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THE TOPOLOGY OF CRITICAL
PROCESSES, III

(COMPUTING HOMOTOPY)

Marco GRANDIS

Résumé. La topologie algébrique dirigée étudie des espaces équipés d’une
forme de direction, avec l’objectif d’inclure les processus non réversibles.
Dans l’extension présente nous voulons couvrir aussi les processus critiques,
indivisibles et inarrêtables.

Les parties précédentes de cette série ont introduit les espaces contrôlés
et leur catégorie fondamentale. Ici on étudie comment calculer cette dernière.
La structure d’homotopie de ces espaces sera examinée dans la Partie IV.

Abstract. Directed Algebraic Topology studies spaces equipped with a form
of direction, to include models of non-reversible processes. In the present
extension we also want to cover critical processes, indecomposable and un-
stoppable.

The previous parts of this series introduced controlled spaces and their
fundamental category. Here we study how to compute the latter. The homo-
topy structure of these spaces will be examined in Part IV.

Keywords. Directed algebraic topology, homotopy theory, fundamental cat-
egory, concurrent process.

Mathematics Subject Classification (2010). 55M, 55P, 55Q, 68Q85.
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M. GRANDIS THE TOPOLOGY OF CRITICAL PROCESSES, III

Introduction

0.1 Directed and controlled spaces

Directed Algebraic Topology is an extension of Algebraic Topology, deal-
ing with ‘spaces’ where the paths need not be reversible; the general aim is
including the representation of irreversible processes. A typical setting for
this study, the category dTop of directed spaces, or d-spaces, was introduced
and studied in [G1]–[G3]; it is often employed in the theory of concurrency,
cf. [FGHMR].

The present series is devoted to a further extension, where the paths can
also be non-decomposable in order to include critical processes, indivisible
and unstoppable – either reversible or not. For instance: quantum effects,
the onset of a nerve impulse, the combustion of fuel in a piston, the switch
of a thermostat, the change of state in a memory cell, the action of a siphon,
moving in a no-stop road, etc.

To this effect the category of d-spaces was extended in Part I [G4] to
the category cTop of controlled spaces, or c-spaces: an object is a topolog-
ical space equipped with a set X] of continuous mappings a : [0, 1] → X ,
called controlled paths, or c-paths, which are closed under concatenation and
global reparametrisation (by surjective increasing endomaps of the interval)
and include all the constant paths at the endpoints of c-paths.

A map of c-spaces, or c-map, is a continuos mapping which preserves the
selected paths. Their category cTop contains the category dTop of d-spaces
as a full subcategory, reflective and coreflective: a c-space is a d-space if
and only if it is flexible, which means that each point is flexible (its trivial
loop is controlled) and every controlled path is flexible (all its restrictions
are controlled).

Every c-space X has two associated d-spaces, the generated d-space X̂
and the flexible part FlX , by the reflector and coreflector of the embedding
dTop→ cTop (Section 1.2 of Part I).

0.2 The fundamental category

Part II [G5] defines and studies the fundamental category of controlled spaces,
as a functor

↑Π1 : cTop→ Cat, (1)
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M. GRANDIS THE TOPOLOGY OF CRITICAL PROCESSES, III

that extends the fundamental category of d-spaces [G1, G3] and the funda-
mental groupoid of topological spaces.

There are two natural transformations (see Section 5.2 of Part II)

↑Π1(FlX) −→ ↑Π1(X) −→ ↑Π1(X̂) (2)

induced by the embeddings FlX → X → X̂ (the counit of the coreflector
and the unit of the reflector of d-spaces).

These functors need not be faithful, as we shall see in 1.3, but Theorem
5.3(b) of Part II says that ↑Π1(X)→ ↑Π1(X̂) is a full embedding when the
c-space X is preflexible, that is all the c-paths of X̂ between flexible points
of X are already controlled in the latter.

The present Part III is an immediate continuation of Part II, devoted to
computing the fundamental category of c-spaces. The definitions and results
of Part II are taken for granted and only referred to.

Part IV will study the homotopy structure of c-spaces, their homotopy
equivalences and their links with cubical sets. In particular, we shall anal-
yse the formal theory of homotopy in cTop, following the classification of
directed settings in [G3].

0.3 Outline

In Section 1 we calculate the fundamental category of the c-spaces intro-
duced so far, and others, applying Theorems 5.3 (on preflexible c-spaces)
and 5.8 (on covering maps of c-spaces) of Part II, and developing peculiar
techniques adequate to the present framework. The relationship between the
fundamental category of c-spaces and d-spaces is discussed in 1.6, where we
show that the theorem of Seifert-van Kampen fails for c-spaces.

In the same line, Section 2 briefly considers how the analysis of ob-
structions, a typical problem in concurrency, can be dealt with replacing the
d-spaces used in [G3], Chapter 3 (and elsewhere) with rigid c-spaces. This
leads to a far simpler analysis, but a less rich one.

Finally, in Section 3, we prove that the fundamental category of a border
flexible c-space can be simply defined by general deformations of controlled
paths, instead of using their flexible deformations – as in the general case.

Acknowledgments. The author is indepted to the Referee for many helpful
suggestions.
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M. GRANDIS THE TOPOLOGY OF CRITICAL PROCESSES, III

0.4 Notation and conventions

A continuous mapping between topological spaces is called a map. R de-
notes the euclidean line as a topological space, and I the standard euclidean
interval [0, 1]. The identity path id I is written as i. The open and semiopen
intervals of the real line are denoted by square brackets, like ]0, 1[, [0, 1[ etc.

A preorder relation is assumed to be reflexive and transitive; an order is
also anti-symmetric. A mapping which preserves (resp. reverses) preorders
is said to be increasing (resp. decreasing), always used in the weak sense.

As usual, a preordered set X is identified with the small category whose
objects are the elements of X , with one arrow x → x′ when x precedes x′

and none otherwise.
The binary variable α takes values 0, 1, which are generally written as

−,+ in superscripts and subscripts. The symbol ⊂ denotes weak inclusion.

The previous papers [G4, G5] of this series are cited as Part I and Part II,
respectively; the reference I.2 or II.3.4, for instance, points to Section 2 of
Part I or Subsection 3.4 of Part II.

1. Calculating the fundamental category

This section studies how to compute the fundamental category of c-spaces.
Using Theorem II.5.3(b) on preflexible c-spaces, many of these results can
be deduced from the fundamental category of the generated d-spaces, al-
ready computed in [G3]; but a direct calculation can often be simple and
more significant.

The new aspects which appear here, with respect to the theory of d-
spaces, are highlighted in 1.6.

The symbols 2,3,N,Z,R denote ordered sets, and the associated categories;
the ordered sets 2, 3 and D|Z| are discrete. N is the one-object category associated
to the additive monoid of the natural numbers.

1.1 Elementary calculations

We begin by examining the basic c-spaces, showing that many of them are
1-simple, in the sense of II.5.1: their fundamental category is a preorder; of

6



M. GRANDIS THE TOPOLOGY OF CRITICAL PROCESSES, III

course, the controlled circles cS1 and cnS1 are not. (Some of these results
are already in II.5.9.)

(a) The fundamental categories of cI, cJ, cR are the following ordered sets:

↑Π1(cI) = 2, ↑Π1(cJ) = 3, ↑Π1(cR) = Z. (3)

As to cI, the identity i : cI → cI is 2-equivalent to any other c-path
ρ : 0 → 1, by Lemma II.4.6(c): in fact, ρ is a global reparametrisation, and
therefore ρ = iρ ∼ 2 i, so that there is precisely one arrow [i] from 0 to 1,
in the fundamental category. At each flexible point, 0 or 1, there is only one
loop cI→ cI, the trivial one.

As to cJ and cR, two c-paths a, b : x → y in any of them are always 2-
equivalent, since they are in the one-jump c-structure of [x, y], isomorphic to cI.

For these preflexible spaces the components of the natural transforma-
tions ↑Π1(FlX)→ ↑Π1(X)→ ↑Π1(X̂) of (2) become inclusions of ordered
sets:

2→ 2→ [0, 1], 3→ 3→ [0, 2], D|Z| → Z→ R. (4)

(b) The argument used above for ↑Π1(cI) also applies to the delayed intervals
c−I and c+I, in II.1.3(e)

↑Π1(c−I) = ↑Π1(c+I) = 2, (5)

whose c-structure is also generated by a single map I → I. These c-spaces
are not preflexible, but their fundamental category is still full in ↑Π1(↑I).

(c) The fundamental category of the directed circle ↑S1, as described in [G3],
3.2.7(d), is the subcategory of the groupoid Π1S1 formed of the classes of
anticlockwise paths (in R2). Each monoid ↑π1(↑S1, x) is isomorphic to the
additive monoid N of natural numbers.

Applying Theorem II.5.3(b), the fundamental category of the one-stop
circle cS1 amounts to the fundamental monoid at the unique flexible point x0
(the point 1 of the complex plane)

↑Π1(cS1)(x0, x0) = ↑π1(↑S1, x0) = N. (6)

Without using ↑Π1(↑S1) this is also proved by Theorem II.5.8(b) applied
to the exponential map cR→ cS1.

7
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Therefore two c-loops a, b in cS1 are 2-equivalent if and only if they have
the same length 2kπ (in radians), if and only if they both turn k times (k > 0)
around the circle, anticlockwise.

(d) More generally, the fundamental category of the preflexible n-stop circle
cnS1 (see II.1.4(d) is the full subcategory of the fundamental category of
(cnS1)̂ = ↑S1 = ↑R/Z on n flexible points, the vertices [i/n] (for i =
0, ..., n− 1) of an inscribed n-gon.
↑Π1(cnS1) is thus the category cn freely generated by n arrows disposed

as follows on the edges of an n-gon

• • • •

•

•
c1 c2 c3
JJ




JJ

ee

��
99 (7)

Again, this result can also be obtained using the covering map of c-spaces
pn : cnR→ cnS.

(e) For the preflexible c-space X on the euclidean interval [0, 3] described in
I.2.3(e) we have a mixed situation; essentially, the paths in [1, 2] behave as
in cI, while those in [0, 1] or [2, 3] behave as in ↑I.

1.2 Higher dimensional c-spaces

(a) Applying Theorem II.5.6 on cartesian products, we get the following
fundamental categories

↑Π1(cIn) = 2n, ↑Π1(cJn) = 3n,

↑Π1(cI×cJ) = 2×3,
↑Π1(cRn) = Zn, ↑Π1(cTn) = Nn,

(8)

which are (partially) ordered sets, except the last. The controlled n-torus
cTn was defined in I.2.6(d) as the cartesian power (cS1)n, or equivalently as
the orbit c-space (cRn)/Zn; its fundamental category amounts to the monoid
Nn at the only flexible point.

(b) The fundamental category of all the higher c-spheres cSn, for n > 2, is
trivial: the discrete category 1.

8
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In fact, there is one flexible point, ∗. Every c-path of cSn is a general
concatenation of a finite family of c-loops of the form pa, where a : cI→ cIn
is a c-path of the controlled n-cube, and it is sufficient to prove that each of
them is 2-equivalent to the trivial loop (at ∗).

If the path a lies in a face of the cube, pa is already the trivial loop.
Otherwise, it is a path (0, ..., 0) → (1, ..., 1), and it is 2-equivalent to the
concatenation b = b1 ∗ b2 of two c-paths living in some faces, and collapsed
to the trivial loop in the quotient c-space. For instance one can take b1(t) =
(t, 0, ..., 0) (on an edge) and b2(t) = (1, t, ..., t) (in the face t1 = 1).

1.3 Other calculations

The following computations of the fundamental category give a better under-
standing of the natural transformations ↑Π1(FlX) → ↑Π1(X) → ↑Π1(X̂)
of (2). Moreover, they are based on topological arguments which will also
be useful in other cases.

(a) The reversible c-interval cI∼ of II.1.3(d) has a c-structure generated by
the identity path i and the reversion r : I→ I; the flexible points are 0 and 1.

Each c-path x → y (between flexible points) has an integral length,
which is even if x = y and odd if x 6= y. We prove below, in Theorem
1.7, that this length is constant up to 2-equivalence, and determines the class
of a path in ↑Π1(cI∼)(x, y).

In other words, we shall prove that the obvious c-map p : c2S1 → cI∼

• •

• •

p(x, y) = (x+ 1)/2

oooo

// //
oooo // //

(9)

induces an isomorphism p∗ : ↑Π1(c2S1)→ ↑Π1(cI∼) defined on the category
c2 described in (7). Let us note that p is not a covering map: the flexible
points of the basis are not evenly covered; loosely speaking, the selection of
c-paths in the domain and codomain ‘mends’ this failure.

Thus the category ↑Π1(cI∼) is freely generated by two arrows, the classes
[i] : 0 → 1 and [r] : 1 → 0; at each vertex it has a fundamental monoid
isomorphic to the additive monoid N.

9
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The generated d-space (cSI)̂ = I∼ is the reversible d-interval of I.2.4(c),
whose fundamental category is the indiscrete groupoid on two objects (with
one arrow between any pair of objects).

In this case the functor ↑Π1(X) → ↑Π1(X̂) is not faithful; moreover i
and r are reversible c-paths ofX whose classes in ↑Π1(X) are not invertible.

(b) The fundamental category ↑Π1(cSI) of the growing-siphon interval (in
I.3.3(a)) is generated by the following arrows (where r is the reversion path
r(t) = 1− t)

(x, x′) : x→ x′, [r] : 1→ 0 (0 6 x < x′ 6 1), (10)

under the relation (x, x′)(x′, x′′) = (x, x′′), for 0 6 x < x′ < x′′ 6 1.
The identity path i is flexible and reversible in cSI, but is not flexibly

reversible: the reversed path r is not flexible, and the associated arrow [i] =
(0, 1) : 0→ 1 is not invertible. But it becomes invertible in the fundamental
category of (cSI)̂ = I∼: also here the functor ↑Π1(X) → ↑Π1(X̂) is not
faithful.

1.4 On-off controller

We now examine the c-space X built in I.3.1(a) to model an on-off con-
troller (e.g. a thermostat) that oversees a variable T (e.g. the temperature),
counteracting its rising

X0
X′′ X′

X1

T1 T2
0

1

����
OOOO

(11)

On the left branch X0 the system is in state 0: the cooling device is
off; if the temperature grows to T2 the device jumps to state 1; then, if the
temperature cools to T1, it goes back to state 0.

The support |X| of our model is a one-dimensional subspace of R2. The
c-structure of X is generated by the c-structures of:

- X0, X1, natural intervals where T can vary,

- X ′, X ′′, one-jump c-intervals, where T is constant and the state of the
system varies.

10
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The flexible part X0 + X1 of the c-space X is the sum of two natural
intervals; its fundamental groupoid Π1(FlX) is the sum of the indiscrete
groupoids on the same sets, categorically equivalent to the discrete groupoid
2 = {0, 1}.

The fundamental category ↑Π1(X) is equivalent to its skeleton, the full
subcategory on two points x0 ∈ X0 and x1 ∈ X1; the latter is isomorphic to
the category c2 (see (7)).

1.5 Transport networks and labelled graphs

Transport networks are usually modelled in graph theory, in an effective way
as far as they do not interact with continuous variation. They can also be
modelled by c-spaces, which allows us to combine them with planar or three-
dimensional regions, as we have discussed in I.3.4.

The fundamental category can be readily used to study such models.
Controlled spaces can thus unify aspects of continuous and discrete mathe-
matics, interacting with hybrid control systems and others sectors of Control
Theory [Br, He].

1.6 Comments

(a) The main method of calculation of the fundamental category for com-
plex spaces, the theorem of Seifert-van Kampen, holds true in dTop, in the
fundamental-category version of [G3], 3.2.6, but fails here.

For instance, we have seen that the category ↑Π1(cI) = 2 has one arrow
0 → 1. Now we can cover cI with the open subspaces U = [0, 1[ and
V = ]0, 1], which only inherit the trivial loops at 0 and 1, respectively. Their
fundamental category has only these trivial arrows, and the pushout over
↑Π1(U ∩ V ) (the empty category) gives the discrete category 2.

(b) Nevertheless, we have seen that the fundamental category ↑Π1(X) of a
rigid or ‘partially rigid’ c-space can be rather easy to compute without this
tool – or using it on ↑Π1(X̂) when the original c-space is preflexible.

(c) In many cases ↑Π1(X) is very small and easy to analyse, while ↑Π1(X̂)
gives a finer description, at the price of a complex analysis where the equiv-
alence of categories is totally ineffective. This will show even more clearly
in the next section.

11
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1.7 Theorem

The projection p : c2S1 → cI∼ defined in (9) induces an isomorphism of
categories p∗ : ↑Π1(c2S1)→ ↑Π1(cI∼).

Proof. (a) The functor p∗ is bijective on the objects, the flexible points. It is
also full, because p : c2S1 → cI∼ obviously satisfies the path-lifting property
II.5.7(i) within c-paths: every c-path b : y → y′ in cI∼ has a lifting a : x→ x′

in cI∼, determined by the starting point x ∈ Fy (unique in the present case).
The length of b is an integer, equal to the length of a measured in half-

circles.
To prove that p∗ is faithful we shall show that two c-paths b, b′ : y0 → y1

in cI∼ which are 2-equivalent have the same length, so that any pair of their
liftings in c2S1 starting at the same point are also 2-equivalent; in other words
one can lift along p the 2-equivalence relation – if not the actual 2-paths.

For the sake of simplicity we suppose that y0 = 0, the case y0 = 1 being
similar. We use the path spaces P (I) = II and P (I2) with the compact-open
topology, determined by the metric d(c, c′) = maxt d(c(t), c′(t)) (and the
euclidean metric on I and I2).

(b) Let Pn be the subspace of P (I) formed of the c-paths cI → cI∼ starting
at 0, of length n; let P be their (disjoint) union. We prove now that each Pn
is open in P . (This amounts to saying that the length function P → N is
continuous, which is not obvious as it fails on the whole path space II.)

It will be sufficient to show that any two c-paths b, b′ : 0 → y with
d(b, b′) < 1/2 have the same length. If b has length n, it determines a parti-
tion of the interval I in n subintervals

0 = t0 < t1 < ... < tn = 1,

b(t0) = 0, b(t1) = 1, ... b(tn) = (1− (−1)n)/2,
(12)

and is properly increasing on [0, t1], properly decreasing on [t1, t2], and so on
(by ‘properly’ we mean that it is not constant). There are n−1 ‘inversions of
monotony’ (each of them occurring on a maximal closed subinterval where
b is constant at 1 or 0, alternatively).

The other path b′, of length n′, has b′(t0) = 0 and b′(t1) > 1/2; because
of the form of c-paths in cI∼, it must be properly increasing on some (at least
one) subinterval of [0, t1]. It also has b′(t2) < 1/2, and must be properly

12



M. GRANDIS THE TOPOLOGY OF CRITICAL PROCESSES, III

decreasing on some subinterval of [t1, t2]; and so on. Finally, it has at least
as many inversions of monotony as b, and n′ > n. By symmetry, n = n′.

(c) Let K : cI× ↑I→ cI∼ be a hybrid 2-path between the c-paths b, b′ : 0→
y. Proving that they have the same length will achieve the argument.

The family of c-paths

ut : cI→ cI∼×↑I, ut(s) = (s, t) (t ∈ I), (13)

gives an isometry u : I→ P (I2)

d(ut, ut′) = maxs d((s, t), (s, t′)) = |t− t′|.

Composing u with the map K∗ : P (I2) → P (I) we get a continuous
mapping

Ku : I→ P (I), t 7→ Kt = K(−, t) : I→ I, (14)

whose values Kt are the intermediate c-paths of K (see II.4.4(a)). They
belong to P . Since Ku is defined on a connected space, all of them belong
to the same subset Pn, including b and b′.

2. Analysing obstructions

The analysis of obstructions inside a cubical directed space is a typical prob-
lem in concurrency, dealt with in [FGHMR] and many papers (see Part I). It
is also studied in [G3], Chapter 3, working with d-spaces. The correspond-
ing problem in rigid c-spaces seems to be far simpler, although it can give a
less fine analysis, as shown in 2.3.

2.1 An elementary case

We begin with the ‘square annulus’ X ⊂ cI2 represented below, namely the
compact subspace of the standard c-square which is the complement of the
open square ]1/3, 2/3[2 (marked with a cross); the latter should be viewed as
a single obstruction in an unstoppable process

X ↑Π1(X)
0

x

y

1

× ×

• •

••

//

//
OO OO

(15)

13



M. GRANDIS THE TOPOLOGY OF CRITICAL PROCESSES, III

Typically, in the analysis of concurrent processes, the obstruction repre-
sents a resource (e.g. a memory storage, an application, a printer) that two
(or more) concurrent automata cannot engage at the same time. A path below
or above the obstruction corresponds to priority of one of them. Modifying
the picture, one can represent in a similar way an island in a stream or a
one-dimensional obstacle in space-time, as in the Introduction to [G3].

The fundamental category ↑Π1(X) is represented in the right diagram-
above: it is generated by four arrows forming a non-commutative square,
and has two arrows 0→ 1 (not drawn in the figure).

Applying Theorem II.5.3(b) one can deduce this fact from the fundamen-
tal category of the generated d-space X̂ ⊂ ↑I2, determined in [G3], 3.1.1.
But a direct proof is rather simple.

In fact, every c-path a : 0→ 1 in X meets the vertical strip

S = ]1/3, 2/3[× I

in one connected component of S ∩X , either below or above the obstruction. Sup-
pose that a meets the lower component U = ]1/3, 2/3[×[0, 1/3[ (open in X). The
preimage a−1(U) is an open subinterval of ]0, 1[ (by continuity and monotony), and
we can suppose it is precisely ]1/3, 2/3[, up to invertible reparametrisation and 2-
equivalence. For a second path a′ of the same kind and similarly reparametrised,
we can suppose that a(t) 6 a′(t) for t ∈ I (replacing a with a ∧ a′).

Now the affine interpolation H from a to a′ is a hybrid 2-path in cI2 and takes
the interval ]1/3, 2/3[ to the rectangle U (by monotony), proving that a∼2 a

′ in X .
Similarly, two paths above the obstruction are 2-equivalent in X . Finally, a c-path
below the obstruction and another above are not even 2-equivalent in the underlying
topological space.

2.2 Two obstructions

We examine now two subspaces Y, Z ⊂ cI2 which arise from two obstruc-
tions, either appearing together (with respect to the generated path order, see
I.1.8(c)) or one after the other.

In both cases a direct computation is easy, if more complex than in the
previous case; alternatively, one can deduce our results from the fundamental
category of the generated d-spaces, described in [G3], 3.9.2 and 3.9.4(b).
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(a) Simultaneous obstructions. The first case can be modelled with the sub-
space Y of cI2 represented below

Y ↑Π1(Y )
0

x

y

1

c

×

×

×

×
• •

••

//

??
//

OO OO

(16)

The fundamental category ↑Π1(Y ) has again four vertices; from 0 to 1
there are three arrows: [a] (through x), [b] (through y) and [c].

(b) Consecutive obstructions. The second case is modelled by Z ⊂ cI2

Z ↑Π1(Z)
0

x

y

1

c

d

×

×

×
×

• •

••

//

//
OO OOLL22

(17)

In ↑Π1(Z) there are now four arrows from 0 to 1: [a] (through x), [b]
(through y) and [c], [d].

(c) Comments. The fundamental category distinguishes these situations,
which topology cannot separate: the underlying topological spaces |Y | and
|Z| are homeomorphic.

2.3 Obstructions in d-spaces

The d-spaces X̂, Ŷ , Ẑ generated by the previous c-spaces have the same
topological support and the structure induced by the ordered square ↑I2.

Their fundamental category, much more complex than in the previous
cases, was studied in [G3], 3.1.1, 3.9.2, 3.9.4(b).

In each case the fundamental category, whose objects are the infinite
points of the support, is skeletal and cannot be reduced up to equivalence
of categories. As analysed in [G3], Section 3.9, it is essentially represented
by a ‘minimal injective model’, future and past equivalent to the given cate-
gory. Here we get the finite, full subcategories represented below (on 4, 8, 6

15
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objects, respectively), determining the ‘branching points’ of the process

X Y Z

×
×

× ×

×

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

0

1

0

1

0

1

??
//

//
OO OO

??

??

OO

OO OO //
??

OO

OOOO
// ??

??

??

OO OO

OO OO

(18)

A cell marked with a cross is not commutative, while the central cell in
↑Π1(Ŷ ) commutes. In ↑Π1(X̂) there are two arrows 0→ 1, in ↑Π1(Ŷ ) there
are three of them, in ↑Π1(Ẑ) four.

3. Border flexible c-spaces and strict homotopies

We end by examining the relationship of border flexible c-spaces (defined in
II.2.1(c)) with strict homotopies (see II.4.3(e)), expressed in Theorem 3.1.

As a consequence, the fundamental category of a border flexible c-space
can be simply defined using c-paths up to homotopy with fixed endpoints
(see 3.2). Its invariance up to strict homotopies is stated in Theorem 3.3.

The importance of a simple construction, instead of the hybrid construc-
tion of Sections II.4 and II.5, is evident – although it does not apply to essen-
tial c-spaces like the delayed intervals and the higher c-spheres, which are
not border flexible (see II.2.2).

3.1 Theorem (Border flexible c-spaces and homotopies)

Let Y be a border flexible c-space. Every strict homotopy ϕ : X×cI→ Y is
flexible.

