up to category equivalence.

The case of the pseudopullback is instructive. Let Γ be the following

small 2-category. The 2-category Γ has three objects A, B, and C, and two

nonidentity 1-cells a : A −→ C and b : B −→ C. There are no nonidentity

2-cells in Γ. Hence a 2-functor H : Γ −→ CAT is the same thing as a triple

of categories A, B, and C together with a pair of functors ΘA : A −→ C

and ΘB : B −→ C, as in Section 5. Then [19, paragraph after Propo-

sition 5.1.1] explains that the 2-pullbacks, i. e., the 2-limits of 2-functors

H : Γ −→ CAT, do not preserve accessibility of categories.

The (op)lax limits and pseudolimits are better behaved and preserve ac-

cessibility, as per the theorems above in this section; but one has to be care-

ful. Looking into these constructions, one can observe that the definition of

the pseudopullback in Section 5 was, strictly speaking, an abuse of terminol-

ogy. The pseudolimit E of a 2-functor H : Γ −→ CAT is the category of

all quintuples (A,B,C, θa, θb), where A ∈ A, B ∈ B, and C ∈ C are three

objects and θa : ΘA(A) ' C, θb : ΘB(B) ' C are two isomorphisms (cf. [6,

Proposition 3.1], [28, Pseudopullback Theorem 2.2]). The pseudopullback

D as defined in Section 5 is naturally equivalent to the pseudolimit E of the

2-functor H , but not isomorphic to it.

The even more relaxed notion of a limit of categories defined up to a

category equivalence is called the bilimit [19, Section 5.1.1], [13, Section 6].

In the terminology of [19, Section 5.1.1], the pseudolimits are called strong

bilimits.
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9. Weighted pseudolimits

Let Γ be a small 2-category and W : Γ −→ Cat be a 2-functor (so the

category W (γ) is small for every γ ∈ Γ). The 2-functor W is called a

weight.

Let H : Γ −→ CAT be another 2-functor. The weighted pseudolimit

{W,H}p [5, Sections 1–2] (called “indexed pseudolimit” in the terminol-

ogy of [13, Sections 2 and 5] or “strong weighted bilimit” in the terminology

of [19, Section 5.1.1]) can be simply constructed as the category of 1-cells

W −→ H in the 2-category of pseudonatural transformations Psd[Γ,CAT]
(mentioned in Section 7). So {W,H}p = Psd[Γ,CAT](W,H) [13, for-

mula (5.5)].

The strict version of the same construction is the weighted 2-limit

{W,H}, which can be defined as the category of 1-cells W −→ H
in the 2-category of 2-natural transformations [Γ,CAT]; so {W,H} =
[Γ,CAT](W,H) [13, formula (2.5)]. It is explained in [13, Section 4]

or [5, Section 1] how to obtain the inserters, equifiers, and isomorphers

(iso-inserters) as particular cases of weighted 2-limits. Up to category

equivalence, they are also particular cases of weighted pseudolimits.

Taking Γ to be the 2-category with a single object, a single 1-cell, and

a single 2-cell, one obtains the construction of the diagram category (as in

Theorem 6.1), called the “cotensor product” in [13, Section 3], [5, Section 1],

as the particular case of the weighted 2-limit or weighted pseudolimit.

Taking W to be the 2-functor assigning to every object γ ∈ Γ the cate-

gory with a single object and a single morphism, one obtains the construction

of the pseudolimit from Section 8 as a particular case of weighted pseudo-

limit. To distinguish them from the more general weighted pseudolimits, the

pseudolimits from Section 8 are called conical pseudolimits [13, Sections 3

and 5], [5, Sections 1–2].

The notation ACC
κ
λ,κ ⊂ ACCλ,κ ⊂ CAT was introduced in Section 8.

Theorem 9.1. Let κ be a regular cardinal and λ < κ be a smaller infinite

cardinal. Let Γ be a κ-small 2-category and W : Γ −→ Cat be a 2-functor

such that the categoryW (γ) is κ-small for every object γ ∈ Γ. LetH : Γ −→
ACC

κ
λ,κ be a 2-functor. Then the weighted pseudolimit {W,H}p (computed

in CAT, as per the construction above) belongs to ACC
κ
λ,κ.
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Proof. The point is that all weighted pseudolimits can be constructed in

terms of products, inserters, and equifiers [13, Proposition 5.2], [5, Propo-

sition 2.1]; so the assertion follows from Proposition 2.1, Theorem 3.1,

and Theorem 4.1. The same argument applies also to all weighted bilim-

its [13, Section 6] and all flexible weighted 2-limits [5, Theorem 4.9 and

Remark 7.6].

