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Résumé. Nous donnons une preuve constructive de l’existence d’une struc-
ture de catégorie de modèles cartésienne fermée et propre sur la catégorie des
ensembles simpliciaux, dont les cofibrations génératrices sont les inclusions
de bords et les cofibrations triviales génératrices les inclusion de cornets. La
différence principale avec l’approche classique est que toutes les inclusions
ne sont pas des cofibrations (seulement celles satisfaisant certaines conditions
de décidabilités) et tous les objets ne sont pas cofibrants.
La preuve repose sur trois ingrédients principaux: D’abord, l’existence d’une
structure de catégorie de modèles faible sur les ensembles simpliciaux, en-
suite l’interaction avec la version semi-simpliciale de cette structure et enfin
l’utilisation du foncteur EX∞ de Kan, et plus précisement de la preuve di-
recte de S.Moss que l’application X → EX∞X est une cofibration anodyne,
dont nous montrons qu’elle est constructive si on suppose que X est cofibrant.

Abstract. We give a fully constructive proof that there is a proper cartesian
ω-combinatorial model structure on the category of simplicial sets, whose
generating cofibrations and trivial cofibrations are the usual boundary inclu-
sion and horn inclusion. The main difference with classical mathematics is
that constructively not all monomorphisms are cofibrations (only those satis-
fying some decidability conditions) and not every object is cofibrant.
The proof relies on three main ingredients: First, our construction of a weak
model categories on simplicial sets, then the interplay with the semi-simplicial
versions of this weak model structure and finally, the use of Kan EX∞-
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functor, and more precisely of S.Moss’ direct proof that the natural map
X → EX∞X is an anodyne cofibration, which we show is constructive when
X is cofibrant.

Keywords. Model categories, constructive mathematics, simplicial sets, EX∞-
functor.
Mathematics Subject Classification (2020). 03F55, 55U35,55U40,18N50.

Contents

1 Introduction 2

2 Constructing the model structure 11
2.1 Review of the weak model structures . . . . . . . . . . . . . 11
2.2 The simplicial model structure . . . . . . . . . . . . . . . . 15

3 Kan EX∞-functor 25
3.1 Degeneracy quotient and questions of decidability . . . . . . 26
3.2 P-structures . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Kan EX and SD functors . . . . . . . . . . . . . . . . . . . 41
3.4 S.Moss’ proof that X → EX X is an anodyne cofibration . . 46
3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1. Introduction

The goal of this paper is to give a fully constructive proof of the existence of
the usual Kan–Quillen model structure on simplicial sets, and of some of its
classical properties. “Constructive” here can be taken to mean “Without the
axiom of choice and the law of excluded middle”, or a bit more precisely as
“in the internal logic of an elementary topos with a natural number objects”.

This work was supported by the Operational Programme Research, Development and
Education Project “Postdoc@MUNI” (No. CZ.02.2.69/0.0/0.0/16 027/0008360); and by
the Natural Sciences and Engineering Research Council of Canada (NSERC), funding ref-
erence number RGPIN-2020-067.
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It can also be formalized in Aczel’s (CZF) [1] and probably in considerably
weaker foundations as well, see Remark 1.6. Our main theorem is:

1.1 Theorem. There is a proper cartesian Quillen model structure on the
category of simplicial sets such that:

• The trivial fibrations are the morphisms with the right lifting property
against all boundary inclusions ∂∆[n] ↪→ ∆[n].

• Cofibrations are the monomorphisms f : A → B which are “level
wise complemented” (i.e. for all integers n for each b ∈ B([n]) it is
decidable if b ∈ A([n]) or not), and such that for all b ∈ B([n]) −
A([n]) it is decidable if b is a degenerate cell or not.

• The fibrations are the “Kan fibrations”, i.e. they are the morphisms
with the right lifting property against the horn inclusion: Λk[n] ↪→
∆[n]. Dually trivial cofibrations are the retract of ω-transfinite com-
positions of pushouts of coproducts of horn inclusions.

Note that assuming the law of excluded middle the class of cofibrations boils
down to the class of all monomorphisms and hence one recovers the usual
Kan–Quillen model structure.
After we announced this result, two other proofs, have been found by N. Gam-
bino, C. Sattler and K. Szumilo and appeared in [6].

This theorem is obtained by patching together the following results: The-
orem 2.2.9 gives the existence of a model structure with the appropriate
cofibrations and trivial fibrations, Proposition 2.2.10 gives left properness,
Proposition 3.5.1 shows that the fibrations and trivial cofibrations are indeed
as specified here and Proposition 3.5.2 shows that it is also right proper.
Cartesianness was already known, but reproved as Proposition 3.2.6.

One can also say a few words about the equivalences of the model struc-
ture of Theorem 1.1: they are defined (as Definition 2.2.3) using the forget-
ful functor to semi-simplicial sets and the weak model structure on semi-
simplicial sets constructed in Theorem 5.5.6 of [8]. Concretely, this means
that a map between Kan complexes is a weak equivalence if it admit an in-
verse up to homotopy as a semi-simplicial maps. For general map, we need
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to first take fibrant replacement and then use the previous definition. Note
that Proposition 2.2.2 shows that this notion of equivalence is compatible
with the notion we used in [8]. Moreover, Proposition 5.2.6 of [8] shows
that weak equivalences admit the usual characterization in terms of homo-
topy groups, as long as the homotopy groups are defined not as quotient sets
but as setoids.

As we do not assume the axiom of choice, one needs to make precise some
details regarding Theorem 1.1: a “structure of fibration” (resp. trivial fibra-
tion) on a map f is the choice of a solution to each lifting problem of a horn
inclusion (resp. boundary inclusion) against f . No uniformity condition is
required on these lifts. A fibration (resp. trivial fibration) is a morphism
which admits at least one structure of fibration (resp. trivial fibration), but
the choice of the structure is considered irrelevant.
More generally, we will follow the convention that (unless exceptionally
stated otherwise) every statement of the form ∀a,∃b should be interpreted
as the existence of a function that given “a” produces a “b”. In particular,
when one says that a morphism has the lifting property against some set of
arrows it means that one has a function that produces a solution to each lift-
ing problem. We will use the convention constantly in the present paper, i.e.
every time we say that “there exists” some x, we mean that one specific x
has been chosen for each possible value of the parameters involved in the
statement.

As fibrations and trivial fibrations are defined by the right lifting property
against a small set of morphisms between finitely presented objects, it is
very easy to apply a constructive version of the small object argument to
show that one has two weak factorization systems, which will be called as
follows:

1.2 Definition.

• The weak factorization system cofibrantly generated by the boundary
inclusion ∂∆[n] ↪→ ∆[n] is called “cofibrations/trivial fibrations”.

• The weak factorization system cofibrantly generated by the horn inclu-
sion Λk[n] ↪→ ∆[n] is called “Anodyne cofibrations/Kan fibrations”.
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We have discussed the constructive validity of the small object argument in
appendix C of [8], though there are probably other references doing this.
Note that anodyne cofibrations will in the end be the trivial cofibrations, and
Kan fibrations will be what we have called fibrations in the statement of the
main Theorem 1.1, but this will be one of the last results we will prove. In the
meantime we will distinguish between Kan fibrations and “strong fibrations”
and between anodyne cofibrations and “trivial cofibrations” (these two other
concepts being defined as Definition 2.2.3). Simplicial sets whose map to the
terminal simplicial set is a Kan fibration will be called either Kan complexes,
or fibrant simplicial sets.

1.3 Remark. Before going any further, we should pause here to insist on
a very important remark: one of the key differences between what we are
doing in the present paper and the usual construction of the Kan–Quillen
model structure in classical mathematics is that the cofibrations are no longer
exactly the monomorphisms. It can be shown, see for example Proposi-
tion 5.1.4 in [8], that the class of cofibrations generated by the boundary
inclusion, i.e. the class of arrow which have the left lifting property against
all trivial fibration is exactly the class of cofibrations described in the state-
ment of Theorem 1.1. In particular one has:

Not every simplicial set is cofibrant !
A simplicial set X is cofibrant if and only if it is decidable

whether a cell of X is degenerate or not.

This introduces some changes compared to the classical situation, for exam-
ple the left properness of the model structure on simplicial sets is no longer
automatic, and the assumption that certain objects need to be cofibrant tends
to appear in a lot of results. Compare for example Corollary 3.3.4, Proposi-
tion 3.3.5 and Proposition 3.4.1 to their classical counterparts.
One can also show the classical Eilenberg-Zilber lemma, asserting that a
cell x ∈ X([n]) can be written uniquely as σ∗y for σ a degeneracy and y a
non-degenerate cells holds if and only if X is cofibrant. A general construc-
tive version of the Eilenberg-Zilber lemma can be found as Lemma 5.1.2 in
[8] and does implies that the statement above holds for cofibrant simplicial
sets. The converse (that the validity of the Eilenberg-Zilber lemma implies
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cofibrancy of X) is immediate from the decidability of equality between
morphisms of the category ∆: if a cell is written σ∗y with y non-degenerate
one can decide if it is degenerate or not depending on if σ is the identity (an
isomorphism) or not.

The general structure of the proof of this theorem (and in fact of the paper)
is as follows:

• In Section 2.1 we review the existence of a “weak model structure” on
simplicial sets and semi-simplicial sets from [8], which is our starting
point.

• In Section 2.2, more precisely in Theorem 2.2.9, we will (up to a tech-
nical detail, see the Remark 1.4 below) extend this to a model structure
on the category of simplicial sets with cofibrations (and trivial fibra-
tions) as specified above, but we will not show that trivial cofibrations
are the same as anodyne cofibrations, or equivalently that the fibra-
tions (called “strong fibrations”) are the Kan fibrations. This part is
based on the use of semi-simplicial sets.

• Left properness of this model structure also follows from semi-simplicial
techniques (see Proposition 2.2.10).

• The overall goal1 of Section 3 is to introduce Kan’s EX∞-functor. This
is done following the work of S. Moss from [15], which can be made
constructive at the cost of only minor modification. This will allow us
to show that the fibrations of the model structure above are exactly the
Kan fibrations (Proposition 3.5.1) and to prove the right properness of
this model structure (Proposition 3.5.2), as well as to fix a small gap
in constructiveness of Section 2.2 (see the remark below).

1.4 Remark. The gap we are referring too in this last point is that in Sec-
tion 2.2, the “strong fibrations” (i.e. the fibrations of the model structure
on simplicial sets) are defined as the map having the right lifting property
against all cofibrations which are equivalences. It is unclear if they can be

1We will give a more detailed account of its contents at the beginning of this section.
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defined by a lifting property against a small set and hence if trivial cofi-
bration/strong cofibration do form a weak factorization system as a model
category structure should require. In Proposition 2.2.7 we give a formal ar-
gument that shows it is the case, but it is unlikely that this argument can be
made constructive. What definitely solve the problem constructively is the
proof in Proposition 3.5.1 that this factorization is actually just the “anodyne
cofibrations/Kan fibrations” factorization, but this require all the material of
Section 3.
This being said, the reader should note that even before Section 3, it holds
constructively that the factorization as an anodyne cofibration followed by a
Kan fibration of an arrow with fibrant target is a “trivial cofibration/strong
fibration” factorization (because of the third point of Lemma 2.2.6). Hence
it holds constructively, even without the results of Section 3, that any arrow
with fibrant target admits such a factorization, i.e. one already has something
like a right2) semi-model category without invoking the properties of Kan
EX∞ functor.

1.5 Remark. The fact that we need to invoke the good properties of Kan’s
EX∞ functor to show that the class of fibration is indeed the class of Kan fi-
brations of course remind us of D-C.Cisinski’s approach to the construction
of Kan–Quillen model structure in [3]. We do not really know how deep are
the similarities between our proof and D-C.Cisinski’s proof. Our initial plan
on this problem was actually to try to see if this approach of Cisinski can be
made constructive or not. While we definitely do not exclude the possibility
that this is the case, it seemed to represent a considerably harder task than
what we have achieved here. One of the problems is that Cisinski’s theory
relies heavily on a set theoretical argument similar to the one we mention in
the proof of Proposition 2.2.7, whose constructiveness seems unlikely, and
we have not been able to separate his proof that fibrations are the Kan fibra-
tions from this set theoretic argument. The other problem being simply that
Cisinski’s approach, while very elegant, relies on a considerable amount of
machinery whose constructivity would have to be carefully checked, while
S. Moss approach, while more technical is considerably more self-contained.

