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Résumé. Par espace de fermeture nous entendons une paire (A,C), dans
laquelle A est un ensemble et C est un ensemble de sous-ensembles de A
fermé sous les intersections arbitraires. Le but de cet article consiste à con-
sidérer plusieurs questions qui se posent naturellement dans le cadre de l’
algèbre catégorique des espaces de fermeture. Cela inclut l’extensivité (à
gauche) de leur catégorie, la description des morphismes de codescente ef-
fective, et la description des morphismes de co-revłtement et co-monotones
par rapport à une certaine coréflexion des espaces de fermeture dans les en-
sembles. Cette coréflexion envoie chaque espace de fermeture sur son plus
petit sous-ensemble fermé.

Abstract. By a closure space we mean a pair (A,C), in which A is a
set and C a set of subsets of A closed under arbitrary intersections. The pur-
pose of this paper is to consider several questions that naturally arise in the
categorical algebra of closure spaces. This includes (left) extensivity of their
category, description of effective codescent morphisms, and description of
cocovering and comonotone morphisms with respect to a certain coreflection
of closure spaces into sets. That coreflection carries a closure space to its
smallest closed subset.

Keywords. closure space, left coextensive category, effective codescent
morphism, cocovering, comonotone morphism.
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1. Introduction

There is a number of types of mathematical structures introduced by various
authors as ‘generalized topological spaces’, and several of them were called
closure spaces, the paper [8] being one of many useful references; let us also
mention the book [7] and the paper [6] for two important links with category
theory, omitting many others. Here we briefly repeat from [10]:

• By a closure space we will mean a pair (A,C), in which A is a set and
C a set of subsets of A closed under arbitrary intersections; we will
write A = (A,C) = (A,CA) and

X = X
A

=
⋂

X⊆A′∈CA

A′

for a subset X in A. And we say that X is closed in A when X ∈ CA,
or, equivalently, X = X .

• A map f : A′ → A of closure spaces is said to be continuous if it
satisfies (any of) the following three equivalent conditions:

X ∈ CA ⇒ f−1(X) ∈ CA′ ,

X ⊆ A⇒ f−1(X) ⊆ f−1(X),

X ′ ⊆ A′ ⇒ f(X ′) ⊆ f(X ′).

The category of closure spaces and their continuous maps will be de-
noted by CLS.

• A continuous map f : A′ → A of closure spaces is said to be closed if
it satisfies (any of) the following three equivalent conditions:

X ′ ∈ CA′ ⇒ f(X ′) ∈ CA,

X ′ ⊆ A′ ⇒ f(X ′) ⊇ f(X ′),

X ′ ⊆ A′ ⇒ f(X ′) = f(X ′).
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• The underlying set functor U : CLS → Sets is topological in the
sense of categorical topology, and so CLS is small complete and small
cocomplete, and U preserves all existing limits and colimits. In par-
ticular, a diagram in CLS of the form

A

π1

��

π2 // A2

��
A1

// B

is a pullback diagram in CLS if and only if its U -image is a pullback
diagram in Sets and CA = {π−1

1 (X1) ∩ π−1
2 (X2) | X1 ∈ CA1 &X2 ∈

CA2}. We also haveX = π−1
1 (π1(X))∩π−1

2 (π2(X)) for everyX ⊆ A.

The purpose of this paper is to consider several questions that naturally
arise in categorical algebra of closure spaces. They could be asked more
generally, replacing CLS with an abstract topological category (as defined,
e.g., in the survey paper [2]; see also references therein), or even more gen-
erally – and doing that systematically could be an interesting future project.
Some of it would even be well known, as, for example, a part of Section 3, or
Theorem 4.1 (which can be seen as a special case of the dual of Proposition
9.7 of [13]). But here we only consider specifically the case of CLS.

How extensive (in the sense of [4]) is the category CLS? This question
is answered in Section 2.