Proof. We are given a c-map ϕ : X × cI → Y which is constant on each
fibre {x}×cI at a flexible point of X , and we have to prove that ϕ is also a
c-map X×↑I→ Y .

We take a c-path b = 〈a, h〉 : cI→ X×↑I, where a : x0 → x1 is a c-path
of X (between flexible points) and h : t0 → t1 is increasing in ↑I; we have
to prove that ϕb is controlled in Y .

16
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We insert a path bα : cI → X×↑I in each fibre of the cylinder at the
endpoints xα (for α = 0, 1)

X×↑I
(x0,0)

(x1,1)

b0

b
b1

00 00
OO

OO

(19)

b0 = 〈ex0 , h0〉 : cI→ X×↑I, h0 : 0→ t0,

b1 = 〈ex1 , h1〉 : cI→ X×↑I, h1 : t1 → 1,

and we get a c-path b′ = 〈a′, h′〉 = b0 ∗ b ∗ b1 in X×↑I which is controlled
in X×cI, because h′ is an increasing path 0→ 1.

Now ϕb′ is controlled in the border flexible c-space Y and each path
ϕbα is constant (because ϕ is a strict homotopy). It follows that the middle
restriction ϕb is also controlled in Y .

3.2 The border flexible case

As a particular case of the previous theorem, if the c-space X is border
flexible, a general 2-path cI2 → X is always a hybrid 2-path cI×↑I → X
(because H is constant on the vertical edges of cI2).

Therefore the restricted functor

↑Π1 : cbfTop→ Cat, (20)

can be equivalently defined using general 2-paths, based on the standard
square cI2, instead of hybrid 2-paths based on cI×↑I.

The restricted functor is still invariant up to flexible homotopies. But
strict homotopies in cbfTop are always flexible, giving the following result.

3.3 Theorem (Homotopy invariance, III)

A strict homotopy ϕ : f → g : X → Y of border flexible c-spaces induces
the identity of the associated functors

f∗ = g∗ : ↑Π1(X)→ ↑Π1(Y ). (21)

17
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Proof. By Theorem 3.1, ϕ is a strict flexible homotopy. Applying Theorem
II.5.4(b), ϕ∗ is the identity of f∗ = g∗.
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TOPICS IN THE CATEGORICAL
ALGEBRA OF CLOSURE SPACES

George JANELIDZE and Manuela SOBRAL

October 25, 2024

Résumé. Par espace de fermeture nous entendons une paire (A,C), dans
laquelle A est un ensemble et C est un ensemble de sous-ensembles de A
fermé sous les intersections arbitraires. Le but de cet article consiste à con-
sidérer plusieurs questions qui se posent naturellement dans le cadre de l’
algèbre catégorique des espaces de fermeture. Cela inclut l’extensivité (à
gauche) de leur catégorie, la description des morphismes de codescente ef-
fective, et la description des morphismes de co-revłtement et co-monotones
par rapport à une certaine coréflexion des espaces de fermeture dans les en-
sembles. Cette coréflexion envoie chaque espace de fermeture sur son plus
petit sous-ensemble fermé.

Abstract. By a closure space we mean a pair (A,C), in which A is a
set and C a set of subsets of A closed under arbitrary intersections. The pur-
pose of this paper is to consider several questions that naturally arise in the
categorical algebra of closure spaces. This includes (left) extensivity of their
category, description of effective codescent morphisms, and description of
cocovering and comonotone morphisms with respect to a certain coreflection
of closure spaces into sets. That coreflection carries a closure space to its
smallest closed subset.

Keywords. closure space, left coextensive category, effective codescent
morphism, cocovering, comonotone morphism.
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1. Introduction

There is a number of types of mathematical structures introduced by various
authors as ‘generalized topological spaces’, and several of them were called
closure spaces, the paper [8] being one of many useful references; let us also
mention the book [7] and the paper [6] for two important links with category
theory, omitting many others. Here we briefly repeat from [10]:

• By a closure space we will mean a pair (A,C), in which A is a set and
C a set of subsets of A closed under arbitrary intersections; we will
write A = (A,C) = (A,CA) and

X = X
A

=
⋂

X⊆A′∈CA

A′

for a subset X in A. And we say that X is closed in A when X ∈ CA,
or, equivalently, X = X .

• A map f : A′ → A of closure spaces is said to be continuous if it
satisfies (any of) the following three equivalent conditions:

X ∈ CA ⇒ f−1(X) ∈ CA′ ,

X ⊆ A⇒ f−1(X) ⊆ f−1(X),

X ′ ⊆ A′ ⇒ f(X ′) ⊆ f(X ′).

The category of closure spaces and their continuous maps will be de-
noted by CLS.

• A continuous map f : A′ → A of closure spaces is said to be closed if
it satisfies (any of) the following three equivalent conditions:

X ′ ∈ CA′ ⇒ f(X ′) ∈ CA,

X ′ ⊆ A′ ⇒ f(X ′) ⊇ f(X ′),

X ′ ⊆ A′ ⇒ f(X ′) = f(X ′).
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• The underlying set functor U : CLS → Sets is topological in the
sense of categorical topology, and so CLS is small complete and small
cocomplete, and U preserves all existing limits and colimits. In par-
ticular, a diagram in CLS of the form

A

π1

��

π2 // A2

��
A1

// B

is a pullback diagram in CLS if and only if its U -image is a pullback
diagram in Sets and CA = {π−1

1 (X1) ∩ π−1
2 (X2) | X1 ∈ CA1 &X2 ∈

CA2}. We also haveX = π−1
1 (π1(X))∩π−1

2 (π2(X)) for everyX ⊆ A.

The purpose of this paper is to consider several questions that naturally
arise in categorical algebra of closure spaces. They could be asked more
generally, replacing CLS with an abstract topological category (as defined,
e.g., in the survey paper [2]; see also references therein), or even more gen-
erally – and doing that systematically could be an interesting future project.
Some of it would even be well known, as, for example, a part of Section 3, or
Theorem 4.1 (which can be seen as a special case of the dual of Proposition
9.7 of [13]). But here we only consider specifically the case of CLS.

How extensive (in the sense of [4]) is the category CLS? This question
is answered in Section 2.

Three adjunctions,

discrete a underlying set a codiscrete a smallest closed subset,

written as D a U a C a Z, between CLS and the category of sets are
considered in Section 3. Unlike in the case of topological spaces, it seems
that no reasonable ‘locally connected’ counterpart of D has a left adjoint
admitting a nice Galois theory/theory of covering spaces, by which we mean
having a nice special case of constructions of [3]. The adjunctions D a
U and U a C are also not interesting from this viewpoint since (D and
C are fully faithful while) U has both adjoints. It remains to consider the
adjunction C a Z, which is done in Sections 5 and 6.

In Section 4 we prove that a morphism in CLS is an effective codescent
morphism (=an effective descent morphism in CLSop) if and only if it is a
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subspace inclusion (up to an isomorphism). A possible reference to descent
theory convenient for our purposes is any of the surveys [12] and [11], al-
though only very preliminary material from there is needed. More precisely,
all we will need to have in mind is the dual form of the following well-known
fact: A morphism in a category with pullbacks and coequalizers is an effec-
tive descent morphism whenever it is a pullback stable regular epimorphism
with the corresponding pullback functor preserving coequalizers. Note that
here the pullback stability already makes the corresponding pullback functor
fully faithful, and, in particular, conservative.

In Section 5 we examine dual forms of some notions considered in [3]
in the case of C a Z. Specifically, we prove that the coreflection Z has
stable counits, and characterize cocoverings (which turn out to be the same
as trivial cocoverings) and comonotone morphisms. Then, in Section 6, we
make immediate conclusions concerning the resulting factorization systems:

• We have the one first constructed for a general reflection in [5], but not
the ‘(colight, comonotone)’-factorization system.

• On the other hand, there is the obvious (dense, closed subspace inclu-
sions)-factorization system, and as shown in Section 5, comonotone
morphisms are the same as closed subspace inclusions.

This paper is dedicated to Bill Lawvere, who was the first to see many
unusual adjunctions and their roles.

2. Coproducts and non-distributivity

Let (Aλ)λ∈Λ be a family of closure spaces. The coproduct
∑

λ∈ΛAλ is the
disjoint union of all Aλ (λ ∈ Λ), in which a subset X is closed if and only if
X ∩Aλ is closed in Aλ for each λ ∈ Λ; writing this we use disjoint union as
ordinary union, which we can do here and below without loss of generality.
Note that each Aλ is closed in

∑
λ∈ΛAλ if and only if the empty set is closed

in each Aλ.

Theorem 2.1. For every family (fλ : Aλ → Bλ)λ∈Λ of morphisms in CLS,
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and every µ ∈ Λ, the diagram

Aµ

fµ

��

//
∑

λ∈ΛAλ∑
λ∈Λ fλ

��
Bµ

//
∑

λ∈ΛBλ

whose horizontal arrows are coproduct injections, is a pullback diagram.

Proof. Our assertion is true at the level of sets, and all we need to prove is
that a subset of Aµ is closed if and only if it is of the form f−1

µ (Y ) ∩ Y ′ for
some closed subsets Y of Bµ and Y ′ of

∑
λ∈ΛAλ.

“If”: Just note that f−1
µ (Y ) ∩ Y ′ = f−1

µ (Y ) ∩ Aµ ∩ Y ′ and both f−1
µ (Y )

and Aµ ∩ Y ′ are closed in Aµ, whenever Y is closed in Bµ and Y ′ is closed
in
∑

λ∈ΛAλ.
“Only if”: For any subset X of Aµ, we have

X = Aµ ∩ (X ∪
∑

λ∈Λ\{µ}

Aλ) = f−1
µ (Bµ) ∩ (X ∪

∑
λ∈Λ\{µ}

Aλ),

and if X is closed in Aµ, then X ∪
∑

λ∈Λ\{µ}Aλ is closed in
∑

λ∈ΛAλ.

Theorem 2.2. The category CLS is infinitary left extensive, that is, for every
family (Aλ)λ∈Λ of closure spaces, the functor

Σ :
∏
λ∈Λ

(CLS ↓ Aλ)→ (CLS ↓
∑
λ∈Λ

Aλ)

is fully faithful.

Proof. This is trivial for empty Λ. For non-empty Λ, just note that taking
pullbacks of the form

Aµ ×∑
λ∈Λ Aλ

A

��

// A

��
Aµ //

∑
λ∈ΛAλ

determines the right adjoint of Σ, and Theorem 2.1 in fact says that the unit
of adjunction is an isomorphism.
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However, Theorem 2.2 can also easily be proved directly. Note also that
the term “infinitary left extensive” seems to be used here for the first time,
although the term “left (co)extensive” was used in [1].

Remark 2.3. Consider Proposition 2.6 and 2.8 in [4]. They say that, in an
extensive category, sums (=coproducts) are disjoint and the initial object is
strict, respectively. However, the poofs given in [4] show that the same is
true in any left extensive category. In particular, these properties hold in
CLS. However, in the case of CLS these properties are obvious anyway.

On the other hand, as the following simple example shows, the category
CLS is not distributive (cf. Proposition 2.2 in [6]), which implies that it is
not extensive (and not cartesian closed; and the same applies to the category
of finite closure spaces).

Example 2.4. Let A = {a, a′}, B = {b}, and C = {c} be discrete topo-
logical spaces considered as closure spaces (we assume a 6= a′ and b 6= c
of course). Then we can say that both A × (B + C) and (A × B) + (A ×
C) have the same underlying set {(a, b), (a′, b), (a, c), (a′, c)}, but the set
{(a, b), (a′, c)} is closed in (A×B) + (A× C) and not in A× (B + C).

3. The adjunctions with sets

There are adjunctions

CLS
U

⊥
,,

Z

⊥

??Sets

D

⊥
~~

C

ll

where, for a set S and a closure space A, we have:

3.1. D(S) is the discrete topological space (considered as a closure space)
with the underlying set S.

3.2. U is the underlying set functor.
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3.3. C(S) is what we will call codiscrete S: it hasUC(S) = S and CC(S) =
{S}.

3.4. Z(A) = ∅ is the smallest element of of CA. When there is no danger
of confusion, we will write CZ(A) = Z(A) = 0A.

Note that D has no left adjoint since it does not preserve, say, binary prod-
ucts, and Z has no right adjoint since it does not preserve, say, the coequal-
izer of

{a}
f //
g
// {b, c} ,

where Z({a}) = ∅, Z({b, c}) = {b, c}, f(a) = b, and g(a) = c.

4. Equalizers, pushouts, and codescent

The equalizer diagram of two parallel morphisms f, g : A→ B in CLS can
be described as the inclusion map

K = {a ∈ A | f(a) = g(a)} → A with CK = {X ∩K | X ∈ CA},

and easily obtain

Theorem 4.1. For B,E ∈ CLS with B ⊆ E, the following conditions on
the inclusion map (i : B → E) ∈ CLS are equivalent:

(a) i is a regular monomorphism;

(b) i is a strong monomorphism;

(c) i is a subspace inclusion, that is, a subset of B is closed in it if and
only if it can be presented as the intersection of a closed subset of E
with B, or equivalently, if and only if

X
B

= X
E ∩B

for every X ⊆ B.
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Consider a pushout diagram

B

α
��

i // E

ι2
��

A ι1
// A+B E

in CLS, in which i is as in Theorem 4.1. Assuming A ∩ E = ∅ we can
present it as

A+B E = A ∪ (E \B) as sets,

CA+BE = {A′ ∪ E ′ | A′ ∈ CA, E
′ ⊆ (E \B), α−1(A′) ∪ E ′ ∈ CE},

with ι1 being the inclusion map and ι2 defined by

ι2(e) =

{
α(e), if e ∈ B;
e, if e ∈ (E \B).

We will informally call this diagram the standard pushout of α and i.

Lemma 4.2. Regular monomorphisms in CLS are pushout stable.

Proof. Consider the standard pushout above. We have to show that the in-
clusion map ι1 : A → A +B E is a subspace inclusion. For an arbitrary
X ∈ CA, we have α−1(X) ∈ CB, and so

α−1(X) = B ∩ α−1(X)
E

by 4.1(c). We need to find A′ ∈ CA and E ′ ⊆ (E \ B) such that inside the
disjoint union A ∪ (E \B) we have

X = (A′ ∪ E ′) ∩ A and α−1(A′) ∪ E ′ ∈ CE,

and we claim that we can takeA′ = X andE ′ = α−1(X)
E
∩(E\B). Indeed,

the first equality will hold simply because A′ ⊆ A and E ′ ⊆ (E \B), while

α−1(A′) ∪ E ′ = α−1(X) ∪ (α−1(X)
E
∩ (E \B))

= (B ∩ α−1(X)
E

) ∪ (α−1(X)
E
∩ (E \B)) = α−1(X)

E
∈ CE.
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Theorem 4.3. A morphism in CLS is an effective codescent morphism if and
only if it is a regular monomorphism, or, equivalently, a strong monomor-
phism.

Proof. Thanks to (Theorem 4.1 and) Lemma 4.2, it suffices to prove that
if i : B → E satisfies the equivalent conditions of Theorem 4.1, then the
associated pushout functor

E +B (−) : (B ↓ CLS)→ (E ↓ CLS)

preserves equalizers. But this follows from the fact that the equalizers are
preserved at the level of sets, and that any such pushout functor preserves
regular monomorphisms, by Lemma 4.2.

Remark 4.4. The arguments used in the proof above can be copied for the
category of topological spaces and the category of topological spaces whose
sets of open sets are closed under arbitrary intersections (= Alexandrov-
discrete topological spaces, which are in fact nothing but preordered sets).
Therefore, in both of these categories, effective codescent morphisms are the
same as regular monomorphisms.

5. The coreflection Z : CLS→ Sets

We will use dual forms of several categorical notions from [5] and [3], such
as the one of coreflection with stable counits, dual to reflection with stable
units (introduced in [5]):

Theorem 5.1. The coreflection Z : CLS→ Sets has stable counits, that is,
it preserves colimits of all diagrams A ← B → A′ in which B = CZ(B),
or, equivalently, CB = {B}.

Proof. Since Z (obviously) preserves coproducts, it suffices to prove that it
preserves coequalizers of all pairs f, g : B → A in which B = CZ(B). The
coequalizer of such a pair can be presented as the canonical map p : A →
A/R, where R is the smallest equivalence relation on A containing the set
S = {(f(b), g(b)) | b ∈ B} and CA/R is the set of all subsets of A/R whose
inverse images under p belong to CA. We observe:

(i) Since B = CZ(B) = 0B, the images of f and g are subsets of 0A.
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(ii) As follows from (i), 0A = p−1(p(0A)).

(iii) As follows from (ii), p(0A) belongs to CA/R.

(iv) Since p is surjective and continuous, (ii) and (iii) imply p(0A) = 0A/R.

This makes
B //// 0A // 0A/R

a coequalizer diagram in the category of sets. But this diagram is the same
as

Z(B)
Z(f) //

Z(g)
// Z(A)

Z(p) // Z(A/R),

which completes the proof.

As follows from Theorem 5.1, a simplified version of Galois theory [9],
recalled in [3], applies to the reflection Zop : CLSop → Setsop. And the
resulting dualization makes a morphism α : B → A in CLS:

• a trivial cocovering, if the diagram

CZ(B)

CZ(α)

��

εB // B

α

��
CZ(A) εA

// A

in which ε is the counit of the adjunction C a Z, is a pushout;

• a cocovering, or a colight morphism, if there exists a subspace inclu-
sion i : B → E such that the morphism ι2 : E → A +B E is a trivial
cocovering.

• covertical (according to fibration-theoretic terminology), if Z(α) is an
isomorphism.

• comonotone, if it is a pushout stable covertical morphism.
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We are going now to characterize these types of morphisms, except coverti-
cal ones, whose definition already characterizes them.

For a closure space A, we will write int(A) for the set A \ 0A equipped
with its induced structure, and call it the interior of A, since it is the largest
subset of A whose complement is closed. Note that a morphism α : B → A
in CLS in general induces only a partial map int(α) : int(B) → int(A); it
is a morphism in CLS if and only if it is a map, that is, if and only if

α−1(0A) = 0B.

Lemma 5.2. For any closure space A and a subset A′ of int(A), we have

A′ ∈ Cint(A) ⇔ 0A ∪ A′ ∈ CA.

Proof. “⇒”: A′ ∈ Cint(A) means that A′ = (A\0A)∩A′′ for some A′′ ∈ CA.
Then, since both 0A and A′ are subsets of A′′, we have 0A∪A′ ⊆ A′′. On the
other hand, each a ∈ A′′ must satisfy one on the following two conditions:

(i) a ∈ 0A;

(ii) a ∈ A \ 0A, but then a belongs to (A \ 0A) ∩ A′′ = A′.

That is, 0A ∪ A′ = A′′ ∈ CA.
The implication “⇐” follows from the equality A′ = (0A ∪ A′) ∩ (A \

0A).

Corollary 5.3. For any closure space A, the assignments

X 7→ 0A ∪X and Y 7→ Y ∩ (A \ 0A)

determine bijections Cint(A) → CA and CA → Cint(A) inverse to each other.

Theorem 5.4. The following conditions on a morphism α : B → A in CLS
are equivalent:

(a) α is a trivial cocovering;

(b) int(α) is an isomorphism (in CLS);

(c) α induces bijections

B \ 0B → A \ 0A and CA → CB (where A′ 7→ α−1(A′)).
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Proof. The morphism εB : CZ(B)→ B is obviously a subspace inclusion.
Therefore, and according to the standard pushout construction in Section
4, assuming for simplicity that A and B are disjoint, we can reformulate
condition (a) as:

(a′) The map α̃ : 0A ∪ (B \ 0B)→ A defined by

α̃(x) =

{
x, if x ∈ 0A;
α(x), if x ∈ (B \ 0B).

is bijective, and a subset A′ of A belongs to CA if and only if it is of
the form

A′ = α̃(0A ∪B′) = 0A ∪ α(B′)

with B′ ⊆ B \ 0B and 0B ∪B′ ∈ CB, or, equivalently, B′ ∈ Cint(B).

It is easy to see that the map α̃ defined in (a′) is a bijection if and only if

int(α) : int(B)→ int(A)

is a morphism in CLS that is a bijective map. This allows us to argue as
follows.

(a′)⇒(b): Suppose (a′) holds. To prove (b) is to prove that if B′ belongs
to Cint(B), then int(α)(B′) belongs to Cint(A). We have

int(α)(B′) = α(B′) = (0A ∪ α(B′)) ∩ (A \ 0A),

which belongs to Cint(A) since, by (a′), 0A ∪ α(B′) belongs to CA.
(b)⇒(a′): Applying Corollary 5.3 and then (b), we obtain

A′ ∈ CA ⇔ ∃X∈Cint(A)
A′ = 0A ∪X ⇔ ∃B′∈Cint(B)

A′ = 0A ∪ α(B′),

which gives (a′).
(b)⇔(c) easily follows from Corollary 5.3.

Remark 5.5. As also easily follows from Corollary 5.3, the inverse of the
bijection CA → CB in 5.4(c) is given by B′ 7→ 0A ∪ α(B′).

Theorem 5.6. Every cocovering is a trivial cocovering.
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Proof. Suppose α : B → A is a cocovering, and let i : B → E be a subspace
inclusion such that ι2 : E → A+BE is a trivial cocovering. Then ι2 induces
a bijection E \0E → A+B E \0A+BE. Using our standard pushout of α and
i, we see that since the map ι2 : E → A ∪ (E \ B) maps B to A via α and
maps E \B identically to itself, it induces maps

B \ 0E → A \ 0A+BE and (E \B) \ 0E → (E \B) \ 0A+BE,

which then both must be bijections. Since

A \ 0A+BE = A \ A ∩ (0A+BE) = A \ 0A,

the first of these bijections is in fact the bijection B \ 0B → A \ 0A induced
by α.

Now, thanks to Theorem 5.4(c)⇒(a), it only remains to prove that the
canonical map CA → CB is a bijection. For, using the same i : B → E,
consider the commutative diagram

CA+BE

��

// CA

��

⊆ // {X ⊆ A | 0A ⊆ X}
X 7→α−1(X)
��

CE // CB ⊆
// {Y ⊆ B | 0B ⊆ Y }

of canonical maps. The left-hand square shows that CA → CB is surjective,
while the right-hand square shows that it is injective.

Theorem 5.7. The following conditions on a morphism α : B → A in CLS
are equivalent:

(a) α is comonotone;

(b) α is injective and closed.

Proof. (a)⇒(b): Choose any B0 ∈ CB and consider the pushout

B

α
��

b 7→b // B′

ι2
��

A ι1
// A′
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in which B′ = B as sets and C′B = {Y ∈ CB | B0 ⊆ Y }. This allows us to
put:

A′ = A as sets, ι1(a) = a, ι2(b) = α(b),

for all a ∈ A and b ∈ B, and

C′A = {X ∈ CA | B0 ⊆ α−1(X)}.

According to this presentation of our pushout, 0A′ is the smallest closed
subset of A containing α(0B′) = α(B0). That is,

0A′ = α(B0)
A
.

Since, by (a), ι2 is covertical, we conclude that the restriction of α on B0

must be injective and α(B0) is closed in A; in particular, taking B0 = B
gives injectivity of α.

(b)⇒(a): Let us change our notation. We can assume, without loss of
generality, that α is a closed subspace inclusion and we will rename it as
i : B → E. On the other hand, by α : B → A we will denote now
an arbitrary morphism in CLS (with the same B). We have to show that
ι1 : A → A +B E is covertical, and, in terms of the standard pushout of α
and i, this simply means that 0A is the smallest closed subset in A +B E.
For, we recall that a subset of A+BE is closed if and only if it is of the form
A′ ∪ E ′ with A′ ∈ CA, E ′ ⊆ (E \ B), and α−1(A′) ∪ E ′ ∈ CE . Since every
closed subset of B is closed in E, the smallest closed subset of A +B E is
0A ∪ ∅ = 0A.

6. Two factorization systems on CLS

As follows from the results of [5], recalled in [3], and Theorem 5.1, the cate-
gory CLS admits the (trivial cocoverings, covertical morphisms)-factorization
system (E,M), for which:

• E is the class of all trivial cocoverings, defined as in Section 5;

• M is the class of all covertical morphisms, defined as in Section 5;
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• the (E,M)-factorization of a morphism α : B → A in CLS is con-
structed as α = βι1 in the diagram

A

B +CZ(B) CZ(A)

β

ii

CZ(A)ι2
oo

εA

ll

B

α

cc

ι1

OO

CZ(B)εB
oo

CZ(α)

OO

in which the square part is a pushout and β is induced by α and εA.

Note that the diagram above is shaped as diagram (4.2) in [5] and diagram
(3.5) in [3], except that the directions of all arrows are opposite since we
consider the dual situation.