2More precisely, we have a right semi-model structure in the sense of Fresse from [4],
but not in the sense of Spitzweck from [17].
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1.6 Remark. Finally, I only said that “constructive” meant something like
internal logic of an elementary topos with a natural number object for sim-
plicity, but everything is actually completely predicative for some, relatively
strong, sense of this word. I believe that everything can be formalized
within the internal logic of an “Arithmetic universe”, i.e. a pretopos with
parametrized list objects (see for example [13] ). Such a formalization of
course requires some modifications: for example it wouldn’t make sense to
say that a morphism “is a fibration” in the sense that “there exists a structure
of fibrations on the morphisms” as the set of all “structure of fibration” on
a given morphism cannot be defined, but it would make sense to consider a
morphism endowed with a structure of fibration, and to show that given such
a pair one can perform some construction.
Although working in such framework in an explicit way forces us to be ex-
tremely careful about a huge number of details and makes everything con-
siderably more complicated, and would make the paper considerably longer.
For this reason we will not do it explicitly. It seems to me that this is typically
the sort of thing that should be done with a proof assistant.
There is one part of this claim that I have not checked carefully: Whether
such a weak framework is sufficient to use the case of the small object ar-
gument that we need, i.e. construct the cofibration/trivial fibration and the
anodyne cofibration/Kan fibration factorization systems (generated respec-
tively by boundary inclusion and horn inclusion) on simplicial set and semi-
simplicial sets, though it seems reasonable that a complicated encoding using
list object can achieve this. More precisely this should follow from the fact
that the initial model theorem for partial horn theories of Vickers and Palm-
gren in [16] is believed to be provable internally in an arithmetic universe,
and the factorization obtained from R.Garner’s version of the small object
argument (from [7]) are constructed as certain initial structure that can be
described using partial horn logic.

1.7 Remark. In a joint paper with Nicola Gambino [5], we will show that
this Quillen model structure on simplicial sets admit all the necessary struc-
ture to interpret homotopy type theory, with type and context being inter-
preted as bifibrant objects. This was the main motivation for the present
paper and the two papers have been written in close connection. I would
also like to thanks Nicola Gambino for the helpful comments he made about
earlier versions of the present paper.

72 



S. HENRY CONSTRUCTIVE KAN–QUILLEN STRUCTURE

1.8 Notation. ∆ and ∆+ denotes the category of finite non-empty ordi-
nal, respectively with non-decreasing map and non-decreasing injection be-
tween them. ∆̂ is the category of simplicial sets and ∆̂+ is the category
of semi-simplicial sets (see 2.1.2). One denotes by ∆[n] and ∆+[n] the
representable simplicial and semi-simplicial sets corresponding to the or-
dinal [n] = {0, . . . , n}. Our usual notation for the boundary of the n-
simplex and its k-th horn, both for simplicial and semi-simplicial versions
are: ∂∆[n] Λk[n] ∂∆+[n] Λk+[n]
The boundary inclusion map is denotes ∂n or ∂[n] : ∂∆[n] → ∆[n], the i-th
face map is denoted ∂i[n] or ∂in or just ∂i : ∆[n − 1] → ∆[n], for the map
corresponding to the order preserving injection from [n − 1] to [n] which
only skip i. The degeneracy ∆[n+1] → ∆[n] that hits i twice is denoted σi.
Given a simplicial or semi-simplicial sets X , the image of a cell x ∈ Xn be
the i-th face map is denoted dix.

1.9 Notation. Finally, we will define many different classes of maps between
simplicial and semi-simplicial sets. To help the reader navigate this, we list
them all here and recall their definition. This is not meant to be read at this
point, but used as a reference latter if the reader needs to remember what a
certain class of maps is. In particular, many of the claim we make here will
be properly justified latter in the paper.
In the category ∆̂ of simplicial sets, we consider the following classes of
maps:

• Trivial fibrations are the map with the right lifting property against the
boundary inclusions ∂∆[n] → ∆[n].

• Cofibrations are the map with the left lifting property against trivial
fibration. They are also the retracts of ω-transfinite compositions of
pushouts of coproducts of boundary inclusions. It is shown as propo-
sition 5.1.4 of [8] that cofibrations can be characterized as inclusion
satisfying some decidability conditions as stated in Theorem 1.1.

• Kan fibrations are the map with the right lifting property against the
horn inclusion Λk[n] ↪→ ∆[n].

• Anodyne cofibrations are the map with the left lifting property against
Kan fibrations. Equivalently, they are the retract of ω-transfinite com-
positions of pushouts of coproducts of horn inclusions.
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• weak equivalences where defined for arrow between objects that are
either fibrant or cofibrant in [8] as maps that are invertible in the homo-
topy category (the homotopy category being defined using homotopy
class of maps between bifibrant objects). In the present paper we ex-
tend the definition to general objects by redefining weak equivalences
of simplicial sets as the map that are weak equivalences of the under-
lying semi-simplicial sets. The usual characterization using homotopy
groups can also be used as long as homotopy groups are defined as
setoids, see proposition 5.2.6 of [8].

• trivial cofibrations are the maps that are both cofibrations and weak
equivalences. We show that trivial cofibrations and anodyne cofibra-
tions are the same in Proposition 3.5.1, but this is one of the last result
of the paper, so almost everywhere in the paper these class are assumed
to be potentially different.

• Strong fibrations are the map that have the right lifting property agains
trivial cofibrations. It also follows from Proposition 3.5.1 that they are
the same as Kan fibration.

• Degeneracy quotient and degeneracy detecting maps is a unique fac-
torization system on ∆̂ which is studied in Section 3.1. It mostly
serves as a technical tool to establish decidability conditions that are
central to make the proofs in Section 3.4 constructive.

In the category ∆̂+ of semi-ssimplicial sets, we consider the following classes
of maps:

• Trivial fibrations and Kan fibrations are defined as the maps with the
right lifting property against respectively the semi-simplicial boundary
inclusion ∂∆+[n] → ∆+[n] and the semi-simplicial horn inclusion
Λk+[n] ↪→ ∆+[n].

• Cofibrations and anodyne cofibrations are defined as the map with the
left lifting property against respectively trivial fibrations and Kan fi-
brations. They can also be described as the maps that are retracts of
ω-transfinite compositions of pushouts of coproducts of respectively
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the boundary inclusion and the horn inclusion. Semi-simplicial cofi-
brations have been shown in Section 5 of [8] to be exactly the inclusion
that are levelwise complemented (the precise statement is in Theorem
5.5.6 of [8], the proof is the same as for Proposition 5.1.4).

• Weak equivalences are the maps that are invertible in the homotopy
category of the weak model structure defined by the maps above. Be-
cause every semi-simplicial set is cofibrant, the notion makes sense
for arbitrary maps (in a weak model category, only objects which are
either fibrant or cofibrant have an image in the homotopy category).

• Trivial cofibrations are the cofibrations which are weak equivalences.
In ∆̂ trivial cofibration and anodyne cofibrations are not expected to
be the same. Trivial cofibrations have the right lifting property against
all Kan fibrations between fibrant objects, but not against general Kan
fibrations.

• Of course, one could also define the class of strong fibrations, as the
maps with the right lifting property against all trivial cofibrations, but
the notion turn out to serve no purpose in the present paper.

2. Constructing the model structure

2.1 Review of the weak model structures

2.1.1. One of the achievement of [8], which is the starting point of the
present paper, is the construction of a “weak model structure” on the cat-
egory of simplicial sets where fibrations (between fibrant objects) and cofi-
brations (between cofibrant objects) are as specified above.
More explicitly this means that there is a class of maps called “equiva-
lences3” in the category of simplicial sets that are either fibrant or cofibrant
(in the sense above) such that:

• Weak equivalences (between objects that are either fibrants or cofi-
brant) contains isomorphisms, are stable under composition and satis-
fies 2-out-of-3 (and the stronger 2-out-of-6 property).

3In most of the literature this are called weak equivalence, though we can’t think of any
reasons to keep the adjective “weak” other than history, so we will simply drop it.

75 



S. HENRY CONSTRUCTIVE KAN–QUILLEN STRUCTURE

• A cofibration between cofibrant objects is a weak equivalence if and
only if it has the left lifting properties against all fibrations between
fibrant objects (such a map is called a trivial cofibration).

• A fibrations between fibrant objects is a trivial fibration if and only if
it is a weak equivalence4.

• The localization of the category of fibrant or cofibrant objects at the
weak equivalences can be described as the category of fibrant and cofi-
brant objects with homotopy classes of maps between them. Where
the homotopy relation is defined as usual, using equivalently a path
object or a cylinder object. This localization is called the homotopy
category.

• The weak equivalences are exactly the morphisms that are invertible
in the homotopy category (which proves the first point immediately).

One can deduce from this various characterization of weak equivalences:
for example, a map from a cofibrant object to a fibrant object is a weak
equivalence if and only if it can be factored as a trivial cofibration followed
by a trivial fibration. Note that at this point it does not makes sense to ask
whether a map X → Y is a weak equivalence if one of X or Y is neither
fibrant nor cofibrant.

2.1.2. In [8, theorem 5.5.6] we also showed that a similar “weak model struc-
ture” exists on the category of semi-simplicial sets. Semi-simplicial sets are
“simplicial sets without degeneracies”, i.e. collection of sets X0, . . . , Xn, . . .
with “face maps” satisfying the same relations as the face maps of a sim-
plicial sets. Equivalently they are presheaves on the category ∆+ of finite
non-empty ordinals and injective order preserving maps between them.
The generating cofibrations in the category of semi-simplicial sets are the
semi-simplicial boundary inclusion:

∂∆+[n] ↪→ ∆+[n],

4Here we use the fact that that trivial fibrations are characterized by a lifting property
against cofibration between cofibrant objects, which might not be the case in a general weak
model category.
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where ∂∆+[n] and ∆+[n] respectively denotes the semi-simplicial subset
of non-degenerate cells in ∆[n] and ∂∆[n]. Note that the ∆+[n] also corre-
sponds to the representable semi-simplicial sets, so that a morphism ∆+[n] →
X is the same as an n-cell of X and a morphism ∂∆+[n] → X is the data of
a collection of n cells of dimension n− 1 with compatible boundary exactly
as simplicial morphisms from ∂∆[n] to a simplicial sets X . In particular a
morphism f : X → Y of simplicial sets is a trivial fibration if and only
if its image by the forgetful functor to semi-simplicial sets is a trivial fibra-
tion (in the sense that it has the right lifting property against the generating
cofibration).
As there are no degeneracies in ∆̂+ the description of cofibrations simplifies
to just “levelwise complemented monomorphism” i.e. the class of monomor-
phism f : X → Y such that for each n, and for each y ∈ Y ([n]) it is decid-
able whether y ∈ X([n]) or not (this is also discussed in [8, theorem 5.5.6]).
In particular, every semi-simplicial set is cofibrant.
Similarly, a morphism of semi-simplicial sets is said to be a Kan fibration
when it has the lifting property against the semi-simplicial version of the
horn inclusion Λk+[n] ↪→ ∆+[n], where Λk+[n] and ∆+[n] respectively de-
notes respectively the semi-simplicial sets of non-degenerate cells in Λk[n]
and ∆[n]). As above a simplicial morphism between simplicial sets is a Kan
fibration if and only if its image by the forgetful functor to simplicial sets is
a Kan fibration of semi-simplicial sets.
In this weak model structure on semi-simplicial sets, the cofibrations are as
described above, the fibrant objects are the semi-simplicial Kan complexes
and the fibrations and trivial fibrations between fibrant objects are the Kan fi-
brations and trivial fibrations. The big difference with the model structure on
simplicial sets is that as every semi-simplicial set is cofibrant, the classes of
weak equivalences is defined between arbitrary objects of the category. Note
that we do not claim that every trivial cofibration (i.e. cofibration which is
an equivalence) is an anodyne cofibration (i.e. a retract of a transfinite com-
position of pushout of coproducts of semi-simplicial horn inclusion) : the
anodyne cofibration have the left lifting property against all Kan fibrations,
the trivial cofibration only against Kan fibration between Kan complexes.

2.1.3 Remark. Note that it is well known, even classically, that this model
structure cannot be a Quillen model structure. As every object is cofibrant, it
can be seen by a combinatorial argument that, at least classically, it is a “right
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semi-model structure” in the sense of [2]). But for example the codiagonal
map ∆+[0]

∐
∆+[0] → ∆+[0], where ∆+[0] denotes the representable semi-

simplicial sets by the ordinal [0] = {0} is easily seen to have the lifting
property of trivial fibrations (there is no higher cells to lift ! ) while it is
clearly not a weak equivalence.