Three adjunctions,

discrete a underlying set a codiscrete a smallest closed subset,

written as D a U a C a Z, between CLS and the category of sets are
considered in Section 3. Unlike in the case of topological spaces, it seems
that no reasonable ‘locally connected’ counterpart of D has a left adjoint
admitting a nice Galois theory/theory of covering spaces, by which we mean
having a nice special case of constructions of [3]. The adjunctions D a
U and U a C are also not interesting from this viewpoint since (D and
C are fully faithful while) U has both adjoints. It remains to consider the
adjunction C a Z, which is done in Sections 5 and 6.

In Section 4 we prove that a morphism in CLS is an effective codescent
morphism (=an effective descent morphism in CLSop) if and only if it is a
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subspace inclusion (up to an isomorphism). A possible reference to descent
theory convenient for our purposes is any of the surveys [12] and [11], al-
though only very preliminary material from there is needed. More precisely,
all we will need to have in mind is the dual form of the following well-known
fact: A morphism in a category with pullbacks and coequalizers is an effec-
tive descent morphism whenever it is a pullback stable regular epimorphism
with the corresponding pullback functor preserving coequalizers. Note that
here the pullback stability already makes the corresponding pullback functor
fully faithful, and, in particular, conservative.

In Section 5 we examine dual forms of some notions considered in [3]
in the case of C a Z. Specifically, we prove that the coreflection Z has
stable counits, and characterize cocoverings (which turn out to be the same
as trivial cocoverings) and comonotone morphisms. Then, in Section 6, we
make immediate conclusions concerning the resulting factorization systems:

• We have the one first constructed for a general reflection in [5], but not
the ‘(colight, comonotone)’-factorization system.

• On the other hand, there is the obvious (dense, closed subspace inclu-
sions)-factorization system, and as shown in Section 5, comonotone
morphisms are the same as closed subspace inclusions.

This paper is dedicated to Bill Lawvere, who was the first to see many
unusual adjunctions and their roles.

2. Coproducts and non-distributivity

Let (Aλ)λ∈Λ be a family of closure spaces. The coproduct
∑

λ∈ΛAλ is the
disjoint union of all Aλ (λ ∈ Λ), in which a subset X is closed if and only if
X ∩Aλ is closed in Aλ for each λ ∈ Λ; writing this we use disjoint union as
ordinary union, which we can do here and below without loss of generality.
Note that each Aλ is closed in

∑
λ∈ΛAλ if and only if the empty set is closed

in each Aλ.

Theorem 2.1. For every family (fλ : Aλ → Bλ)λ∈Λ of morphisms in CLS,
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and every µ ∈ Λ, the diagram

Aµ

fµ

��

//
∑

λ∈ΛAλ∑
λ∈Λ fλ

��
Bµ

//
∑

λ∈ΛBλ

whose horizontal arrows are coproduct injections, is a pullback diagram.

Proof. Our assertion is true at the level of sets, and all we need to prove is
that a subset of Aµ is closed if and only if it is of the form f−1

µ (Y ) ∩ Y ′ for
some closed subsets Y of Bµ and Y ′ of

∑
λ∈ΛAλ.

“If”: Just note that f−1
µ (Y ) ∩ Y ′ = f−1

µ (Y ) ∩ Aµ ∩ Y ′ and both f−1
µ (Y )

and Aµ ∩ Y ′ are closed in Aµ, whenever Y is closed in Bµ and Y ′ is closed
in
∑

λ∈ΛAλ.
“Only if”: For any subset X of Aµ, we have

X = Aµ ∩ (X ∪
∑

λ∈Λ\{µ}

Aλ) = f−1
µ (Bµ) ∩ (X ∪

∑
λ∈Λ\{µ}

Aλ),

and if X is closed in Aµ, then X ∪
∑

λ∈Λ\{µ}Aλ is closed in
∑

λ∈ΛAλ.

Theorem 2.2. The category CLS is infinitary left extensive, that is, for every
family (Aλ)λ∈Λ of closure spaces, the functor

Σ :
∏
λ∈Λ

(CLS ↓ Aλ)→ (CLS ↓
∑
λ∈Λ

Aλ)

is fully faithful.