Now, trying to follow [3], could we (co)localize E and (co)stabilize M to
obtain ‘(colight, comonotone)’-factorization system? Obviously not, since
every cocovering is trivial (Theorem 5.6) while not every covertical mor-
phism is comonotone (as immediately follows from Theorem 5.7). Never-
theless, we do have a factorization system (E′,M′) on CLS, in which M′

is the class of all comonotone morphisms: we just need to take E′ to be the
class of (obviously defined) dense morphisms. This can also be seen as a
consequence of Theorem 2.4 in [7].
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THE WEAK SUBOJBECT
CLASSIFIER AXIOM

AND MODULES IN SUP

Ulrich Höhle

Résumé. L’axiome du classificateur faible de sous-objet est introduit de telle
manière qu’un schéma de compréhension soit disponible. Cependant, le fonc-
teur d’image inverse, lorsqu’il est restreint aux sous-objets classifiables, n’a
pas toujours un adjoint à droite. Pour les quantales unitaires arbitraires, la
catégorie des modules à droite (ou à gauche) dans Sup satisfait l’axiome du
classificateur faible de sous-objet. Les morphismes caractéristiques sont con-
struits en utilisant les catégories enrichies dans les quantales associées aux
modules dans Sup. Si le quantale sous-jacent est commutatif, alors les objets
puissance faibles existent également.
Abstract. The weak subobject classifier axiom is introduced in such a way
that a comprehension scheme is available. However, the inverse image func-
tor restricted to classifiable subobjects need not have a right adjoint. For
arbitrary unital quantales, the category of right (left) modules in Sup satisfies
the weak subobject classifier axiom. The characteristic morphisms are con-
structed using the quantale-enriched categories corresponding with modules
in Sup. If the underlying quantale is commutative, then also weak power ob-
jects exist.
Keywords. Weak Subobject Classifier, Inverse Image Functor, Quantale,
Module in Sup, Enriched Category, Weak Power Object.
Mathematics Subject Classification (2020). 06F07, 18D20, 18B25.
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1. Introduction

The subobject classifier axiom is one of the prominent axioms of topos the-
ory. In this paper we weaken this axiom and give up the principle that
every subobject of a pre-described class of subobjects is classifiable by a
unique characteristic morphism (cf. [12, Section 14]). This approach leads
to the weak subobject classifier axiom. Since the weak subobject classifier
is unique up to an isomorphism, the existence of a weak subobject classifier
is always an invariant of a finitely complete category.

Moreover, in any complete epi-mono-category the weak subobject clas-
sifier axiom gives rise to a comprehension scheme in the sense of Lawvere
(cf. [8]). If additionally a symmetric and monoidal closed structure is im-
posed, then weak power objects are available. In particular, the weak power
object of the unit object is isomorphic to the underlying weak subobject clas-
sifier. Since in general neither diagonal arrows nor projections of the tensor
product exist, we only focus on the construction of the universal quantifier. If
the underlying category is an epi-mono-category and the unique arrow from
the unit object to the terminal object is an epimorphism, then the existence
of the universal quantifier based on objects follows from the weak subob-
ject classifier axiom. On the other hand the weak subobject classifier axiom
does not imply that the restriction of the inverse image functor to classifiable
subobjects has in general a right adjoint (cf. Example 4.9). In this sense an
analogue of the doctrinal diagram of Kock and Wraith is not available (cf.
[6]).

Significant examples of categories satisfying the weak subobject classi-
fier axiom, but not being a topos (resp. quasitopos), appear in the study of
modules in the category Sup of complete lattices and join preserving maps.
Let Q be a unital quantale, then the category of right (left) Q-modules satis-
fies the weak subobject classifier axiom. We emphasize that the construction
of characteristic morphisms is based here on the underlying Q-enriched cat-
egories associated with right Q-modules. Moreover, if Q is commutative,
then there exists a well known symmetric, monoidal closed structure on the
category of Q-modules (cf. [4]). In this context weak power objects exist,
and there is again a close relationship between universal quantifiers based
on Q-modules and the respectively associated, Q-enriched categories (cf.
Proposition 5.1).
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Finally, as first steps toward categorical logic for Q-modules, we include
the conjunction, the implication, the element relation and the universal quan-
tifier based on Q-modules as truth arrows.

In order to fix some basic facts we begin with preliminaries on quantales
and a survey on modules in Sup.

2. Preliminaries

First we point out that Sup is a symmetric, monoidal, closed category. If
X , Y and Z are complete lattices, then a map X × Y

b−→ Z is called a
bimorphim if b is join-preserving in each variable separately. Due to the
universal property of the tensor product ⊗ in Sup every bimorphism

X × Y
b−→ Z

can be identified with a unique join-preserving map X ⊗ Y
φb−−→ Z making

the following diagram commutative:

X × Y X ⊗ Y

Z
��

b

//
⊗

zz

φb
(2.1)

whereX×Y ⊗−→ X⊗Y is the universal bimorphism fromX×Y toX⊗Y .
We also call φb the unique join-preserving extension of b.

Further, due to the monoidal closedness of Sup for every object Z of
Sup the endofunctor ⊗ Z has a right adjoint functor [Z, ], where [Z, Y ]
is the complete lattice of all join-preserving maps Z → Y ordered point-
wise. Then for each join-preserving map X ⊗ Z

φ−→ Y there exists a unique
join-preserving map X

⌜φ⌝−−→ [Z, Y ] such that the following diagram is com-
mutative:

X ⊗ Z [Z, Y ]⊗ Z

Y
''

φ

//
⌜φ⌝⊗1Z

��

evY (2.2)
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where evY is the evaluation arrow — i.e. the Y -component of the counit
of the adjoint situation Z ⊗ ⊣ [Z, ]. In this context ⌜φ⌝ is called the
monoidal adjoint arrow of φ.

Since Sup has a self-duality determined by the construction of right ad-
joint maps, we introduce the following notation. The dual lattice of a com-
plete lattice X is denoted by X† and the corresponding dual order by ≤†.
Then the tensor product X ⊗ Y has the form [X, Y †]† up to an isomorphism
(cf. [4]).

A quantale is a semigroup Q in Sup — i.e. a complete lattice Q provided
with an associative, binary operation Q ⊗ Q

m−→ Q in the sense of Sup
(cf. [9, (1) on p. 170]). Then the bimorphism Q × Q

∗−→ Q determined
by m (cf. (2.1)) is a semigroup operation in Set, which is join-preserving
in each variable separately. This bimorphism ∗ is also called the quantale
multiplication of Q. The right implication ↘ and left implication ↙ of ∗ are
determined by:

α ↘ β =
∨
{ γ ∈ Q | α ∗ γ ≤ β } and β ↙ α =

∨
{ γ ∈ Q | γ ∗ α ≤ β }.

Since both types of implications are bimorphisms, they have always unique

extensions to join-preserving maps Q⊗Q†
φ↘−−→ Q† and Q† ⊗Q

φ↙−−→ Q†,
respectively. Finally, the zero element in Q coincides with the universal
lower bound ⊥ of Q.

An element α ∈ Q is left-sided (resp. right-sided) if ⊤ ∗ α ≤ α (resp.
α ∗⊤ ≤ α), where ⊤ is the universal upper bound in Q. An element of Q is
two-sided if it is left- and right-sided.

A unital quantale is a monoid in Sup (cf. [9, (1), (2) on p. 170]). The
unit 1 e−→ Q will always be identified with the corresponding element e ∈ Q.
Typical examples of a unital quantale arise from complete lattices X and are
given by the complete lattice [X,X] of all join-preserving self-maps of X
provided with the composition as quantale multiplication.

3. Survey on modules in Sup

In this section we begin with a review of some basic properties of modules
in Sup. Therefore let Q = (Q, ∗, e) be a unital quantale with unit e.

A complete lattice X provided with a left action Q ⊗ X
ℓX−−→ X of Q

on X (cf. [9, p. 174]) is called a left Q-module in Sup (cf. [4]). Hence ℓX
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can be identified with its bimorphism Q×X
⊙−→ X (cf. (2.1)) satisfying the

following additional axioms:

(L1) β ⊙ (α⊙ x) = (β ∗ α)⊙ x, α, β ∈ Q, x ∈ X ,

(L2) e⊙ x = x, x ∈ X .

Let X = (X, ℓX) and Y = (Y, ℓY ) be left Q-modules. A join-preserving
map X h−→ Y is a left Q-module morphism if h also preserves the respective
left actions — i.e. the commutativity of the following diagram holds:

Q⊗X Q⊗ Y

X Y

//
1Q⊗h

��

ℓX

��

ℓY

//
h

The complete lattice [X, Y ] of left Q-module morphisms X → Y is ordered
pointwise in the sense of Y . Hence joins in [X, Y ] are computed pointwise,
but not meets.

Obviously left Q-modules and left Q-module morphisms form a cate-
gory denoted by Modℓ(Q). Referring to [2] Modℓ(Q) is complete and co-
complete. Further, it is well known that the forgetful functor U : Modℓ(Q) →
Sup has a left adjoint functor F : Sup → Modℓ(Q) acting on objects and
morphisms as follows (cf. [9, p. 174]):

F(X) = Q⊗X and X
h−→ Y, Q⊗X

F(h)=1Q⊗h−−−−−−−→ Q⊗ Y.

If M is the monad induced by the adjoint situation F ⊣ U , then Modℓ(Q) is
isomorphic to the category of M-algebras. In particular, all finite limits in
Modℓ(Q) can be computed at the level of Sup.

Moreover, right actions X ⊗Q
rX−−→ X in Sup are defined similarly and

can again be identified with bimorphisms X ×Q
⊡−→ X satisfying now the

properties:

(R1) (x⊡ α)⊡ β = x⊡ (α ∗ β), α, β ∈ Q, x ∈ X ,

(R2) x⊡ e = x, x ∈ X .
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The respective results corresponding to the previous ones of left Q-modules
holds also for right Q-modules. In particular, all finite limits in the category
Modr(Q) of right Q-modules are again computed at the level of Sup.

As a next step we present a fundamental relationship between left and
right Q-modules in Sup (cf. [2, Fact 1 on p. 207]).

Theorem 3.1 The self-duality of Sup determined by the construction of right
adjoint maps can be lifted to a contravariant isomorphism between the cat-
egories Modℓ(Q) and Modr(Q).

Proof. Let (X, ℓX) be a left Q-module and X† ℓ⊢X−−→ (Q⊗X)† = [Q, X†] be
the right adjoint map of its left action ℓX . Then we introduce a right action
X† ⊗Q

r
X†−−→ X† of Q on X† by:

X† ⊗Q [Q, X†]⊗Q

X†
''

r
X†

//
ℓ⊢X⊗1Q

��

ev
X†

The bimorphism X† × Q
⊡†
−−→ X† determined by rX† in the sense of (2.1)

has the form (cf. [1, Def. 5.1.2]):

x ⊡† α =
∨
{ z ∈ X | α⊙ z ≤ x }, α ∈ Q, x ∈ X. (3.1)

It is easily seen that ⊙ satisfies (L1) and (L2) if and only if ⊡† satisfies
(R1) and (R2). Further, the formation of right adjoint maps determines a
contravariant functor Γ: Modℓ(Q) → Modr(Q).
On the other hand, every right action rX on X induces a left action ℓX† on
the dual lattice X† of X as follows. First we compute the monoidal adjoint

X
⌜rX⌝−−−→ [Q, X]

of rx (cf. (2.2)). Then the left action ℓX† on X† is given by the right adjoint

map Q⊗X† ℓ
X†=(⌜rX⌝)⊢

−−−−−−−−→ X†. The bimorphism Q×X† ⊙†
−−→ X† determined

by ℓX† has the form

α ⊙† x =
∨
{ z ∈ X | z ⊡ α ≤ x }, α ∈ Q, x ∈ X, (3.2)
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where ⊡ is the bimorphism corresponding to rX . Because Γ(X†, ℓX†) =
(X, rX), Γ is a contravariant isomorphism. □

We illustrate the previous theorem by a simple example.

Example 3.2 Let Q = (Q,m, e) be a monoid in Sup (which can also be
viewed as a unital quantale). It follows from the associativity and unit axiom
of monoids that m can be read as left action of Q on Q or as right action of
Q on Q. Obviously, Q is the free left (resp. right) Q-module on a singleton.
Hence every monomorphism in Modℓ(Q) (resp. Modr(Q)) is an injective
map.
(a) If we consider m as a left action on Q, then the bimorphism correspond-
ing to the right action rQ† on Q† induced by m in the sense of Theorem 3.1
has the form (cf. (3.1)):

γ ⊡† α =
∨
{ β ∈ Q | α ∗ β ≤ γ } = α ↘ γ, α, γ ∈ Q. (3.3)

Hence the right action rQ† is uniquely determined by the right implication
of the quantale multiplication ∗. In particular, if Q† ⊗ Q

c
Q†Q−−−→ Q ⊗ Q†

is the relevant component of the symmetry in Sup, then rQ† = φ↘ ◦ cQ†Q.
Moreover, if γ ∈ Q is right-sided, then α ↘ γ is also right-sided for all
α ∈ Q. Hence, if R(Q) is the subquantale of all right-sided elements of Q,
then R(Q)† is a right Q-submodule of (Q†, rQ†). By abuse of notation we
denote the right action in R(Q)† again by rQ† .
(b) If we consider m as a right action on Q, then the left action ℓQ† on Q†

induced by m in the sense of Theorem 3.1 (cf. (3.2)) is uniquely determined
by the left implication — i.e.

α⊙† γ =
∨
{ β ∈ Q | β ∗ α ≤ γ } = γ ↙ α, α, γ ∈ Q. (3.4)

In particular, ℓQ† = φ↙ ◦ cQQ† . Moreover, if L(Q) is the subquantale of
all left-sided elements of Q, then by analogy with (a) the complete lattice
L(Q)† is a left Q-submodule of (Q†, ℓQ†). By abuse of notation we denote
the left action in L(Q)† again by ℓQ† .

It follows immediately from Theorem 3.1 and Example 3.2 that every epi-
morphism in Modℓ(Q) (resp. Modr(Q)) is surjective. Moreover, every epi-
morphism is the coequalizer of its kernel pair and every monomorphism is
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the equalizer of its cokernel pair. In particular, Modℓ(Q) (resp. Modr(Q)) is
an epi-mono-category.

With regard to Section 4 we recall that the terminal and initial objects co-
incide and form consequently the null object in Modℓ(Q) (resp. Modr(Q)).
Hence Modℓ(Q) (resp. Modr(Q)) is a pointed category and every left (resp.
right) Q-module X has a unique global point 0 → X and is represented by
the universal lower bound of X .

The next proposition is a non-commutative version of [2, Lem. 3.1.27].

Proposition 3.3 Let (X, rX) be a right Q-module, (Y, ℓY ) be a left Q-mod-
ule and (Y †, rY †) be the right Q-module induced by (Y, ℓY ) in the sense of
Theorem 3.1. Further, let ⊡ and ⊙ be the bimorphisms determined by rX
and ℓY respectively. Then a join-reversing map X

f−→ Y is a right Q-mod-
ule morphism (X, rX)

f−→ (Y †, rY †) if and only if the following equivalence
holds for all α ∈ Q, x ∈ X and y ∈ Y :

y ≤ f(x⊡ α) ⇐⇒ α⊙ y ≤ f(x).

Proof. Let (X, rX)
f−→ (Y †, rY †) be a right Q-module morphism. Then the

definition of ⊡† (cf. (3.1)) implies that the following chain of equivalences
holds:

y ≤ f(x⊡ α) ⇐⇒ y ≤ f(x) ⊡† α ⇐⇒ α⊙ y ≤ f(x).

Conversely, if we assume that y ≤ f(x⊡ α) if and only if α⊙ y ≤ f(x) for
all α ∈ Q, x ∈ X, y ∈ Y , then we obtain:

f(x⊡ α) ≤ f(x⊡ α) ⇐⇒ α⊙ f(x⊡ α) ≤ f(x)
⇐⇒ f(x⊡ α) ≤ f(x) ⊡† α.

Further, the definition of ⊡† implies that α⊙(f(x) ⊡† α) ≤ f(x). Referring
again to the previous equivalence we obtain f(x) ⊡† α ≤ f(x⊡ α). Hence
X

f−→ Y † is a right Q-module morphism and the assertion follows. □

If, in the previous proposition, we interchange right Q-modules and left
Q-modules, then we can give a respective characterization of left Q-mod-
ule morphisms.
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Proposition 3.4 Let (X, ℓX) be a left Q-module, (Y, rY ) be a right Q-mod-
ule and (Y †, ℓY †) be the left Q-module induced by (Y, rY ) in the sense of
Theorem 3.1. Further, let ⊙ and ⊡ be the bimorphisms determined by ℓX
and rY respectively. Then a join-reversing map X

f−→ Y is a left Q-mod-
ule morphism (X, ℓX)

f−→ (Y †, ℓY †) if and only if the following equivalence
holds for all α ∈ Q, x ∈ X and y ∈ Y :

y ≤ f(α⊙ x) ⇐⇒ y ⊡ α ≤ f(x).

As a second step we point out that the self-duality in Sup also permits to
associate a Q-enriched category with every right Q-module.

For the convenience of the reader we review the details of this construc-
tion. By analogy with the situation in Modℓ(Q) we first compute the right
adjoint map

X† r⊢X−−→ (X ⊗Q)† = [X,Q†]

of the right action X ⊗ Q
rX−−→ X , and in a second step we construct a

join-preserving map X† ⊗X
φ−→ Q† by applying the evaluation arrow:

X† ⊗X [X,Q†]⊗X

Q†
''

φ

//
r⊢X⊗1X

��

ev
Q†

The bimorphism X† × X
homX−−−→ Q† determined by φ (cf. (2.1)) has the

form:

homX(x, y) =
∨
{α ∈ Q | y ⊡ α ≤ x }, x, y ∈ X. (3.5)

If we now consider homX as Q-valued map defined on the cartesian product
X × X in Set and fix the given order on X , then we can reformulate the
lattice-theoretic properties of homX as follows:

The map homX is meet-preserving in the first variable and
join-reversing in the second variable. (3.6)
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Further, we conclude from (R1) and (R2) that homX is a Q-valued hom-
object assignment — i.e. the Q-enriched composition law and the existence
of Q-enriched identities

homX(x, y)∗homX(z, x) ≤ homX(z, y) and e ≤ homX(x, x), x, y ∈ X,

hold in the framework given by the monoidal biclosed category determined
by Q (cf. [5]).

As a consequence of this construction we now show that homX gives rise
to specific module morphisms in Sup, which will play a significant role in
Section 4.

For this purpose, let us consider the given right action rX on X and the
right action rQ† on Q† induced by the left action on Q (cf. Example 3.2 (a)).
If we fix the first variable in homX , then it follows immediately from Propo-
sition 3.3, (3.5) and (R1) that

(X, rX)
homX(x, )−−−−−−−→ (Q†, rQ†)

is a right Q-module morphism for all x ∈ X .
On the other hand, if we fix the second variable in homX , then we con-

sider the respective left actions ℓX† and ℓQ† on X† and Q† induced by the
respective right actions on X and on Q (cf. Example 3.2 (b)) in the sense of
Theorem 3.1. Now we refer to (3.2) and obtain:

β ≤ homX(γ ⊙† x, y) ⇐⇒ y ⊡ β ≤ γ ⊙† x

⇐⇒ (y ⊡ β)⊡ γ ≤ x

⇐⇒ β ∗ γ ≤ homX(x, y).

Hence Proposition 3.4 implies that (X†, ℓX†)
homX( ,y)−−−−−−−→ (Q†, ℓQ†) is a left

Q-module morphism for all y ∈ X .
We can summarize the previous observations in the following formulae:

homX(α⊙† x, y) = homX(x, y) ↙ α and
homX(x, y ⊡ α) = α ↘ homX(x, y).

(3.7)

Finally, it can be shown that the Q-enriched category (X, homX) is skele-
tal and cocomplete. In this context we recall that Modr(Q) is isomorphic to
the category of cocomplete and skeletal Q-enriched categories — a result,
which has been established by I. Stubbe in 2006 in the more general context
of quantaloid-enriched categories (cf. [11] and [2, Sect. 3.3.3]).
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4. The weak subobject classifier axiom

In this section we present a weakening of the subobject classifier axiom and
explore its first categorical consequences. As a motivating example we re-
veal the special role of categories of modules in Sup.

Definition 4.1 Let C be a finitely complete category with terminal object T .

Further, let Ω be an object of C and T t
Ω be a global point of Ω.

(a) A monomorphism U
ψ

X is called (t,Ω)-classifiable if there exists a
morphism X

φ−→ Ω such that

U T

X Ω

��

��

ψ

//
!U

��

��

t

//
φ

(4.1)

is a pullback square. In particular, φ is said to be a classifying morphism of

the monomorphism U
ψ
X .

(b) The pair (t,Ω) is called a weak subobject classifier if the following con-
ditions are satisfied:

(WS1) If X is an object of C, then every global point T X of X is
(t,Ω)-classifiable.

(WS2) If a monomorphism U
ψ
X is (t,Ω)-classifiable, then it is uniquely

(t,Ω)-classifiable — i.e. φ in the pullback (4.1) is uniquely deter-
mined by ψ.

Obviously every (t,Ω)-classifiable monomorphism is an equalizer (cf.
[12, Prop. 14.3]).

Further, it follows immediately from the previous definition that every
weak subobject classifier is unique up to an isomorphism. Hence the ex-
istence of a weak subobject classifier is an invariant of a finitely complete
category. In this context we introduce the following terminology:
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The morphism t is called the arrow true. Further, a morphism φ with
codomain Ω is a called a characteristic morphism. If φ is uniquely deter-

mined by a monomorphism U
ψ

X in the sense of the pullback in (4.1),
then we write χψ instead of φ.

In particular we have the following:

Theorem 4.2 Let Q = (Q, ∗, e) be a unital quantale with unit e. Then
the right Q-module (R(Q)†, rQ†) (cf. Example 3.2 (a)) is the weak subobject
classifier in Modr(Q), and the arrow true is represented by the universal
lower bound of R(Q)†.

Proof. First we notice that the universal lower bound in R(Q)† is the uni-
versal upper bound ⊤ in Q.
(a) Let (X, rX) be a right Q-module and ⊥ be the universal lower bound of
X . Further, let homX be the hom-object assignment of the Q-enriched cate-
gory (X, homX) associated with (X, rX) (cf. Section 3). Since homX(⊥, y)
is right-sided for all y ∈ X (cf. (3.5)), the range of homX(⊥, ) is contained
in R(Q), and consequently

(X, rX)
homX(⊥, )−−−−−−−→ (R(Q)†, rQ†)

is a right Q-module morphism. The right Q-submodule determined by the
pullback of the arrow true 0

t−→ Q† along homX(⊥, ) is given by

{ y ∈ X | homX(⊥, y) = ⊤} = {⊥}.

Hence (WS1) is satisfied.
(b) Let (X, rX)

φ−→ (R(Q)†, rQ†) be a right Q-module morphism and U be
the right Q-submodule of (X, rX) determined by the pullback of the arrow
true along φ — i.e.

U = {x ∈ X | φ(x) = ⊤}. (4.2)

Further, let homX be the hom-object assignment of the Q-enriched category
(X, homX) associated with (X, rX). Then y⊡ homX(x, y) ≤ x holds for all
x, y ∈ X . Since φ preserves the respective right actions and is isotone, the
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previous relation implies φ(y) ⊡† homX(x, y) ≤† φ(x), which is equivalent
to

φ(x) ≤ homX(x, y) ↘ φ(y), i.e. homX(x, y) ∗ φ(x) ≤ φ(y), x, y ∈ X,

where we have also referred to (3.3). Then φ is a cocontinuous contravariant
Q-presheaf on (X, homX) in the terminology of Q-enriched category theory
(cf. [10, Def. 3.1, p. 21 and 23]). Since Q is unital, we conclude from (4.2):∨

{ homX(x, y) | x ∈ U } ≤ φ(y), y ∈ X. (4.3)

Now we recall that φ(y) is right-sided for all y ∈ X , hence:

φ(y ⊡ φ(y)) = φ(y ⊡ φ(y)) ∗ ⊤ =
(
φ(y) ↘ φ(y)

)
∗ ⊤ = ⊤,

and so y ⊡ φ(y) ∈ U . Thus φ(y) ≤ homX(y ⊡ φ(y), y) follows, and the
inequality in (4.3) turns into an equality. In particular, the relation:

φ(y) =
∨

φ(x)=⊤
homX(x, y) ∗ ⊤ =

∨
φ(x)=⊤

homX(x⊡⊤, y) (4.4)

holds for all y ∈ X , and so (WS2) is verified. □

By analogy with Theorem 4.2 the left Q-module (L(Q†, ℓQ†) is the weak
subobject classifier in Modℓ(Q) (cf. Example 3.2 (b)). Indeed, we have only
to observe that the hom-object assignment of a left Q-module (X, ℓX) is the
hom-object assignment determined by the dual right Q-module (X†, rX†) of
(X, ℓX) — i.e.

homX(x, y) =
∨
{α ∈ Q | y ⊡† α ≤† x } =

∨
{α ∈ Q | α⊙ x ≤ y }

for each x, y ∈ X . Consequently the lattice-theoretic properties of homX

(cf. (3.6)) are read in X†.