The forgetful functor from simplicial sets to semi-simplicial sets is very well
behaved: we showed in [8, theorem 5.5.6] that it is both a left and right
Quillen equivalence, and we will prove as Proposition 2.2.2 that it preserves
and detect weak equivalences without any assumption of fibrancy/cofibrancy.
As all object in ∆̂+ are cofibrant, this will allow to remove some assumption
of cofibrancy in various places.

Sketch of proof of 2.1.1. We finish this section by presenting the main steps
of the argument given in [8] of the existence of the weak model structure
on simplicial sets, i.e. all the claims made in 2.1.1. The details of this can
be found in [8], but we hope the following summary will be of help to the
reader. The proof for semi-simplicial sets is similar.
The first (and essentially only) important technical step is the proof of the so-
called “pushout-product” or “corner-product” conditions for the simplicial
generating cofibrations and trivial cofibrations. This follows from a com-
pletely constructive results of Joyal (theorem 3.2.2 of [11]), in [8] it corre-
sponds to Lemma 5.2.2 (and how it is used in the proof of Theorem 5.2.1 in
Corollary 5.2.3). In the present paper we also reproduce a different proof of
this claim as Proposition 3.2.6, which is due to S. Moss (see [15, 2.12]).
From the corner-product condition one deduces formally5 all the usual prop-
erties of stability of cofibrations, anodyne cofibrations, fibrations, and trivial
fibrations under product and exponential expected in a cartesian model cate-
gory (see Proposition 3.2.6 and the comment directly below it).
This allows to construct nicely behaved cylinder objects as ∆[1]×X and path
objects as X∆[1], whose legs are appropriately (trivial) (co)fibrations as soon
as X is (co)fibrant. More generally, one can construct relative path objects
for any fibration X ↠ Y and relative cylinder objects for any cofibration
A ↪→ Y . Having such relative cylinders and path objects is the definition

5using the so-called “Joyal-Tierney calculus” presented in the appendix of [10], though
this types of manipulation were known before, maybe in a less elegant or general way.
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of weak model structure that we gave in section 2 of [8]. The precise ob-
servation that one gets a weak model structure from such a tensor product
satisfying the corner-product condition is essentially the construction done
in section 3 of [8], summarized by theorem 3.2 there.
Then all the claims made in 2.1.1 follows from the general theory of weak
model structure developed in section 2.1 and 2.2 of [8]. We sketch the gen-
eral strategy here, though at this point we recommend looking directly at
subsection 2.1 and 2.2 of [8] which are mostly self contained.
One uses these cylinders and path objects to define the homotopy relation
between maps from a cofibrant object to a fibrant object. Using the lifting
property one show that the homotopy relation with respect to any cylinder
object is equivalent to the homotopy relation with respect to any path object
and that these define an equivalence relation compatible to pre-composition
and post-composition. The proof is essentially the same as in a full Quillen
model structure: the definition of weak model structure is exactly tailored so
that the usual proof of these claims can be applied.
This allows to give a first definition of the homotopy category as the category
whose objects are the fibrant-cofibrant objects and the maps are the homo-
topy class of maps. One then proves formally that this homotopy category
is equivalent to various localization (see Theorem 2.2.6 in [8]), the last one
being the localization of the category of simplicial sets that are either fibrant
or cofibrant at all trivial cofibrations with cofibrant domains and all trivial
fibrations with fibrant targets. One can then define weak equivalences as
the arrow that are invertible in this localization, and one automatically have
2-out-of-6 and all the other good properties of weak equivalences. The fact
that trivial fibrations with fibrant target are exactly the fibration (with fibrant
targets) that are equivalence is a little harder and use again the properties
of the relative path objects (see proposition 2.2.10 in [8]), and similarly for
cofibrations.

2.2 The simplicial model structure

To obtain that simplicial sets form a full Quillen model structure we first
need to extend the meaning of “equivalences” so that it makes sense also for
arrows between objects that are neither fibrant nor cofibrant. We will do this
by exploiting the forgetful functor from the category of simplicial sets to the
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category ∆̂+ of semi-simplicial sets. As in the category of semi-simplicial
sets every object is cofibrant the notion of weak equivalence there is defined
for arbitrary arrows, and we will show it is reasonable to define equivalences
of simplicial sets as arrows that are equivalences of the underlying semi-
simplicial sets.
We start by the following observation:

2.2.1 Lemma.

1. If f : X → Y is an anodyne cofibration in ∆̂, then its image in ∆̂+ is
also an anodyne cofibration, and in particular is an equivalence.

2. Let f : X ↠ Y be a trivial fibration in ∆̂. Then the image of f in ∆̂+

is an equivalence.

Note that in the second case, it is obvious that f is a trivial fibration in ∆̂+,
but this is not enough to deduce that is is an equivalence in general, unless
its target is fibrant, as ∆̂+ only has a weak model structure.

Proof.

• This is corollary 5.5.15.(ii) of [8].

• We first assume that X is cofibrant. In this case one can construct a
strong cylinder object for X using the cartesian structure of simplicial
sets:

X
∐

X ↪→ ∆[1]×X
∼→ X

with the two maps X ↪→ ∆[1] × X being anodyne cofibrations (this
follows from the fact that X is cofibrant and the corner-product con-
ditions). Because of point 2, this produces a strong cylinder object
for the underlying semi-simplicial set of X in the category of semi-
simplicial sets.

In ∆̂+, every object is cofibrant, and the arrow f : X → Y is still a
trivial fibration, so one can find some dotted lifting for the following
two squares in ∆̂+:
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∅ X

Y Y

s

X
∐

X X

∆[1]×X X Y

(IdX ,sf)

h

In particular, s is a section of f , i.e. fs = IdY , and h a homotopy
between IdX and sf . Hence s is an inverse of f in the homotopy
category of ∆̂+, which makes f an equivalence in ∆̂+.

In the general case (when we do not assume that X is cofibrant), one
takes a cofibrant replacement (with a trivial cofibration) Xc

∼
↠ X and

the result above applies to both the trivial fibration Xc
∼
↠ X and the

composite trivial fibration Xc
∼
↠ Y . By 2-out-of-3 for weak equiva-

lences in ∆̂+ this implies that the map X
∼
↠ Y is indeed an equiva-

lence in ∆̂+.

2.2.2 Proposition. For a morphism f : X → Y between simplicial sets that
are either fibrant or cofibrant the following are equivalent:

• f is an equivalence for the weak model structure in ∆̂.

• The image of f in ∆̂+ is an equivalence for the weak model structure
on ∆̂+

Proof. If Y is cofibrant, then one can take a fibrant replacement Y
∼
↪→ Y f .

The map Y
∼
↪→ Y f is an equivalence both in ∆̂ and ∆̂+, so in both categories

f is an equivalence if and only if the composite X → Y f is an equivalence,
so it is enough to prove the result when Y is fibrant. A similar argument
using a cofibrant replacement allows to assume that X is cofibrant.
Assuming both X cofibrant and Y fibrant, one factors f as an anodyne cofi-
bration (with cofibrant domain) followed by a Kan fibration (with fibrant
target). The anodyne cofibration is an equivalence in both categories, hence
(in both categories) f is an equivalence if and only if the Kan fibration part
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is a trivial fibration. But for a map in ∆̂, being a trivial fibration in ∆̂ and
in ∆̂+ are the exact same condition (the lifting property only involves face
operations, no degeneracies).

This last proposition makes the following definition very reasonable:

2.2.3 Definition.

• An arrow in ∆̂ is said to be an equivalence if its image by the forgetful
functor to ∆̂+ is an equivalence for the semi-simplicial version of the
Kan–Quillen weak model structure mentioned in 2.1.2.

• A trivial cofibration is a cofibration which is also an equivalence.

• A strong fibration is an arrow that has the right lifting property against
all trivial cofibrations.

We remind that the reader, that we will prove in Proposition 3.5.1 that these
notions of strong fibrations and trivial cofibrations are equivalent to the usual
notion of Kan fibrations and anodyne cofibrations.

2.2.4 Remark. With this definition it is immediate that:

• Isomorphisms are equivalences, and equivalences are stable under com-
position, satisfies the 2-out-of-3 and even the 2-out-of-6 properties.

• Anodyne cofibrations are trivial cofibrations. Indeed they are cofibra-
tions by definition and they are equivalences in the sense of Defini-
tion 2.2.3 by point 1 of Lemma 2.2.1.

• As a consequence, strong fibrations are Kan fibrations.

• Trivial fibrations, defined by the right lifting property against bound-
ary inclusions, are both strong fibrations because they have the right
lifting property against all cofibrations, and equivalences because of
point 2 of Lemma 2.2.1.
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• A Kan fibration (or strong fibrations) with fibrant target is a trivial
fibration if and only if it is an equivalence (this follows from proposi-
tion Proposition 2.2.2 and the fact that this fact holds in weak model
categories).

Maybe it is a good point to recall the following very classical lemma that we
will use constantly in this paper:

2.2.5 Lemma. Assume that a map f is factored as f = pi. If i has the left
lifting property against f , then f is a retract of p. If p has the right lifting
property against f then f is a retract of i.

Proof. We only prove the first half of the claim, the second is just the dual
statement. One form a morphism h as the dotted diagonal filler in first square
below (obtained by the lifting property of i against f ), which can then be
used to form a retract diagram:

A A

B C

i f

p

h

A B A

C C C

f

i

p

h

f

2.2.6 Lemma.

(i) A cofibration is a trivial cofibration if and only if it has the left lifting
property against all Kan fibrations between Kan complexes.

(ii) An arrow whose target is a Kan complex is a trivial cofibration if and
only if it is anodyne.

(iii) An arrow whose target is a Kan complex is a strong fibration if and
only if it is a Kan fibration.

(iv) A map is a trivial fibration if and only if it is a strong fibration and an
equivalence.
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Because of the third point it is equivalent for a simplicial set X that X → 1
is a a Kan fibration (i.e. X is a Kan complex) and that X → 1 is a strong
fibration. One will simply say that X is fibrant.

Proof.

(i) Let f : A ↪→ B be a cofibration that is also an equivalence, and we
consider a lifting problem of f against a Kan fibration between Kan
complexes:

A X

B Y

f

v

p

u

In the special case where both u and v are equivalences, then by 2-
out-of-3, the map p is also an equivalence. As it is a Kan fibration
between Kan complexes it is also a trivial fibration, and hence the
lifting problem has a solution because f is a cofibration. We will now
show that one can bring back the general case to this situation:

One can factor u as an anodyne cofibration followed by a Kan fibra-
tion: B

∼
↪→ Y ′ ↠ Y and complete the diagram above by forming the

pullback P = Y ′ ×Y X :

A P X

B Y ′ Y

f

v′

∼

The map v′ can be factorized as an anodyne cofibration followed by a
Kan fibration:
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A P ′ P X

B Y ′ Y

f

∼

∼

The case treated above, where the two horizontal maps are equiva-
lences, allows to produce a dotted diagonal lifting of the form:

A P ′ P X

B Y ′ Y

f

∼

∼

and this concludes the proof in the general case.

Conversely, assume i : A ↪→ B is a cofibration that has the left lift-
ing property against all Kan fibrations between Kan complexes. One
needs to show that i is an equivalence. By taking an anodyne cofi-
bration B

∼
↪→ Bf to a fibrant object the composite A ↪→ Bf still has

the announced lifting property so one can freely assume that B is fi-
brant in order to show that i is an equivalence. Under that assumption
one factors i as an anodyne cofibration followed by a Kan fibration,
the Kan fibration has a fibrant target so it has the right lifting prop-
erty against i. Hence by the retract lemma 2.2.5, i is a retract of the
anodyne cofibration part of the factorization, hence it is an anodyne
cofibration itself, so that we can conclude that i is an equivalence.

(ii) As mentioned in Remark 2.2.4, anodyne cofibrations are trivial cofi-
brations. So we only need to show the converse. In the proof of point
(1), we have shown in the first part that a trivial cofibration have the
left lifting property against fibrations between fibrant objects and in
the second that any map with this lifting property and whose target is
a Kan complex is an anodyne cofibration. Together this indeed shows
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that a trivial cofibration whose target is a Kan complexe is an anodyne
cofibration.