Proof. This is trivial for empty Λ. For non-empty Λ, just note that taking
pullbacks of the form

Aµ ×∑
λ∈Λ Aλ

A

��

// A

��
Aµ //

∑
λ∈ΛAλ

determines the right adjoint of Σ, and Theorem 2.1 in fact says that the unit
of adjunction is an isomorphism.
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However, Theorem 2.2 can also easily be proved directly. Note also that
the term “infinitary left extensive” seems to be used here for the first time,
although the term “left (co)extensive” was used in [1].

Remark 2.3. Consider Proposition 2.6 and 2.8 in [4]. They say that, in an
extensive category, sums (=coproducts) are disjoint and the initial object is
strict, respectively. However, the poofs given in [4] show that the same is
true in any left extensive category. In particular, these properties hold in
CLS. However, in the case of CLS these properties are obvious anyway.

On the other hand, as the following simple example shows, the category
CLS is not distributive (cf. Proposition 2.2 in [6]), which implies that it is
not extensive (and not cartesian closed; and the same applies to the category
of finite closure spaces).

Example 2.4. Let A = {a, a′}, B = {b}, and C = {c} be discrete topo-
logical spaces considered as closure spaces (we assume a 6= a′ and b 6= c
of course). Then we can say that both A × (B + C) and (A × B) + (A ×
C) have the same underlying set {(a, b), (a′, b), (a, c), (a′, c)}, but the set
{(a, b), (a′, c)} is closed in (A×B) + (A× C) and not in A× (B + C).

3. The adjunctions with sets

There are adjunctions

CLS
U

⊥
,,

Z

⊥

??Sets

D

⊥
~~

C

ll

where, for a set S and a closure space A, we have:

3.1. D(S) is the discrete topological space (considered as a closure space)
with the underlying set S.

3.2. U is the underlying set functor.
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3.3. C(S) is what we will call codiscrete S: it hasUC(S) = S and CC(S) =
{S}.

3.4. Z(A) = ∅ is the smallest element of of CA. When there is no danger
of confusion, we will write CZ(A) = Z(A) = 0A.

Note that D has no left adjoint since it does not preserve, say, binary prod-
ucts, and Z has no right adjoint since it does not preserve, say, the coequal-
izer of

{a}
f //
g
// {b, c} ,

where Z({a}) = ∅, Z({b, c}) = {b, c}, f(a) = b, and g(a) = c.

4. Equalizers, pushouts, and codescent

The equalizer diagram of two parallel morphisms f, g : A→ B in CLS can
be described as the inclusion map

K = {a ∈ A | f(a) = g(a)} → A with CK = {X ∩K | X ∈ CA},

and easily obtain

Theorem 4.1. For B,E ∈ CLS with B ⊆ E, the following conditions on
the inclusion map (i : B → E) ∈ CLS are equivalent:

(a) i is a regular monomorphism;

(b) i is a strong monomorphism;

(c) i is a subspace inclusion, that is, a subset of B is closed in it if and
only if it can be presented as the intersection of a closed subset of E
with B, or equivalently, if and only if

X
B

= X
E ∩B

for every X ⊆ B.
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Consider a pushout diagram

B

α
��

i // E

ι2
��

A ι1
// A+B E

in CLS, in which i is as in Theorem 4.1. Assuming A ∩ E = ∅ we can
present it as

A+B E = A ∪ (E \B) as sets,

CA+BE = {A′ ∪ E ′ | A′ ∈ CA, E
′ ⊆ (E \B), α−1(A′) ∪ E ′ ∈ CE},

with ι1 being the inclusion map and ι2 defined by

ι2(e) =

{
α(e), if e ∈ B;
e, if e ∈ (E \B).

We will informally call this diagram the standard pushout of α and i.

Lemma 4.2. Regular monomorphisms in CLS are pushout stable.

