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Résumé. La topologie algébrique dirigée étudie des espaces équipés d’une
forme de direction, avec l’objectif d’inclure les processus non réversibles.
Dans l’extension présente nous voulons couvrir aussi les processus critiques,
indivisibles et inarrêtables.

Les parties précédentes de cette série ont introduit les espaces contrôlés
et leur catégorie fondamentale. Ici on étudie comment calculer cette dernière.
La structure d’homotopie de ces espaces sera examinée dans la Partie IV.

Abstract. Directed Algebraic Topology studies spaces equipped with a form
of direction, to include models of non-reversible processes. In the present
extension we also want to cover critical processes, indecomposable and un-
stoppable.

The previous parts of this series introduced controlled spaces and their
fundamental category. Here we study how to compute the latter. The homo-
topy structure of these spaces will be examined in Part IV.
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Introduction

0.1 Directed and controlled spaces

Directed Algebraic Topology is an extension of Algebraic Topology, deal-
ing with ‘spaces’ where the paths need not be reversible; the general aim is
including the representation of irreversible processes. A typical setting for
this study, the category dTop of directed spaces, or d-spaces, was introduced
and studied in [G1]–[G3]; it is often employed in the theory of concurrency,
cf. [FGHMR].

The present series is devoted to a further extension, where the paths can
also be non-decomposable in order to include critical processes, indivisible
and unstoppable – either reversible or not. For instance: quantum effects,
the onset of a nerve impulse, the combustion of fuel in a piston, the switch
of a thermostat, the change of state in a memory cell, the action of a siphon,
moving in a no-stop road, etc.

To this effect the category of d-spaces was extended in Part I [G4] to
the category cTop of controlled spaces, or c-spaces: an object is a topolog-
ical space equipped with a set X] of continuous mappings a : [0, 1] → X ,
called controlled paths, or c-paths, which are closed under concatenation and
global reparametrisation (by surjective increasing endomaps of the interval)
and include all the constant paths at the endpoints of c-paths.

A map of c-spaces, or c-map, is a continuos mapping which preserves the
selected paths. Their category cTop contains the category dTop of d-spaces
as a full subcategory, reflective and coreflective: a c-space is a d-space if
and only if it is flexible, which means that each point is flexible (its trivial
loop is controlled) and every controlled path is flexible (all its restrictions
are controlled).

Every c-space X has two associated d-spaces, the generated d-space X̂
and the flexible part FlX , by the reflector and coreflector of the embedding
dTop→ cTop (Section 1.2 of Part I).

0.2 The fundamental category

Part II [G5] defines and studies the fundamental category of controlled spaces,
as a functor

↑Π1 : cTop→ Cat, (1)
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that extends the fundamental category of d-spaces [G1, G3] and the funda-
mental groupoid of topological spaces.

There are two natural transformations (see Section 5.2 of Part II)

↑Π1(FlX) −→ ↑Π1(X) −→ ↑Π1(X̂) (2)

induced by the embeddings FlX → X → X̂ (the counit of the coreflector
and the unit of the reflector of d-spaces).

These functors need not be faithful, as we shall see in 1.3, but Theorem
5.3(b) of Part II says that ↑Π1(X)→ ↑Π1(X̂) is a full embedding when the
c-space X is preflexible, that is all the c-paths of X̂ between flexible points
of X are already controlled in the latter.

The present Part III is an immediate continuation of Part II, devoted to
computing the fundamental category of c-spaces. The definitions and results
of Part II are taken for granted and only referred to.

Part IV will study the homotopy structure of c-spaces, their homotopy
equivalences and their links with cubical sets. In particular, we shall anal-
yse the formal theory of homotopy in cTop, following the classification of
directed settings in [G3].

0.3 Outline

In Section 1 we calculate the fundamental category of the c-spaces intro-
duced so far, and others, applying Theorems 5.3 (on preflexible c-spaces)
and 5.8 (on covering maps of c-spaces) of Part II, and developing peculiar
techniques adequate to the present framework. The relationship between the
fundamental category of c-spaces and d-spaces is discussed in 1.6, where we
show that the theorem of Seifert-van Kampen fails for c-spaces.