(iii) We have mentioned already that strong fibrations are Kan fibrations,
and (i) shows that Kan fibrations between Kan complexes are strong
fibrations.

(iv) Trivial fibration have the right lifting property against all cofibrations,
in particular against trivial cofibrations hence they are strong fibra-
tions, and point 2 of Lemma 2.2.1 shows they are equivalences. For
the other direction, the proof is essentially the dual the proof of (i). Let
p be a strong fibration that is also a weak equivalence, and consider a
lifting problem of p against a cofibration:

A X

B Y

p

By factoring the map A → X into a cofibration A → A′ followed by
a trivial fibrations and taking the pushout of A ↪→ B along this map
A → A′ one reduces the problem to the case where the top map is
an equivalence. One can then factor the bottom map as a cofibration
followed a trivial fibration:

A A′ X

B B′ Y ′ Y
⌜

∼

p

∼

where the dotted arrow exists because the composed cofibration A ↪→
Y ′ is a weak equivalence by the 2-out-of-3 properties, and hence has
the left lifting property against p. This provides a dotted filling for the
initial square.
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In order to conclude that one has a model structure on simplicial sets, one
needs one more proposition.

2.2.7 Proposition. Any morphism can be factored as a trivial cofibration
followed by a strong fibration.

Again, we will show in Proposition 3.5.1 that this factorization system is
actually the same as the anodyne cofibrations/Kan fibrations factorization
system, i.e. that trivial cofibrations are the same anodyne cofibrations and
that strong fibration are the same as Kan fibrations. Note that at this point
it is immediate that anodyne cofibrations are trivial cofibrations, and hence
that fibrations are Kan fibrations.

Proof. We will give two proofs of this claim. The first one follows from
[14], more precisely its Theorem 3.2, which is not known to be constructive
but allows to give a simple and direct proof of the present proposition.
In order to fix the issue with constructivity one gives a second, considerably
less direct proof: as mentioned above in Proposition 3.5.1 we will prove in-
dependently of the present proposition that trivial cofibrations are the same
as anodyne cofibrations, hence showing that the weak factorization men-
tioned in the proposition exists and is simply the anodyne cofibration/Kan
fibration weak factorization system (whose existence follows from the small
object arguments).
We still give the first proof as we believe it is interesting on its own as it
allows to construct the model structure on simplicial sets without needing to
invoke Kan EX∞-functor.
Theorem 3.2 of [14] claims that the 2-category of presentable categories en-
dowed with a class of cellular morphisms generated by a set of morphisms
is closed under pseudo-pullback, and that these pullback are constructed ex-
plicitly: the underlying category is the pullback of categories, and the class
of cellular morphisms are the morphisms whose image in each component
are in the specified classes. We apply this to the following square:

P (Kan-Cplx,TrivFib)

(∆̂, Cof) (Kan-Cplx,All arrows)

⌟
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here “Cof” denotes the class of cofibration in ∆̂ which is generated by a set.
Kan-Cplx denotes the category of “algebraic Kan complexes”, i.e. simplicial
set endowed with chosen lifting against horn inclusion and of morphisms
compatible to these choices of lifting. The functor ∆̂ → Kan-Cplx sends
any simplicial set to the “free algebraic Kan complexes it generates”,i.e. the
left adjoint to the forgetful functor from algebraic Kan complex to simplicial
set, or equivalently the functor sending a simplicial set to its canonical fibrant
replacement as produced by R.Garner version of the small object argument.
The class TrivFib is the left class of the weak factorization on Kan-Cplx
cofibrantly generated by the image of the horn inclusion in ∆̂. The right class
of the weak factorization system is hence exactly the class of morphisms
whose image by the forgetful functor to ∆̂ are Kan fibrations. It follows that
the morphism in ∆̂ which are sent to “trivial cofibrations” in Kan-Cplx are
exactly the arrows that have the left lifting property against all Kan fibration
between Kan complexes. Hence in this case the pullback is the category
of simplicial sets with as set of cellular morphisms the maps that are both
cofibrations and have the left lifting property against Kan fibration between
Kan complexes, i.e. the “trivial cofibrations” as defined above, hence this
class of arrow is generated by a set, and hence by the small object argument
it is one half of a weak factorization system.

2.2.8 Remark. After writting this paper, the non-constructive argument used
in the proof of Proposition 2.2.7 have been considerably generalized in sec-
tion 4 of [9], leading to the general notion of “left and right saturation” of a
combinatorial or accessible pre-model category. This is a special case of left
saturation of a combinatorial pre-model category.

2.2.9 Theorem. There is a model structure on the category of simplicial sets
such that:

• The equivalences are as in Definition 2.2.3.

• The cofibrations and trivial fibrations are the same as in Theorem 1.1.

• The fibrations are the strong fibration of Definition 2.2.3.

Proof. We have two weak factorization systems, trivial cofibrations have
been defined as the cofibrations that are equivalences, and it was shown in
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Lemma 2.2.6 that trivial fibrations are the (strong) fibrations that are equiv-
alences. Equivalences are stable by composition, satisfies 2-out-of-6 and
contains isomorphisms by definition, so this concludes the proof.

2.2.10 Proposition. The model structure of Theorem 2.2.9 is left proper, i.e.
the pushout of a weak equivalence along a cofibration is a weak equivalence.

Proof. Given a pushout square in the category of simplicial sets:

A C

B D

∼

f

then as the forgetful functor to semi-simplicial sets preserves all colimits,
this square is again a pushout in the category of semi-simplicial sets. In
this category every object is cofibrant, and pushout along a cofibration be-
tween cofibrant objects is a left Quillen functor hence preserves equivalences
between cofibrant objects, hence f is an equivalence in the category of semi-
simplicial sets, and hence is an equivalence in ∆̂ by Definition 2.2.3.

3. Kan EX∞-functor

The goal of this section is to introduce Kan’s EX and EX∞ functors and
to use them in Section 3.5 to prove the remaining claim concerning the
simplicial model structure. Most of the results here were (in their classi-
cal form) originally proved by Kan in [12] (often with quite different proof
than the ones we will provide here), but we will mostly follow the approach
of S.Moss in [15] which we will make constructive by only adjusting some
details.
Section 3.1 is a preliminary section that is of some independent interest but
which will have only a very marginal role in the paper: it will only be used
to prove some decidability conditions (more precisely Lemma 3.4.4, which
will be an easy consequence of Lemma 3.1.8 and Proposition 3.1.10). As
such it can be easily ignored by the reader.
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Section 3.2 review the notion of “P-structure” introduced by S.Moss, which
is mostly a language to talk more conveniently about “Strongly anodyne
cofibrations”, i.e. transfinite composition of pushouts of coproducts of horn
inclusion. This is a key tool to structure the proof of the main results of
Section 3.4.
Section 3.3 introduce Kan’s barycentric subdivision functor SD, its right ad-
joint EX and Kan’s EX∞ functor and proves some of their basic properties.
This is very classical material that we reproduce here mostly for complete-
ness and to discuss some constructive aspect.
Section 3.4 reproduces (with some modifications to make it constructive)
S.Moss’ proof in [15] that the natural transformation X → EX∞ X is an an-
odyne cofibration. Constructively this only works when X is cofibrant. We
also noted that S.Moss proof can be used to obtain a result which apparently
was not known even classically: for any morphisms f : X → Y (with X
cofibrant) the natural morphism:

X → EX∞ X ×EX∞ Y Y

is anodyne. This was known classically when Y is terminal, or when X → Y
is a fibration, and we will actually only use it in these two special cases, but
it appears that they can be proved at the same time using S. Moss’ argument.
Finally Section 3.5 uses the properties of this functor to conclude that all
Kan fibrations are strong fibrations (Proposition 3.5.1) and that the model
structure on simplicial sets is indeed right proper (Proposition 3.5.2).

3.1 Degeneracy quotient and questions of decidability

In this section we establish some general results about a notion of “degen-
eracy quotient” that we will introduce. While the notion might have some
interest on its own in other context its only use in the present paper is to
prove some decidability results, which will follow from Lemma 3.1.8 below.
In fact, the only uses of this section in the present paper is in the proof of the
decidability conditions of Lemma 3.4.4. Proposition 3.1.11 is not useful for
the present paper, but will serve in some future work, in particular in [5] and
it was more natural to include its proof here.

3.1.1 Definition. A morphism f : X → Y between simplicial sets is said to
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be degeneracy detecting if:

∀x ∈ X, f(x) is a degenerate cell ⇒ x is a degenerate cell

Of course the converse implication is true for any simplicial map, so one has
that x is a degenerate cell if and only if f(x) is. One says that a cell x ∈ Xn

is σ-degenerate for some degeneracy σ : [n] → [m] if x = σ∗y for some y.

3.1.2 Lemma. Let σ : [n] → [m] be any degeneracy and x ∈ Xn any cell.
The following are equivalent:

(i) x is σ-degenerate.

(ii) For all face maps i : [k] → [n] such that the composite σi is non-
injective, the cell i∗x is degenerate.

Proof. If x = σ∗y then for any such i, i∗x = (σi)∗y which is degenerate if
σi is non-injective, so (i) ⇒ (ii).
Conversely, let x satisfy (ii). If σ is the identity the result is trivial. If σ
is not injective, then x is in particular a degenerate cell, i.e. there exist a
non-trivial degeneracy s : [n] → [k] such that x = s∗y. Note that y = d∗x
for d : [k] → [n] any section of s. If for all section d of s, σd is injective,
then Lemma 3.1.3 below shows that s factors as jσ for some degeneracy
j : [m] → [k] and x = s∗y = σ∗j∗y is indeed σ-degenerate. If now σd is
non-injective for some section d of s, then y = d∗x is a degenerate cell by
assumptions, hence one can write x = s′∗y′ for y′ of lower dimension than x
and start the argument above again, an induction on the dimension concludes
the proof.

3.1.3 Lemma. Let σ : [n] → [m] and s : [n] → [k] be two degeneracy,
assume that for all d : [k] → [n] a section of s, σd is injective, then there
exists a (unique) j : [m] → [k] such that s = jσ.

One easily see it is also a necessary condition.

Proof. One needs to show that, under the assumption of the lemma, for any
two elements i, j ∈ [n] if σi = σj then si = sj. If si ̸= sj, then we can
find a section d of s such that dsi = i and dsj = j, indeed, in order to get
a section of s, we just need to chose for each k the value d(k) ∈ s−1{k}.
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So as long as si ̸= sj, we can chose d(si) = i and d(sj) = j, and for any
other k ∈ [m], we can, for example, take for d(k) the smalest element of
the fiber s−1{k}. Of course, all this is constructively possible because [m] is
a finite decidable set. Given such a section d, we have σj = (σd)(sj) and
σi = (σd)(si), so the injectivity of σd implies that σi ̸= σj. As equality in
[n] is decidable one can take the contrapositive and concludes the proof.

3.1.4 Proposition. Let f : X → Y be a map between simplicial sets, then
the followings conditions are equivalent:

(i) f is degeneracy detecting.

(ii) If f(x) is σ-degenerate for some degeneracy σ then x is σ-degenerate
as well.

(iii) f has the (unique) right lifting property against all the degeneracy
map ∆[n] → ∆[m].

Proof. (ii) clearly implies (i) and the converse is immediate from Lemma 3.1.2.
The lifting in (iii) is automatically unique as degeneracy are epimorphisms
in the presheaf category and this lifting property is a reformulation of (ii).

Given a simplicial set X , x ∈ X([n]) and σ : [n] → [m] a degeneracy, one
defines X[(x, σ)] as the pushout:

∆[n] X

∆[m] X[(x, σ)]

σ

x

X[(x, σ)] is the universal for map X → Y making x “σ-degenerate”, i.e.
given a morphism f : X → Y , it factors as X → X[(x, σ)] if and only if
f(x) = σ∗y for some y ∈ Y ([m]), and such a factorization is unique when
it exists.
More generally, given a collection (xi ∈ X([ni]))i∈I and σi : [ni] → [mi]
one can define an object X[(xi, σi)] as the pushout of a coproduct of de-
generacy maps, which has the following universal property: a morphism
f : X → Y factors (uniquely) through X → X[(xi, σi)] if and only if for all
i ∈ I , f(xi) is a σi-degenerate cell.
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3.1.5 Definition. A morphisms is said to be a degeneracy quotient if it is
obtained as X → X[(xi, σi)] for some collection of xi ∈ X([ni]) and σi :
[ni] ↠ [mi] as above.