Proof. Consider the standard pushout above. We have to show that the in-
clusion map ι1 : A → A +B E is a subspace inclusion. For an arbitrary
X ∈ CA, we have α−1(X) ∈ CB, and so

α−1(X) = B ∩ α−1(X)
E

by 4.1(c). We need to find A′ ∈ CA and E ′ ⊆ (E \ B) such that inside the
disjoint union A ∪ (E \B) we have

X = (A′ ∪ E ′) ∩ A and α−1(A′) ∪ E ′ ∈ CE,

and we claim that we can takeA′ = X andE ′ = α−1(X)
E
∩(E\B). Indeed,

the first equality will hold simply because A′ ⊆ A and E ′ ⊆ (E \B), while

α−1(A′) ∪ E ′ = α−1(X) ∪ (α−1(X)
E
∩ (E \B))

= (B ∩ α−1(X)
E

) ∪ (α−1(X)
E
∩ (E \B)) = α−1(X)

E
∈ CE.
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Theorem 4.3. A morphism in CLS is an effective codescent morphism if and
only if it is a regular monomorphism, or, equivalently, a strong monomor-
phism.

Proof. Thanks to (Theorem 4.1 and) Lemma 4.2, it suffices to prove that
if i : B → E satisfies the equivalent conditions of Theorem 4.1, then the
associated pushout functor

E +B (−) : (B ↓ CLS)→ (E ↓ CLS)

preserves equalizers. But this follows from the fact that the equalizers are
preserved at the level of sets, and that any such pushout functor preserves
regular monomorphisms, by Lemma 4.2.

Remark 4.4. The arguments used in the proof above can be copied for the
category of topological spaces and the category of topological spaces whose
sets of open sets are closed under arbitrary intersections (= Alexandrov-
discrete topological spaces, which are in fact nothing but preordered sets).
Therefore, in both of these categories, effective codescent morphisms are the
same as regular monomorphisms.

5. The coreflection Z : CLS→ Sets

We will use dual forms of several categorical notions from [5] and [3], such
as the one of coreflection with stable counits, dual to reflection with stable
units (introduced in [5]):

Theorem 5.1. The coreflection Z : CLS→ Sets has stable counits, that is,
it preserves colimits of all diagrams A ← B → A′ in which B = CZ(B),
or, equivalently, CB = {B}.

Proof. Since Z (obviously) preserves coproducts, it suffices to prove that it
preserves coequalizers of all pairs f, g : B → A in which B = CZ(B). The
coequalizer of such a pair can be presented as the canonical map p : A →
A/R, where R is the smallest equivalence relation on A containing the set
S = {(f(b), g(b)) | b ∈ B} and CA/R is the set of all subsets of A/R whose
inverse images under p belong to CA. We observe:

(i) Since B = CZ(B) = 0B, the images of f and g are subsets of 0A.
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(ii) As follows from (i), 0A = p−1(p(0A)).

(iii) As follows from (ii), p(0A) belongs to CA/R.

(iv) Since p is surjective and continuous, (ii) and (iii) imply p(0A) = 0A/R.

This makes
B //// 0A // 0A/R

a coequalizer diagram in the category of sets. But this diagram is the same
as

Z(B)
Z(f) //

Z(g)
// Z(A)

Z(p) // Z(A/R),

which completes the proof.

As follows from Theorem 5.1, a simplified version of Galois theory [9],
recalled in [3], applies to the reflection Zop : CLSop → Setsop. And the
resulting dualization makes a morphism α : B → A in CLS:

• a trivial cocovering, if the diagram

CZ(B)

CZ(α)

��

εB // B

α

��
CZ(A) εA

// A

in which ε is the counit of the adjunction C a Z, is a pushout;

• a cocovering, or a colight morphism, if there exists a subspace inclu-
sion i : B → E such that the morphism ι2 : E → A +B E is a trivial
cocovering.

• covertical (according to fibration-theoretic terminology), if Z(α) is an
isomorphism.

• comonotone, if it is a pushout stable covertical morphism.
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We are going now to characterize these types of morphisms, except coverti-
cal ones, whose definition already characterizes them.

For a closure space A, we will write int(A) for the set A \ 0A equipped
with its induced structure, and call it the interior of A, since it is the largest
subset of A whose complement is closed. Note that a morphism α : B → A
in CLS in general induces only a partial map int(α) : int(B) → int(A); it
is a morphism in CLS if and only if it is a map, that is, if and only if

α−1(0A) = 0B.

Lemma 5.2. For any closure space A and a subset A′ of int(A), we have

A′ ∈ Cint(A) ⇔ 0A ∪ A′ ∈ CA.