In the same line, Section 2 briefly considers how the analysis of ob-
structions, a typical problem in concurrency, can be dealt with replacing the
d-spaces used in [G3], Chapter 3 (and elsewhere) with rigid c-spaces. This
leads to a far simpler analysis, but a less rich one.

Finally, in Section 3, we prove that the fundamental category of a border
flexible c-space can be simply defined by general deformations of controlled
paths, instead of using their flexible deformations – as in the general case.

Acknowledgments. The author is indepted to the Referee for many helpful
suggestions.
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0.4 Notation and conventions

A continuous mapping between topological spaces is called a map. R de-
notes the euclidean line as a topological space, and I the standard euclidean
interval [0, 1]. The identity path id I is written as i. The open and semiopen
intervals of the real line are denoted by square brackets, like ]0, 1[, [0, 1[ etc.

A preorder relation is assumed to be reflexive and transitive; an order is
also anti-symmetric. A mapping which preserves (resp. reverses) preorders
is said to be increasing (resp. decreasing), always used in the weak sense.

As usual, a preordered set X is identified with the small category whose
objects are the elements of X , with one arrow x → x′ when x precedes x′

and none otherwise.
The binary variable α takes values 0, 1, which are generally written as

−,+ in superscripts and subscripts. The symbol ⊂ denotes weak inclusion.

The previous papers [G4, G5] of this series are cited as Part I and Part II,
respectively; the reference I.2 or II.3.4, for instance, points to Section 2 of
Part I or Subsection 3.4 of Part II.

1. Calculating the fundamental category

This section studies how to compute the fundamental category of c-spaces.
Using Theorem II.5.3(b) on preflexible c-spaces, many of these results can
be deduced from the fundamental category of the generated d-spaces, al-
ready computed in [G3]; but a direct calculation can often be simple and
more significant.

The new aspects which appear here, with respect to the theory of d-
spaces, are highlighted in 1.6.

The symbols 2,3,N,Z,R denote ordered sets, and the associated categories;
the ordered sets 2, 3 and D|Z| are discrete. N is the one-object category associated
to the additive monoid of the natural numbers.

1.1 Elementary calculations

We begin by examining the basic c-spaces, showing that many of them are
1-simple, in the sense of II.5.1: their fundamental category is a preorder; of
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course, the controlled circles cS1 and cnS1 are not. (Some of these results
are already in II.5.9.)

(a) The fundamental categories of cI, cJ, cR are the following ordered sets:

↑Π1(cI) = 2, ↑Π1(cJ) = 3, ↑Π1(cR) = Z. (3)

As to cI, the identity i : cI → cI is 2-equivalent to any other c-path
ρ : 0 → 1, by Lemma II.4.6(c): in fact, ρ is a global reparametrisation, and
therefore ρ = iρ ∼ 2 i, so that there is precisely one arrow [i] from 0 to 1,
in the fundamental category. At each flexible point, 0 or 1, there is only one
loop cI→ cI, the trivial one.

As to cJ and cR, two c-paths a, b : x → y in any of them are always 2-
equivalent, since they are in the one-jump c-structure of [x, y], isomorphic to cI.

For these preflexible spaces the components of the natural transforma-
tions ↑Π1(FlX)→ ↑Π1(X)→ ↑Π1(X̂) of (2) become inclusions of ordered
sets:

2→ 2→ [0, 1], 3→ 3→ [0, 2], D|Z| → Z→ R. (4)

(b) The argument used above for ↑Π1(cI) also applies to the delayed intervals
c−I and c+I, in II.1.3(e)

↑Π1(c−I) = ↑Π1(c+I) = 2, (5)

whose c-structure is also generated by a single map I → I. These c-spaces
are not preflexible, but their fundamental category is still full in ↑Π1(↑I).