3.1.6 Proposition. Degeneracy quotient and degeneracy detecting maps form
an orthogonal factorization system.
More precisely, for any morphism f : X → Y its factorization is obtained
as:

X → X[(xi, σi)] → Y

where (xi, σi) is the collection of all xi and σi such that f(xi) is a σi-
degenerate cell.

Note that this is essentially nothing more than the small object argument,
though it is notable that in this case it converges in a single step.

Proof. It is clear from the universal property of X[(xi, σi)] that one has a
factorization as in the lemma, and the first map is by definition a degeneracy
quotient. The map X[(xi, σi)] → Y is degeneracy detecting: given x ∈
X[(xi, σi)], it is the image of a x0 ∈ X , if the image of x is a degenerate
cell in Y , one has f(x0) = σ∗y, hence (x0, σ) appears in the definition of
X[(xi, σi)], which forces the image of x0, i.e. x, to be degenerate.
The orthogonality of the two class is relatively immediate as well. Given a
lifting problem:

X A

X[(xi, σi) B

where the right map is degeneracy detecting, then a diagonal filling exists if
and only the image of the xi in A satisfies the appropriate degeneracy con-
ditions. As their images in B satisfies them because of the existence of the
square, and as the map A → B is degeneracy detecting, this is immediate.
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The following is more or less a reformulation of what is a degeneracy quo-
tient that will be convenient:

3.1.7 Lemma. An epimorphism of simplicial sets p : A → B is a degeneracy
quotient if and only if for any map f : A → X , the map f factors through p
if and only if the following condition holds:

∀a ∈ A([n]) p(a) is a degenerate cell ⇒ f(a) is a degenerate cell. (D)

Note that if such a factorization exists then condition (D) holds without any
assumption on p, so that if p is a degeneracy quotient then a factorization
exists if and only condition (D) holds.

Proof. It follows from Lemma 3.1.2, that condition (D) is equivalent to:

∀a ∈ A([n]) p(a) is a σ-degenerate cell ⇒ f(a) is a σ-degenerate cell.
(D’)

A factorization of f through p is always unique as p is an epimorphism, so
saying that f factors through p if and only if condition (D’) (or (D) ) holds
is equivalent to saying that B (endowed with the map p : A → B) has the
universal property of A[(ai, σi)] where (ai, σi) are all the pairs of ai ∈ A([n])
such that p(ai) is a σi-degenerate cell. Hence this indeed holds if and only
if A → B is a degeneracy quotient, as because of Proposition 3.1.6, any
degeneracy quotient p : A → B is isomorphic to A → A[(ai, σi)] where
(ai, σi) are all the pairs of ai ∈ A([n]) such that p(ai) is a σi-degenerate
cell.

This observation has a quite interesting consequence that will be extremely
useful to us, and in fact is the unique reason why we are interested in degen-
eracy quotients in the present paper:

3.1.8 Lemma. Given p : A → B a degeneracy quotient of finite decidable
simplicial sets, and f : A → X a morphisms to a cofibrant simplicial set, it
is decidable if there exists a diagonal lift:

A X

B.

?
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Proof. One can use condition (D) of Lemma 3.1.7 to test whether such a
diagonal lift exists. As B is finite and decidable, degeneracy in B is decid-
able. So for each cell a ∈ A it is decidable if “ p(a) is a degenerate cell ⇒
f(a) is a degenerate cell” as both side of the implication are decidable. More-
over this condition is automatically valid for all degenerate cells of A, so it
is necessary to test it only on a finite number of cells to know whether f
factors through p, which makes the validity of condition (D) decidable and
hence the existence of a diagonal lift decidable.

The following lemma is obvious, but will be a convenient tool to organise
the proof that certain maps are degeneracy quotients:

3.1.9 Lemma. Let p : A → B be an epimorphism. One considers the
equivalence relation ∼p on A generated by:

• If p(a) is a σ-degenerate cell, then a ∼p σ
∗t∗a for any section t of σ.

• ∼p is compatible with all the faces and degeneracy maps of A.

Then p is a degeneracy quotient if and only if any two a, a′ ∈ A such that
pa = pa′ one has a ∼p a

′.

Note that for any morphisms, a ∼p a
′ ⇒ pa = pa′.

Proof. One easily see that ∼p is exactly the simplicial equivalence relation
by which one needs to quotient A to obtain A[(ai, σi)] where (ai, σi) is the
family of all ai such that p(ai) is σi degenerate in B. By the second half of
Proposition 3.1.6, the map p is a degeneracy quotient if and only if the second
maps in the factorization A → A[(ai, σi)] → B is an isomorphism, which
happens if and only if the relation ∼p is equivalent to p(a) = p(a′).

We continue with a proposition that allows to get many examples of degen-
eracy quotient (see for example the proof of Lemma 3.4.4).

3.1.10 Proposition. Let P be a poset with an idempotent order preserving
endomorphism π satisfying either ∀x, πx ⩽ x or ∀x, πx ⩾ x. Let Q = πP .
Then the morphism:

N(P ) → N(Q)

between the simplicial nerve induced by π : P → Q is a degeneracy quo-
tient.
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Proof. We assume that πx ⩽ x. The other case follows by simply revers-
ing the order relation on P and on all objects of the category ∆. We use
Lemma 3.1.9.
Let p0 ⩽ p1 ⩽ · · · ⩽ pn be an element of N(P )n and assumes that p0, . . . , pi−1 ∈
Q, then one forms

p0 ⩽ p1 ⩽ · · · ⩽ pi−1 ⩽ πpi ⩽ pi ⩽ · · · ⩽ pn

It is an element of N(P )n+1 whose image in Q is degenerate, as σi∗(πp0 ⩽
· · · ⩽ πpn). This implies that in N(P ):

(p0 ⩽ · · · ⩽ pn) ∼ (p0 ⩽ · · · ⩽ pi−1 ⩽ πpi ⩽ pi+1 ⩽ · · · ⩽ pn)

In the sense of the equivalence relation of Lemma 3.1.9. Hence using this
for all i from 0 to n, one obtains that for any sequence p0 ⩽ · · · ⩽ pn all the

(πp0 ⩽ · · · ⩽ πpi−1 ⩽ pi ⩽ · · · ⩽ pn)

for i = 0, . . . , n+ 1 are equivalent. In particular any sequence is equivalent
to its image by π and finally any two sequences whose image in N(Q) are
the same are equivalent.

We finish with a proposition that is useful in a related work [5]):

3.1.11 Proposition. The class of degeneracy quotients is stable under pull-
back.

Proof. First we show that given a pullback of the form:

P ∆[n]

∆[k] ∆[m]

ϕ
⌟

σ

f

where σ is a degeneracy map, the map ϕ is a degeneracy quotient. This is
proved using Proposition 3.1.10. Indeed in such a pullback P is nerve of the
corresponding pullback of posets, that we will also denote P (because the
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nerve functor commutes with pullback). We will show that the map P → [k]
is of the form of Proposition 3.1.10. The map σ : [n] ↠ [m] is of this form,
with the section [n] → [m] sending each i ∈ [m] to the smallest element of
the fiber, this gives an order preserving idempotent π : [n] → [n] such that
πx ⩽ x. This induce an idempotent on P sending a pair (i, j) (with i ∈ [k],
j ∈ [n]) to π′(i, j) = (i, πj). This is still an element of P , π′(i, j) ⩽ (i, j) it
is idempotent, and its image identifies naturally with [k].
Hence ϕ : P → ∆[k] is indeed a degeneracy quotient by Proposition 3.1.10.
We now show that given any pullback of the form:

P ∆[n]

X ∆[m]

ϕ
⌟

σ

f

for a degeneracy σ, the map ϕ is a degeneracy quotient.
Indeed, one write:

X = Colim
∆[k]→X

∆[k]

Given a x : ∆[k] → X one writes Px the pullback:

Px P ∆[n]

∆[k] X ∆[m]

ϕx
⌟

ϕ
⌟

σ

f

All map ϕx are degeneracy quotient by the first part of the proof. As the
category of simplicial sets is a topos, colimits are universal, hence the mor-
phism ϕ is the colimit of the arrows ϕx (in the category of arrows). As the
class of degeneracy quotient is the left class of an orthogonal factorization
system, the colimit ϕ is also a degeneracy quotient. To give an explicit argu-
ment: given a lifting problem of ϕ against a degeneracy detecting map one
can construct for each x a lifting:
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Px P A

∆[k] X B

ϕx ϕ

By uniqueness of the lifts, they will all be compatible and produces a mor-
phisms from the colimits to A making the square commutes.
Finally we can prove the claim in the proposition. Given a morphism f :
X → Y any degeneracy map ∆[n] → ∆[m] over Y (i.e with δ[m] →
Y ) is sent by the pullback functor ∆̂/Y → ∆̂/X to a degeneracy quotient.
But a general degeneracy quotient is a pushout of coproduct of degeneracy
maps, and this coproduct and pushout are preserved by the pullback functor
(because the category of simplicial sets is cartesian closed), and coproduct
of pushout of degeneracy quotient are degeneracy quotient so this concludes
the proof.

3.2 P-structures

This section recalls the notion of P -structure introduced in [15] with some
minor modification to make it more suitable to the constructive context. A
“P-structure” on a morphism f : A → B is essentially a recipe for construct-
ing it as an iterated pushout of coproduct of horn inclusion Λi[n] ↪→ ∆[n].
The general idea of this definition is that in such an iterated pushout cells are
added by pairs: each pushout by a horn inclusion Λi[n] → ∆[n] adds exactly
two non-degenerate cells:

(I) The cell P corresponding to the identity of ∆[n].

(II) The cell F corresponding to the i-th face ∂i[n] : ∆[n− 1] → ∆[n].

These two cells are connected by F = diP . So if A ↪→ B is constructed by
iterating such pushouts, then one can partition the non-degenerate cells of B
that are not in A into “type I” and “type II” and there should be a bijection
which associates to any type II cell the type I cell that is added by the same
pushout. The formal definition looks like this:
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3.2.1 Definition. Let f : A → B be a cofibration of simplicial sets. A
P -structure on f is the data of:

• A (decidable) partition of the set of non-degenerate cells of B which
are not in A into:

BI

∐
BII

called respectively type I cells and type II cells.

• A bijection P : BII
∼→ BI.

Such that:

1. For all x ∈ BII, dim(Px) = dim(x) + 1

2. For all x ∈ BII, there is a unique i such that di(Px) = x.

3. Every cell of BII has finite P -height (see Definition 3.2.2 and Lemma 3.2.3
below).

Recall that, if f : A → B is a cofibration, it is decidable whether a cell is in
A or not, and for cells not in A it is decidable whether they are degenerate or
non-degenerate. So a P -structure gives a partition of the cells of B into for
parts: the cells of A, the degenerate cells of B not in A, the type I cells and
the type II cells.

In [15], the last condition of this definition was formulated as a well-foundness
condition. Well-foundness is a tricky notion constructively so we prefer to
avoid it. It should be clear to the reader that the condition we will now
explain is equivalent to well-foundness if one assumes classical logic, or if
one has a nice enough notion of well-foundness constructively. Intuitively
this last condition just asserts that the “recipe” given by the P -structure to
construct B from A as an iterated pushout of horn inclusion is indeed well-
founded, i.e. can be executed. We will formulate it by introducing for each
cell b ∈ B a set:

Ant(b)
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which corresponds to the set of cells that needs to be constructed before
b in the process described by P . In [15] the well-foundness condition is
essentially that the order relation generated by b′ ∈ Ant(b) is well-founded.
As each Ant(b) is a finite set this is equivalent to the fact that for each b there
is an integer k such that when iterating Ant(b) more than k times one has
only cells in A. It is this second definition that we will use in our constructive
context.