Remark 4.3 Let (X, rX) be a right Q-module and (X, homX) be the as-
sociated Q-enriched category. Since (4.4) describes the characteristic mor-
phisms of (X, rX) in the sense of Modr(Q), it is easily seen that for every

right-sided element α ∈ Q and x ∈ X the map X
homX(x⊡α, )−−−−−−−−→ R(Q†)

is a right Q-module morphism and the characteristic morphism of the right
Q-submodule ↓(x ⊡ α) = { y ∈ X | y ≤ x ⊡ α } of X . If Q is commu-
tative, then R(Q) is the subquantale I(Q) of all two-sided elements of Q
and homX(x ⊡ α, ) is the elementary tensor x ⊗Q α of the tensor product
X⊗Q I(Q) of Q-modules, where the action on I(Q) is given by the quantale
multiplication.
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4.1 Classifiable subobjects

Let C be a finitely complete category with terminal object T provided with a
weak subobject classifier (t,Ω). We begin with the simple observation that
the identity 1X of an objectX is always (t,Ω)-classifiable. The characteristic

morphism of 1X is the composition X !X−−→ T
t
Ω and is denoted by trueX .

Further, recall that a subobject of X is an equivalence class of monomor-
phisms with codomainX . If a representing monomorphism of a subobject S
of X is (t,Ω)-classifiable, then it is easily seen that every further represent-
ing monomorphism of S is also (t,Ω)-classifiable. Hence, due to the unique
classification of (t,Ω)-classifiable monomorphisms with codomainX , every
characteristic morphism of X is uniquely determined by its corresponding
subobject — i.e. there exists a bijective map between all (t,Ω)-classifiable
subobjects of X and all charactertistic morphisms of X .

In a first step we show that the pullback of (t,Ω)-classifiable subobjects
is again (t,Ω)-classifiable. In particular, (t,Ω)-classifiable monomorphisms
are pullback stable.

Proposition 4.4 Let X
f−→ Y be a morphism and U m

Y be a (t,Ω)-clas-
sifiable monomorphism. Then the pullback V n

X of m along f is again
(t,Ω)-classifiable. In particular, if χm is the characteristic morphism of m,
then χm ◦ f is the characteristic morphism of n.

Proof. We consider the commutative diagram (cf. [12, Proof of Prop. 14.4]):

V X

U Y

T Ω

��

// //
n

��

f

��

!U

// //
m

��

χm

// //
t

Hence the result follows from the Pullback Lemma. □
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The formulation of the previous proposition can be seen as an extension
of the well known result [12, Prop. 14.4] to the area of weak subobject clas-
sifiers.

Now we show that the binary intersection of (t,Ω)-classifiable subob-
jects is again (t,Ω)-classifiable. For this purpose we will apply (WS1). By
analogy with topos theory, the characteristic morphism Ω× Ω

χ∩−−→ Ω of the

global point T
⟨t,t⟩

Ω× Ω will be referred as the conjunction in C.

Example 4.5 In Modr(Q) the conjunction χ∩ coincides with the binary
meet of right-sided elements. In fact, since the hom-object assignment of the
weak subobject classifier R(Q†, rQ†) is given by homR(Q)†(α, β) = β ↙ α,
the relation (4.4) implies: χ∩(β1, β2) = (β1 ↙ ⊤) ∧ (β2 ↙ ⊤) = β1 ∧ β2
for all β1, β2 ∈ R(Q).

Theorem 4.6 Let U1
m1

X and U2
m2

X be (t,Ω)-classifiable mono-
morphisms. Then the monomorphism V

n
X determined by the following

pullback square:
V U2

U1 X

��

��

m′
2

// //
m′

1

��

��

n

��

��

m2

// //
m1

(4.5)

is again (t,Ω)-classifiable. Moreover, if χmi
is the characteristic morphism

of Ui
mi

X (i = 1, 2) and χn is the characteristic morphism of V n
X ,

then the relation χn = χ∩ ◦ ⟨χm1 , χm2⟩ holds.

Proof. In the case of a weak subobject classifier axiom (cf. Definition 4.1)
we can also follow the same strategy as in topos theory. We consider the
characteristic morphisms X

χm1−−−→ Ω and X
χm2−−−→ Ω corresponding to m1
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and m2 and prove that the outer rectangle of the diagram:

V X

T Ω× Ω

T Ω

��

// //
n

��

⟨χm1 ,χm2 ⟩

��

// //
⟨t,t⟩

��

χ∩

// //
t

is a pullback square. For this purpose it is sufficient to show that the upper
square is a pullback. The commutativity of the upper square is evident. Now
let us consider a morphism Z

ℓ−→ X with ⟨t, t⟩◦!Z = ⟨χm1 , χm2⟩◦ℓ. Then the
weak subobject classifier axiom implies that there exist morphisms Z

φi−→ Ui
(i = 1, 2) such thatm1◦φ1 = ℓ = m2◦φ2. Finally, the pullback square (4.5)
guarantees the existence of Z

ψ−→ V satisfying φ1 = m′
2◦ψ and φ2 = m′

1◦ψ.
Now we observe n ◦ ψ = m1 ◦m′

2 ◦ ψ = m1 ◦ φ1 = ℓ. Hence the assertion
is verified.
Finally, the relation χn = χ∩ ◦ ⟨χm1 , χm2⟩ follows from the uniqueness of
the classification. □

Since the identity 1Ω of Ω is the characteristic morphism of the arrow
true, Theorem 4.6 implies that χ∩ is idempotent — i.e. 1Ω = χ∩ ◦ ⟨1Ω, 1Ω⟩.
Moreover, the unique classification shows that (Ω, χ∩) is a commutative
monoid in C w.r.t. the monoidal structure determined by the product in C.
In particular, the arrow true is the unit of (Ω, χ∩). Hence (Ω, χ∩) induces
a partial order on the set HOMC(X,Ω) of all characteristic morphisms of
(X, rX) by

χ1 ≤ χ2 ⇐⇒ χ1 = χ∩ ◦ ⟨χ1, χ2⟩, χ1, χ2 ∈ HOMC(X,Ω).

Obviously (HOMC(X,Ω),≤) is a semilattice. Due to the weak subobject
classifier axiom, (HOMC(X,Ω),≤) is order-isomorphic to the partially or-
dered set subcl(X) of all (t,Ω)-classifiable subobjects of X .
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If C is a complete category, then Theorem 4.6 holds also for any fam-
ily of (t,Ω)-classifiable subobjects of X . Hence in this case subcl(X) is
a complete lattice, and for any subobject with representing monomorphism
U

m
X its (t,Ω)-classifiable hull exists — i.e. there exists a (t,Ω)-classi-

fiable monomorphism Ũ
m̃

X determined by the following properties:

(CL1) There exists a (mono)morphism U
jU−−→ Ũ such that m = m̃ ◦ jU .

(CL2) For every further (t,Ω)-classifiable monomorphism V
n

X satis-

fying the condition m = n ◦ jV U with U
jV U

V there exists a

morphism Ũ
j̃V U−−→ V such that m̃ = n ◦ j̃V U holds.

Hence m̃ is uniquely determined by m up to an isomorphism.
Finally, if C is complete, then for every morphism X

f−→ Y the inverse

image functor subcl(Y )
f−1

−−→ subcl(X) has a left adjoint. It is an open ques-
tion whether f−1 has a right adjoint.

4.2 Comprehension scheme

In this subsection we do not only assume that the finitely complete category
C satisfies the weak subobject classifier axiom, but also that for every subob-
ject its (t,Ω)-classifiable hull exists. Referring to [7, 8] the question arises
to which extent the weak subobject classifier axiom is a weakening of the
comprehension principle. Following Lawvere, we understand a morphism
E

x−→ X as an element of X “defined over E” and for every monomorphism
U

m
X we say x ∈ m if there exists x̃ such that

E U

X
��

x

//
x̃

��

��

m

i.e. x = m ◦ x̃. Further, recall that trueE is the composition E !E−→ T
t

Ω,
where T is the terminal object and t is the arrow true (cf. [7]). Then the
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weak subobject classifier axiom says the following. Given any “proposi-
tional function” (i.e. characteristic morphism of X) X

χ−→ Ω there exists a
monomorphism {X|χ} with codomain X such that for any E x−→ X

x ∈ {X|χ} ⇐⇒ χ ◦ x = trueE,

and, conversely, for every monomorphism with codomain X there exists the
smallest (t,Ω)-classifiable monomorphism — i.e. its (t,Ω)-classifiable hull,
with codomain X which has a unique “characteristic function” χ. If C is
an epi-mono-category, then this relationship can be expressed by an adjoint
situation (cf. [8]) — i.e. there exists a functor F : C/X → Hom(X,Ω),
which has a right adjoint.

In fact, F acts on objects as follows. For E
p−→ X we first construct the

epi-mono-factorization

E X

U

�� ��p∗

//
p

??

??

m

and subsequently we consider the (t,Ω)-classifiable hull Ũ m̃
X of U m

X . Then F(p) is given by the characteristic morphism of Ũ m̃
X . Fur-

ther, for every morphism p1
π−→ p2 the epi-mono-factorization leads to the

following commutative diagram:

E1 U1 Ũ1

X

E2 U2 Ũ2

��

π

// //
p1∗

��

π̂

��

��

m1

// //
jU1

��

m̃1

// //
p∗2

??

??

m2

// //
jU2

OO

m̃2

Since m̃2◦jU2 ◦ π̂ = m1, we conclude from the universal property (CL2) that

there exists a morphism Ũ1

j̃
Ũ2Ũ1−−−→ Ũ2 such that m̃1 = m̃2 ◦ j̃Ũ2Ũ1

. If χi is
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the characteristic morphism of m̃i (i = 1, 2), then χ1 = χ∩(χ1, χ2) follows
— i.e. F(p1) ≤ F(p2).

On the other hand there exists a functor G : Hom(X,Ω) → C/X deter-
mined by the pullback diagram:

X Ũ

Ω T
��

χ

oooo
m̃

��

oooo
t

Since there is a natural transformation η : idC → GF with the p-component
E

ηp−→ G(F(p)) defined by ηp = jU ◦ p∗ with m̃ ◦ jU = m and p = m ◦
p∗, it is not difficult to show that G is right adjoint to F . In this sense a
“comprehension scheme” holds in C.

4.3 (t,Ω)-classifiable subobjects in Modr(Q)

Let (t,Ω) = (t, (R(Q)†, rQ†)) be the weak subobject classifier in Modr(Q)
(cf. Theorem 4.2) and (X, rX) be a right Q-module. Since in Modr(Q) the
characteristic morphism χ∩ is the binary meet in R(Q) (cf. Example 4.5),
the complete lattice HOMModr(Q)((X, rX), (R(Q)†, rQ†)) (∼= subcl(X, rX))
is the dual lattice of the complete lattice [X,R(Q)†] of all characteristic mor-
phisms of (X, rX) ordered pointwise in R(Q)†.

As a first step we give a characterization of characteristic morphisms.

Proposition 4.7 Let (X, rX) be a right Q-module and homX be the as-
sociated hom-object assignment. Then for every characteristic morphism
X

χ−→ R(Q)† there exists a unique element x ∈ X satisfying the following
conditions

x⊡⊤ = x and χ(y) = homX(x, y), y ∈ X. (4.6)

Proof. The anti-symmetry of the partial order on X implies the uniqueness
of the element x in (4.6). In order to confirm the existence of x we proceed
as follows:

x =
∨
{ z ∈ X | e ≤ χ(z) }.
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Since χ(z) is right-sided for all z ∈ X and χ itself is join-reversing, we
obtain χ(x) = ⊤. Now we observe χ(x ⊡ ⊤) = ⊤ ↘ ⊤ = ⊤ — i.e.
x ⊡ ⊤ ≤ x and consequently x ⊡ ⊤ = x. Since every right Q-module
morphism is also a Q-functor in the sense of Q-enriched category theory, the
relation homX(x, ) ≤ χ holds. On the other hand we observe e ≤ χ(y) ↘
χ(y) = χ(y ⊡ χ(y)). Hence y ⊡ χ(y) ≤ x — i.e. χ(y) ≤ homX(x, y), and
the relation (4.6) is verified. □

As an immediate corollary from Remark 4.3 and Proposition 4.7 we ob-
tain that every (t,Ω)-classifiable subobject of (X, rX) is a right Q-submod-
ule U having the following form:

∃x ∈ X with x⊡⊤ = x such that U = ↓x = { y ∈ X | y ≤ x } (4.7)

Hence, for an arbitrary right Q-submodule U of (X, rX), its (t,Ω)-classifi-
able hull Ũ is given by Ũ = ↓(

∨
U).

Remark 4.8 Let Q be an integral quantale (i.e. the unit is the universal up-
per bound of Q), then Q† is the weak subobject classifier in Modr(Q). Since
Q† is a Q-bimodule, for every right Q-module (X, rX) the complete lattice
[X,Q†] of all characteristic morphisms on X is a left Q-module with the left
action ℓ[X,Q†] determined by:

(α⊙ χ)(x) = χ(x) ↙ α, α ∈ Q, x ∈ X.

Since HOMModr(Q)((X, rX), (R(Q)†, rQ†)) = [X,R(Q)†]†, we may con-
clude from Theorem 3.1 that HOMModr(Q)((X, rX), (R(Q)†, rQ†)) is a right
Q-module and its dual right action of ℓ[X,R(Q)†] has the form:

f ⊡† α =
∧
{ g ∈ [X,R(Q)†] | f(x) ∗ α ≤ g(x) for all x ∈ X }.

Further, let us invoke again Theorem 3.1 and consider the dual left Q-module
(X†, ℓX†) of (X, rX).Then we conclude from Proposition 4.7 and (3.7) that
there exists a left Q-module isomorphism X† ηX−−→ [X,Q†] defined by:

ηX(x) = homX(x, ), x ∈ X.
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If (X, rX)
f−→ (Y, rY ) is a right Q-module morphism, then the right adjoint

left Q-module morphism (Y †, ℓY †)
f⊢−−→ (X†, ℓX†) satisfies the following

chain of equivalences for all x ∈ X and y ∈ Y :

α ≤ homX(y, f(x)) ⇐⇒ f(x)⊡ α ≤ y

⇐⇒ x⊡ α ≤ f⊢(y) ⇐⇒ α ≤ homX(f
⊢(y), x).

Hence the diagram

(Y †, ℓY †) [Y,Q†]

(X†, rX†) [X,Q†]

��

f⊢

//
ηY

��

Θf

//
ηX

is commutative, where Θf is given by Θf (χ) = χ ◦ f for all χ ∈ [Y,Q†]
(cf. Proposition 4.4). So we obtain that in the case of integral quantales the
restriction of the inverse image functor f−1 to (t,Ω)-classifiable subobjects
of (Y, rY ) is equivalent to the right adjoint left Q-module morphism f⊢ of f .

Finally, let us consider the case of arbitrary unital quantales. Then we
need some more terminology. An element x of a right Q-module (X, rX)
is well-sided if x ⊡ ⊤ = x. The set W(X) of all well-sided elements of X
is a complete sublattice of X in the sense of Sup, but not necessarily a right
Q-submodule of X . The inclusion map W(X) ↪−→ X is meet-preserving.

If (X, rX)
f−→ (Y, rY ) is a right Q-module morphism, then the right

adjoint f⊢ of f viewed as morphism in Sup factors through W(Y )† in the
following way:

W(Y )† Y †

W(X)† X†
��

f∗

� � //
ι
Y †

��

f⊢

//
ι
X†

Since in this situation W(Y )†
ηY−−→ [Y,R(Q)†] is only an order isomor-

phism (cf. Proposition 4.7), we refer to Remark 4.8 and conclude that the
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restriction of f−1 to subcl(Y, rY ) has a right adjoint functor subcl(X, rX)
∀f−−→

subcl(Y, rY ) if and only if f ∗ is meet-preserving in the respective orders of
W(Y )† and W(X)†.

As an illustration of this situation we include the following simple exam-
ple.

Example 4.9 Let Q be a unital quantale without zero divisors. Further, let
us view Q as right Q-module w.r.t. the right quantale multiplication. Then
the complete sublattice W(Q) coincides with the subquantale R(Q) of all
right-sided elements of Q. In general R(Q) is not a right Q-submodule of
Q.
Further we fix an element α ∈ Q \ {⊥}. The left translation in Q by α —
i.e.

fα(γ) = α ∗ γ, γ ∈ Q,

is a right Q-module morphism Q
fα−−→ Q. Then the right adjoint left Q-mod-

ule morphism Q† (fα)⊢−−−→ Q† of fα has the form (fα)
⊢(γ) = α ↘ γ with

γ ∈ Q. Since Q does not have zero divisors, the relation (fα)
⊢(⊥) = ⊥ fol-

lows. Hence the restriction of (fα)⊢ to R(Q)† is meet-preserving in R(Q)†

(i.e. the restriction of the inverse image functor (fα)−1 to subcl(Q, ∗) has a
right adjoint) if and only if for all nonempty subsetsA ofR(Q) the following
relation holds:

α ↘ (
∨
A) =

∨
γ∈A

(α ↘ γ). (4.8)

There exist unital quantales without zero divisors, in which (4.8) is violated.
For example let us consider the idemptotent, non-commutative and unital
quantale Cr

4 on the 4-chain with ⊥ < a < e < ⊤, where e is the unit and a
satisfies the properties ⊤ ∗ a = ⊤ and a ∗ ⊤ = a. Then the tensor product
Cr

4 ⊗Cr
4 in the sense of quantales (cf. [2, p. 92]) is a unital quantale without

zero divisors, in which (4.8) is violated for certain non-zero elements of
Cr

4 ⊗ Cr
4 . The details are as follows. The subquantale R(Cr

4 ⊗ Cr
4) of all

right-sided elements consists of six elements:

⊥, δ = a⊗a, α = ⊤⊗a, β = a⊗⊤, γ = (⊤⊗a)∨(a⊗⊤), ⊤ = ⊤⊗⊤

with δ = α ∧ β and γ = α ∨ β. Now we consider the left translation fγ on
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Cr
4 ⊗ Cr

4 by γ. Then γ ↘ (α ∨ β) = γ ↘ γ = ⊤ and

γ ↘ α = (a⊗⊤) ↘ (⊤⊗a) = ⊥ and γ ↘ β = (⊤⊗a) ↘ (a⊗⊤) = ⊥,

hence the relation (4.8) is violated, and consequently the restriction of the
inverse image functor (fγ)−1 to subcl(C

r
4 ⊗Cr

4) does not have a right adjoint.
But on the other hand, if we consider the left translation fα on Cr

4 ⊗ Cr
4 by

α, then the relation (4.8) is satisfied and the restriction of the inverse image
functor (fα)−1 to subcl(C

r
4 ⊗ Cr

4) has a right adjoint.

4.4 The implication as truth arrow in Modr(Q)

Let Q† ×Q† π1−→ Q† be the projection onto the first coordinate. By analogy
to topos theory we consider the equalizer in Modr(Q)

U R(Q)† ×R(Q)†
π1

χ∩ (R(Q)†

and observe that the (t,Ω)-classifiable hull of U coincides with R(Q)† ×
R(Q)†. This is the motivation to avoid the direct product in Modr(Q) and
to lift the tensor product of Sup to Modr(Q) as follows. Let (X, rX) be a
right Q-module and Y be a complete lattice. Then on the tensor product
X ⊗Y we consider the right action (X ⊗Y )⊗Q

r−→ X ⊗Y determined on
elementary tensors by:

(x⊗ y)⊡ α = (x⊡ α)⊗ y, α ∈ Q, x ∈ X, y ∈ Y.

Since every tensor is a join of elementary tensors, the corresponding hom-
object assignment has the following form:

homX⊗Y (f, g) =
∧

x⊗y≤g
{α ∈ Q | y ≤ f(x⊡α) }, f, g ∈ X⊗Y. (4.9)

We apply this situation to the right Q-module Q provided with the right
multiplication as right action and the complete lattice R(Q)†. After these
preparations we now consider the following tensor:

f =
∨
{µ⊗ ν | µ ∈ Q, ν ∈ R(Q)†, µ ≤ ν },

where ≤ is the order in Q. We view f as the «tensorial» analogue of the

equalizer
π1

χ∩ .
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If µ ∈ Q, then µ ≤ µ ∗ ⊤, and for all g ∈ Q ⊗ R(Q)† the following
chain of equivalences hold:

µ⊗ (µ ∗ ⊤) ≤† g ⇐⇒ µ ∗ ⊤ ≤† g(µ) ⇐⇒ g(µ) ≤ µ ∗ ⊤.

Thus the explicit form of f is given by f(α) = α ∗ ⊤ for all α ∈ Q, and
the characteristic morphism of the (t,Ω)-classifiable subobject ↓f has the
following form:

χ(α⊗ β) = homQ⊗R(Q)†(f, α⊗ β) =
∨
{ γ ∈ Q | β ≤† f(α ∗ γ) }

=
∨
{ γ ∈ Q | α ∗ γ ∗ ⊤ ≤ β } =

∨
{ γ ∈ Q | α ∗ γ ≤ β } = α ↘ β.

Hence χ = homQ⊗R(Q)†(f, ) coincides with the join-preserving exten-

sion φ↘ of the right implication Q × R(Q)†
↘−→ R(Q)† viewed as bimor-

phism. In this sense we consider the characteristic morphism χ of ↓f as the
implication in Modr(Q).

Let c be the symmetry in Sup, and let us consider the restriction of the
quantale multiplication in its second factor to R(Q). Then the right adjoint

of the implicationR(Q)
χ⊢
−−→ [Q,R(Q)] coincides with the monoidal adjoint

of R(Q) ⊗ Q
cR(Q)Q−−−−→ Q ⊗ R(Q)

m−→ R(Q). This observation underlines
the close relationship between the implication in Modr(Q) and the given
quantale multiplication in Q.

5. Weak power object

If a symmetric and monoidal closed structure is imposed on a finitely com-
plete category C with a weak subobject classifier, then we can always have
weak power objects in the following sense. Let ⊗ be the tensor product in C,
and [X, ] be the right adjoint functor of ⊗X for every object X . Further,
let (t,Ω) be the weak subobject classifier. Now we can pull back the evalua-
tion arrow [X,Ω]⊗X evΩ−−→ Ω along the arrow true t and obtain a (t,Ω)-clas-
sifiable monomorphism ϵX

ε
[X,Ω]⊗X . Then for every (t,Ω)-classifiable

monomorphism R
r
Y ⊗X there exists a unique morphism Y

fr−→ [X,Ω]
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such that the following diagram is a pullback square:

R Y ⊗X

ϵX [X,Ω]⊗X
��

// //
r

��

fr⊗1X

// //
ε

(5.1)

Since [X,Ω] is uniquely determined up to an isomorphism by the pullback
(5.1), we also call [X,Ω] the weak power object of X and the subobject
(εX , ε) the element relation in [X,Ω]⊗X .

Let 1 be the unit object of the tensor product ⊗. Then it is not difficult to
show that the weak power object [1,Ω] is isomorphic to the weak subobject
classifier Ω.

It is also convenient to recall the concept of naming arrows in the context
of symmetric monoidal closed categories (cf. [3, page 78]). Let X

f−→ Y be
an arrow and 1⊗X ℓX−−→ X be theX-component of the natural isomorphism
1 ⊗ ℓ−→ idC. Then the monoidal adjoint ⌜f ◦ ℓX⌝ of f ◦ ℓX is called the
name of f and is denoted by ⌜f⌝.

Further, let T be the terminal object in C. If C is an epi-mono-category
and the unique arrow 1 !1−→ T is an epimorphism, then the universal quanti-
fier exists in the following sense. Let ⌜trueX⌝ be the name of trueX . Then
the commutativity of the diagram

1⊗X

T ⊗X T Ω
��

!1⊗1X

''

trueX◦ℓX

//
!T⊗X

// //
t

implies the decomposition ⌜trueX⌝ = ⌜(t◦!T⊗X)⌝◦!1. Hence the image of

⌜trueX⌝ is the global point T
⌜t◦!T⊗X⌝

[X,Ω] and is thus (t,Ω)-classifiable
according to (WS1). The characteristic morphism of the image of ⌜trueX⌝ is
the universal quantifier of X , which we denote by ∀X . Since in general the
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tensor product does not have projections, we leave the construction of the
existential quantifier as an open question.

In the following we briefly sketch the situation in the category of mod-
ules on a unital quantale Q. In order to have a symmetric monoidal closed
structure we have to assume that Q is commutative (cf. [4]). The complete
lattice [X, Y ] of all Q-module morphisms (X,⊙)

f−→ (Y,⊙) is a Q-module
provided with the pointwise defined action. Then for (x, y) ∈ X × Y the
elementary tensor x⊗Q y is determined by

x⊗Q y =
∧
{ f ∈ [X, Y †] | x⊗ y ≤ f }

where ⊗ is the tensor product in Sup. Hence the action on x ⊗Q y has the
form

α⊙ (x⊗Q y) =
∧
{ f ∈ [X, Y †] | x⊗Q y ≤ α⊙† f }, α ∈ Q,

and the well known relation (α⊙ x)⊗Q y = x⊗Q (α⊙ y) = α⊙ (x⊗Q y)
follows from Proposition 3.3. In this context, we recall that the category
Mod(Q) of Q-modules is symmetric and monoidal closed w.r.t. ⊗Q (cf. [4,
2]).

Since Q is commutative, the weak subobject classifier in Mod(Q) is
given by the dual Q-module I(Q)† of all two-sided elements of Q. Then
the weak power object of a Q-module X is the Q-module [X, I(Q)†] of
all characteristic morphisms of X . In this situation we point out that the
Q-module HOM(X, I(Q†)) coincides with the tensor product X ⊗Q I(Q).