(c) The fundamental category of the directed circle ↑S1, as described in [G3],
3.2.7(d), is the subcategory of the groupoid Π1S1 formed of the classes of
anticlockwise paths (in R2). Each monoid ↑π1(↑S1, x) is isomorphic to the
additive monoid N of natural numbers.

Applying Theorem II.5.3(b), the fundamental category of the one-stop
circle cS1 amounts to the fundamental monoid at the unique flexible point x0
(the point 1 of the complex plane)

↑Π1(cS1)(x0, x0) = ↑π1(↑S1, x0) = N. (6)

Without using ↑Π1(↑S1) this is also proved by Theorem II.5.8(b) applied
to the exponential map cR→ cS1.
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Therefore two c-loops a, b in cS1 are 2-equivalent if and only if they have
the same length 2kπ (in radians), if and only if they both turn k times (k > 0)
around the circle, anticlockwise.

(d) More generally, the fundamental category of the preflexible n-stop circle
cnS1 (see II.1.4(d) is the full subcategory of the fundamental category of
(cnS1)̂ = ↑S1 = ↑R/Z on n flexible points, the vertices [i/n] (for i =
0, ..., n− 1) of an inscribed n-gon.
↑Π1(cnS1) is thus the category cn freely generated by n arrows disposed

as follows on the edges of an n-gon

• • • •

•

•
c1 c2 c3
JJ




JJ

ee

��
99 (7)

Again, this result can also be obtained using the covering map of c-spaces
pn : cnR→ cnS.

(e) For the preflexible c-space X on the euclidean interval [0, 3] described in
I.2.3(e) we have a mixed situation; essentially, the paths in [1, 2] behave as
in cI, while those in [0, 1] or [2, 3] behave as in ↑I.

1.2 Higher dimensional c-spaces

(a) Applying Theorem II.5.6 on cartesian products, we get the following
fundamental categories

↑Π1(cIn) = 2n, ↑Π1(cJn) = 3n,

↑Π1(cI×cJ) = 2×3,
↑Π1(cRn) = Zn, ↑Π1(cTn) = Nn,

(8)

which are (partially) ordered sets, except the last. The controlled n-torus
cTn was defined in I.2.6(d) as the cartesian power (cS1)n, or equivalently as
the orbit c-space (cRn)/Zn; its fundamental category amounts to the monoid
Nn at the only flexible point.

(b) The fundamental category of all the higher c-spheres cSn, for n > 2, is
trivial: the discrete category 1.
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In fact, there is one flexible point, ∗. Every c-path of cSn is a general
concatenation of a finite family of c-loops of the form pa, where a : cI→ cIn
is a c-path of the controlled n-cube, and it is sufficient to prove that each of
them is 2-equivalent to the trivial loop (at ∗).

If the path a lies in a face of the cube, pa is already the trivial loop.
Otherwise, it is a path (0, ..., 0) → (1, ..., 1), and it is 2-equivalent to the
concatenation b = b1 ∗ b2 of two c-paths living in some faces, and collapsed
to the trivial loop in the quotient c-space. For instance one can take b1(t) =
(t, 0, ..., 0) (on an edge) and b2(t) = (1, t, ..., t) (in the face t1 = 1).

1.3 Other calculations

The following computations of the fundamental category give a better under-
standing of the natural transformations ↑Π1(FlX) → ↑Π1(X) → ↑Π1(X̂)
of (2). Moreover, they are based on topological arguments which will also
be useful in other cases.

(a) The reversible c-interval cI∼ of II.1.3(d) has a c-structure generated by
the identity path i and the reversion r : I→ I; the flexible points are 0 and 1.

Each c-path x → y (between flexible points) has an integral length,
which is even if x = y and odd if x 6= y. We prove below, in Theorem
1.7, that this length is constant up to 2-equivalence, and determines the class
of a path in ↑Π1(cI∼)(x, y).