More precisely: Given a cell b ∈ BII, let i be the unique integer such that
diPx = x, one defines:

Ant0(b) = {djP (b)|j ̸= i}
And one defines the set Ant(b) as the union of Ant0(b) and all (iterated)
faces of cells appearing in Ant0(b).
Similarly, if b = Pb′ is type I, one defines:

Ant(b) = Ant(b′)

Finally, if b ∈ A:

Ant(b) = ∅
and if b is not in A but degenerate, then

Ant(b) = Ant(b′)

where b′ is the unique non-degenerate cell such that b = σ∗b′.
One also defines AntII(b) to be the set of non-degenerate type II cell in
Ant0(b). Note that in all cases Ant(b) and Ant0(b) are Kurawtowski-finite6

sets, and as the subset of type II cell is decidable, AntII(b) is also Kurawtowski-
finite. One defines Antk(b) and AntkII(b) by:

Ant1(b) = Ant(b) Antk(b) =
⋃

c∈Antb

Antk−1c

Ant1II(b) = AntII(b) AntkII(b) =
⋃

c∈AntIIb

Antk−1
II c

6A set X is said to be Kuratowski-finite if ∃n, ∃x1, . . . , xn ∈ X,∀x ∈ X,x =
x1 or . . . or x = xn.
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Note that when applied to a non-degenerate type II cell b ∈ B, all elements
of AntII(b) (and hence of AntkII(b) as well) are non-degenerate type II cells
of the same dimension as b.

3.2.2 Definition.

• One says that b has finite P -height if there exists an integer k such
that:

Antk(b) = ∅

• One says that b has finite weak P -height if there is an integer k such
that:

AntkII(b) = ∅

Note that for each given k and b ∈ B, as the sets Antk(b) and AntkII(b) are
Kuratowski-finite it is decidable whether or not Antk(b) and AntkII(b) are
empty. In particular, assuming b has finite (weak) P -height there is smallest
integer k, called the (weak) P -height of b, such that Antk(II)(b) = ∅. But in
general it might not be decidable whether b has finite (weak) P -height or
not.

3.2.3 Lemma. Let f : A ↪→ B be a cofibration with a P -structure satisfying
all the conditions of Definition 3.2.1 but the last. Then the following are
equivalent:

• Every b ∈ B has finite P -height.

• Every non-degenerate type II cell b ∈ BII has finite weak P -height.

Proof. It is clear that AntkII(b) ⊂ Antk(b) hence the first condition implies
the second. Conversely, assume that every non-degenerate b ∈ BII has finite
weak P -height. We will prove by double induction on both the dimension
and the weak P -height that all cells of B have finite P -height.
First we assume that all cells of dimension < n have finite P -height. Cells
of A have P -height zero. All cells of B of dimension n that are either degen-
erate or of type I satisfies Ant(b) = Ant(b′) for some b′ of dimension strictly
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less than n, hence for b′ of finite P -height by the induction assumption. As
Antk(b) = Antk(b′) this implies that b has finite P -height as well.
It remains to show that all non-degenerate n-cells of type II in B have finite
P -height. We do that by induction on their weak P -height.
Indeed for a general type II cell b, Ant(b) is constituted of:

• Degenerate or type I cell, that are already known to have finite P -
height.

• Faces of cell in Ant0(b) which are hence of dimension < n and hence
are known to be of finite P -height.

• Non-degenerate type II cells that are hence elements of AntII(b), but

∅ = AntkII(b) =
⋃

c∈AntIIb

Antk−1
II c

hence all c ∈ AntIIb have weak P -height at most k−1, and hence they
all have finite P -height by induction.

So all elements of Ant(b) have finite P -height, let m be the maximum of all
these P -height, one has that:

Antm+1(b) =
⋃

c∈Ant(b)

Antm(b) = ∅

3.2.4 Lemma. A cofibration with a P -structure is anodyne. More precisely
it is a ω-transfinite composition of pushouts of coproducts of horn inclusions.

A map will be called “strongly anodyne” if it admits a P -structure.

Proof. Let A ↪→ B be a cofibration with a P -structure.
Let Bk ⊂ B be the subset of B of cells of P -height at most k. One has
B0 = A, and Bk is a sub-simplicial set. Indeed, for every cell b ∈ B all
faces of b appear in Ant(b) or are such that Ant(dib) = Ant(b) and all
degeneracies of b satisfies Ant(σ∗b) = Ant(b), hence they all have P -height
at most k.
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Let U be the set of non-degenerate type II cell of B of P -height exactly k.
For each u ∈ U , let iu be the unique integer such that diuP (u) = u.
Then the corresponding map ∆[n]

Pu→ Bk sends Λiu [n] to Bk−1 and both u
and Pu are in Bk −Bk−1.
Hence taking the pushout:

Λiu [n] ∆[n]

Bk−1 R

produces the simplicial set R ⊂ Bk whose cells are all those of Bk−1, u and
Pu and all their degeneracy. Taking the pushout by the coproduct of all these
horn inclusions for all u ∈ U gives Bk−1 → Bk.
Hence B =

⋃
Bk is a ω-transfinite composition of the maps Bk → Bk+1

which are all pushouts of coproducts horn inclusions.

Classically one also has the converse: any transfinite composition of pushouts
of coproducts horn inclusions has a canonical P -structure. Constructively
this sort of statement is somehow problematic, mostly because the gen-
eral notion of “transfinite composition” requires a notion of ordinal to be
formulated appropriately, but it works perfectly fine if one restricts to ω-
composition:

3.2.5 Proposition. The class of strongly anodyne cofibration contains all
horn inclusion and is stable under pushout and ω-transfinite7 composition.
Any morphism can be factored as a strongly anodyne cofibration followed
by a Kan fibration, and any anodyne cofibration is a retract of a strongly
anodyne cofibration.

Proof. Horn inclusion have a trivial P -structure with one cell of type I and
one cell of type II. It is easy to see that coproduct, pushout and transfinite
composition of strongly anodyne cofibration have P -structure induced by
the P -structure we start from, for example if A ↪→ B has a P -structure, then

7Here the restriction to “ω” is only to avoid the discussion of what is an ordinal con-
structively.
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C → B
∐

AC has a P -structure where a cell in B
∐

AC is type I or II if
and only if it is type I or II for the P -structure on A ↪→ B and the map
P is the same as the one on B, and similarly for coproducts and transfinite
compositions.
It follows that the factorization of the map as an anodyne cofibration fol-
lowed by a Kan fibration obtained by the small object argument is a strongly
anodyne cofibration as it is constructed as a ω-transfinite composition of
pushout of coproduct of horn inclusion. Finally any anodyne cofibration j
can be factored as a strongly anodyne cofibration followed by a Kan fibra-
tion, and the usual retract lemma 2.2.5 shows that j is a retract of the strongly
anodyne cofibration part of the factorization.

We finish this section by mentioning a very important example where this
machinery applies, mostly to serve as an example of how it can be used.
Given two morphisms f : A → B and g : X → Y between simplicial
sets one defines as usual f ×g the cartesian “corner-product” or “pushout-
product” of f and g as the morphism:

f ×g : (A× Y )
∐
A×X

(B ×X) → B × Y,

one then has the following well known proposition, which we have referred
to in the introduction as the corner-product conditions, and which is a key
point in establishing the existence of the weak model structure on simplicial
sets. It also corresponds to the fact the model structure on simplicial sets that
we are constructing is cartesian.

3.2.6 Proposition. If i and j are cofibrations, then i ×j is a cofibration as
well. If one of them is anodyne then i ×j is also anodyne.

As usual (following for example the appendix of [10]) this implies the dual
condition, that if i : A → B is a cofibration and p : Y → X is a fibration,
then the map [B, Y ] → [B,X] ×[A,X] [A, Y ] is a fibration (the brackets de-
notes the cartesian exponential in simplicial sets), and it is a trivial fibration
as soon as either i is anodyne or p is a trivial fibration.

Proof. By usual abstract manipulation (see for example the appendix of
[10]) it is sufficient to show it when i and j are generating cofibrations/generating
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anodyne cofibration. If i and j are generating cofibrations it is very easy to
check that i ×j is a cofibration as defined in the statement of our main the-
orem 1.1. It remains to check that if i is one of the generating cofibrations,
i.e. ∂∆[n] ↪→ ∆[n] for some n, and j is one of the generating anodyne
cofibrations, i.e. Λk[m] ↪→ ∆[m] for some k,m, then i ×j is an anodyne
cofibration. This is done by constructing an explicit P -structure on i ×j.
The first direct proof of this claim that we know of is in [11] (theorem 3.2.2),
here we follow the proof of S.Moss’ in 2.12 of [15] to show how P-structures
work. We only treat the case k < m for simplicity. The case k > 0 can be
treated in a completely similar way, by simply reversing the order relation
on the [n], which allows to deduce the missing case k = m.
A p-cell of ∆[n]×∆[m] is an order preserving function [p] → [n]× [m]. It
is non-degenerate if and only if it is an injective function. The domain D of
i ×j is:

(
∆[n]× Λk[m]

) ∐
∂∆[n]×Λk[m]

(∂∆[n]×∆[m]) =
(
∆[n]× Λk[m]

)⋃
(∂∆[n]×∆[m])

It corresponds to the morphisms [p] → [n] × [m] such that either they skip
a column or they skip a row other than k, where we consider that [n] =
{0, . . . , n} numbers the column of [n] × [m] and [m] = {0, . . . , k, . . . ,m}
numbers the row. So the only non-degenerate cell of ∆[n] × ∆[m] that are
not in D are injection [k] → [n]×[m] whose first projection takes all possible
value, and whose second projection takes all possible values except maybe
k.
One says that a cell is type II if either it skip the kth row by going directly
from (a, k−1) to (a+1, k+1), in which case one defines Px by adding the
intermediate step (a, k−1), (a+1, k), (a+1, k+1) , or if the last point where
the kth row is reached, is (a, k) followed by (a+1, k+1) in which case Px
is defined by inserting the intermediate step: (a, k), (a, k+1), (a+1, k+1).
It is an easy exercise to check that this defines a P -structure.

3.3 Kan EX and SD functors

Consider the barycentric subdivision functor ∆ → ∆̂:
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∆[n] 7→ SD ∆[n] := NK([n])

Where K([n]) denotes the set of finite non-empty decidable subsets of [n].
Functoriality in [n] is given by direct image of subsets on K[n]).
This extends to an adjunction:

SD : ∆̂ ⇆ ∆̂ : EX

with:

(EX X)n = Hom(SD ∆[n], X) SD X = Colim
∆[n]→X

SD ∆[n]

The barycentric subdivision construction has a nice expression not just for
the ∆[n], but also for all objects which are in the image of the functor ∆̂+ →
∆̂, indeed:

3.3.1 Proposition. The composite:

∆̂+ → ∆̂
SD→ ∆̂

is the functor sending a semi-simplicial set X to N(∆+/X).

One can note that as the category ∆+/X is directed, the nerve N(∆+/X)
is itself the image of the semi-simplicial set of its non-degenerate cells. We
won’t make any use of this remark though.

Proof. This functors X 7→ N(∆+/X) preserves colimits, because it can be
rewritten as:

N(∆+/X)k =
∐

F :[k]→∆+

X(F (k))

which is levelwise a coproduct of colimits-preserving functor.
Hence we are comparing to colimits preserving functor, so it is enough to
show they are isomorphic when restricted to representable. But ∆+/[n] ≃
K[n] functorially on map of ∆+ so this concludes the proof.
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3.3.2 Proposition. SD preserves cofibrations and anodyne cofibrations, EX

preserves fibrations and trivial fibrations.

Proof. It is enough to check that the image of the generating cofibrations
and generating anodyne cofibrations by SD are cofibrations and anodyne
cofibrations respectively.
In both case one can use Proposition 3.3.1 to compute SD on the generators
as they are image of semi-simplicial maps. This makes the results immediate
for cofibrations:

SD ∂∆[n] → SD ∆[n]

is the morphism N(K[n] − {[n]}) → N(K[n]) which is clearly a levelwise
complemented monomorphisms between finite decidable, hence cofibrant,
simplicial sets.
For the generating anodyne cofibrations,

SD Λi[n] → SD ∆[n]

is the morphisms N(K[n] − {[n], [n] − {i}}) → N(K[n]). It can then be
checked completely explicitly that this is a (strongly) anodyne cofibrations,
see Proposition 2.14 of [15] for an explicit description of a P -structure.

There is a natural transformation:

SD ∆[n] → ∆[n]

Which is induced by the order preserving function:

max : K[n] → [n]

sending each (decidable) subset of [n] to its maximal element. By Kan ex-
tension, this gives us natural transformations:

SD
m→ Id Id

n→ EX

One can hence define a sequences of functors:
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X EX X EX2X . . . EXkX . . . EX∞ X
nx nEX X nEX2 X

nEXk−1 X
nEXk X

with EX∞ the colimit.

3.3.3 Lemma. For each k, n, there is a (dotted) arrow Ψk
n making the fol-

lowing triangle commute.