Since, for commutative quantales, the complete sublattice W(X) of all
well-sided elements of X is a Q-submodule of X , we can express Proposi-
tion 4.7 in this context as follows. Let homX be the hom-object assignment
associated with X and W(X)† be the dual Q-module of W(X). Then there
exists a Q-module isomorphism W(X)†

ηX−−→ [X, I(Q)†] determined by

ηX(x) = homX(x, ), x ∈W(X).

Hence we can also identify W(X)† with the weak power object of X . In
particular W(X) ∼= X ⊗Q I(X).

Moreover, by abuse of notation let us denote the restriction of homX to
W(X)† × X again by homX . Since homX is a bimorphism (cf. (3.6) and
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(3.7)), the evaluation arrow [X, I†(Q)]⊗X
ev
I(Q)†−−−−→ I(Q)† is the unique ex-

tension of homX to a Q-module morphismW(X)†⊗QX
φ−→ I(Q)† making

the following diagram commutative:

W(X)† ×X W(X)† ⊗Q X

I(Q)†
$$

homX

//
⊗Q

��

φ∼=ev
I(Q)†

Hence the (t,Ω)-classifiable subobject of the element relation ϵX is given by

εX = ↓f where f =
∨
{x⊗Qy | (x, y) ∈W(X)†×X, homX(x, y) = ⊤}.

Finally, we recall that the underlying, commutative and unital quantale
Q viewed as Q-module is the unit object of Mod(Q) (cf. [4, 2]). It is easily

seen that the unique arrow Q
!Q−→ T is an epimorphism. Hence for every

Q-module the universal quantifier ∀X exists.

Proposition 5.1 Let X be a Q-module and W(X)†
ηX−−→ [X, I(Q)†] be the

isomorphism identifying characteristic morphisms with well-sided elements.
If homX is the hom-object assignment associated with X , then the universal
quantifier of X has the form:

∀X(ηX(x)) = homX(x,⊤), x ∈W(X)†.

Proof. Let us recall that the universal lower bound in [X, I(Q)†] is the con-
stant characteristic morphism of X attaining ⊤ for all x ∈ X — i.e. trueX .
Then the image of the name ⌜trueX⌝ coincides with the unique global point
T [X, I(Q)†]. In order to compute the corresponding characteristic mor-
phism of the global point T [X, I(Q)†] we have to associate the hom-
object assignment with the Q-module [X, I(Q)†]. Referring to Section 3
it is important to understand that in this context we always have to read a
Q-module as a right Q-module. Therefore, if φ, ψ ∈ [X, I(Q)†], the hom-
object assignment of [X, I(Q)†] is determined by:

hom[X,I(Q)†](φ, ψ) =
∨
{α ∈ Q | α ↘ ψ ≤† φ } =

∧
z∈X

(
φ(x) ↘ ψ(x)

)
.
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Now we choose x ∈ W(X)†. Referring to Remark 4.3 we obtain for φ =
ηX(x):

∀X(ηX(x)) =
∧
z∈X

(⊤ ↘ ηX(x)(z)) =
∧
z∈X

ηX(x)(z)

=
∧
z∈X

homX(x, z) = homX(x,⊤).

Hence the assertion is verified. □

If we understand the universal upper bound in X as true, then the univer-
sal quantifier applied to the (t,Ω)-classifiable subobject ↓x corresponding to
ηX(x) can be interpreted as the extent to which x is true.

In this sense there exists a close relationship between hom-object assign-
ments of Q-modules and truth arrows in Mod(Q).

Acknowledgement. I am very grateful to J. Gutiérrez García for his support
during the preparation of this work.
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A CONSTRUCTIVE ACCOUNT OF
THE KAN–QUILLEN MODEL

STRUCTURE AND OF KAN’S EX∞

FUNCTOR

Simon Henry

Résumé. Nous donnons une preuve constructive de l’existence d’une struc-
ture de catégorie de modèles cartésienne fermée et propre sur la catégorie des
ensembles simpliciaux, dont les cofibrations génératrices sont les inclusions
de bords et les cofibrations triviales génératrices les inclusion de cornets. La
différence principale avec l’approche classique est que toutes les inclusions
ne sont pas des cofibrations (seulement celles satisfaisant certaines conditions
de décidabilités) et tous les objets ne sont pas cofibrants.
La preuve repose sur trois ingrédients principaux: D’abord, l’existence d’une
structure de catégorie de modèles faible sur les ensembles simpliciaux, en-
suite l’interaction avec la version semi-simpliciale de cette structure et enfin
l’utilisation du foncteur EX∞ de Kan, et plus précisement de la preuve di-
recte de S.Moss que l’application X → EX∞X est une cofibration anodyne,
dont nous montrons qu’elle est constructive si on suppose que X est cofibrant.

Abstract. We give a fully constructive proof that there is a proper cartesian
ω-combinatorial model structure on the category of simplicial sets, whose
generating cofibrations and trivial cofibrations are the usual boundary inclu-
sion and horn inclusion. The main difference with classical mathematics is
that constructively not all monomorphisms are cofibrations (only those satis-
fying some decidability conditions) and not every object is cofibrant.
The proof relies on three main ingredients: First, our construction of a weak
model categories on simplicial sets, then the interplay with the semi-simplicial
versions of this weak model structure and finally, the use of Kan EX∞-
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functor, and more precisely of S.Moss’ direct proof that the natural map
X → EX∞X is an anodyne cofibration, which we show is constructive when
X is cofibrant.

Keywords. Model categories, constructive mathematics, simplicial sets, EX∞-
functor.
Mathematics Subject Classification (2020). 03F55, 55U35,55U40,18N50.
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1. Introduction

The goal of this paper is to give a fully constructive proof of the existence of
the usual Kan–Quillen model structure on simplicial sets, and of some of its
classical properties. “Constructive” here can be taken to mean “Without the
axiom of choice and the law of excluded middle”, or a bit more precisely as
“in the internal logic of an elementary topos with a natural number objects”.

This work was supported by the Operational Programme Research, Development and
Education Project “Postdoc@MUNI” (No. CZ.02.2.69/0.0/0.0/16 027/0008360); and by
the Natural Sciences and Engineering Research Council of Canada (NSERC), funding ref-
erence number RGPIN-2020-067.
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It can also be formalized in Aczel’s (CZF) [1] and probably in considerably
weaker foundations as well, see Remark 1.6. Our main theorem is:

1.1 Theorem. There is a proper cartesian Quillen model structure on the
category of simplicial sets such that:

• The trivial fibrations are the morphisms with the right lifting property
against all boundary inclusions ∂∆[n] ↪→ ∆[n].

• Cofibrations are the monomorphisms f : A → B which are “level
wise complemented” (i.e. for all integers n for each b ∈ B([n]) it is
decidable if b ∈ A([n]) or not), and such that for all b ∈ B([n]) −
A([n]) it is decidable if b is a degenerate cell or not.

• The fibrations are the “Kan fibrations”, i.e. they are the morphisms
with the right lifting property against the horn inclusion: Λk[n] ↪→
∆[n]. Dually trivial cofibrations are the retract of ω-transfinite com-
positions of pushouts of coproducts of horn inclusions.

Note that assuming the law of excluded middle the class of cofibrations boils
down to the class of all monomorphisms and hence one recovers the usual
Kan–Quillen model structure.
After we announced this result, two other proofs, have been found by N. Gam-
bino, C. Sattler and K. Szumilo and appeared in [6].

This theorem is obtained by patching together the following results: The-
orem 2.2.9 gives the existence of a model structure with the appropriate
cofibrations and trivial fibrations, Proposition 2.2.10 gives left properness,
Proposition 3.5.1 shows that the fibrations and trivial cofibrations are indeed
as specified here and Proposition 3.5.2 shows that it is also right proper.
Cartesianness was already known, but reproved as Proposition 3.2.6.

One can also say a few words about the equivalences of the model struc-
ture of Theorem 1.1: they are defined (as Definition 2.2.3) using the forget-
ful functor to semi-simplicial sets and the weak model structure on semi-
simplicial sets constructed in Theorem 5.5.6 of [8]. Concretely, this means
that a map between Kan complexes is a weak equivalence if it admit an in-
verse up to homotopy as a semi-simplicial maps. For general map, we need
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to first take fibrant replacement and then use the previous definition. Note
that Proposition 2.2.2 shows that this notion of equivalence is compatible
with the notion we used in [8]. Moreover, Proposition 5.2.6 of [8] shows
that weak equivalences admit the usual characterization in terms of homo-
topy groups, as long as the homotopy groups are defined not as quotient sets
but as setoids.

As we do not assume the axiom of choice, one needs to make precise some
details regarding Theorem 1.1: a “structure of fibration” (resp. trivial fibra-
tion) on a map f is the choice of a solution to each lifting problem of a horn
inclusion (resp. boundary inclusion) against f . No uniformity condition is
required on these lifts. A fibration (resp. trivial fibration) is a morphism
which admits at least one structure of fibration (resp. trivial fibration), but
the choice of the structure is considered irrelevant.
More generally, we will follow the convention that (unless exceptionally
stated otherwise) every statement of the form ∀a,∃b should be interpreted
as the existence of a function that given “a” produces a “b”. In particular,
when one says that a morphism has the lifting property against some set of
arrows it means that one has a function that produces a solution to each lift-
ing problem. We will use the convention constantly in the present paper, i.e.
every time we say that “there exists” some x, we mean that one specific x
has been chosen for each possible value of the parameters involved in the
statement.

As fibrations and trivial fibrations are defined by the right lifting property
against a small set of morphisms between finitely presented objects, it is
very easy to apply a constructive version of the small object argument to
show that one has two weak factorization systems, which will be called as
follows:

1.2 Definition.

• The weak factorization system cofibrantly generated by the boundary
inclusion ∂∆[n] ↪→ ∆[n] is called “cofibrations/trivial fibrations”.

• The weak factorization system cofibrantly generated by the horn inclu-
sion Λk[n] ↪→ ∆[n] is called “Anodyne cofibrations/Kan fibrations”.
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We have discussed the constructive validity of the small object argument in
appendix C of [8], though there are probably other references doing this.
Note that anodyne cofibrations will in the end be the trivial cofibrations, and
Kan fibrations will be what we have called fibrations in the statement of the
main Theorem 1.1, but this will be one of the last results we will prove. In the
meantime we will distinguish between Kan fibrations and “strong fibrations”
and between anodyne cofibrations and “trivial cofibrations” (these two other
concepts being defined as Definition 2.2.3). Simplicial sets whose map to the
terminal simplicial set is a Kan fibration will be called either Kan complexes,
or fibrant simplicial sets.

1.3 Remark. Before going any further, we should pause here to insist on
a very important remark: one of the key differences between what we are
doing in the present paper and the usual construction of the Kan–Quillen
model structure in classical mathematics is that the cofibrations are no longer
exactly the monomorphisms. It can be shown, see for example Proposi-
tion 5.1.4 in [8], that the class of cofibrations generated by the boundary
inclusion, i.e. the class of arrow which have the left lifting property against
all trivial fibration is exactly the class of cofibrations described in the state-
ment of Theorem 1.1. In particular one has:

Not every simplicial set is cofibrant !
A simplicial set X is cofibrant if and only if it is decidable

whether a cell of X is degenerate or not.

This introduces some changes compared to the classical situation, for exam-
ple the left properness of the model structure on simplicial sets is no longer
automatic, and the assumption that certain objects need to be cofibrant tends
to appear in a lot of results. Compare for example Corollary 3.3.4, Proposi-
tion 3.3.5 and Proposition 3.4.1 to their classical counterparts.
One can also show the classical Eilenberg-Zilber lemma, asserting that a
cell x ∈ X([n]) can be written uniquely as σ∗y for σ a degeneracy and y a
non-degenerate cells holds if and only if X is cofibrant. A general construc-
tive version of the Eilenberg-Zilber lemma can be found as Lemma 5.1.2 in
[8] and does implies that the statement above holds for cofibrant simplicial
sets. The converse (that the validity of the Eilenberg-Zilber lemma implies
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cofibrancy of X) is immediate from the decidability of equality between
morphisms of the category ∆: if a cell is written σ∗y with y non-degenerate
one can decide if it is degenerate or not depending on if σ is the identity (an
isomorphism) or not.

The general structure of the proof of this theorem (and in fact of the paper)
is as follows:

• In Section 2.1 we review the existence of a “weak model structure” on
simplicial sets and semi-simplicial sets from [8], which is our starting
point.

• In Section 2.2, more precisely in Theorem 2.2.9, we will (up to a tech-
nical detail, see the Remark 1.4 below) extend this to a model structure
on the category of simplicial sets with cofibrations (and trivial fibra-
tions) as specified above, but we will not show that trivial cofibrations
are the same as anodyne cofibrations, or equivalently that the fibra-
tions (called “strong fibrations”) are the Kan fibrations. This part is
based on the use of semi-simplicial sets.

• Left properness of this model structure also follows from semi-simplicial
techniques (see Proposition 2.2.10).

• The overall goal1 of Section 3 is to introduce Kan’s EX∞-functor. This
is done following the work of S. Moss from [15], which can be made
constructive at the cost of only minor modification. This will allow us
to show that the fibrations of the model structure above are exactly the
Kan fibrations (Proposition 3.5.1) and to prove the right properness of
this model structure (Proposition 3.5.2), as well as to fix a small gap
in constructiveness of Section 2.2 (see the remark below).

1.4 Remark. The gap we are referring too in this last point is that in Sec-
tion 2.2, the “strong fibrations” (i.e. the fibrations of the model structure
on simplicial sets) are defined as the map having the right lifting property
against all cofibrations which are equivalences. It is unclear if they can be

1We will give a more detailed account of its contents at the beginning of this section.
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defined by a lifting property against a small set and hence if trivial cofi-
bration/strong cofibration do form a weak factorization system as a model
category structure should require. In Proposition 2.2.7 we give a formal ar-
gument that shows it is the case, but it is unlikely that this argument can be
made constructive. What definitely solve the problem constructively is the
proof in Proposition 3.5.1 that this factorization is actually just the “anodyne
cofibrations/Kan fibrations” factorization, but this require all the material of
Section 3.
This being said, the reader should note that even before Section 3, it holds
constructively that the factorization as an anodyne cofibration followed by a
Kan fibration of an arrow with fibrant target is a “trivial cofibration/strong
fibration” factorization (because of the third point of Lemma 2.2.6). Hence
it holds constructively, even without the results of Section 3, that any arrow
with fibrant target admits such a factorization, i.e. one already has something
like a right2) semi-model category without invoking the properties of Kan
EX∞ functor.

1.5 Remark. The fact that we need to invoke the good properties of Kan’s
EX∞ functor to show that the class of fibration is indeed the class of Kan fi-
brations of course remind us of D-C.Cisinski’s approach to the construction
of Kan–Quillen model structure in [3]. We do not really know how deep are
the similarities between our proof and D-C.Cisinski’s proof. Our initial plan
on this problem was actually to try to see if this approach of Cisinski can be
made constructive or not. While we definitely do not exclude the possibility
that this is the case, it seemed to represent a considerably harder task than
what we have achieved here. One of the problems is that Cisinski’s theory
relies heavily on a set theoretical argument similar to the one we mention in
the proof of Proposition 2.2.7, whose constructiveness seems unlikely, and
we have not been able to separate his proof that fibrations are the Kan fibra-
tions from this set theoretic argument. The other problem being simply that
Cisinski’s approach, while very elegant, relies on a considerable amount of
machinery whose constructivity would have to be carefully checked, while
S. Moss approach, while more technical is considerably more self-contained.

2More precisely, we have a right semi-model structure in the sense of Fresse from [4],
but not in the sense of Spitzweck from [17].
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1.6 Remark. Finally, I only said that “constructive” meant something like
internal logic of an elementary topos with a natural number object for sim-
plicity, but everything is actually completely predicative for some, relatively
strong, sense of this word. I believe that everything can be formalized
within the internal logic of an “Arithmetic universe”, i.e. a pretopos with
parametrized list objects (see for example [13] ). Such a formalization of
course requires some modifications: for example it wouldn’t make sense to
say that a morphism “is a fibration” in the sense that “there exists a structure
of fibrations on the morphisms” as the set of all “structure of fibration” on
a given morphism cannot be defined, but it would make sense to consider a
morphism endowed with a structure of fibration, and to show that given such
a pair one can perform some construction.
Although working in such framework in an explicit way forces us to be ex-
tremely careful about a huge number of details and makes everything con-
siderably more complicated, and would make the paper considerably longer.
For this reason we will not do it explicitly. It seems to me that this is typically
the sort of thing that should be done with a proof assistant.
There is one part of this claim that I have not checked carefully: Whether
such a weak framework is sufficient to use the case of the small object ar-
gument that we need, i.e. construct the cofibration/trivial fibration and the
anodyne cofibration/Kan fibration factorization systems (generated respec-
tively by boundary inclusion and horn inclusion) on simplicial set and semi-
simplicial sets, though it seems reasonable that a complicated encoding using
list object can achieve this. More precisely this should follow from the fact
that the initial model theorem for partial horn theories of Vickers and Palm-
gren in [16] is believed to be provable internally in an arithmetic universe,
and the factorization obtained from R.Garner’s version of the small object
argument (from [7]) are constructed as certain initial structure that can be
described using partial horn logic.

1.7 Remark. In a joint paper with Nicola Gambino [5], we will show that
this Quillen model structure on simplicial sets admit all the necessary struc-
ture to interpret homotopy type theory, with type and context being inter-
preted as bifibrant objects. This was the main motivation for the present
paper and the two papers have been written in close connection. I would
also like to thanks Nicola Gambino for the helpful comments he made about
earlier versions of the present paper.
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1.8 Notation. ∆ and ∆+ denotes the category of finite non-empty ordi-
nal, respectively with non-decreasing map and non-decreasing injection be-
tween them. ∆̂ is the category of simplicial sets and ∆̂+ is the category
of semi-simplicial sets (see 2.1.2). One denotes by ∆[n] and ∆+[n] the
representable simplicial and semi-simplicial sets corresponding to the or-
dinal [n] = {0, . . . , n}. Our usual notation for the boundary of the n-
simplex and its k-th horn, both for simplicial and semi-simplicial versions
are: ∂∆[n] Λk[n] ∂∆+[n] Λk+[n]
The boundary inclusion map is denotes ∂n or ∂[n] : ∂∆[n] → ∆[n], the i-th
face map is denoted ∂i[n] or ∂in or just ∂i : ∆[n − 1] → ∆[n], for the map
corresponding to the order preserving injection from [n − 1] to [n] which
only skip i. The degeneracy ∆[n+1] → ∆[n] that hits i twice is denoted σi.
Given a simplicial or semi-simplicial sets X , the image of a cell x ∈ Xn be
the i-th face map is denoted dix.

1.9 Notation. Finally, we will define many different classes of maps between
simplicial and semi-simplicial sets. To help the reader navigate this, we list
them all here and recall their definition. This is not meant to be read at this
point, but used as a reference latter if the reader needs to remember what a
certain class of maps is. In particular, many of the claim we make here will
be properly justified latter in the paper.
In the category ∆̂ of simplicial sets, we consider the following classes of
maps:

• Trivial fibrations are the map with the right lifting property against the
boundary inclusions ∂∆[n] → ∆[n].

• Cofibrations are the map with the left lifting property against trivial
fibration. They are also the retracts of ω-transfinite compositions of
pushouts of coproducts of boundary inclusions. It is shown as propo-
sition 5.1.4 of [8] that cofibrations can be characterized as inclusion
satisfying some decidability conditions as stated in Theorem 1.1.

• Kan fibrations are the map with the right lifting property against the
horn inclusion Λk[n] ↪→ ∆[n].

• Anodyne cofibrations are the map with the left lifting property against
Kan fibrations. Equivalently, they are the retract of ω-transfinite com-
positions of pushouts of coproducts of horn inclusions.
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• weak equivalences where defined for arrow between objects that are
either fibrant or cofibrant in [8] as maps that are invertible in the homo-
topy category (the homotopy category being defined using homotopy
class of maps between bifibrant objects). In the present paper we ex-
tend the definition to general objects by redefining weak equivalences
of simplicial sets as the map that are weak equivalences of the under-
lying semi-simplicial sets. The usual characterization using homotopy
groups can also be used as long as homotopy groups are defined as
setoids, see proposition 5.2.6 of [8].

• trivial cofibrations are the maps that are both cofibrations and weak
equivalences. We show that trivial cofibrations and anodyne cofibra-
tions are the same in Proposition 3.5.1, but this is one of the last result
of the paper, so almost everywhere in the paper these class are assumed
to be potentially different.

• Strong fibrations are the map that have the right lifting property agains
trivial cofibrations. It also follows from Proposition 3.5.1 that they are
the same as Kan fibration.

• Degeneracy quotient and degeneracy detecting maps is a unique fac-
torization system on ∆̂ which is studied in Section 3.1. It mostly
serves as a technical tool to establish decidability conditions that are
central to make the proofs in Section 3.4 constructive.

In the category ∆̂+ of semi-ssimplicial sets, we consider the following classes
of maps:

• Trivial fibrations and Kan fibrations are defined as the maps with the
right lifting property against respectively the semi-simplicial boundary
inclusion ∂∆+[n] → ∆+[n] and the semi-simplicial horn inclusion
Λk+[n] ↪→ ∆+[n].

• Cofibrations and anodyne cofibrations are defined as the map with the
left lifting property against respectively trivial fibrations and Kan fi-
brations. They can also be described as the maps that are retracts of
ω-transfinite compositions of pushouts of coproducts of respectively

74 



S. HENRY CONSTRUCTIVE KAN–QUILLEN STRUCTURE

the boundary inclusion and the horn inclusion. Semi-simplicial cofi-
brations have been shown in Section 5 of [8] to be exactly the inclusion
that are levelwise complemented (the precise statement is in Theorem
5.5.6 of [8], the proof is the same as for Proposition 5.1.4).

• Weak equivalences are the maps that are invertible in the homotopy
category of the weak model structure defined by the maps above. Be-
cause every semi-simplicial set is cofibrant, the notion makes sense
for arbitrary maps (in a weak model category, only objects which are
either fibrant or cofibrant have an image in the homotopy category).

• Trivial cofibrations are the cofibrations which are weak equivalences.
In ∆̂ trivial cofibration and anodyne cofibrations are not expected to
be the same. Trivial cofibrations have the right lifting property against
all Kan fibrations between fibrant objects, but not against general Kan
fibrations.

• Of course, one could also define the class of strong fibrations, as the
maps with the right lifting property against all trivial cofibrations, but
the notion turn out to serve no purpose in the present paper.

2. Constructing the model structure

2.1 Review of the weak model structures

2.1.1. One of the achievement of [8], which is the starting point of the
present paper, is the construction of a “weak model structure” on the cat-
egory of simplicial sets where fibrations (between fibrant objects) and cofi-
brations (between cofibrant objects) are as specified above.
More explicitly this means that there is a class of maps called “equiva-
lences3” in the category of simplicial sets that are either fibrant or cofibrant
(in the sense above) such that:

• Weak equivalences (between objects that are either fibrants or cofi-
brant) contains isomorphisms, are stable under composition and satis-
fies 2-out-of-3 (and the stronger 2-out-of-6 property).

3In most of the literature this are called weak equivalence, though we can’t think of any
reasons to keep the adjective “weak” other than history, so we will simply drop it.
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• A cofibration between cofibrant objects is a weak equivalence if and
only if it has the left lifting properties against all fibrations between
fibrant objects (such a map is called a trivial cofibration).

• A fibrations between fibrant objects is a trivial fibration if and only if
it is a weak equivalence4.

• The localization of the category of fibrant or cofibrant objects at the
weak equivalences can be described as the category of fibrant and cofi-
brant objects with homotopy classes of maps between them. Where
the homotopy relation is defined as usual, using equivalently a path
object or a cylinder object. This localization is called the homotopy
category.

• The weak equivalences are exactly the morphisms that are invertible
in the homotopy category (which proves the first point immediately).

One can deduce from this various characterization of weak equivalences:
for example, a map from a cofibrant object to a fibrant object is a weak
equivalence if and only if it can be factored as a trivial cofibration followed
by a trivial fibration. Note that at this point it does not makes sense to ask
whether a map X → Y is a weak equivalence if one of X or Y is neither
fibrant nor cofibrant.