In other words, we shall prove that the obvious c-map p : c2S1 → cI∼

• •

• •

p(x, y) = (x+ 1)/2

oooo

// //
oooo // //

(9)

induces an isomorphism p∗ : ↑Π1(c2S1)→ ↑Π1(cI∼) defined on the category
c2 described in (7). Let us note that p is not a covering map: the flexible
points of the basis are not evenly covered; loosely speaking, the selection of
c-paths in the domain and codomain ‘mends’ this failure.

Thus the category ↑Π1(cI∼) is freely generated by two arrows, the classes
[i] : 0 → 1 and [r] : 1 → 0; at each vertex it has a fundamental monoid
isomorphic to the additive monoid N.

9



M. GRANDIS THE TOPOLOGY OF CRITICAL PROCESSES, III

The generated d-space (cSI)̂ = I∼ is the reversible d-interval of I.2.4(c),
whose fundamental category is the indiscrete groupoid on two objects (with
one arrow between any pair of objects).

In this case the functor ↑Π1(X) → ↑Π1(X̂) is not faithful; moreover i
and r are reversible c-paths ofX whose classes in ↑Π1(X) are not invertible.

(b) The fundamental category ↑Π1(cSI) of the growing-siphon interval (in
I.3.3(a)) is generated by the following arrows (where r is the reversion path
r(t) = 1− t)

(x, x′) : x→ x′, [r] : 1→ 0 (0 6 x < x′ 6 1), (10)

under the relation (x, x′)(x′, x′′) = (x, x′′), for 0 6 x < x′ < x′′ 6 1.
The identity path i is flexible and reversible in cSI, but is not flexibly

reversible: the reversed path r is not flexible, and the associated arrow [i] =
(0, 1) : 0→ 1 is not invertible. But it becomes invertible in the fundamental
category of (cSI)̂ = I∼: also here the functor ↑Π1(X) → ↑Π1(X̂) is not
faithful.

1.4 On-off controller

We now examine the c-space X built in I.3.1(a) to model an on-off con-
troller (e.g. a thermostat) that oversees a variable T (e.g. the temperature),
counteracting its rising

X0
X′′ X′

X1

T1 T2
0

1

����
OOOO

(11)

On the left branch X0 the system is in state 0: the cooling device is
off; if the temperature grows to T2 the device jumps to state 1; then, if the
temperature cools to T1, it goes back to state 0.

The support |X| of our model is a one-dimensional subspace of R2. The
c-structure of X is generated by the c-structures of:

- X0, X1, natural intervals where T can vary,

- X ′, X ′′, one-jump c-intervals, where T is constant and the state of the
system varies.
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The flexible part X0 + X1 of the c-space X is the sum of two natural
intervals; its fundamental groupoid Π1(FlX) is the sum of the indiscrete
groupoids on the same sets, categorically equivalent to the discrete groupoid
2 = {0, 1}.

The fundamental category ↑Π1(X) is equivalent to its skeleton, the full
subcategory on two points x0 ∈ X0 and x1 ∈ X1; the latter is isomorphic to
the category c2 (see (7)).

1.5 Transport networks and labelled graphs

Transport networks are usually modelled in graph theory, in an effective way
as far as they do not interact with continuous variation. They can also be
modelled by c-spaces, which allows us to combine them with planar or three-
dimensional regions, as we have discussed in I.3.4.

The fundamental category can be readily used to study such models.
Controlled spaces can thus unify aspects of continuous and discrete mathe-
matics, interacting with hybrid control systems and others sectors of Control
Theory [Br, He].

1.6 Comments

(a) The main method of calculation of the fundamental category for com-
plex spaces, the theorem of Seifert-van Kampen, holds true in dTop, in the
fundamental-category version of [G3], 3.2.6, but fails here.

For instance, we have seen that the category ↑Π1(cI) = 2 has one arrow
0 → 1. Now we can cover cI with the open subspaces U = [0, 1[ and
V = ]0, 1], which only inherit the trivial loops at 0 and 1, respectively. Their
fundamental category has only these trivial arrows, and the pushout over
↑Π1(U ∩ V ) (the empty category) gives the discrete category 2.