Corollary 9.2. Let λ and κ be infinite regular cardinals such that λ / κ in

the sense of [19, §2.3] or [1, Definition 2.12]. Let Γ be a κ-small 2-category

and W : Γ −→ Cat be a 2-functor such that the category W (γ) is κ-small

for every object γ ∈ Γ. Let H : Γ −→ CAT be a 2-functor such that, for

every object γ ∈ Γ, the category H(γ) is λ-accessible, and for every 1-cell

a : γ −→ δ in Γ, the functor H(a) : H(γ) −→ H(δ) preserves λ-directed

colimits and takes κ-presentable objects to κ-presentable objects. Then the

weighted pseudolimit {W,H}p (computed in CAT, as per the construction

above) is a κ-accessible category.

Proof. Follows immediately from Theorem 9.1.

Remark 9.3. The assertion of Theorem 9.1 captures many, but not all the

aspects of the preceding results in this paper. In particular, Theorems 3.1

and 4.1 are not particular cases of Theorem 9.1, if only because the assump-

tions of Theorems 3.1–4.1 are more general. Indeed, in the assumptions of

Theorems 3.1–4.1 the functor F is required to belong to ACC
κ
λ,κ, while the

functor G may belong to the wider 2-category ACCλ,κ. In other words, the

functor G need not take κ-presentable objects to κ-presentable objects. This

subtlety, which was emphasized already in [29, Section 3], manifests itself in

the related difference between the formulations of Theorem 8.1, on the one

hand, and Theorems 8.2–8.3, on the other hand. It plays an important role in

the application to comodules over corings worked out in [23, Theorem 3.1

and Remark 3.2] and in the application to corings in [26, Theorem 4.2].

10. Toy examples

The examples in this section aim to illustrate the main results of this pa-

per in the context of additive categories, modules categories, and flat mod-

ules, which served as the main motivation for the present research. We re-

fer to the papers [27, 23, 25, 26] for more substantial applications to flat
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quasi-coherent sheaves, flat comodules and contramodules, arbitrary and flat

coalgebras and corings, and flat/injective (co)resolutions. This section also

serves as a reference source for [27, 23, 25, 26], as it contains some results

that are useful as building blocks for the more complicated constructions.

10.1 Modules and flat modules

Let R be an associative ring. We denote by R–Mod the abelian category of

left R-modules and by R–Modfl ⊂ R–Mod the full subcategory of flat left

R-modules.

The following two propositions are fairly standard.

Proposition 10.1. For any ring R and any regular cardinal κ, the category

of R-modules R–Mod is locally κ-presentable. The κ-presentable objects of

R–Mod are precisely all the left R-modules that can be constructed as the

cokernel of a morphism of free left R-modules with less than κ generators.

Proposition 10.2. For any ring R and any regular cardinal κ, the category

of flat R-modules R–Modfl is κ-accessible. All directed colimits exist in

R–Modfl and agree with the ones in R–Mod. The κ-presentable objects of

R–Modfl are precisely all those flat left R-modules that are κ-presentable as

objects of R–Mod.

Proof. The connection between the present proposition and the previous one

fits into the setting described in Proposition 1.2. The assertions for κ = ℵ0
are corollaries of the classical Govorov–Lazard theorem [11, 16] character-

izing the flat R-modules as the directed colimits of finitely generated projec-

tive (or free) R-modules. The general case of an arbitrary regular cardinal κ
can be deduced by applying [1, Theorem 2.11 and Example 2.13(1)].

For a version of Proposition 10.2 for modules of bounded flat dimension,

see [25, Corollary 5.2].

10.2 Diagrams of flat modules

The following two corollaries are our “toy applications” of Theorem 6.2.
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Corollary 10.3. Let k be a commutative ring and R be an associative,

unital k-algebra. Let κ be an uncountable regular cardinal and A be

a κ-presented k-linear category (in the sense of Section 6). Then any

k-linear functor A −→ R–Modfl is a κ-directed colimit of k-linear functors

A −→ R–Modfl,<κ into the category of κ-presentable flat left R-modules

R–Modfl,<κ.

Proof. By Proposition 10.2 and Theorem 6.2 (with λ = ℵ0), the k-linear

functor/diagram category Funk(A, R–Modfl) is κ-accessible, and Funk(A,
R–Modfl,<κ) is its full subcategory of κ-presentable objects.

Corollary 10.4. Let R be an associative ring and κ be an uncountable reg-

ular cardinal. Then any cochain complex of flat R-modules is a κ-directed

colimit of complexes of κ-presentable flat R-modules.