2.1.2. In [8, theorem 5.5.6] we also showed that a similar “weak model struc-
ture” exists on the category of semi-simplicial sets. Semi-simplicial sets are
“simplicial sets without degeneracies”, i.e. collection of sets X0, . . . , Xn, . . .
with “face maps” satisfying the same relations as the face maps of a sim-
plicial sets. Equivalently they are presheaves on the category ∆+ of finite
non-empty ordinals and injective order preserving maps between them.
The generating cofibrations in the category of semi-simplicial sets are the
semi-simplicial boundary inclusion:

∂∆+[n] ↪→ ∆+[n],

4Here we use the fact that that trivial fibrations are characterized by a lifting property
against cofibration between cofibrant objects, which might not be the case in a general weak
model category.
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where ∂∆+[n] and ∆+[n] respectively denotes the semi-simplicial subset
of non-degenerate cells in ∆[n] and ∂∆[n]. Note that the ∆+[n] also corre-
sponds to the representable semi-simplicial sets, so that a morphism ∆+[n] →
X is the same as an n-cell of X and a morphism ∂∆+[n] → X is the data of
a collection of n cells of dimension n− 1 with compatible boundary exactly
as simplicial morphisms from ∂∆[n] to a simplicial sets X . In particular a
morphism f : X → Y of simplicial sets is a trivial fibration if and only
if its image by the forgetful functor to semi-simplicial sets is a trivial fibra-
tion (in the sense that it has the right lifting property against the generating
cofibration).
As there are no degeneracies in ∆̂+ the description of cofibrations simplifies
to just “levelwise complemented monomorphism” i.e. the class of monomor-
phism f : X → Y such that for each n, and for each y ∈ Y ([n]) it is decid-
able whether y ∈ X([n]) or not (this is also discussed in [8, theorem 5.5.6]).
In particular, every semi-simplicial set is cofibrant.
Similarly, a morphism of semi-simplicial sets is said to be a Kan fibration
when it has the lifting property against the semi-simplicial version of the
horn inclusion Λk+[n] ↪→ ∆+[n], where Λk+[n] and ∆+[n] respectively de-
notes respectively the semi-simplicial sets of non-degenerate cells in Λk[n]
and ∆[n]). As above a simplicial morphism between simplicial sets is a Kan
fibration if and only if its image by the forgetful functor to simplicial sets is
a Kan fibration of semi-simplicial sets.
In this weak model structure on semi-simplicial sets, the cofibrations are as
described above, the fibrant objects are the semi-simplicial Kan complexes
and the fibrations and trivial fibrations between fibrant objects are the Kan fi-
brations and trivial fibrations. The big difference with the model structure on
simplicial sets is that as every semi-simplicial set is cofibrant, the classes of
weak equivalences is defined between arbitrary objects of the category. Note
that we do not claim that every trivial cofibration (i.e. cofibration which is
an equivalence) is an anodyne cofibration (i.e. a retract of a transfinite com-
position of pushout of coproducts of semi-simplicial horn inclusion) : the
anodyne cofibration have the left lifting property against all Kan fibrations,
the trivial cofibration only against Kan fibration between Kan complexes.

2.1.3 Remark. Note that it is well known, even classically, that this model
structure cannot be a Quillen model structure. As every object is cofibrant, it
can be seen by a combinatorial argument that, at least classically, it is a “right
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semi-model structure” in the sense of [2]). But for example the codiagonal
map ∆+[0]

∐
∆+[0] → ∆+[0], where ∆+[0] denotes the representable semi-

simplicial sets by the ordinal [0] = {0} is easily seen to have the lifting
property of trivial fibrations (there is no higher cells to lift ! ) while it is
clearly not a weak equivalence.

The forgetful functor from simplicial sets to semi-simplicial sets is very well
behaved: we showed in [8, theorem 5.5.6] that it is both a left and right
Quillen equivalence, and we will prove as Proposition 2.2.2 that it preserves
and detect weak equivalences without any assumption of fibrancy/cofibrancy.
As all object in ∆̂+ are cofibrant, this will allow to remove some assumption
of cofibrancy in various places.

Sketch of proof of 2.1.1. We finish this section by presenting the main steps
of the argument given in [8] of the existence of the weak model structure
on simplicial sets, i.e. all the claims made in 2.1.1. The details of this can
be found in [8], but we hope the following summary will be of help to the
reader. The proof for semi-simplicial sets is similar.
The first (and essentially only) important technical step is the proof of the so-
called “pushout-product” or “corner-product” conditions for the simplicial
generating cofibrations and trivial cofibrations. This follows from a com-
pletely constructive results of Joyal (theorem 3.2.2 of [11]), in [8] it corre-
sponds to Lemma 5.2.2 (and how it is used in the proof of Theorem 5.2.1 in
Corollary 5.2.3). In the present paper we also reproduce a different proof of
this claim as Proposition 3.2.6, which is due to S. Moss (see [15, 2.12]).
From the corner-product condition one deduces formally5 all the usual prop-
erties of stability of cofibrations, anodyne cofibrations, fibrations, and trivial
fibrations under product and exponential expected in a cartesian model cate-
gory (see Proposition 3.2.6 and the comment directly below it).
This allows to construct nicely behaved cylinder objects as ∆[1]×X and path
objects as X∆[1], whose legs are appropriately (trivial) (co)fibrations as soon
as X is (co)fibrant. More generally, one can construct relative path objects
for any fibration X ↠ Y and relative cylinder objects for any cofibration
A ↪→ Y . Having such relative cylinders and path objects is the definition

5using the so-called “Joyal-Tierney calculus” presented in the appendix of [10], though
this types of manipulation were known before, maybe in a less elegant or general way.
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of weak model structure that we gave in section 2 of [8]. The precise ob-
servation that one gets a weak model structure from such a tensor product
satisfying the corner-product condition is essentially the construction done
in section 3 of [8], summarized by theorem 3.2 there.
Then all the claims made in 2.1.1 follows from the general theory of weak
model structure developed in section 2.1 and 2.2 of [8]. We sketch the gen-
eral strategy here, though at this point we recommend looking directly at
subsection 2.1 and 2.2 of [8] which are mostly self contained.
One uses these cylinders and path objects to define the homotopy relation
between maps from a cofibrant object to a fibrant object. Using the lifting
property one show that the homotopy relation with respect to any cylinder
object is equivalent to the homotopy relation with respect to any path object
and that these define an equivalence relation compatible to pre-composition
and post-composition. The proof is essentially the same as in a full Quillen
model structure: the definition of weak model structure is exactly tailored so
that the usual proof of these claims can be applied.
This allows to give a first definition of the homotopy category as the category
whose objects are the fibrant-cofibrant objects and the maps are the homo-
topy class of maps. One then proves formally that this homotopy category
is equivalent to various localization (see Theorem 2.2.6 in [8]), the last one
being the localization of the category of simplicial sets that are either fibrant
or cofibrant at all trivial cofibrations with cofibrant domains and all trivial
fibrations with fibrant targets. One can then define weak equivalences as
the arrow that are invertible in this localization, and one automatically have
2-out-of-6 and all the other good properties of weak equivalences. The fact
that trivial fibrations with fibrant target are exactly the fibration (with fibrant
targets) that are equivalence is a little harder and use again the properties
of the relative path objects (see proposition 2.2.10 in [8]), and similarly for
cofibrations.

2.2 The simplicial model structure

To obtain that simplicial sets form a full Quillen model structure we first
need to extend the meaning of “equivalences” so that it makes sense also for
arrows between objects that are neither fibrant nor cofibrant. We will do this
by exploiting the forgetful functor from the category of simplicial sets to the
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category ∆̂+ of semi-simplicial sets. As in the category of semi-simplicial
sets every object is cofibrant the notion of weak equivalence there is defined
for arbitrary arrows, and we will show it is reasonable to define equivalences
of simplicial sets as arrows that are equivalences of the underlying semi-
simplicial sets.
We start by the following observation:

2.2.1 Lemma.

1. If f : X → Y is an anodyne cofibration in ∆̂, then its image in ∆̂+ is
also an anodyne cofibration, and in particular is an equivalence.

2. Let f : X ↠ Y be a trivial fibration in ∆̂. Then the image of f in ∆̂+

is an equivalence.

Note that in the second case, it is obvious that f is a trivial fibration in ∆̂+,
but this is not enough to deduce that is is an equivalence in general, unless
its target is fibrant, as ∆̂+ only has a weak model structure.

Proof.

• This is corollary 5.5.15.(ii) of [8].

• We first assume that X is cofibrant. In this case one can construct a
strong cylinder object for X using the cartesian structure of simplicial
sets:

X
∐

X ↪→ ∆[1]×X
∼→ X

with the two maps X ↪→ ∆[1] × X being anodyne cofibrations (this
follows from the fact that X is cofibrant and the corner-product con-
ditions). Because of point 2, this produces a strong cylinder object
for the underlying semi-simplicial set of X in the category of semi-
simplicial sets.

In ∆̂+, every object is cofibrant, and the arrow f : X → Y is still a
trivial fibration, so one can find some dotted lifting for the following
two squares in ∆̂+:
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∅ X

Y Y

s

X
∐

X X

∆[1]×X X Y

(IdX ,sf)

h

In particular, s is a section of f , i.e. fs = IdY , and h a homotopy
between IdX and sf . Hence s is an inverse of f in the homotopy
category of ∆̂+, which makes f an equivalence in ∆̂+.

In the general case (when we do not assume that X is cofibrant), one
takes a cofibrant replacement (with a trivial cofibration) Xc

∼
↠ X and

the result above applies to both the trivial fibration Xc
∼
↠ X and the

composite trivial fibration Xc
∼
↠ Y . By 2-out-of-3 for weak equiva-

lences in ∆̂+ this implies that the map X
∼
↠ Y is indeed an equiva-

lence in ∆̂+.

2.2.2 Proposition. For a morphism f : X → Y between simplicial sets that
are either fibrant or cofibrant the following are equivalent:

• f is an equivalence for the weak model structure in ∆̂.

• The image of f in ∆̂+ is an equivalence for the weak model structure
on ∆̂+

Proof. If Y is cofibrant, then one can take a fibrant replacement Y
∼
↪→ Y f .

The map Y
∼
↪→ Y f is an equivalence both in ∆̂ and ∆̂+, so in both categories

f is an equivalence if and only if the composite X → Y f is an equivalence,
so it is enough to prove the result when Y is fibrant. A similar argument
using a cofibrant replacement allows to assume that X is cofibrant.
Assuming both X cofibrant and Y fibrant, one factors f as an anodyne cofi-
bration (with cofibrant domain) followed by a Kan fibration (with fibrant
target). The anodyne cofibration is an equivalence in both categories, hence
(in both categories) f is an equivalence if and only if the Kan fibration part
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is a trivial fibration. But for a map in ∆̂, being a trivial fibration in ∆̂ and
in ∆̂+ are the exact same condition (the lifting property only involves face
operations, no degeneracies).

This last proposition makes the following definition very reasonable:

2.2.3 Definition.

• An arrow in ∆̂ is said to be an equivalence if its image by the forgetful
functor to ∆̂+ is an equivalence for the semi-simplicial version of the
Kan–Quillen weak model structure mentioned in 2.1.2.

• A trivial cofibration is a cofibration which is also an equivalence.

• A strong fibration is an arrow that has the right lifting property against
all trivial cofibrations.

We remind that the reader, that we will prove in Proposition 3.5.1 that these
notions of strong fibrations and trivial cofibrations are equivalent to the usual
notion of Kan fibrations and anodyne cofibrations.

2.2.4 Remark. With this definition it is immediate that:

• Isomorphisms are equivalences, and equivalences are stable under com-
position, satisfies the 2-out-of-3 and even the 2-out-of-6 properties.

• Anodyne cofibrations are trivial cofibrations. Indeed they are cofibra-
tions by definition and they are equivalences in the sense of Defini-
tion 2.2.3 by point 1 of Lemma 2.2.1.

• As a consequence, strong fibrations are Kan fibrations.

• Trivial fibrations, defined by the right lifting property against bound-
ary inclusions, are both strong fibrations because they have the right
lifting property against all cofibrations, and equivalences because of
point 2 of Lemma 2.2.1.
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• A Kan fibration (or strong fibrations) with fibrant target is a trivial
fibration if and only if it is an equivalence (this follows from proposi-
tion Proposition 2.2.2 and the fact that this fact holds in weak model
categories).

Maybe it is a good point to recall the following very classical lemma that we
will use constantly in this paper:

2.2.5 Lemma. Assume that a map f is factored as f = pi. If i has the left
lifting property against f , then f is a retract of p. If p has the right lifting
property against f then f is a retract of i.

Proof. We only prove the first half of the claim, the second is just the dual
statement. One form a morphism h as the dotted diagonal filler in first square
below (obtained by the lifting property of i against f ), which can then be
used to form a retract diagram:

A A

B C

i f

p

h

A B A

C C C

f

i

p

h

f

2.2.6 Lemma.

(i) A cofibration is a trivial cofibration if and only if it has the left lifting
property against all Kan fibrations between Kan complexes.

(ii) An arrow whose target is a Kan complex is a trivial cofibration if and
only if it is anodyne.

(iii) An arrow whose target is a Kan complex is a strong fibration if and
only if it is a Kan fibration.

(iv) A map is a trivial fibration if and only if it is a strong fibration and an
equivalence.
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Because of the third point it is equivalent for a simplicial set X that X → 1
is a a Kan fibration (i.e. X is a Kan complex) and that X → 1 is a strong
fibration. One will simply say that X is fibrant.

Proof.

(i) Let f : A ↪→ B be a cofibration that is also an equivalence, and we
consider a lifting problem of f against a Kan fibration between Kan
complexes:

A X

B Y

f

v

p

u

In the special case where both u and v are equivalences, then by 2-
out-of-3, the map p is also an equivalence. As it is a Kan fibration
between Kan complexes it is also a trivial fibration, and hence the
lifting problem has a solution because f is a cofibration. We will now
show that one can bring back the general case to this situation:

One can factor u as an anodyne cofibration followed by a Kan fibra-
tion: B

∼
↪→ Y ′ ↠ Y and complete the diagram above by forming the

pullback P = Y ′ ×Y X :

A P X

B Y ′ Y

f

v′

∼

The map v′ can be factorized as an anodyne cofibration followed by a
Kan fibration:
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A P ′ P X

B Y ′ Y

f

∼

∼

The case treated above, where the two horizontal maps are equiva-
lences, allows to produce a dotted diagonal lifting of the form:

A P ′ P X

B Y ′ Y

f

∼

∼

and this concludes the proof in the general case.

Conversely, assume i : A ↪→ B is a cofibration that has the left lift-
ing property against all Kan fibrations between Kan complexes. One
needs to show that i is an equivalence. By taking an anodyne cofi-
bration B

∼
↪→ Bf to a fibrant object the composite A ↪→ Bf still has

the announced lifting property so one can freely assume that B is fi-
brant in order to show that i is an equivalence. Under that assumption
one factors i as an anodyne cofibration followed by a Kan fibration,
the Kan fibration has a fibrant target so it has the right lifting prop-
erty against i. Hence by the retract lemma 2.2.5, i is a retract of the
anodyne cofibration part of the factorization, hence it is an anodyne
cofibration itself, so that we can conclude that i is an equivalence.

(ii) As mentioned in Remark 2.2.4, anodyne cofibrations are trivial cofi-
brations. So we only need to show the converse. In the proof of point
(1), we have shown in the first part that a trivial cofibration have the
left lifting property against fibrations between fibrant objects and in
the second that any map with this lifting property and whose target is
a Kan complex is an anodyne cofibration. Together this indeed shows
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that a trivial cofibration whose target is a Kan complexe is an anodyne
cofibration.

(iii) We have mentioned already that strong fibrations are Kan fibrations,
and (i) shows that Kan fibrations between Kan complexes are strong
fibrations.

(iv) Trivial fibration have the right lifting property against all cofibrations,
in particular against trivial cofibrations hence they are strong fibra-
tions, and point 2 of Lemma 2.2.1 shows they are equivalences. For
the other direction, the proof is essentially the dual the proof of (i). Let
p be a strong fibration that is also a weak equivalence, and consider a
lifting problem of p against a cofibration:

A X

B Y

p

By factoring the map A → X into a cofibration A → A′ followed by
a trivial fibrations and taking the pushout of A ↪→ B along this map
A → A′ one reduces the problem to the case where the top map is
an equivalence. One can then factor the bottom map as a cofibration
followed a trivial fibration:

A A′ X

B B′ Y ′ Y
⌜

∼

p

∼

where the dotted arrow exists because the composed cofibration A ↪→
Y ′ is a weak equivalence by the 2-out-of-3 properties, and hence has
the left lifting property against p. This provides a dotted filling for the
initial square.
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In order to conclude that one has a model structure on simplicial sets, one
needs one more proposition.

2.2.7 Proposition. Any morphism can be factored as a trivial cofibration
followed by a strong fibration.

Again, we will show in Proposition 3.5.1 that this factorization system is
actually the same as the anodyne cofibrations/Kan fibrations factorization
system, i.e. that trivial cofibrations are the same anodyne cofibrations and
that strong fibration are the same as Kan fibrations. Note that at this point
it is immediate that anodyne cofibrations are trivial cofibrations, and hence
that fibrations are Kan fibrations.

Proof. We will give two proofs of this claim. The first one follows from
[14], more precisely its Theorem 3.2, which is not known to be constructive
but allows to give a simple and direct proof of the present proposition.
In order to fix the issue with constructivity one gives a second, considerably
less direct proof: as mentioned above in Proposition 3.5.1 we will prove in-
dependently of the present proposition that trivial cofibrations are the same
as anodyne cofibrations, hence showing that the weak factorization men-
tioned in the proposition exists and is simply the anodyne cofibration/Kan
fibration weak factorization system (whose existence follows from the small
object arguments).
We still give the first proof as we believe it is interesting on its own as it
allows to construct the model structure on simplicial sets without needing to
invoke Kan EX∞-functor.
Theorem 3.2 of [14] claims that the 2-category of presentable categories en-
dowed with a class of cellular morphisms generated by a set of morphisms
is closed under pseudo-pullback, and that these pullback are constructed ex-
plicitly: the underlying category is the pullback of categories, and the class
of cellular morphisms are the morphisms whose image in each component
are in the specified classes. We apply this to the following square:

P (Kan-Cplx,TrivFib)

(∆̂, Cof) (Kan-Cplx,All arrows)

⌟
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here “Cof” denotes the class of cofibration in ∆̂ which is generated by a set.
Kan-Cplx denotes the category of “algebraic Kan complexes”, i.e. simplicial
set endowed with chosen lifting against horn inclusion and of morphisms
compatible to these choices of lifting. The functor ∆̂ → Kan-Cplx sends
any simplicial set to the “free algebraic Kan complexes it generates”,i.e. the
left adjoint to the forgetful functor from algebraic Kan complex to simplicial
set, or equivalently the functor sending a simplicial set to its canonical fibrant
replacement as produced by R.Garner version of the small object argument.
The class TrivFib is the left class of the weak factorization on Kan-Cplx
cofibrantly generated by the image of the horn inclusion in ∆̂. The right class
of the weak factorization system is hence exactly the class of morphisms
whose image by the forgetful functor to ∆̂ are Kan fibrations. It follows that
the morphism in ∆̂ which are sent to “trivial cofibrations” in Kan-Cplx are
exactly the arrows that have the left lifting property against all Kan fibration
between Kan complexes. Hence in this case the pullback is the category
of simplicial sets with as set of cellular morphisms the maps that are both
cofibrations and have the left lifting property against Kan fibration between
Kan complexes, i.e. the “trivial cofibrations” as defined above, hence this
class of arrow is generated by a set, and hence by the small object argument
it is one half of a weak factorization system.

2.2.8 Remark. After writting this paper, the non-constructive argument used
in the proof of Proposition 2.2.7 have been considerably generalized in sec-
tion 4 of [9], leading to the general notion of “left and right saturation” of a
combinatorial or accessible pre-model category. This is a special case of left
saturation of a combinatorial pre-model category.

2.2.9 Theorem. There is a model structure on the category of simplicial sets
such that:

• The equivalences are as in Definition 2.2.3.

• The cofibrations and trivial fibrations are the same as in Theorem 1.1.

• The fibrations are the strong fibration of Definition 2.2.3.

Proof. We have two weak factorization systems, trivial cofibrations have
been defined as the cofibrations that are equivalences, and it was shown in
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Lemma 2.2.6 that trivial fibrations are the (strong) fibrations that are equiv-
alences. Equivalences are stable by composition, satisfies 2-out-of-6 and
contains isomorphisms by definition, so this concludes the proof.

2.2.10 Proposition. The model structure of Theorem 2.2.9 is left proper, i.e.
the pushout of a weak equivalence along a cofibration is a weak equivalence.

Proof. Given a pushout square in the category of simplicial sets:

A C

B D

∼

f

then as the forgetful functor to semi-simplicial sets preserves all colimits,
this square is again a pushout in the category of semi-simplicial sets. In
this category every object is cofibrant, and pushout along a cofibration be-
tween cofibrant objects is a left Quillen functor hence preserves equivalences
between cofibrant objects, hence f is an equivalence in the category of semi-
simplicial sets, and hence is an equivalence in ∆̂ by Definition 2.2.3.

3. Kan EX∞-functor

The goal of this section is to introduce Kan’s EX and EX∞ functors and
to use them in Section 3.5 to prove the remaining claim concerning the
simplicial model structure. Most of the results here were (in their classi-
cal form) originally proved by Kan in [12] (often with quite different proof
than the ones we will provide here), but we will mostly follow the approach
of S.Moss in [15] which we will make constructive by only adjusting some
details.
Section 3.1 is a preliminary section that is of some independent interest but
which will have only a very marginal role in the paper: it will only be used
to prove some decidability conditions (more precisely Lemma 3.4.4, which
will be an easy consequence of Lemma 3.1.8 and Proposition 3.1.10). As
such it can be easily ignored by the reader.
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Section 3.2 review the notion of “P-structure” introduced by S.Moss, which
is mostly a language to talk more conveniently about “Strongly anodyne
cofibrations”, i.e. transfinite composition of pushouts of coproducts of horn
inclusion. This is a key tool to structure the proof of the main results of
Section 3.4.
Section 3.3 introduce Kan’s barycentric subdivision functor SD, its right ad-
joint EX and Kan’s EX∞ functor and proves some of their basic properties.
This is very classical material that we reproduce here mostly for complete-
ness and to discuss some constructive aspect.
Section 3.4 reproduces (with some modifications to make it constructive)
S.Moss’ proof in [15] that the natural transformation X → EX∞ X is an an-
odyne cofibration. Constructively this only works when X is cofibrant. We
also noted that S.Moss proof can be used to obtain a result which apparently
was not known even classically: for any morphisms f : X → Y (with X
cofibrant) the natural morphism:

X → EX∞ X ×EX∞ Y Y

is anodyne. This was known classically when Y is terminal, or when X → Y
is a fibration, and we will actually only use it in these two special cases, but
it appears that they can be proved at the same time using S. Moss’ argument.
Finally Section 3.5 uses the properties of this functor to conclude that all
Kan fibrations are strong fibrations (Proposition 3.5.1) and that the model
structure on simplicial sets is indeed right proper (Proposition 3.5.2).

3.1 Degeneracy quotient and questions of decidability

In this section we establish some general results about a notion of “degen-
eracy quotient” that we will introduce. While the notion might have some
interest on its own in other context its only use in the present paper is to
prove some decidability results, which will follow from Lemma 3.1.8 below.
In fact, the only uses of this section in the present paper is in the proof of the
decidability conditions of Lemma 3.4.4. Proposition 3.1.11 is not useful for
the present paper, but will serve in some future work, in particular in [5] and
it was more natural to include its proof here.

3.1.1 Definition. A morphism f : X → Y between simplicial sets is said to
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be degeneracy detecting if:

∀x ∈ X, f(x) is a degenerate cell ⇒ x is a degenerate cell

Of course the converse implication is true for any simplicial map, so one has
that x is a degenerate cell if and only if f(x) is. One says that a cell x ∈ Xn

is σ-degenerate for some degeneracy σ : [n] → [m] if x = σ∗y for some y.

3.1.2 Lemma. Let σ : [n] → [m] be any degeneracy and x ∈ Xn any cell.
The following are equivalent:

(i) x is σ-degenerate.

(ii) For all face maps i : [k] → [n] such that the composite σi is non-
injective, the cell i∗x is degenerate.

Proof. If x = σ∗y then for any such i, i∗x = (σi)∗y which is degenerate if
σi is non-injective, so (i) ⇒ (ii).
Conversely, let x satisfy (ii). If σ is the identity the result is trivial. If σ
is not injective, then x is in particular a degenerate cell, i.e. there exist a
non-trivial degeneracy s : [n] → [k] such that x = s∗y. Note that y = d∗x
for d : [k] → [n] any section of s. If for all section d of s, σd is injective,
then Lemma 3.1.3 below shows that s factors as jσ for some degeneracy
j : [m] → [k] and x = s∗y = σ∗j∗y is indeed σ-degenerate. If now σd is
non-injective for some section d of s, then y = d∗x is a degenerate cell by
assumptions, hence one can write x = s′∗y′ for y′ of lower dimension than x
and start the argument above again, an induction on the dimension concludes
the proof.

3.1.3 Lemma. Let σ : [n] → [m] and s : [n] → [k] be two degeneracy,
assume that for all d : [k] → [n] a section of s, σd is injective, then there
exists a (unique) j : [m] → [k] such that s = jσ.

One easily see it is also a necessary condition.

Proof. One needs to show that, under the assumption of the lemma, for any
two elements i, j ∈ [n] if σi = σj then si = sj. If si ̸= sj, then we can
find a section d of s such that dsi = i and dsj = j, indeed, in order to get
a section of s, we just need to chose for each k the value d(k) ∈ s−1{k}.
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So as long as si ̸= sj, we can chose d(si) = i and d(sj) = j, and for any
other k ∈ [m], we can, for example, take for d(k) the smalest element of
the fiber s−1{k}. Of course, all this is constructively possible because [m] is
a finite decidable set. Given such a section d, we have σj = (σd)(sj) and
σi = (σd)(si), so the injectivity of σd implies that σi ̸= σj. As equality in
[n] is decidable one can take the contrapositive and concludes the proof.

3.1.4 Proposition. Let f : X → Y be a map between simplicial sets, then
the followings conditions are equivalent:

(i) f is degeneracy detecting.

(ii) If f(x) is σ-degenerate for some degeneracy σ then x is σ-degenerate
as well.