(b) Nevertheless, we have seen that the fundamental category ↑Π1(X) of a
rigid or ‘partially rigid’ c-space can be rather easy to compute without this
tool – or using it on ↑Π1(X̂) when the original c-space is preflexible.

(c) In many cases ↑Π1(X) is very small and easy to analyse, while ↑Π1(X̂)
gives a finer description, at the price of a complex analysis where the equiv-
alence of categories is totally ineffective. This will show even more clearly
in the next section.
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1.7 Theorem

The projection p : c2S1 → cI∼ defined in (9) induces an isomorphism of
categories p∗ : ↑Π1(c2S1)→ ↑Π1(cI∼).

Proof. (a) The functor p∗ is bijective on the objects, the flexible points. It is
also full, because p : c2S1 → cI∼ obviously satisfies the path-lifting property
II.5.7(i) within c-paths: every c-path b : y → y′ in cI∼ has a lifting a : x→ x′

in cI∼, determined by the starting point x ∈ Fy (unique in the present case).
The length of b is an integer, equal to the length of a measured in half-

circles.
To prove that p∗ is faithful we shall show that two c-paths b, b′ : y0 → y1

in cI∼ which are 2-equivalent have the same length, so that any pair of their
liftings in c2S1 starting at the same point are also 2-equivalent; in other words
one can lift along p the 2-equivalence relation – if not the actual 2-paths.

For the sake of simplicity we suppose that y0 = 0, the case y0 = 1 being
similar. We use the path spaces P (I) = II and P (I2) with the compact-open
topology, determined by the metric d(c, c′) = maxt d(c(t), c′(t)) (and the
euclidean metric on I and I2).

(b) Let Pn be the subspace of P (I) formed of the c-paths cI → cI∼ starting
at 0, of length n; let P be their (disjoint) union. We prove now that each Pn
is open in P . (This amounts to saying that the length function P → N is
continuous, which is not obvious as it fails on the whole path space II.)

It will be sufficient to show that any two c-paths b, b′ : 0 → y with
d(b, b′) < 1/2 have the same length. If b has length n, it determines a parti-
tion of the interval I in n subintervals

0 = t0 < t1 < ... < tn = 1,

b(t0) = 0, b(t1) = 1, ... b(tn) = (1− (−1)n)/2,
(12)

and is properly increasing on [0, t1], properly decreasing on [t1, t2], and so on
(by ‘properly’ we mean that it is not constant). There are n−1 ‘inversions of
monotony’ (each of them occurring on a maximal closed subinterval where
b is constant at 1 or 0, alternatively).

The other path b′, of length n′, has b′(t0) = 0 and b′(t1) > 1/2; because
of the form of c-paths in cI∼, it must be properly increasing on some (at least
one) subinterval of [0, t1]. It also has b′(t2) < 1/2, and must be properly
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decreasing on some subinterval of [t1, t2]; and so on. Finally, it has at least
as many inversions of monotony as b, and n′ > n. By symmetry, n = n′.

(c) Let K : cI× ↑I→ cI∼ be a hybrid 2-path between the c-paths b, b′ : 0→
y. Proving that they have the same length will achieve the argument.

The family of c-paths

ut : cI→ cI∼×↑I, ut(s) = (s, t) (t ∈ I), (13)

gives an isometry u : I→ P (I2)

d(ut, ut′) = maxs d((s, t), (s, t′)) = |t− t′|.

Composing u with the map K∗ : P (I2) → P (I) we get a continuous
mapping

Ku : I→ P (I), t 7→ Kt = K(−, t) : I→ I, (14)

whose values Kt are the intermediate c-paths of K (see II.4.4(a)). They
belong to P . Since Ku is defined on a connected space, all of them belong
to the same subset Pn, including b and b′.