Proof. This is the particular case of Corollary 10.3 for the ring k = Z and

the suitable choice of additive category A describing cochain complexes.

The objects of A are the integers n ∈ Z, the set of generating morphisms is

the singleton Gen(n,m) = {dn} form = n+1 and the empty set otherwise,

and the set of defining relations is the singleton Rel(n,m) = {dn+1dn} for

m = n+ 2 and the empty set otherwise.

For a quasi-coherent sheaf, a comodule, and a contramodule version of

Corollary 10.4, see [27, Theorem 4.1] and [23, Propositions 3.3 and 10.2].

Remark 10.5. For an uncountable regular cardinal κ, the complexes of

κ-presentable R-modules are precisely all the κ-presentable objects of the

locally finitely presentable (hence locally κ-presentable) abelian category of

complexes of R-modules. For κ = ℵ0, the finitely presentable objects of the

category of complexes of R-modules are the bounded complexes of finitely

presentable R-modules.

Notice that not every complex of flat R-modules is a directed colimit

of bounded complexes of finitely presentable flat (i. e., finitely generated

projective) R-modules. In fact, the directed colimits of bounded complexes

of finitely generated projective R-modules are the homotopy flat complexes

of flat R-modules [7, Theorem 1.1].

Using the argument from [1, proof of Theorem 2.11 (iv)⇒ (i)] (for λ =
ℵ0 and µ = κ), one can deduce the assertion that any homotopy flat com-

plex of flat R-modules is a κ-directed colimit of homotopy flat complexes
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of κ-presentable flat R-modules, for any uncountable regular cardinal κ. A

quasi-coherent sheaf version of this observation can be found in [27, Theo-

rem 4.5].

10.3 Categories of epimorphisms

For any category K, we denote by K→ the category of morphisms in K (with

commutative squares in K as morphisms in K→). The following lemma is

not difficult.

Lemma 10.6. For any regular cardinal κ and κ-accessible category K,

the category of morphisms K→ is κ-accessible. The full subcategory of

κ-presentable objects in K→ is the category (K<κ)
→ of morphisms of

κ-presentable objects in K.

Proof. One has K→ = Fun(C,K) for the obvious finite category C with no

nonidentity endomorphisms; so the result of [2, Exposé I, Proposition 8.8.5],

[20, page 55], or [12, Theorem 1.3] is applicable.

For any category K, let us denote by Kepi ⊂ K→ the full subcategory

whose objects are all the epimorphisms in K.

Lemma 10.7. For any regular cardinal κ and any locally κ-presentable

abelian category K, the category of epimorphisms Kepi is locally κ-present-

able. The full subcategory of κ-presentable objects in Kepi is the category

(K<κ)
epi of epimorphisms between κ-presentable objects in K.

Proof. Notice first of all that a morphism in K<κ is an epimorphism in K<κ

if and only if it is an epimorphism in K (because the full subcategory K<κ

is closed under cokernels in K [1, Proposition 1.16]). Furthermore, the full

subcategory Kepi is closed under colimits in the locally presentable abelian

category K→; so all colimits exist in Kepi. In view of Lemma 10.6 and ac-

cording to Proposition 1.2, in order to prove the lemma it suffices to check

that any morphism from an object of (K<κ)
→ to an object of Kepi factorizes

through an object of (K<κ)
epi in K→.

Indeed, consider a commutative square diagram in K

S //

��

K

����

T // L
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with an epimorphism K � L and objects S, T ∈ K<κ. Let M be the

pullback of the pair of morphisms K −→ L and T −→ L in K; then M −→
T is also an epimorphism (since the category K is assumed to be abelian).

S //

��

M //

����

K

����

T T // L

Let M = lim
−→ξ∈Ξ

Uξ be a representation of M as a κ-filtered colimit of

κ-presentable objects Uξ in K, and let Vξ denote the images of the composi-

tions Uξ −→ M −→ T . The κ-filtered colimits are exact functors in K [1,

Proposition 1.59]; hence we have T = lim
−→ξ∈Ξ

Vξ. Since T ∈ K<κ, it follows

that there exists ξ0 ∈ Ξ such that the morphism Vξ0 −→ T is a retraction (as

Vξ0 −→ T is a monomorphism by construction, this means that Vξ0 −→ T is

actually an isomorphism). Hence the composition Uξ0 −→ M −→ T is an

epimorphism. Since S ∈ K<κ, one can choose an index ξ1 ∈ Ξ together with

an arrow ξ0 −→ ξ1 in Ξ such that the morphism S −→M factorizes through

the morphism Uξ1 −→M . Hence we arrive to the desired factorization

S //

��

Uξ1 //

����

K

����

T T // L

through an object (Uξ1 → T ) ∈ (K<κ)
epi.