Proof. “⇒”: A′ ∈ Cint(A) means that A′ = (A\0A)∩A′′ for some A′′ ∈ CA.
Then, since both 0A and A′ are subsets of A′′, we have 0A∪A′ ⊆ A′′. On the
other hand, each a ∈ A′′ must satisfy one on the following two conditions:

(i) a ∈ 0A;

(ii) a ∈ A \ 0A, but then a belongs to (A \ 0A) ∩ A′′ = A′.

That is, 0A ∪ A′ = A′′ ∈ CA.
The implication “⇐” follows from the equality A′ = (0A ∪ A′) ∩ (A \

0A).

Corollary 5.3. For any closure space A, the assignments

X 7→ 0A ∪X and Y 7→ Y ∩ (A \ 0A)

determine bijections Cint(A) → CA and CA → Cint(A) inverse to each other.

Theorem 5.4. The following conditions on a morphism α : B → A in CLS
are equivalent:

(a) α is a trivial cocovering;

(b) int(α) is an isomorphism (in CLS);

(c) α induces bijections

B \ 0B → A \ 0A and CA → CB (where A′ 7→ α−1(A′)).
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Proof. The morphism εB : CZ(B)→ B is obviously a subspace inclusion.
Therefore, and according to the standard pushout construction in Section
4, assuming for simplicity that A and B are disjoint, we can reformulate
condition (a) as:

(a′) The map α̃ : 0A ∪ (B \ 0B)→ A defined by

α̃(x) =

{
x, if x ∈ 0A;
α(x), if x ∈ (B \ 0B).

is bijective, and a subset A′ of A belongs to CA if and only if it is of
the form

A′ = α̃(0A ∪B′) = 0A ∪ α(B′)

with B′ ⊆ B \ 0B and 0B ∪B′ ∈ CB, or, equivalently, B′ ∈ Cint(B).

It is easy to see that the map α̃ defined in (a′) is a bijection if and only if

int(α) : int(B)→ int(A)

is a morphism in CLS that is a bijective map. This allows us to argue as
follows.

(a′)⇒(b): Suppose (a′) holds. To prove (b) is to prove that if B′ belongs
to Cint(B), then int(α)(B′) belongs to Cint(A). We have

int(α)(B′) = α(B′) = (0A ∪ α(B′)) ∩ (A \ 0A),

which belongs to Cint(A) since, by (a′), 0A ∪ α(B′) belongs to CA.
(b)⇒(a′): Applying Corollary 5.3 and then (b), we obtain

A′ ∈ CA ⇔ ∃X∈Cint(A)
A′ = 0A ∪X ⇔ ∃B′∈Cint(B)

A′ = 0A ∪ α(B′),

which gives (a′).
(b)⇔(c) easily follows from Corollary 5.3.

Remark 5.5. As also easily follows from Corollary 5.3, the inverse of the
bijection CA → CB in 5.4(c) is given by B′ 7→ 0A ∪ α(B′).

Theorem 5.6. Every cocovering is a trivial cocovering.
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Proof. Suppose α : B → A is a cocovering, and let i : B → E be a subspace
inclusion such that ι2 : E → A+BE is a trivial cocovering. Then ι2 induces
a bijection E \0E → A+B E \0A+BE. Using our standard pushout of α and
i, we see that since the map ι2 : E → A ∪ (E \ B) maps B to A via α and
maps E \B identically to itself, it induces maps

B \ 0E → A \ 0A+BE and (E \B) \ 0E → (E \B) \ 0A+BE,

which then both must be bijections. Since

A \ 0A+BE = A \ A ∩ (0A+BE) = A \ 0A,

the first of these bijections is in fact the bijection B \ 0B → A \ 0A induced
by α.

Now, thanks to Theorem 5.4(c)⇒(a), it only remains to prove that the
canonical map CA → CB is a bijection. For, using the same i : B → E,
consider the commutative diagram

CA+BE

��

// CA

��

⊆ // {X ⊆ A | 0A ⊆ X}
X 7→α−1(X)
��

CE // CB ⊆
// {Y ⊆ B | 0B ⊆ Y }

of canonical maps. The left-hand square shows that CA → CB is surjective,
while the right-hand square shows that it is injective.