(iii) f has the (unique) right lifting property against all the degeneracy
map ∆[n] → ∆[m].

Proof. (ii) clearly implies (i) and the converse is immediate from Lemma 3.1.2.
The lifting in (iii) is automatically unique as degeneracy are epimorphisms
in the presheaf category and this lifting property is a reformulation of (ii).

Given a simplicial set X , x ∈ X([n]) and σ : [n] → [m] a degeneracy, one
defines X[(x, σ)] as the pushout:

∆[n] X

∆[m] X[(x, σ)]

σ

x

X[(x, σ)] is the universal for map X → Y making x “σ-degenerate”, i.e.
given a morphism f : X → Y , it factors as X → X[(x, σ)] if and only if
f(x) = σ∗y for some y ∈ Y ([m]), and such a factorization is unique when
it exists.
More generally, given a collection (xi ∈ X([ni]))i∈I and σi : [ni] → [mi]
one can define an object X[(xi, σi)] as the pushout of a coproduct of de-
generacy maps, which has the following universal property: a morphism
f : X → Y factors (uniquely) through X → X[(xi, σi)] if and only if for all
i ∈ I , f(xi) is a σi-degenerate cell.
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3.1.5 Definition. A morphisms is said to be a degeneracy quotient if it is
obtained as X → X[(xi, σi)] for some collection of xi ∈ X([ni]) and σi :
[ni] ↠ [mi] as above.

3.1.6 Proposition. Degeneracy quotient and degeneracy detecting maps form
an orthogonal factorization system.
More precisely, for any morphism f : X → Y its factorization is obtained
as:

X → X[(xi, σi)] → Y

where (xi, σi) is the collection of all xi and σi such that f(xi) is a σi-
degenerate cell.

Note that this is essentially nothing more than the small object argument,
though it is notable that in this case it converges in a single step.

Proof. It is clear from the universal property of X[(xi, σi)] that one has a
factorization as in the lemma, and the first map is by definition a degeneracy
quotient. The map X[(xi, σi)] → Y is degeneracy detecting: given x ∈
X[(xi, σi)], it is the image of a x0 ∈ X , if the image of x is a degenerate
cell in Y , one has f(x0) = σ∗y, hence (x0, σ) appears in the definition of
X[(xi, σi)], which forces the image of x0, i.e. x, to be degenerate.
The orthogonality of the two class is relatively immediate as well. Given a
lifting problem:

X A

X[(xi, σi) B

where the right map is degeneracy detecting, then a diagonal filling exists if
and only the image of the xi in A satisfies the appropriate degeneracy con-
ditions. As their images in B satisfies them because of the existence of the
square, and as the map A → B is degeneracy detecting, this is immediate.

93 



S. HENRY CONSTRUCTIVE KAN–QUILLEN STRUCTURE

The following is more or less a reformulation of what is a degeneracy quo-
tient that will be convenient:

3.1.7 Lemma. An epimorphism of simplicial sets p : A → B is a degeneracy
quotient if and only if for any map f : A → X , the map f factors through p
if and only if the following condition holds:

∀a ∈ A([n]) p(a) is a degenerate cell ⇒ f(a) is a degenerate cell. (D)

Note that if such a factorization exists then condition (D) holds without any
assumption on p, so that if p is a degeneracy quotient then a factorization
exists if and only condition (D) holds.

Proof. It follows from Lemma 3.1.2, that condition (D) is equivalent to:

∀a ∈ A([n]) p(a) is a σ-degenerate cell ⇒ f(a) is a σ-degenerate cell.
(D’)

A factorization of f through p is always unique as p is an epimorphism, so
saying that f factors through p if and only if condition (D’) (or (D) ) holds
is equivalent to saying that B (endowed with the map p : A → B) has the
universal property of A[(ai, σi)] where (ai, σi) are all the pairs of ai ∈ A([n])
such that p(ai) is a σi-degenerate cell. Hence this indeed holds if and only
if A → B is a degeneracy quotient, as because of Proposition 3.1.6, any
degeneracy quotient p : A → B is isomorphic to A → A[(ai, σi)] where
(ai, σi) are all the pairs of ai ∈ A([n]) such that p(ai) is a σi-degenerate
cell.

This observation has a quite interesting consequence that will be extremely
useful to us, and in fact is the unique reason why we are interested in degen-
eracy quotients in the present paper:

3.1.8 Lemma. Given p : A → B a degeneracy quotient of finite decidable
simplicial sets, and f : A → X a morphisms to a cofibrant simplicial set, it
is decidable if there exists a diagonal lift:

A X

B.

?
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Proof. One can use condition (D) of Lemma 3.1.7 to test whether such a
diagonal lift exists. As B is finite and decidable, degeneracy in B is decid-
able. So for each cell a ∈ A it is decidable if “ p(a) is a degenerate cell ⇒
f(a) is a degenerate cell” as both side of the implication are decidable. More-
over this condition is automatically valid for all degenerate cells of A, so it
is necessary to test it only on a finite number of cells to know whether f
factors through p, which makes the validity of condition (D) decidable and
hence the existence of a diagonal lift decidable.

The following lemma is obvious, but will be a convenient tool to organise
the proof that certain maps are degeneracy quotients:

3.1.9 Lemma. Let p : A → B be an epimorphism. One considers the
equivalence relation ∼p on A generated by:

• If p(a) is a σ-degenerate cell, then a ∼p σ
∗t∗a for any section t of σ.

• ∼p is compatible with all the faces and degeneracy maps of A.

Then p is a degeneracy quotient if and only if any two a, a′ ∈ A such that
pa = pa′ one has a ∼p a

′.

Note that for any morphisms, a ∼p a
′ ⇒ pa = pa′.

Proof. One easily see that ∼p is exactly the simplicial equivalence relation
by which one needs to quotient A to obtain A[(ai, σi)] where (ai, σi) is the
family of all ai such that p(ai) is σi degenerate in B. By the second half of
Proposition 3.1.6, the map p is a degeneracy quotient if and only if the second
maps in the factorization A → A[(ai, σi)] → B is an isomorphism, which
happens if and only if the relation ∼p is equivalent to p(a) = p(a′).

We continue with a proposition that allows to get many examples of degen-
eracy quotient (see for example the proof of Lemma 3.4.4).

3.1.10 Proposition. Let P be a poset with an idempotent order preserving
endomorphism π satisfying either ∀x, πx ⩽ x or ∀x, πx ⩾ x. Let Q = πP .
Then the morphism:

N(P ) → N(Q)

between the simplicial nerve induced by π : P → Q is a degeneracy quo-
tient.
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Proof. We assume that πx ⩽ x. The other case follows by simply revers-
ing the order relation on P and on all objects of the category ∆. We use
Lemma 3.1.9.
Let p0 ⩽ p1 ⩽ · · · ⩽ pn be an element of N(P )n and assumes that p0, . . . , pi−1 ∈
Q, then one forms

p0 ⩽ p1 ⩽ · · · ⩽ pi−1 ⩽ πpi ⩽ pi ⩽ · · · ⩽ pn

It is an element of N(P )n+1 whose image in Q is degenerate, as σi∗(πp0 ⩽
· · · ⩽ πpn). This implies that in N(P ):

(p0 ⩽ · · · ⩽ pn) ∼ (p0 ⩽ · · · ⩽ pi−1 ⩽ πpi ⩽ pi+1 ⩽ · · · ⩽ pn)

In the sense of the equivalence relation of Lemma 3.1.9. Hence using this
for all i from 0 to n, one obtains that for any sequence p0 ⩽ · · · ⩽ pn all the

(πp0 ⩽ · · · ⩽ πpi−1 ⩽ pi ⩽ · · · ⩽ pn)

for i = 0, . . . , n+ 1 are equivalent. In particular any sequence is equivalent
to its image by π and finally any two sequences whose image in N(Q) are
the same are equivalent.

We finish with a proposition that is useful in a related work [5]):

3.1.11 Proposition. The class of degeneracy quotients is stable under pull-
back.

Proof. First we show that given a pullback of the form:

P ∆[n]

∆[k] ∆[m]

ϕ
⌟

σ

f

where σ is a degeneracy map, the map ϕ is a degeneracy quotient. This is
proved using Proposition 3.1.10. Indeed in such a pullback P is nerve of the
corresponding pullback of posets, that we will also denote P (because the
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nerve functor commutes with pullback). We will show that the map P → [k]
is of the form of Proposition 3.1.10. The map σ : [n] ↠ [m] is of this form,
with the section [n] → [m] sending each i ∈ [m] to the smallest element of
the fiber, this gives an order preserving idempotent π : [n] → [n] such that
πx ⩽ x. This induce an idempotent on P sending a pair (i, j) (with i ∈ [k],
j ∈ [n]) to π′(i, j) = (i, πj). This is still an element of P , π′(i, j) ⩽ (i, j) it
is idempotent, and its image identifies naturally with [k].
Hence ϕ : P → ∆[k] is indeed a degeneracy quotient by Proposition 3.1.10.
We now show that given any pullback of the form:

P ∆[n]

X ∆[m]

ϕ
⌟

σ

f

for a degeneracy σ, the map ϕ is a degeneracy quotient.
Indeed, one write:

X = Colim
∆[k]→X

∆[k]

Given a x : ∆[k] → X one writes Px the pullback:

Px P ∆[n]

∆[k] X ∆[m]

ϕx
⌟

ϕ
⌟

σ

f

All map ϕx are degeneracy quotient by the first part of the proof. As the
category of simplicial sets is a topos, colimits are universal, hence the mor-
phism ϕ is the colimit of the arrows ϕx (in the category of arrows). As the
class of degeneracy quotient is the left class of an orthogonal factorization
system, the colimit ϕ is also a degeneracy quotient. To give an explicit argu-
ment: given a lifting problem of ϕ against a degeneracy detecting map one
can construct for each x a lifting:
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Px P A

∆[k] X B

ϕx ϕ

By uniqueness of the lifts, they will all be compatible and produces a mor-
phisms from the colimits to A making the square commutes.
Finally we can prove the claim in the proposition. Given a morphism f :
X → Y any degeneracy map ∆[n] → ∆[m] over Y (i.e with δ[m] →
Y ) is sent by the pullback functor ∆̂/Y → ∆̂/X to a degeneracy quotient.
But a general degeneracy quotient is a pushout of coproduct of degeneracy
maps, and this coproduct and pushout are preserved by the pullback functor
(because the category of simplicial sets is cartesian closed), and coproduct
of pushout of degeneracy quotient are degeneracy quotient so this concludes
the proof.

3.2 P-structures

This section recalls the notion of P -structure introduced in [15] with some
minor modification to make it more suitable to the constructive context. A
“P-structure” on a morphism f : A → B is essentially a recipe for construct-
ing it as an iterated pushout of coproduct of horn inclusion Λi[n] ↪→ ∆[n].
The general idea of this definition is that in such an iterated pushout cells are
added by pairs: each pushout by a horn inclusion Λi[n] → ∆[n] adds exactly
two non-degenerate cells:

(I) The cell P corresponding to the identity of ∆[n].

(II) The cell F corresponding to the i-th face ∂i[n] : ∆[n− 1] → ∆[n].

These two cells are connected by F = diP . So if A ↪→ B is constructed by
iterating such pushouts, then one can partition the non-degenerate cells of B
that are not in A into “type I” and “type II” and there should be a bijection
which associates to any type II cell the type I cell that is added by the same
pushout. The formal definition looks like this:
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3.2.1 Definition. Let f : A → B be a cofibration of simplicial sets. A
P -structure on f is the data of:

• A (decidable) partition of the set of non-degenerate cells of B which
are not in A into:

BI

∐
BII

called respectively type I cells and type II cells.

• A bijection P : BII
∼→ BI.

Such that:

1. For all x ∈ BII, dim(Px) = dim(x) + 1

2. For all x ∈ BII, there is a unique i such that di(Px) = x.

3. Every cell of BII has finite P -height (see Definition 3.2.2 and Lemma 3.2.3
below).

Recall that, if f : A → B is a cofibration, it is decidable whether a cell is in
A or not, and for cells not in A it is decidable whether they are degenerate or
non-degenerate. So a P -structure gives a partition of the cells of B into for
parts: the cells of A, the degenerate cells of B not in A, the type I cells and
the type II cells.

In [15], the last condition of this definition was formulated as a well-foundness
condition. Well-foundness is a tricky notion constructively so we prefer to
avoid it. It should be clear to the reader that the condition we will now
explain is equivalent to well-foundness if one assumes classical logic, or if
one has a nice enough notion of well-foundness constructively. Intuitively
this last condition just asserts that the “recipe” given by the P -structure to
construct B from A as an iterated pushout of horn inclusion is indeed well-
founded, i.e. can be executed. We will formulate it by introducing for each
cell b ∈ B a set:

Ant(b)
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which corresponds to the set of cells that needs to be constructed before
b in the process described by P . In [15] the well-foundness condition is
essentially that the order relation generated by b′ ∈ Ant(b) is well-founded.
As each Ant(b) is a finite set this is equivalent to the fact that for each b there
is an integer k such that when iterating Ant(b) more than k times one has
only cells in A. It is this second definition that we will use in our constructive
context.

More precisely: Given a cell b ∈ BII, let i be the unique integer such that
diPx = x, one defines:

Ant0(b) = {djP (b)|j ̸= i}
And one defines the set Ant(b) as the union of Ant0(b) and all (iterated)
faces of cells appearing in Ant0(b).
Similarly, if b = Pb′ is type I, one defines:

Ant(b) = Ant(b′)

Finally, if b ∈ A:

Ant(b) = ∅
and if b is not in A but degenerate, then

Ant(b) = Ant(b′)

where b′ is the unique non-degenerate cell such that b = σ∗b′.
One also defines AntII(b) to be the set of non-degenerate type II cell in
Ant0(b). Note that in all cases Ant(b) and Ant0(b) are Kurawtowski-finite6

sets, and as the subset of type II cell is decidable, AntII(b) is also Kurawtowski-
finite. One defines Antk(b) and AntkII(b) by:

Ant1(b) = Ant(b) Antk(b) =
⋃

c∈Antb

Antk−1c

Ant1II(b) = AntII(b) AntkII(b) =
⋃

c∈AntIIb

Antk−1
II c

6A set X is said to be Kuratowski-finite if ∃n, ∃x1, . . . , xn ∈ X,∀x ∈ X,x =
x1 or . . . or x = xn.
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Note that when applied to a non-degenerate type II cell b ∈ B, all elements
of AntII(b) (and hence of AntkII(b) as well) are non-degenerate type II cells
of the same dimension as b.

3.2.2 Definition.

• One says that b has finite P -height if there exists an integer k such
that:

Antk(b) = ∅

• One says that b has finite weak P -height if there is an integer k such
that:

AntkII(b) = ∅

Note that for each given k and b ∈ B, as the sets Antk(b) and AntkII(b) are
Kuratowski-finite it is decidable whether or not Antk(b) and AntkII(b) are
empty. In particular, assuming b has finite (weak) P -height there is smallest
integer k, called the (weak) P -height of b, such that Antk(II)(b) = ∅. But in
general it might not be decidable whether b has finite (weak) P -height or
not.

3.2.3 Lemma. Let f : A ↪→ B be a cofibration with a P -structure satisfying
all the conditions of Definition 3.2.1 but the last. Then the following are
equivalent:

• Every b ∈ B has finite P -height.

• Every non-degenerate type II cell b ∈ BII has finite weak P -height.

Proof. It is clear that AntkII(b) ⊂ Antk(b) hence the first condition implies
the second. Conversely, assume that every non-degenerate b ∈ BII has finite
weak P -height. We will prove by double induction on both the dimension
and the weak P -height that all cells of B have finite P -height.
First we assume that all cells of dimension < n have finite P -height. Cells
of A have P -height zero. All cells of B of dimension n that are either degen-
erate or of type I satisfies Ant(b) = Ant(b′) for some b′ of dimension strictly
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less than n, hence for b′ of finite P -height by the induction assumption. As
Antk(b) = Antk(b′) this implies that b has finite P -height as well.
It remains to show that all non-degenerate n-cells of type II in B have finite
P -height. We do that by induction on their weak P -height.
Indeed for a general type II cell b, Ant(b) is constituted of:

• Degenerate or type I cell, that are already known to have finite P -
height.

• Faces of cell in Ant0(b) which are hence of dimension < n and hence
are known to be of finite P -height.

• Non-degenerate type II cells that are hence elements of AntII(b), but

∅ = AntkII(b) =
⋃

c∈AntIIb

Antk−1
II c

hence all c ∈ AntIIb have weak P -height at most k−1, and hence they
all have finite P -height by induction.

So all elements of Ant(b) have finite P -height, let m be the maximum of all
these P -height, one has that:

Antm+1(b) =
⋃

c∈Ant(b)

Antm(b) = ∅

3.2.4 Lemma. A cofibration with a P -structure is anodyne. More precisely
it is a ω-transfinite composition of pushouts of coproducts of horn inclusions.

A map will be called “strongly anodyne” if it admits a P -structure.

Proof. Let A ↪→ B be a cofibration with a P -structure.
Let Bk ⊂ B be the subset of B of cells of P -height at most k. One has
B0 = A, and Bk is a sub-simplicial set. Indeed, for every cell b ∈ B all
faces of b appear in Ant(b) or are such that Ant(dib) = Ant(b) and all
degeneracies of b satisfies Ant(σ∗b) = Ant(b), hence they all have P -height
at most k.
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Let U be the set of non-degenerate type II cell of B of P -height exactly k.
For each u ∈ U , let iu be the unique integer such that diuP (u) = u.
Then the corresponding map ∆[n]

Pu→ Bk sends Λiu [n] to Bk−1 and both u
and Pu are in Bk −Bk−1.
Hence taking the pushout:

Λiu [n] ∆[n]

Bk−1 R

produces the simplicial set R ⊂ Bk whose cells are all those of Bk−1, u and
Pu and all their degeneracy. Taking the pushout by the coproduct of all these
horn inclusions for all u ∈ U gives Bk−1 → Bk.
Hence B =

⋃
Bk is a ω-transfinite composition of the maps Bk → Bk+1

which are all pushouts of coproducts horn inclusions.

Classically one also has the converse: any transfinite composition of pushouts
of coproducts horn inclusions has a canonical P -structure. Constructively
this sort of statement is somehow problematic, mostly because the gen-
eral notion of “transfinite composition” requires a notion of ordinal to be
formulated appropriately, but it works perfectly fine if one restricts to ω-
composition:

3.2.5 Proposition. The class of strongly anodyne cofibration contains all
horn inclusion and is stable under pushout and ω-transfinite7 composition.
Any morphism can be factored as a strongly anodyne cofibration followed
by a Kan fibration, and any anodyne cofibration is a retract of a strongly
anodyne cofibration.

Proof. Horn inclusion have a trivial P -structure with one cell of type I and
one cell of type II. It is easy to see that coproduct, pushout and transfinite
composition of strongly anodyne cofibration have P -structure induced by
the P -structure we start from, for example if A ↪→ B has a P -structure, then

7Here the restriction to “ω” is only to avoid the discussion of what is an ordinal con-
structively.
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C → B
∐

AC has a P -structure where a cell in B
∐

AC is type I or II if
and only if it is type I or II for the P -structure on A ↪→ B and the map
P is the same as the one on B, and similarly for coproducts and transfinite
compositions.
It follows that the factorization of the map as an anodyne cofibration fol-
lowed by a Kan fibration obtained by the small object argument is a strongly
anodyne cofibration as it is constructed as a ω-transfinite composition of
pushout of coproduct of horn inclusion. Finally any anodyne cofibration j
can be factored as a strongly anodyne cofibration followed by a Kan fibra-
tion, and the usual retract lemma 2.2.5 shows that j is a retract of the strongly
anodyne cofibration part of the factorization.

We finish this section by mentioning a very important example where this
machinery applies, mostly to serve as an example of how it can be used.
Given two morphisms f : A → B and g : X → Y between simplicial
sets one defines as usual f ×g the cartesian “corner-product” or “pushout-
product” of f and g as the morphism:

f ×g : (A× Y )
∐
A×X

(B ×X) → B × Y,

one then has the following well known proposition, which we have referred
to in the introduction as the corner-product conditions, and which is a key
point in establishing the existence of the weak model structure on simplicial
sets. It also corresponds to the fact the model structure on simplicial sets that
we are constructing is cartesian.

3.2.6 Proposition. If i and j are cofibrations, then i ×j is a cofibration as
well. If one of them is anodyne then i ×j is also anodyne.

As usual (following for example the appendix of [10]) this implies the dual
condition, that if i : A → B is a cofibration and p : Y → X is a fibration,
then the map [B, Y ] → [B,X] ×[A,X] [A, Y ] is a fibration (the brackets de-
notes the cartesian exponential in simplicial sets), and it is a trivial fibration
as soon as either i is anodyne or p is a trivial fibration.

Proof. By usual abstract manipulation (see for example the appendix of
[10]) it is sufficient to show it when i and j are generating cofibrations/generating
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anodyne cofibration. If i and j are generating cofibrations it is very easy to
check that i ×j is a cofibration as defined in the statement of our main the-
orem 1.1. It remains to check that if i is one of the generating cofibrations,
i.e. ∂∆[n] ↪→ ∆[n] for some n, and j is one of the generating anodyne
cofibrations, i.e. Λk[m] ↪→ ∆[m] for some k,m, then i ×j is an anodyne
cofibration. This is done by constructing an explicit P -structure on i ×j.
The first direct proof of this claim that we know of is in [11] (theorem 3.2.2),
here we follow the proof of S.Moss’ in 2.12 of [15] to show how P-structures
work. We only treat the case k < m for simplicity. The case k > 0 can be
treated in a completely similar way, by simply reversing the order relation
on the [n], which allows to deduce the missing case k = m.
A p-cell of ∆[n]×∆[m] is an order preserving function [p] → [n]× [m]. It
is non-degenerate if and only if it is an injective function. The domain D of
i ×j is:

(
∆[n]× Λk[m]

) ∐
∂∆[n]×Λk[m]

(∂∆[n]×∆[m]) =
(
∆[n]× Λk[m]

)⋃
(∂∆[n]×∆[m])

It corresponds to the morphisms [p] → [n] × [m] such that either they skip
a column or they skip a row other than k, where we consider that [n] =
{0, . . . , n} numbers the column of [n] × [m] and [m] = {0, . . . , k, . . . ,m}
numbers the row. So the only non-degenerate cell of ∆[n] × ∆[m] that are
not in D are injection [k] → [n]×[m] whose first projection takes all possible
value, and whose second projection takes all possible values except maybe
k.
One says that a cell is type II if either it skip the kth row by going directly
from (a, k−1) to (a+1, k+1), in which case one defines Px by adding the
intermediate step (a, k−1), (a+1, k), (a+1, k+1) , or if the last point where
the kth row is reached, is (a, k) followed by (a+1, k+1) in which case Px
is defined by inserting the intermediate step: (a, k), (a, k+1), (a+1, k+1).
It is an easy exercise to check that this defines a P -structure.

3.3 Kan EX and SD functors

Consider the barycentric subdivision functor ∆ → ∆̂:
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∆[n] 7→ SD ∆[n] := NK([n])

Where K([n]) denotes the set of finite non-empty decidable subsets of [n].
Functoriality in [n] is given by direct image of subsets on K[n]).
This extends to an adjunction:

SD : ∆̂ ⇆ ∆̂ : EX

with:

(EX X)n = Hom(SD ∆[n], X) SD X = Colim
∆[n]→X

SD ∆[n]

The barycentric subdivision construction has a nice expression not just for
the ∆[n], but also for all objects which are in the image of the functor ∆̂+ →
∆̂, indeed:

3.3.1 Proposition. The composite:

∆̂+ → ∆̂
SD→ ∆̂

is the functor sending a semi-simplicial set X to N(∆+/X).

One can note that as the category ∆+/X is directed, the nerve N(∆+/X)
is itself the image of the semi-simplicial set of its non-degenerate cells. We
won’t make any use of this remark though.

Proof. This functors X 7→ N(∆+/X) preserves colimits, because it can be
rewritten as:

N(∆+/X)k =
∐

F :[k]→∆+

X(F (k))

which is levelwise a coproduct of colimits-preserving functor.
Hence we are comparing to colimits preserving functor, so it is enough to
show they are isomorphic when restricted to representable. But ∆+/[n] ≃
K[n] functorially on map of ∆+ so this concludes the proof.
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3.3.2 Proposition. SD preserves cofibrations and anodyne cofibrations, EX

preserves fibrations and trivial fibrations.

Proof. It is enough to check that the image of the generating cofibrations
and generating anodyne cofibrations by SD are cofibrations and anodyne
cofibrations respectively.
In both case one can use Proposition 3.3.1 to compute SD on the generators
as they are image of semi-simplicial maps. This makes the results immediate
for cofibrations:

SD ∂∆[n] → SD ∆[n]

is the morphism N(K[n] − {[n]}) → N(K[n]) which is clearly a levelwise
complemented monomorphisms between finite decidable, hence cofibrant,
simplicial sets.
For the generating anodyne cofibrations,

SD Λi[n] → SD ∆[n]

is the morphisms N(K[n] − {[n], [n] − {i}}) → N(K[n]). It can then be
checked completely explicitly that this is a (strongly) anodyne cofibrations,
see Proposition 2.14 of [15] for an explicit description of a P -structure.