SD2 Λk[n] SD Λk[n]

SD2∆[n]

SD(m
Λk[n]

)

Ψk
n

Proof. The proof given in [3] as proposition 2.1.39 is purely combinatorial
and constructive.

3.3.4 Corollary. For every cofibrant simplicial set X , EX∞ X is a Kan com-
plex.

The proof that follows essentially comes from [3]. If one does not assume
that X is cofibrant it still applies to prove that X has the “existential” right
lifting property against horn inclusion, but it does not seem possible to give
a uniform choice of solution to all lifting problems without this assumption.
Without such a uniform choice of lifting against horn inclusion one can-
not construct solution to lifting problems against more complicated anodyne
cofibrations that involves an infinite number of pushout of horn inclusion,
unless we assume the axiom of choice.

Proof. Lemma 3.3.3 allows to show that given any solid diagram as below,
there is a dotted filling:

Λk[n] EX X

∆[n] EX2X

nEX X
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Indeed, through the adjunction the map Λk[n] → EX X corresponds to an
arrow SD Λk[n] → X , which due to Lemma 3.3.3 can be extended in:

SD2 Λk[n] SD Λk[n] X

SD2∆[n]

SDm
Λk[n]

SD2

ψk
n

The resulting map SD2∆[n] → X corresponds to a map ∆[n] → EX2X
which has exactly the right property to make the square above commute.
Now by smallness of Λk[n], any map Λk[n] → EX∞ X factors in EXkX ,
the observation above produces a canonical filling in ∆[n] → EXk+1X . The
choice of the filling, seen as taking values in EX∞ X , in general depends on
k, but if one further assume that X is cofibrant, than by Lemma 3.4.4, the
maps EXkX → EXk+1X are all levelwise decidable inclusion, so there is a
smallest k such that the map Λk[n] → EX∞ X factors into EXkX and this
produces a canonical solution to the lifting problem.

3.3.5 Proposition. If f : X → Y is a fibration (resp. a trivial fibration)
with X and Y cofibrant then EX∞ f : EX∞ X → EX∞ Y is also a fibration
(resp. a trivial fibration).

Similarly to what happen with Corollary 3.3.4, without the assumption that
X and Y are cofibrant it is only possible to obtain the “existential” form of
the lifting property and no canonical choice of lifting.

Proof. Given a lifting problem:

Λk[n] EX∞ X

∆[n] EX∞ Y

∼

There is an i such that it factors into:
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Λk[n] EXiX EX∞ X

∆[n] EXi Y EX∞ Y

∼

Moreover, assuming X and Y are cofibrant, Lemma 3.4.4 shows that EXiX ⊂
EXi+1X are levelwise decidable inclusion, so (by finiteness of Λk[n] and
∆[n]) the set of i such that a factorization as above exists is decidable, and
hence there is a smallest such i. Proposition 3.3.2 shows that EXi f is a fi-
bration, so the first square has a diagonal lifting and this concludes the proof.

3.4 S.Moss’ proof that X → EX X is an anodyne cofibration

Let f : X → Y be a simplicial morphism. One has a square:

X Y

EX∞ X EX∞ Y

Our goal in this section is to show that when X is cofibrant the induced map:

X → EX∞ X ×
Ex∞Y

Y

is a strong anodyne cofibration. Note that if Y = ∆[0] is the terminal object,
then Ex∞(Y ) = Y hence the statement above boils down to the fact that
X → Ex∞X is a strong anodyne cofibration. The idea to consider this
morphism comes form D.C Cisinski’s book [3, Cor 2.1.32], but the proof
below follows closely the proof given by S.Moss in [15] that X → EX∞ X
is a strong anodyne cofibration.
Following the argument given in [3, Cor 2.1.32] (reproduced in the proof of
Corollary 3.4.7 below), it will be enough to show:

3.4.1 Proposition. Given f : X → Y a simplicial morphism, with X cofi-
brant, then the morphism:
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X → EX X ×
EX Y

Y

is strongly anodyne.

The proof will be concluded in 3.4.6, essentially, we will construct an ex-
plicit P -structure on this map. This construction is mostly due to S.Moss
in [15]. In addition to the dependency in Y , the main new contributions of
this paper in this section is to show that assuming X is cofibrant one can
show that sufficiently many decidability conditions can be proved to make
S.Moss’ argument constructive. In order to do that properly one needs to
completely reproduce his argument.
Following, [15] one introduces two functions between the SD ∆[n].
Let jkn : SD ∆[n] → SD ∆[n] and rkn : SD ∆[n+ 1] → SD ∆[n] be the maps
defined at the level of posets by:

jkn{i} =

{
{i} if i ⩽ k
{0, . . . , i} if i > k

rkn{i} =


{i} if i ⩽ k
{0, . . . , i− 1} if i = k + 1
{i− 1} if i > k + 1

Both extended to non-singleton elements as binary join preserving maps.
These functions satisfies a certain number of equations, we list here those
that we will need, they are all due to S.Moss.
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3.4.2 Lemma.

jknj
h
n = jhnj

k
n = jhn 0 ⩽ h ⩽ k ⩽ n (1)

Id∆[n] = rkn ◦ SD ∂k+1
n+1 0 ⩽ k ⩽ n (2)

jknr
k
n = (SD σkn)j

k
n+1 0 ⩽ k ⩽ n (3)

jhnr
k
n = jhn(SD σkn) 0 ⩽ h < k ⩽ n (4)

rknj
h
n+1 = jhnr

k
n 0 ⩽ h ⩽ k ⩽ n (5)

rkn(SD ∂i+1
n+1) = (SD ∂in)r

k
n−1 0 ⩽ k < i ⩽ n (6)

jknr
k
nr

k
n+1 = jknr

k
n(SD σk+1

n+1) 0 ⩽ k ⩽ n (7)

jkn+1(SD ∂hn+1)j
k
n = jkn+1(SD ∂hn+1) 0 ⩽ k ⩽ n and 0 ⩽ h ⩽ n+ 1

(8)

jknr
k
n(SD ∂in+1)j

k−1
n = jknr

k
n(SD ∂in+1) 0 ⩽ i ⩽ k ⩽ n (9)

(SD σhn)j
k
n+1r

k
n+1 = jk−1

n rk−1
n (SD σhn+1) 0 ⩽ h < k ⩽ n+ 1 (10)

(SD σhn)j
k
n+1r

k
n+1 = jknr

k
n(SD σh+1

n+1) 0 ⩽ k ⩽ h ⩽ n (11)

Proof. All the functions involved are nerve of join preserving maps between
the K[n], so it is enough to check the relations at the level of posets and
when functions are evaluated at {i}, where one has explicit formulas for all
of them.

As functions between the SD ∆[n], jkn and rkn automatically acts on the cells
of EX X . One denotes this action by x 7→ xjkn and x 7→ xrkn which is
compatible to the identification of cells of EX X with functions SD ∆[n] →
x.
By equation (1), the jkn are an increasing family of commuting projection
whose image defines a series of subsets:

Xn = J0
n ⊂ J1

n ⊂ . . . Jnn = (EX X)n

where the identifications with (EX X)n and Xn comes from the fact that jnn
is the identity, and j0n : K[n] → K[n] has image isomorphic to [n], with
j0n : K[n] → [n] being the “Max” function used in the definition of the
natural transformation SD ∆[n] → ∆[n].

3.4.3 Notation. For X → Y any morphism, we define:

EXY (X) = EX X ×
EX Y

Y.
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An n-cell in EXY is a morphism SD ∆[n] → X whose image in Y factors
through the map SD ∆[n] → ∆[n]. I.e. it is an n-cell of x ∈ (EX X)n which
satisfies:

fxj0n = fx

Note that because of relation (1) and (5), EXY X , as a subsimplicial object
of EX X , is stable under the action of jkn and rkn on EX X . We also denote
by Jkn the image of jkn in (EXY X)n.
Before going any further, one needs to state some decidability conditions:

3.4.4 Lemma. If X is a cofibrant simplicial set, then:

1. The inclusion X ⊂ EXY X is levelwise decidable.

2. EXY X is cofibrant and X → EXY X is a cofibration.

3. The sets Jnk ⊂ (EXY X)n are decidable.

Proof. All these decidability problems correspond to the decidability of a
factorization of a map SD ∆[n] → X through some epimorphism SD ∆[n] →
K. In all these cases we will show that the corresponding epimorphism is a
degeneracy quotient using Proposition 3.1.10 and conclude about the decid-
ability using Lemma 3.1.8.

1. It corresponds to the map SD ∆[n] → ∆[n] which is the nerve of the
max function K[n] → [n], whose section i 7→ {0, . . . , i} satisfies the
condition of Proposition 3.1.10.

2. One just needs to check degeneracy are decidable in EX X , so it is
about the epimorphism SD(σ) : SD ∆[n] → SD ∆[m] for any degen-
eracy σ. It is the nerve of σ : K[n] → K[m] which has a section satis-
fying the condition of Proposition 3.1.10 which sends every P ∈ K[m]
to σ−1P

3. It corresponds to the map jkn : SD ∆[n] → jkn(SD ∆[n]), which is just
is the nerve of the projection jkn : K[n] → jknK[n] which is already of
the form of Proposition 3.1.10.
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We can now give the definition of the P -structure on X ↪→ EXY X .

• Type I cells are the non-degenerate cells v ∈ EXY (X) which are not8

in X and can be written as yrkn with y ∈ Jkn ⊂ EXY X .

• Point 8 of Lemma 3.4.5 will prove that being type I is decidable. Type
II cells are just the cells that are not of type I (and which are non-
degenerate and not in X).

• For any cell x one defines Px as xrkn where k is the smallest integer
such that x ∈ Jkn , i.e. x ∈ Jkn − Jk−1

n . Lemma 3.4.4 shows that the Jkn
are decidable so there is indeed a unique such integer k.

In order to show that being type I is decidable and that P defined this way
defines a bijection from type II cells to type I cells, one needs a few technical
lemma that we have regrouped in:

3.4.5 Lemma.

1. If x ∈ Jkn − Jk−1
n , then dk+1Px = x.

2. x ∈ Jkn if and only if Px ∈ Jkn+1

3. If x ∈ Jk−1
n then xrkn is degenerate.

4. P 2x is always a degenerate cell.

5. If x is a degenerate or type I cell or in X , then Px is a degenerate cell.

6. If x ∈ Jkn − Jk−1
n then for all i ⩽ k, di(Px) ∈ Jk−1

n .

7. If x ∈ Jkn − Jk−1
n then for all i, with k + 1 < i ⩽ n + 1, di(Px) is

either of type I or degenerate.

8. A non-degenerate cell x in (EXY X)n −Xn is type I if and only Px is
a degenerate cell.

8It appears that, because of point 2 of Lemma 3.4.5 and the fact that r0n is the same as
SD σ0, it is actually a consequence from the rest of the definition that type I cells are not in
X .

114 



S. HENRY CONSTRUCTIVE KAN–QUILLEN STRUCTURE

Proof. 1. dk+1Px is xrkn(SD ∂k+1) which is equal to x by equation (2).

2. Let k is the smallest value such that xjkn = x, i.e.Px = xrkn. Equation
(5) gives xrknj

k
n+1 = xjknr

k
n = xrkn. Hence Px ∈ Jkn+1, in particular

x ∈ Jhn ⇒ k ⩽ h ⇒ Px ∈ Jhn+1. Conversely, if Px ∈ Jkn+1 then:

xjkn = (Px)(SD ∂h+1)jkn (as x = dh+1Px)
= (Px)jkn+1(SD ∂h+1)jkn ( as Px ∈ Jkn+1)
= (Px)jkn+1(SD ∂h+1) (by equation (8))
= x ( Px ∈ Jkn+1 and x = dh+1Px)

Hence x ∈ Jkn .

3. xrkn = xjk−1
n rkn is a degenerate cell because of equation (4)

4. Let k such that x ∈ Jkn − Jk−1
n , then Px = xrkn = xjknr

k
n and Px ∈

Jkn+1 − Jk−1
n+1 because of point 2, hence P 2x = xrknr

k
n+1 = xjknr

k
nr

k
n+1

which is a degenerate cell because of equation (7).

5. Equations (10) and (11) show that if x is a degenerate cell then Px is a
degenerate cell. If x ∈ X , i.e. x ∈ J0

n then Px = xr0n but r0n = SD σ0

so Px is a degenerate cell.