2. Analysing obstructions

The analysis of obstructions inside a cubical directed space is a typical prob-
lem in concurrency, dealt with in [FGHMR] and many papers (see Part I). It
is also studied in [G3], Chapter 3, working with d-spaces. The correspond-
ing problem in rigid c-spaces seems to be far simpler, although it can give a
less fine analysis, as shown in 2.3.

2.1 An elementary case

We begin with the ‘square annulus’ X ⊂ cI2 represented below, namely the
compact subspace of the standard c-square which is the complement of the
open square ]1/3, 2/3[2 (marked with a cross); the latter should be viewed as
a single obstruction in an unstoppable process

X ↑Π1(X)
0

x

y

1

× ×

• •

••

//

//
OO OO

(15)
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Typically, in the analysis of concurrent processes, the obstruction repre-
sents a resource (e.g. a memory storage, an application, a printer) that two
(or more) concurrent automata cannot engage at the same time. A path below
or above the obstruction corresponds to priority of one of them. Modifying
the picture, one can represent in a similar way an island in a stream or a
one-dimensional obstacle in space-time, as in the Introduction to [G3].

The fundamental category ↑Π1(X) is represented in the right diagram-
above: it is generated by four arrows forming a non-commutative square,
and has two arrows 0→ 1 (not drawn in the figure).

Applying Theorem II.5.3(b) one can deduce this fact from the fundamen-
tal category of the generated d-space X̂ ⊂ ↑I2, determined in [G3], 3.1.1.
But a direct proof is rather simple.

In fact, every c-path a : 0→ 1 in X meets the vertical strip

S = ]1/3, 2/3[× I

in one connected component of S ∩X , either below or above the obstruction. Sup-
pose that a meets the lower component U = ]1/3, 2/3[×[0, 1/3[ (open in X). The
preimage a−1(U) is an open subinterval of ]0, 1[ (by continuity and monotony), and
we can suppose it is precisely ]1/3, 2/3[, up to invertible reparametrisation and 2-
equivalence. For a second path a′ of the same kind and similarly reparametrised,
we can suppose that a(t) 6 a′(t) for t ∈ I (replacing a with a ∧ a′).

Now the affine interpolation H from a to a′ is a hybrid 2-path in cI2 and takes
the interval ]1/3, 2/3[ to the rectangle U (by monotony), proving that a∼2 a

′ in X .
Similarly, two paths above the obstruction are 2-equivalent in X . Finally, a c-path
below the obstruction and another above are not even 2-equivalent in the underlying
topological space.

2.2 Two obstructions

We examine now two subspaces Y, Z ⊂ cI2 which arise from two obstruc-
tions, either appearing together (with respect to the generated path order, see
I.1.8(c)) or one after the other.

In both cases a direct computation is easy, if more complex than in the
previous case; alternatively, one can deduce our results from the fundamental
category of the generated d-spaces, described in [G3], 3.9.2 and 3.9.4(b).

14
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(a) Simultaneous obstructions. The first case can be modelled with the sub-
space Y of cI2 represented below

Y ↑Π1(Y )
0

x

y

1

c

×

×

×

×
• •

••

//

??
//

OO OO

(16)

The fundamental category ↑Π1(Y ) has again four vertices; from 0 to 1
there are three arrows: [a] (through x), [b] (through y) and [c].

(b) Consecutive obstructions. The second case is modelled by Z ⊂ cI2

Z ↑Π1(Z)
0

x

y

1

c

d

×

×

×
×

• •

••

//

//
OO OOLL22

(17)

In ↑Π1(Z) there are now four arrows from 0 to 1: [a] (through x), [b]
(through y) and [c], [d].

(c) Comments. The fundamental category distinguishes these situations,
which topology cannot separate: the underlying topological spaces |Y | and
|Z| are homeomorphic.

2.3 Obstructions in d-spaces

The d-spaces X̂, Ŷ , Ẑ generated by the previous c-spaces have the same
topological support and the structure induced by the ordered square ↑I2.

Their fundamental category, much more complex than in the previous
cases, was studied in [G3], 3.1.1, 3.9.2, 3.9.4(b).