There is a natural transformation:

SD ∆[n] → ∆[n]

Which is induced by the order preserving function:

max : K[n] → [n]

sending each (decidable) subset of [n] to its maximal element. By Kan ex-
tension, this gives us natural transformations:

SD
m→ Id Id

n→ EX

One can hence define a sequences of functors:
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X EX X EX2X . . . EXkX . . . EX∞ X
nx nEX X nEX2 X

nEXk−1 X
nEXk X

with EX∞ the colimit.

3.3.3 Lemma. For each k, n, there is a (dotted) arrow Ψk
n making the fol-

lowing triangle commute.

SD2 Λk[n] SD Λk[n]

SD2∆[n]

SD(m
Λk[n]

)

Ψk
n

Proof. The proof given in [3] as proposition 2.1.39 is purely combinatorial
and constructive.

3.3.4 Corollary. For every cofibrant simplicial set X , EX∞ X is a Kan com-
plex.

The proof that follows essentially comes from [3]. If one does not assume
that X is cofibrant it still applies to prove that X has the “existential” right
lifting property against horn inclusion, but it does not seem possible to give
a uniform choice of solution to all lifting problems without this assumption.
Without such a uniform choice of lifting against horn inclusion one can-
not construct solution to lifting problems against more complicated anodyne
cofibrations that involves an infinite number of pushout of horn inclusion,
unless we assume the axiom of choice.

Proof. Lemma 3.3.3 allows to show that given any solid diagram as below,
there is a dotted filling:

Λk[n] EX X

∆[n] EX2X

nEX X
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Indeed, through the adjunction the map Λk[n] → EX X corresponds to an
arrow SD Λk[n] → X , which due to Lemma 3.3.3 can be extended in:

SD2 Λk[n] SD Λk[n] X

SD2∆[n]

SDm
Λk[n]

SD2

ψk
n

The resulting map SD2∆[n] → X corresponds to a map ∆[n] → EX2X
which has exactly the right property to make the square above commute.
Now by smallness of Λk[n], any map Λk[n] → EX∞ X factors in EXkX ,
the observation above produces a canonical filling in ∆[n] → EXk+1X . The
choice of the filling, seen as taking values in EX∞ X , in general depends on
k, but if one further assume that X is cofibrant, than by Lemma 3.4.4, the
maps EXkX → EXk+1X are all levelwise decidable inclusion, so there is a
smallest k such that the map Λk[n] → EX∞ X factors into EXkX and this
produces a canonical solution to the lifting problem.

3.3.5 Proposition. If f : X → Y is a fibration (resp. a trivial fibration)
with X and Y cofibrant then EX∞ f : EX∞ X → EX∞ Y is also a fibration
(resp. a trivial fibration).

Similarly to what happen with Corollary 3.3.4, without the assumption that
X and Y are cofibrant it is only possible to obtain the “existential” form of
the lifting property and no canonical choice of lifting.

Proof. Given a lifting problem:

Λk[n] EX∞ X

∆[n] EX∞ Y

∼

There is an i such that it factors into:
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Λk[n] EXiX EX∞ X

∆[n] EXi Y EX∞ Y

∼

Moreover, assuming X and Y are cofibrant, Lemma 3.4.4 shows that EXiX ⊂
EXi+1X are levelwise decidable inclusion, so (by finiteness of Λk[n] and
∆[n]) the set of i such that a factorization as above exists is decidable, and
hence there is a smallest such i. Proposition 3.3.2 shows that EXi f is a fi-
bration, so the first square has a diagonal lifting and this concludes the proof.

3.4 S.Moss’ proof that X → EX X is an anodyne cofibration

Let f : X → Y be a simplicial morphism. One has a square:

X Y

EX∞ X EX∞ Y

Our goal in this section is to show that when X is cofibrant the induced map:

X → EX∞ X ×
Ex∞Y

Y

is a strong anodyne cofibration. Note that if Y = ∆[0] is the terminal object,
then Ex∞(Y ) = Y hence the statement above boils down to the fact that
X → Ex∞X is a strong anodyne cofibration. The idea to consider this
morphism comes form D.C Cisinski’s book [3, Cor 2.1.32], but the proof
below follows closely the proof given by S.Moss in [15] that X → EX∞ X
is a strong anodyne cofibration.
Following the argument given in [3, Cor 2.1.32] (reproduced in the proof of
Corollary 3.4.7 below), it will be enough to show:

3.4.1 Proposition. Given f : X → Y a simplicial morphism, with X cofi-
brant, then the morphism:
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X → EX X ×
EX Y

Y

is strongly anodyne.

The proof will be concluded in 3.4.6, essentially, we will construct an ex-
plicit P -structure on this map. This construction is mostly due to S.Moss
in [15]. In addition to the dependency in Y , the main new contributions of
this paper in this section is to show that assuming X is cofibrant one can
show that sufficiently many decidability conditions can be proved to make
S.Moss’ argument constructive. In order to do that properly one needs to
completely reproduce his argument.
Following, [15] one introduces two functions between the SD ∆[n].
Let jkn : SD ∆[n] → SD ∆[n] and rkn : SD ∆[n+ 1] → SD ∆[n] be the maps
defined at the level of posets by:

jkn{i} =

{
{i} if i ⩽ k
{0, . . . , i} if i > k

rkn{i} =


{i} if i ⩽ k
{0, . . . , i− 1} if i = k + 1
{i− 1} if i > k + 1

Both extended to non-singleton elements as binary join preserving maps.
These functions satisfies a certain number of equations, we list here those
that we will need, they are all due to S.Moss.
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3.4.2 Lemma.

jknj
h
n = jhnj

k
n = jhn 0 ⩽ h ⩽ k ⩽ n (1)

Id∆[n] = rkn ◦ SD ∂k+1
n+1 0 ⩽ k ⩽ n (2)

jknr
k
n = (SD σkn)j

k
n+1 0 ⩽ k ⩽ n (3)

jhnr
k
n = jhn(SD σkn) 0 ⩽ h < k ⩽ n (4)

rknj
h
n+1 = jhnr

k
n 0 ⩽ h ⩽ k ⩽ n (5)

rkn(SD ∂i+1
n+1) = (SD ∂in)r

k
n−1 0 ⩽ k < i ⩽ n (6)

jknr
k
nr

k
n+1 = jknr

k
n(SD σk+1

n+1) 0 ⩽ k ⩽ n (7)

jkn+1(SD ∂hn+1)j
k
n = jkn+1(SD ∂hn+1) 0 ⩽ k ⩽ n and 0 ⩽ h ⩽ n+ 1

(8)

jknr
k
n(SD ∂in+1)j

k−1
n = jknr

k
n(SD ∂in+1) 0 ⩽ i ⩽ k ⩽ n (9)

(SD σhn)j
k
n+1r

k
n+1 = jk−1

n rk−1
n (SD σhn+1) 0 ⩽ h < k ⩽ n+ 1 (10)

(SD σhn)j
k
n+1r

k
n+1 = jknr

k
n(SD σh+1

n+1) 0 ⩽ k ⩽ h ⩽ n (11)

Proof. All the functions involved are nerve of join preserving maps between
the K[n], so it is enough to check the relations at the level of posets and
when functions are evaluated at {i}, where one has explicit formulas for all
of them.

As functions between the SD ∆[n], jkn and rkn automatically acts on the cells
of EX X . One denotes this action by x 7→ xjkn and x 7→ xrkn which is
compatible to the identification of cells of EX X with functions SD ∆[n] →
x.
By equation (1), the jkn are an increasing family of commuting projection
whose image defines a series of subsets:

Xn = J0
n ⊂ J1

n ⊂ . . . Jnn = (EX X)n

where the identifications with (EX X)n and Xn comes from the fact that jnn
is the identity, and j0n : K[n] → K[n] has image isomorphic to [n], with
j0n : K[n] → [n] being the “Max” function used in the definition of the
natural transformation SD ∆[n] → ∆[n].

3.4.3 Notation. For X → Y any morphism, we define:

EXY (X) = EX X ×
EX Y

Y.
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An n-cell in EXY is a morphism SD ∆[n] → X whose image in Y factors
through the map SD ∆[n] → ∆[n]. I.e. it is an n-cell of x ∈ (EX X)n which
satisfies:

fxj0n = fx

Note that because of relation (1) and (5), EXY X , as a subsimplicial object
of EX X , is stable under the action of jkn and rkn on EX X . We also denote
by Jkn the image of jkn in (EXY X)n.
Before going any further, one needs to state some decidability conditions:

3.4.4 Lemma. If X is a cofibrant simplicial set, then:

1. The inclusion X ⊂ EXY X is levelwise decidable.

2. EXY X is cofibrant and X → EXY X is a cofibration.

3. The sets Jnk ⊂ (EXY X)n are decidable.

Proof. All these decidability problems correspond to the decidability of a
factorization of a map SD ∆[n] → X through some epimorphism SD ∆[n] →
K. In all these cases we will show that the corresponding epimorphism is a
degeneracy quotient using Proposition 3.1.10 and conclude about the decid-
ability using Lemma 3.1.8.

1. It corresponds to the map SD ∆[n] → ∆[n] which is the nerve of the
max function K[n] → [n], whose section i 7→ {0, . . . , i} satisfies the
condition of Proposition 3.1.10.

2. One just needs to check degeneracy are decidable in EX X , so it is
about the epimorphism SD(σ) : SD ∆[n] → SD ∆[m] for any degen-
eracy σ. It is the nerve of σ : K[n] → K[m] which has a section satis-
fying the condition of Proposition 3.1.10 which sends every P ∈ K[m]
to σ−1P

3. It corresponds to the map jkn : SD ∆[n] → jkn(SD ∆[n]), which is just
is the nerve of the projection jkn : K[n] → jknK[n] which is already of
the form of Proposition 3.1.10.
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We can now give the definition of the P -structure on X ↪→ EXY X .

• Type I cells are the non-degenerate cells v ∈ EXY (X) which are not8

in X and can be written as yrkn with y ∈ Jkn ⊂ EXY X .

• Point 8 of Lemma 3.4.5 will prove that being type I is decidable. Type
II cells are just the cells that are not of type I (and which are non-
degenerate and not in X).

• For any cell x one defines Px as xrkn where k is the smallest integer
such that x ∈ Jkn , i.e. x ∈ Jkn − Jk−1

n . Lemma 3.4.4 shows that the Jkn
are decidable so there is indeed a unique such integer k.

In order to show that being type I is decidable and that P defined this way
defines a bijection from type II cells to type I cells, one needs a few technical
lemma that we have regrouped in:

3.4.5 Lemma.

1. If x ∈ Jkn − Jk−1
n , then dk+1Px = x.

2. x ∈ Jkn if and only if Px ∈ Jkn+1

3. If x ∈ Jk−1
n then xrkn is degenerate.

4. P 2x is always a degenerate cell.

5. If x is a degenerate or type I cell or in X , then Px is a degenerate cell.

6. If x ∈ Jkn − Jk−1
n then for all i ⩽ k, di(Px) ∈ Jk−1

n .

7. If x ∈ Jkn − Jk−1
n then for all i, with k + 1 < i ⩽ n + 1, di(Px) is

either of type I or degenerate.

8. A non-degenerate cell x in (EXY X)n −Xn is type I if and only Px is
a degenerate cell.

8It appears that, because of point 2 of Lemma 3.4.5 and the fact that r0n is the same as
SD σ0, it is actually a consequence from the rest of the definition that type I cells are not in
X .

114 



S. HENRY CONSTRUCTIVE KAN–QUILLEN STRUCTURE

Proof. 1. dk+1Px is xrkn(SD ∂k+1) which is equal to x by equation (2).

2. Let k is the smallest value such that xjkn = x, i.e.Px = xrkn. Equation
(5) gives xrknj

k
n+1 = xjknr

k
n = xrkn. Hence Px ∈ Jkn+1, in particular

x ∈ Jhn ⇒ k ⩽ h ⇒ Px ∈ Jhn+1. Conversely, if Px ∈ Jkn+1 then:

xjkn = (Px)(SD ∂h+1)jkn (as x = dh+1Px)
= (Px)jkn+1(SD ∂h+1)jkn ( as Px ∈ Jkn+1)
= (Px)jkn+1(SD ∂h+1) (by equation (8))
= x ( Px ∈ Jkn+1 and x = dh+1Px)

Hence x ∈ Jkn .

3. xrkn = xjk−1
n rkn is a degenerate cell because of equation (4)

4. Let k such that x ∈ Jkn − Jk−1
n , then Px = xrkn = xjknr

k
n and Px ∈

Jkn+1 − Jk−1
n+1 because of point 2, hence P 2x = xrknr

k
n+1 = xjknr

k
nr

k
n+1

which is a degenerate cell because of equation (7).

5. Equations (10) and (11) show that if x is a degenerate cell then Px is a
degenerate cell. If x ∈ X , i.e. x ∈ J0

n then Px = xr0n but r0n = SD σ0

so Px is a degenerate cell.

It follows that if x is of type I, then x = yrkn with y ∈ Jkn if y ∈ Jk−1
n

then x is a degenerate cell because of point 3, hence Px is a degenerate
cell because of the first part of the present point, if y /∈ Jk−1

n then
x = Py and hence Px is a degenerate cell because of point 4.

6. This follows immediately from equation (9) as di(Px) = xjknr
k
n(SD ∂i).

7. For k + 1 < i ⩽ n+ 1 we have:

jknr
k
n(SD ∂in+1) = jkn(SD ∂i−1

n )rkn−1 by equation (6)
= jkn(SD ∂i−1

n )jkn−1r
k
n−1 by equation (8)

This equation shows that for x ∈ Jkn , diPx is of the form yrkn−1 for y ∈
Jkn−1, namely y = x(SD ∂i−1)jkn−1, hence, if diPx is a non-degenerate
cell, it is of type I.

115 



S. HENRY CONSTRUCTIVE KAN–QUILLEN STRUCTURE

8. We have shown in Item 5 that if x is type I then Px is a degenerate cell.
Conversely let x be a non-degenerate cell such that Px is a degenerate
cell. Let k be such that x ∈ Jkn − Jk−1

n . One has x = dk+1Px by
point 1 of the lemma, hence dk+1Px is a non-degenerate cell, which
means that Px can only be σk-degenerate or σk+1-degenerate (other-
wise dk+1PX would also be a degenerate cell). If Px is σk-degenerate
then dkPx = dk+1Px = x, but by point 6 of the present lemma
dkPx ∈ Jk−1

n so this is impossible. If Px is σk+1-degenerate then
dk+2Px = dk+1Px = x hence point 7 shows that x is of type I.

3.4.6. We are now ready to prove Proposition 3.4.1:

Proof. The goal is to show that the type I cell and the operation P we have
defined satisfy the condition of Definition 3.2.1, so that the map is a strongly
anodyne cofibration because of Lemma 3.2.4.
Point 8 of Lemma 3.4.5 (combined with Lemma 3.4.4) shows that being
a type I cell is decidable. So one can indeed defines type II cells as the
cells that are not of type I (and non-degenerate nor in the domain) and get
a partition of the non-degenerate cells. It also follows from point 8 that if x
is a type II cell then Px is a non-degenerate cell, and it is type I (either by
definition or because of point 4). Finally, point 2 shows that P preserve the
k such that x ∈ Jkn , as X ⊂ EXY X corresponds to J0

n it shows that P never
sends cell not in X to cell in X . So P restricts into a function from type II
cells to type I cells.
We now show that it is a bijection:
If x is a type I cell than it can be written as yrkn with y ∈ Jkn . By point 3 of
Lemma 3.4.5, if y ∈ Jk−1

n , then x = yrkn is a degenerate cell, hence y /∈ Jk−1
n

and hence x = Py. By point 5 of Lemma 3.4.5, if y is a degenerate or type
I cell then x = Py is a degenerate cell, hence y is a type II cell. This proves
the surjectivity of P .
If x is a type II cell and y = Px, then x = dk+1Px (because of point 1 of
Lemma 3.4.5) where k can be characterized as the unique integer such that
y ∈ Jkn+1 − Jk−1

n+1 (because of point 2 of Lemma 3.4.5). Hence P is injective
on type II cell and this concludes the proof that P is a bijection between
non-degenerate type II cells and non-degenerate type I cells.
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Finally if x is a non-degenerate type II cell, and k is such that x ∈ Jkn−Jk−1
n .

Point 1 of Lemma 3.4.5 shows that dk+1(Px) = x, while point 6 and 7 show
that for all i ̸= k + 1, diPx is either in Jk−1

n or a type I or degenerate
cell, hence always distinct from x. So there is indeed a unique i such that
diPx = x, and it is k + 1.
It remains to prove the “well-foundedness” or “finite height” condition. It
follows from point 6 and 7 of Lemma 3.4.5 that given x ∈ Jkn − Jk−1

n a
non-degenerate type II cell, AntII(x) ⊂ Jk−1

n . In particular, any cell x ∈ Jkn
has weak P -height at most k, hence by Lemma 3.2.3 this shows that every
cell has finite P -height and hence concludes the proof.

3.4.7 Corollary. For any f : X → Y with X cofibrant, the morphism:

X → EX∞ X ×
EX∞ Y

Y

is a strongly anodyne cofibration.

Proof. Consider EXkX ×EXk Y Y → Y and apply the functor EXY to it.
One obtains:

EXY
(
EXkX ×EXk Y Y

)
= EX

(
EXkX ×EXk Y Y

)
×EX Y Y

=
(
EXk+1 X ×EXk+1 Y EX Y

)
×EX Y Y

in the last terms the map from
(
EXk+1 X ×EXk+1 Y EX Y

)
to EX Y used in

the fiber product is just the second projection, so the fiber product simplifies
to:

EXY

(
EXkX ×

EXk Y

Y

)
= EXk+1 X ×

EXk+1 Y

Y

And the natural map EXkX ×EXk Y Y → EXY
(
EXkX ×EXk Y Y

)
corre-

sponds through this identification to:

nEXkX ×
nEXk Y

IdY : EXkX ×
EXk Y

Y → EXk+1X ×
EXk+1 Y

Y

It follows by induction that the sequence of maps:
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X → EX X ×
EX Y

Y → · · · → EXkX ×
EXk Y

Y → EXk+1X ×
EXk+1 Y

Y → . . .

are all strong anodyne cofibrations (and all these objects are cofibrant), and
the map X → EX∞ X ×EX∞ Y Y is their transfinite composite (this last claim
can either be observed very explicitly, or formally by commutation of di-
rected colimits with finite limits).

3.5 Applications

3.5.1 Proposition. Kan fibrations are the same as the strong fibrations of
Definition 2.2.3. Dually, the trivial cofibrations of Definition 2.2.3 are the
same as anodyne cofibrations.

The proof given here, at least the case of a Kan fibration between cofibrant
objects, is essentially the proof proposition 2.1.41 of [3].

Proof. We start with the first half: we observed in Remark 2.2.4 that strong
fibrations are Kan fibrations. So we only need to show that any Kan fibra-
tion is a strong fibration. We first show this claim for p : A ↠ B a Kan
fibration between cofibrant object. One has that EX∞(f) is a Kan fibration
(by Proposition 3.3.2) between fibrant objects (because of Corollary 3.3.4),
hence it is a strong fibration (by Lemma 2.2.6.(iii)), in particular any pull-
back of EX∞(f) is also a strong fibration. This gives a factorization of p:

A EX∞(A)×EX∞(B) B EX∞ A

B EX∞ B

∼

p

⌟
EX∞ p

in an anodyne cofibration (by Corollary 3.4.7) followed by strong fibration
as a pullback of the strong fibration EX∞(p). So p is a retract of the strong
fibration part by the retract lemma (2.2.5) and hence is itself a strong fibra-
tion.
We now move to the case of a general Kan fibration. We first show that a
Kan fibration that is also an equivalence is a trivial fibration. Let p : X → Y

118 



S. HENRY CONSTRUCTIVE KAN–QUILLEN STRUCTURE

be such a Kan fibration and weak equivalence, one needs to show that it has
the right lifting property against all boundary inclusion: ∂∆[n] ↪→ ∆[n],
consider such a lifting problem:

∂∆[n] X

∆[n] Y

f

One first factors the map ∆[n] → Y as a cofibration followed by a triv-
ial fibration and we form a pullback of f along the fibration part to get a
diagram:

∂∆[n] P X

∆[n] Z Y

u ∼

f ′ f

∼

By 2-out-of-3 the new fibration f ′ is again a weak equivalence, but note
that now the object Z is cofibrant. One can further factor u in a cofibration
followed by a trivial fibration:

∂∆[n] K P X

∆[n] Z Y

f ′′

∼ ∼

f ′ f

∼

f ′′ is a Kan fibration between cofibrant objects, hence is a strong fibration by
the first part of the proof, moreover it is an equivalence hence it is a trivial
fibration by the last point of Lemma 2.2.6, and hence it has the right lifting
property against the boundary inclusion which shows that the morphism f is
a trivial fibration as well.
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One can then conclude the proof by the same argument as used in the proof of
the first part of Lemma 2.2.6: Given a lifting problem of a trivial cofibration
against a Kan fibration one can, using appropriate factorization, reduce to
the case where the top and bottom map of the lifting square are weak equiv-
alences, in which case the Kan fibration is a weak equivalence by 2-out-of-3
and hence is a trivial fibration by the claim we just proved, and hence has the
right lifting property against all cofibrations which concludes the proof.
For the second half of the proposition, given a trivial cofibration j one factors
it as an anodyne cofibration followed by a Kan fibration. By the first half of
the proof, the Kan fibration is a strong fibration and hence has the right lifting
property against j. It immediately follows from the retract lemma 2.2.5 that
j is a retract of the anodyne cofibration part of the factorization and hence is
an anodyne cofibration itself.

3.5.2 Proposition. The model structure of Theorem 2.2.9 is right proper,
i.e. the pullback of a weak equivalence along a fibration is again a weak
equivalence.

Proof. We consider a square in ∆̂:

P B

C A

g

⌟
p

∼
f

where p is a fibration and f is a weak equivalence, and we need to show that g
is a weak equivalence. Using Lemma 3.5.3 below, we can freely assume that
A,B and C are cofibrants. This implies that the pullback P is also cofibrant
because it is a subobject of the product B ×C which is cofibrant because of
the cartesianess of the model structure (Proposition 3.2.6), and the explicit
description of cofibrant objects in terms of decidability of degenerateness
of cell, immediately shows that a subobject of a cofibrant simplicial set is
cofibrant.
In this case when all objects are cofibrant, the result follows immediately
from an application of Kan’s EX∞ functor: It preserves the pullback square
(because it is a right adjoint), it sends each object to a fibrant object, when all
the object are fibrant the result is true in any (weak) model category (a con-
structive argument, valid in weak model category is given as corollary 2.4.4
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in [8]), and it detects equivalences between cofibrant objects because the
morphism X → EX∞ X is an anodyne cofibration (hence an equivalence)
for X cofibrant.

3.5.3 Lemma. Let C be a Quillen9 model category, if for every pullback
diagram

P B

C A

g

⌟
p

∼
f

in which A,B and C are cofibrant, p is a fibration, if f is a weak equivalence
then so too is g. Then C is right proper: that is the condition also holds
without assuming the A,B and C are cofibrant.

Proof. We consider a pullback as in the lemma, and we need to show that
the projection map P → B is a weak equivalence, but without assuming
A,B and C are cofibrant. By assumption, we already know this is the case
case when A,B and C are cofibrants. The proof will proceed in three steps,
where at each step we relax the cofibrancy assumption on one of the three
objects:
First step: We assume that C and A are cofibrant (but not neccessarily B).
In this case, we consider a cofibrant replacement Bc

∼
↠ B, and we form the

pullback:
Q Bc

P B

C A

∼

h

⌟
∼

g

⌟
p

∼
f

Then Q → P is a trivial fibration because it is a pullback of a trivial fibration,
the outer rectangle is a pullback as the composite of two pullback squares,

9It is actually enough to assume that C is a left semi-model category, as the proof below
shows. We will only use it for the Kan-Quillen model structure.
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so h is a weak equivalence as the pullback of f along a fibration (with all the
object involved cofibrants), hence g is a weak equivalence by 2-out-of-3.
Second step: We only assume that A is cofibrant. We then take a cofibrant
replacement Cc

∼
↠ C of C. and we form the pullback:

R P B

Cc C A

⌟
∼

k

g

⌟
p

∼ ∼
f

as in the previous case, the map R → P is a trivial fibration because it is
a pullback of a trivial fibration. The composite map R → B is a pullback
along the fibration p of the composite weak equivalence Cc → A, so as Cc

and A are cofibrant, we deduce from the first step that the composite R → B
is a weak equivalence. By 2-out-of-3, this shows that g is a weak equivalence
and concludes the proof for this case.
Third step: We make no cofibrancy assumption. Then we take a cofibrant
replacement Ac

∼
↠ A. We then form a cube

P ′ B′

P B

C ′ Ac

C A

∼ ∼

∼ ∼

∼

where each face is a pullback square. All the diagonal maps are pullback of
the trivial fibration Ac → A, and so are trivial fibrations, the map C ′ → Ac

is a weak equivalence by 2-out-of-3, hence the map P ′ → B′ is also a weak
equivalence as a pullback of a weak equivalence along a fibration (using the
fact that Ac is cofibrant and the second step). Hence the map P → B is a
weak equivalence by 2-out-of-3.
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