Theorem 5.7. The following conditions on a morphism α : B → A in CLS
are equivalent:

(a) α is comonotone;

(b) α is injective and closed.

Proof. (a)⇒(b): Choose any B0 ∈ CB and consider the pushout

B

α
��

b 7→b // B′

ι2
��

A ι1
// A′
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in which B′ = B as sets and C′B = {Y ∈ CB | B0 ⊆ Y }. This allows us to
put:

A′ = A as sets, ι1(a) = a, ι2(b) = α(b),

for all a ∈ A and b ∈ B, and

C′A = {X ∈ CA | B0 ⊆ α−1(X)}.

According to this presentation of our pushout, 0A′ is the smallest closed
subset of A containing α(0B′) = α(B0). That is,

0A′ = α(B0)
A
.

Since, by (a), ι2 is covertical, we conclude that the restriction of α on B0

must be injective and α(B0) is closed in A; in particular, taking B0 = B
gives injectivity of α.

(b)⇒(a): Let us change our notation. We can assume, without loss of
generality, that α is a closed subspace inclusion and we will rename it as
i : B → E. On the other hand, by α : B → A we will denote now
an arbitrary morphism in CLS (with the same B). We have to show that
ι1 : A → A +B E is covertical, and, in terms of the standard pushout of α
and i, this simply means that 0A is the smallest closed subset in A +B E.
For, we recall that a subset of A+BE is closed if and only if it is of the form
A′ ∪ E ′ with A′ ∈ CA, E ′ ⊆ (E \ B), and α−1(A′) ∪ E ′ ∈ CE . Since every
closed subset of B is closed in E, the smallest closed subset of A +B E is
0A ∪ ∅ = 0A.

6. Two factorization systems on CLS

As follows from the results of [5], recalled in [3], and Theorem 5.1, the cate-
gory CLS admits the (trivial cocoverings, covertical morphisms)-factorization
system (E,M), for which:

• E is the class of all trivial cocoverings, defined as in Section 5;

• M is the class of all covertical morphisms, defined as in Section 5;
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• the (E,M)-factorization of a morphism α : B → A in CLS is con-
structed as α = βι1 in the diagram

A

B +CZ(B) CZ(A)

β

ii

CZ(A)ι2
oo

εA

ll

B

α

cc

ι1

OO

CZ(B)εB
oo

CZ(α)

OO

in which the square part is a pushout and β is induced by α and εA.

Note that the diagram above is shaped as diagram (4.2) in [5] and diagram
(3.5) in [3], except that the directions of all arrows are opposite since we
consider the dual situation.

Now, trying to follow [3], could we (co)localize E and (co)stabilize M to
obtain ‘(colight, comonotone)’-factorization system? Obviously not, since
every cocovering is trivial (Theorem 5.6) while not every covertical mor-
phism is comonotone (as immediately follows from Theorem 5.7). Never-
theless, we do have a factorization system (E′,M′) on CLS, in which M′

is the class of all comonotone morphisms: we just need to take E′ to be the
class of (obviously defined) dense morphisms. This can also be seen as a
consequence of Theorem 2.4 in [7].
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[11] G. Janelidze, M. Sobral, and W. Tholen, Beyond Barr exactness: ef-
fective descent morphisms, Categorical Foundations; Special Topics
in Order, Topology, Algebra, and Sheaf Theory, Cambridge University
Press, 2004, 359-405

[12] G. Janelidze and W. Tholen, Facets of Descent I, Applied Categorical
Structures 2, 1994, 245-281

34



JANELIDZE & SOBRAL ALGEBRA OF CLOSURE SPACES

[13] W. Tholen, Relative Bildzerlegungen und algebraische Ketegorien,
PhD Thesis, Muenster, 1974

George Janelidze
Department of Mathematics and Applied Mathematics
University of Cape Town
Rondebosch 7700
South Africa
george.janelidze@uct.ac.za

Manuela Sobral
CMUC, Department of Mathematics
University of Coimbra
3000–143 Coimbra
Portugal
sobral@mat.uc.pt

35