Remark 10.8. It follows immediately from the first assertion of Lemma 10.7

that the category Kmono of monomorphisms in K is also locally κ-presentable.

In fact, the categories Kepi and Kmono are naturally equivalent; the functors

of the kernel of an epimorphism and the cokernel of a monomorphism pro-

vide the equivalence. However, the direct analogue of the second assertion

of Lemma 10.7 fails for monomorphisms (even though the full subcategory

Kmono ⊂ K→ is closed under κ-directed colimits by [1, Proposition 1.59]).

In fact, a monomorphism i in K is a κ-directed colimit of monomorphisms

between κ-presentable objects if and only if i is an admissible monomor-

phism in the maximal locally κ-coherent exact structure on K [24, Corol-

lary 3.3]. In particular, if R is an associative ring that is not left coherent,
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then any monomorphism i : N −→ M from a finitely generated but not

finitely presentable left R-module N to a finitely presentable left R-module

M is not a directed colimit of monomorphisms of finitely presentable mod-

ules in R–Mod.

Given a ring R and a full subcategory L ⊂ R–Mod, we denote by

Lsurj ⊂ L→ the full subcategory whose objects are all the surjective mor-

phisms between objects of L.

Lemma 10.9. For any associative ring R and any regular cardinal κ, the

category of surjective morphisms of flat R-modules R–Mod
surj
fl is κ-accessi-

ble. The κ-presentable objects of R–Mod
surj
fl are the surjective morphisms of

κ-presentable flat R-modules.

Proof. The argument is similar to the proof of Lemma 10.7. In view of

Proposition 10.2, Lemma 10.6 is applicable to K = R–Modfl; so the category

of morphisms of flat R-modules R–Mod
→

fl is κ-accessible and the category

of morphisms of κ-presentable flatR-modulesR–Mod
→

fl,<κ is the full subcat-

egory of κ-presentable objects in R–Mod
→

fl . According to Proposition 1.2,

in order to prove the lemma it suffices to check that any morphism from an

object of R–Mod
→

fl,<κ to an object of R–Mod
surj
fl factorizes through an object

of (R–Modfl,<κ)
surj.

Following the proof of Lemma 10.7, one needs to observe that if K � L
is a surjective morphism of flat R-modules and T −→ L is a morphism of

flat R-modules, then the pullback M (computed in the category R–Mod) is

a flat R-module. Indeed, the kernel F of the morphism K −→ L is a flat

R-module, so the short exact sequence 0 −→ F −→ M −→ T −→ 0
shows that M is a flat R-module, too. The images Vξ of the morphisms

Uξ −→ T can be taken in the ambient abelian category R–Mod. Otherwise,

the argument is the same, except that one considers surjective morphisms in

R–Modfl rather than epimorphisms in K.

Remark 10.10. Alternatively, one can drop the assumption that the category

K is abelian in Lemma 10.7, requiring it only to be additive; but assume the

cardinal κ to be uncountable instead. Then the resulting assertion can be

obtained as a particular case of Corollary 5.1. Consider the category of mor-

phisms A = K→, the zero category B = {0}, and the category C = K. Let

ΘA : A −→ C be the cokernel functor f 7−→ coker(f) and ΘB : B −→ C
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be the zero functor. Then the pseudopullback D is the category of epimor-

phisms D = Kepi. All the assumptions of Corollary 5.1 (with λ = ℵ0) are

satisfied; so the corollary tells that Kepi is κ-accessible and provides the de-

sired description of κ-presentable objects.

Similarly, assuming κ to be uncountable, one can deduce Lemma 10.9

from Lemmas 10.6 and 10.7 using Corollary 5.1. Consider the category of

R-module epimorphisms A = R–Mod
epi, the category of morphisms of flat

R-modules B = R–Mod
→

fl , and the category of R-module morphisms C =
R–Mod

→. Let ΘA : A −→ C and ΘB : B −→ C be the natural inclusions.

Then the pseudopullback D is the category of surjective morphisms of flat

R-modules R–Mod
surj
fl , and Corollary 5.1 is applicable.

10.4 Short exact sequences of flat modules

Now we can deduce the following three corollaries of Lemma 10.9.

Corollary 10.11. Let R be an associative ring and κ be a regular cardinal.