It follows that if x is of type I, then x = yrkn with y ∈ Jkn if y ∈ Jk−1
n

then x is a degenerate cell because of point 3, hence Px is a degenerate
cell because of the first part of the present point, if y /∈ Jk−1

n then
x = Py and hence Px is a degenerate cell because of point 4.

6. This follows immediately from equation (9) as di(Px) = xjknr
k
n(SD ∂i).

7. For k + 1 < i ⩽ n+ 1 we have:

jknr
k
n(SD ∂in+1) = jkn(SD ∂i−1

n )rkn−1 by equation (6)
= jkn(SD ∂i−1

n )jkn−1r
k
n−1 by equation (8)

This equation shows that for x ∈ Jkn , diPx is of the form yrkn−1 for y ∈
Jkn−1, namely y = x(SD ∂i−1)jkn−1, hence, if diPx is a non-degenerate
cell, it is of type I.
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8. We have shown in Item 5 that if x is type I then Px is a degenerate cell.
Conversely let x be a non-degenerate cell such that Px is a degenerate
cell. Let k be such that x ∈ Jkn − Jk−1

n . One has x = dk+1Px by
point 1 of the lemma, hence dk+1Px is a non-degenerate cell, which
means that Px can only be σk-degenerate or σk+1-degenerate (other-
wise dk+1PX would also be a degenerate cell). If Px is σk-degenerate
then dkPx = dk+1Px = x, but by point 6 of the present lemma
dkPx ∈ Jk−1

n so this is impossible. If Px is σk+1-degenerate then
dk+2Px = dk+1Px = x hence point 7 shows that x is of type I.

3.4.6. We are now ready to prove Proposition 3.4.1:

Proof. The goal is to show that the type I cell and the operation P we have
defined satisfy the condition of Definition 3.2.1, so that the map is a strongly
anodyne cofibration because of Lemma 3.2.4.
Point 8 of Lemma 3.4.5 (combined with Lemma 3.4.4) shows that being
a type I cell is decidable. So one can indeed defines type II cells as the
cells that are not of type I (and non-degenerate nor in the domain) and get
a partition of the non-degenerate cells. It also follows from point 8 that if x
is a type II cell then Px is a non-degenerate cell, and it is type I (either by
definition or because of point 4). Finally, point 2 shows that P preserve the
k such that x ∈ Jkn , as X ⊂ EXY X corresponds to J0

n it shows that P never
sends cell not in X to cell in X . So P restricts into a function from type II
cells to type I cells.
We now show that it is a bijection:
If x is a type I cell than it can be written as yrkn with y ∈ Jkn . By point 3 of
Lemma 3.4.5, if y ∈ Jk−1

n , then x = yrkn is a degenerate cell, hence y /∈ Jk−1
n

and hence x = Py. By point 5 of Lemma 3.4.5, if y is a degenerate or type
I cell then x = Py is a degenerate cell, hence y is a type II cell. This proves
the surjectivity of P .
If x is a type II cell and y = Px, then x = dk+1Px (because of point 1 of
Lemma 3.4.5) where k can be characterized as the unique integer such that
y ∈ Jkn+1 − Jk−1

n+1 (because of point 2 of Lemma 3.4.5). Hence P is injective
on type II cell and this concludes the proof that P is a bijection between
non-degenerate type II cells and non-degenerate type I cells.
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Finally if x is a non-degenerate type II cell, and k is such that x ∈ Jkn−Jk−1
n .

Point 1 of Lemma 3.4.5 shows that dk+1(Px) = x, while point 6 and 7 show
that for all i ̸= k + 1, diPx is either in Jk−1

n or a type I or degenerate
cell, hence always distinct from x. So there is indeed a unique i such that
diPx = x, and it is k + 1.
It remains to prove the “well-foundedness” or “finite height” condition. It
follows from point 6 and 7 of Lemma 3.4.5 that given x ∈ Jkn − Jk−1

n a
non-degenerate type II cell, AntII(x) ⊂ Jk−1

n . In particular, any cell x ∈ Jkn
has weak P -height at most k, hence by Lemma 3.2.3 this shows that every
cell has finite P -height and hence concludes the proof.

3.4.7 Corollary. For any f : X → Y with X cofibrant, the morphism:

X → EX∞ X ×
EX∞ Y

Y

is a strongly anodyne cofibration.

Proof. Consider EXkX ×EXk Y Y → Y and apply the functor EXY to it.
One obtains:

EXY
(
EXkX ×EXk Y Y

)
= EX

(
EXkX ×EXk Y Y

)
×EX Y Y

=
(
EXk+1 X ×EXk+1 Y EX Y

)
×EX Y Y

in the last terms the map from
(
EXk+1 X ×EXk+1 Y EX Y

)
to EX Y used in

the fiber product is just the second projection, so the fiber product simplifies
to:

EXY

(
EXkX ×

EXk Y

Y

)
= EXk+1 X ×

EXk+1 Y

Y

And the natural map EXkX ×EXk Y Y → EXY
(
EXkX ×EXk Y Y

)
corre-

sponds through this identification to:

nEXkX ×
nEXk Y

IdY : EXkX ×
EXk Y

Y → EXk+1X ×
EXk+1 Y

Y

It follows by induction that the sequence of maps:
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X → EX X ×
EX Y

Y → · · · → EXkX ×
EXk Y

Y → EXk+1X ×
EXk+1 Y

Y → . . .

are all strong anodyne cofibrations (and all these objects are cofibrant), and
the map X → EX∞ X ×EX∞ Y Y is their transfinite composite (this last claim
can either be observed very explicitly, or formally by commutation of di-
rected colimits with finite limits).

3.5 Applications

3.5.1 Proposition. Kan fibrations are the same as the strong fibrations of
Definition 2.2.3. Dually, the trivial cofibrations of Definition 2.2.3 are the
same as anodyne cofibrations.

The proof given here, at least the case of a Kan fibration between cofibrant
objects, is essentially the proof proposition 2.1.41 of [3].

Proof. We start with the first half: we observed in Remark 2.2.4 that strong
fibrations are Kan fibrations. So we only need to show that any Kan fibra-
tion is a strong fibration. We first show this claim for p : A ↠ B a Kan
fibration between cofibrant object. One has that EX∞(f) is a Kan fibration
(by Proposition 3.3.2) between fibrant objects (because of Corollary 3.3.4),
hence it is a strong fibration (by Lemma 2.2.6.(iii)), in particular any pull-
back of EX∞(f) is also a strong fibration. This gives a factorization of p:

A EX∞(A)×EX∞(B) B EX∞ A

B EX∞ B

∼

p

⌟
EX∞ p

in an anodyne cofibration (by Corollary 3.4.7) followed by strong fibration
as a pullback of the strong fibration EX∞(p). So p is a retract of the strong
fibration part by the retract lemma (2.2.5) and hence is itself a strong fibra-
tion.
We now move to the case of a general Kan fibration. We first show that a
Kan fibration that is also an equivalence is a trivial fibration. Let p : X → Y
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be such a Kan fibration and weak equivalence, one needs to show that it has
the right lifting property against all boundary inclusion: ∂∆[n] ↪→ ∆[n],
consider such a lifting problem:

∂∆[n] X

∆[n] Y

f

One first factors the map ∆[n] → Y as a cofibration followed by a triv-
ial fibration and we form a pullback of f along the fibration part to get a
diagram:

∂∆[n] P X

∆[n] Z Y

u ∼

f ′ f

∼

By 2-out-of-3 the new fibration f ′ is again a weak equivalence, but note
that now the object Z is cofibrant. One can further factor u in a cofibration
followed by a trivial fibration:

∂∆[n] K P X

∆[n] Z Y

f ′′

∼ ∼

f ′ f

∼

f ′′ is a Kan fibration between cofibrant objects, hence is a strong fibration by
the first part of the proof, moreover it is an equivalence hence it is a trivial
fibration by the last point of Lemma 2.2.6, and hence it has the right lifting
property against the boundary inclusion which shows that the morphism f is
a trivial fibration as well.
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One can then conclude the proof by the same argument as used in the proof of
the first part of Lemma 2.2.6: Given a lifting problem of a trivial cofibration
against a Kan fibration one can, using appropriate factorization, reduce to
the case where the top and bottom map of the lifting square are weak equiv-
alences, in which case the Kan fibration is a weak equivalence by 2-out-of-3
and hence is a trivial fibration by the claim we just proved, and hence has the
right lifting property against all cofibrations which concludes the proof.
For the second half of the proposition, given a trivial cofibration j one factors
it as an anodyne cofibration followed by a Kan fibration. By the first half of
the proof, the Kan fibration is a strong fibration and hence has the right lifting
property against j. It immediately follows from the retract lemma 2.2.5 that
j is a retract of the anodyne cofibration part of the factorization and hence is
an anodyne cofibration itself.

3.5.2 Proposition. The model structure of Theorem 2.2.9 is right proper,
i.e. the pullback of a weak equivalence along a fibration is again a weak
equivalence.

Proof. We consider a square in ∆̂:

P B

C A

g

⌟
p

∼
f

where p is a fibration and f is a weak equivalence, and we need to show that g
is a weak equivalence. Using Lemma 3.5.3 below, we can freely assume that
A,B and C are cofibrants. This implies that the pullback P is also cofibrant
because it is a subobject of the product B ×C which is cofibrant because of
the cartesianess of the model structure (Proposition 3.2.6), and the explicit
description of cofibrant objects in terms of decidability of degenerateness
of cell, immediately shows that a subobject of a cofibrant simplicial set is
cofibrant.
In this case when all objects are cofibrant, the result follows immediately
from an application of Kan’s EX∞ functor: It preserves the pullback square
(because it is a right adjoint), it sends each object to a fibrant object, when all
the object are fibrant the result is true in any (weak) model category (a con-
structive argument, valid in weak model category is given as corollary 2.4.4

120 



S. HENRY CONSTRUCTIVE KAN–QUILLEN STRUCTURE

in [8]), and it detects equivalences between cofibrant objects because the
morphism X → EX∞ X is an anodyne cofibration (hence an equivalence)
for X cofibrant.

3.5.3 Lemma. Let C be a Quillen9 model category, if for every pullback
diagram

P B

C A

g

⌟
p

∼
f

in which A,B and C are cofibrant, p is a fibration, if f is a weak equivalence
then so too is g. Then C is right proper: that is the condition also holds
without assuming the A,B and C are cofibrant.

Proof. We consider a pullback as in the lemma, and we need to show that
the projection map P → B is a weak equivalence, but without assuming
A,B and C are cofibrant. By assumption, we already know this is the case
case when A,B and C are cofibrants. The proof will proceed in three steps,
where at each step we relax the cofibrancy assumption on one of the three
objects:
First step: We assume that C and A are cofibrant (but not neccessarily B).
In this case, we consider a cofibrant replacement Bc

∼
↠ B, and we form the

pullback:
Q Bc

P B

C A

∼

h

⌟
∼

g

⌟
p

∼
f

Then Q → P is a trivial fibration because it is a pullback of a trivial fibration,
the outer rectangle is a pullback as the composite of two pullback squares,

9It is actually enough to assume that C is a left semi-model category, as the proof below
shows. We will only use it for the Kan-Quillen model structure.
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so h is a weak equivalence as the pullback of f along a fibration (with all the
object involved cofibrants), hence g is a weak equivalence by 2-out-of-3.
Second step: We only assume that A is cofibrant. We then take a cofibrant
replacement Cc

∼
↠ C of C. and we form the pullback:

R P B

Cc C A

⌟
∼

k

g

⌟
p

∼ ∼
f

as in the previous case, the map R → P is a trivial fibration because it is
a pullback of a trivial fibration. The composite map R → B is a pullback
along the fibration p of the composite weak equivalence Cc → A, so as Cc

and A are cofibrant, we deduce from the first step that the composite R → B
is a weak equivalence. By 2-out-of-3, this shows that g is a weak equivalence
and concludes the proof for this case.
Third step: We make no cofibrancy assumption. Then we take a cofibrant
replacement Ac

∼
↠ A. We then form a cube

P ′ B′

P B

C ′ Ac

C A

∼ ∼

∼ ∼

∼

where each face is a pullback square. All the diagonal maps are pullback of
the trivial fibration Ac → A, and so are trivial fibrations, the map C ′ → Ac

is a weak equivalence by 2-out-of-3, hence the map P ′ → B′ is also a weak
equivalence as a pullback of a weak equivalence along a fibration (using the
fact that Ac is cofibrant and the second step). Hence the map P → B is a
weak equivalence by 2-out-of-3.
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