In each case the fundamental category, whose objects are the infinite
points of the support, is skeletal and cannot be reduced up to equivalence
of categories. As analysed in [G3], Section 3.9, it is essentially represented
by a ‘minimal injective model’, future and past equivalent to the given cate-
gory. Here we get the finite, full subcategories represented below (on 4, 8, 6
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objects, respectively), determining the ‘branching points’ of the process

X Y Z

×
×

× ×

×

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

0

1

0

1

0

1

??
//

//
OO OO

??

??

OO

OO OO //
??

OO

OOOO
// ??

??

??

OO OO

OO OO

(18)

A cell marked with a cross is not commutative, while the central cell in
↑Π1(Ŷ ) commutes. In ↑Π1(X̂) there are two arrows 0→ 1, in ↑Π1(Ŷ ) there
are three of them, in ↑Π1(Ẑ) four.

3. Border flexible c-spaces and strict homotopies

We end by examining the relationship of border flexible c-spaces (defined in
II.2.1(c)) with strict homotopies (see II.4.3(e)), expressed in Theorem 3.1.

As a consequence, the fundamental category of a border flexible c-space
can be simply defined using c-paths up to homotopy with fixed endpoints
(see 3.2). Its invariance up to strict homotopies is stated in Theorem 3.3.

The importance of a simple construction, instead of the hybrid construc-
tion of Sections II.4 and II.5, is evident – although it does not apply to essen-
tial c-spaces like the delayed intervals and the higher c-spheres, which are
not border flexible (see II.2.2).

3.1 Theorem (Border flexible c-spaces and homotopies)

Let Y be a border flexible c-space. Every strict homotopy ϕ : X×cI→ Y is
flexible.

Proof. We are given a c-map ϕ : X × cI → Y which is constant on each
fibre {x}×cI at a flexible point of X , and we have to prove that ϕ is also a
c-map X×↑I→ Y .

We take a c-path b = 〈a, h〉 : cI→ X×↑I, where a : x0 → x1 is a c-path
of X (between flexible points) and h : t0 → t1 is increasing in ↑I; we have
to prove that ϕb is controlled in Y .
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We insert a path bα : cI → X×↑I in each fibre of the cylinder at the
endpoints xα (for α = 0, 1)

X×↑I
(x0,0)

(x1,1)

b0

b
b1

00 00
OO

OO

(19)

b0 = 〈ex0 , h0〉 : cI→ X×↑I, h0 : 0→ t0,

b1 = 〈ex1 , h1〉 : cI→ X×↑I, h1 : t1 → 1,

and we get a c-path b′ = 〈a′, h′〉 = b0 ∗ b ∗ b1 in X×↑I which is controlled
in X×cI, because h′ is an increasing path 0→ 1.

Now ϕb′ is controlled in the border flexible c-space Y and each path
ϕbα is constant (because ϕ is a strict homotopy). It follows that the middle
restriction ϕb is also controlled in Y .

3.2 The border flexible case

As a particular case of the previous theorem, if the c-space X is border
flexible, a general 2-path cI2 → X is always a hybrid 2-path cI×↑I → X
(because H is constant on the vertical edges of cI2).

Therefore the restricted functor

↑Π1 : cbfTop→ Cat, (20)

can be equivalently defined using general 2-paths, based on the standard
square cI2, instead of hybrid 2-paths based on cI×↑I.

The restricted functor is still invariant up to flexible homotopies. But
strict homotopies in cbfTop are always flexible, giving the following result.

3.3 Theorem (Homotopy invariance, III)

A strict homotopy ϕ : f → g : X → Y of border flexible c-spaces induces
the identity of the associated functors

f∗ = g∗ : ↑Π1(X)→ ↑Π1(Y ). (21)
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Proof. By Theorem 3.1, ϕ is a strict flexible homotopy. Applying Theorem
II.5.4(b), ϕ∗ is the identity of f∗ = g∗.
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