Then any surjective morphism of κ-presentable flat R-modules is a direct

summand of a κ-small directed colimit of surjective morphisms of finitely

generated projective R-modules (in the category R–Mod
→

fl ).

Proof. This follows from Lemma 10.9 in view of [1, proof of Theo-

rem 2.11 (iv)⇒ (i)] for K = R–Mod
surj
fl , λ = ℵ0, and µ = κ. The

Govorov–Lazard characterization of flat modules [11, 16] implies that all

finitely presentable flat R-modules are projective. By Lemma 10.9, the cat-

egory of surjective morphisms of flat R-modules is finitely accessible, and

its finitely presentable objects are the surjective morphisms of finitely gen-

erated projective R-modules. So all surjective morphisms of flat R-modules

are directed colimits of surjective morphisms of finitely generated projective

R-modules.

Let A denote the set of all κ-small directed colimits of surjective mor-

phisms of finitely generated projective R-modules. Following the argu-

ment in [1, proof of Theorem 2.11 (iv)⇒ (i)] and [1, Example 2.13(1)], all

the objects of R–Mod
surj
fl are κ-directed colimits of objects from A. Thus

all the κ-presentable objects of R–Mod
surj
fl are direct summands of objects

from A.

The next corollary is a generalization of [23, Lemma 4.1].
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Corollary 10.12. Let R be an associative ring and κ be a regular cardinal.

Then the kernel of any surjective morphism of κ-presentable flat R-modules

is a κ-presentable flat R-module.

Proof. Follows from Corollary 10.11, as the kernel of any surjective mor-

phism of finitely generated projective R-modules is a finitely generated pro-

jective R-module. For another proof, see [24, Corollary 4.7].

Given a ring R and a full subcategory L ⊂ R–Mod, let us denote by Lses

the category of all short exact sequences inR–Mod with the terms belonging

to L.

Corollary 10.13. For any associative ring R and any regular cardinal κ,

the category of short exact sequences of flat R-modules R–Mod
ses
fl is

κ-accessible. The full subcategory of κ-presentable objects of R–Mod
ses
fl is

the category (R–Modfl,<κ)
ses of all short exact sequences of κ-presentable

flat R-modules.

Proof. By Corollary 10.12, the obvious equivalence of categoriesR–Mod
surj
fl

' R–Mod
ses
fl identifies (R–Modfl,<κ)

surj with (R–Modfl,<κ)
ses. This makes

the desired assertion a restatement of Lemma 10.9.

10.5 Pure acyclic complexes of flat modules

Finally, we can present our “toy application” of Corollary 5.1. An acyclic

complex of flat R-modules is said to be pure acyclic if its modules of cocy-

cles are flat.

The following corollary is essentially a weaker version of the result of [9,

Theorem 2.4 (1)⇔ (3)] or [21, Theorem 8.6 (ii)⇔ (iii)]. Our argument pro-

duces it as an application of general category-theoretic principles. See [27,

Theorem 4.2] and [23, Corollaries 4.5 and 11.4] for a quasi-coherent sheaf,

a comodule, and a contramodule version.

Corollary 10.14. Let R be an associative ring and κ be an uncount-

able regular cardinal. Then any pure acyclic complex of flat R-modules

is a κ-directed colimit of pure acyclic complexes of κ-presentable flat

R-modules.
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Proof. The point is that a pure acyclic complex of flat R-modules F • is

the same thing as a collection of short exact sequences of flat R-modules

0 −→ Gn −→ F n −→ Hn −→ 0 together with a collection of isomor-

phisms Hn ' Gn+1, n ∈ Z. This means that the category of pure acyclic

complexes of flat R-modules can be constructed from the category of short

exact sequences of flat R-modules R–Mod
ses
fl using Cartesian products (as in

Section 2) and the isomorpher construction from Remark 5.2.

Specifically, put H =
∏

n∈ZR–Mod
ses
fl and G =

∏
n∈ZR–Modfl. Let

P : H −→ G be the functor taking a collection of short exact sequences

(0→ Gn → F n → Hn → 0)n∈Z to the collection of modules (Hn)n∈Z, and

let Q : H −→ G be the functor taking the same collection of short exact se-

quences to the collection of modules (Gn+1)n∈Z. Then the resulting isomor-

pher category D is the category of pure acyclic complexes of flatR-modules.

Given the results of Proposition 10.2 and Corollary 10.13, it follows from

Proposition 2.1 and Remark 5.2 that the category D is κ-accessible and the

pure acyclic complexes of κ-presentable flat R-modules are precisely all the

κ-presentable objects of D.
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