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1. Introduction

The subobject classifier axiom is one of the prominent axioms of topos the-
ory. In this paper we weaken this axiom and give up the principle that
every subobject of a pre-described class of subobjects is classifiable by a
unique characteristic morphism (cf. [12, Section 14]). This approach leads
to the weak subobject classifier axiom. Since the weak subobject classifier
is unique up to an isomorphism, the existence of a weak subobject classifier
is always an invariant of a finitely complete category.

Moreover, in any complete epi-mono-category the weak subobject clas-
sifier axiom gives rise to a comprehension scheme in the sense of Lawvere
(cf. [8]). If additionally a symmetric and monoidal closed structure is im-
posed, then weak power objects are available. In particular, the weak power
object of the unit object is isomorphic to the underlying weak subobject clas-
sifier. Since in general neither diagonal arrows nor projections of the tensor
product exist, we only focus on the construction of the universal quantifier. If
the underlying category is an epi-mono-category and the unique arrow from
the unit object to the terminal object is an epimorphism, then the existence
of the universal quantifier based on objects follows from the weak subob-
ject classifier axiom. On the other hand the weak subobject classifier axiom
does not imply that the restriction of the inverse image functor to classifiable
subobjects has in general a right adjoint (cf. Example 4.9). In this sense an
analogue of the doctrinal diagram of Kock and Wraith is not available (cf.
[6]).

Significant examples of categories satisfying the weak subobject classi-
fier axiom, but not being a topos (resp. quasitopos), appear in the study of
modules in the category Sup of complete lattices and join preserving maps.
Let Q be a unital quantale, then the category of right (left) Q-modules satis-
fies the weak subobject classifier axiom. We emphasize that the construction
of characteristic morphisms is based here on the underlying Q-enriched cat-
egories associated with right Q-modules. Moreover, if Q is commutative,
then there exists a well known symmetric, monoidal closed structure on the
category of Q-modules (cf. [4]). In this context weak power objects exist,
and there is again a close relationship between universal quantifiers based
on Q-modules and the respectively associated, Q-enriched categories (cf.
Proposition 5.1).
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Finally, as first steps toward categorical logic for Q-modules, we include
the conjunction, the implication, the element relation and the universal quan-
tifier based on Q-modules as truth arrows.

In order to fix some basic facts we begin with preliminaries on quantales
and a survey on modules in Sup.

2. Preliminaries

First we point out that Sup is a symmetric, monoidal, closed category. If
X , Y and Z are complete lattices, then a map X × Y

b−→ Z is called a
bimorphim if b is join-preserving in each variable separately. Due to the
universal property of the tensor product ⊗ in Sup every bimorphism

X × Y
b−→ Z

can be identified with a unique join-preserving map X ⊗ Y
φb−−→ Z making

the following diagram commutative:

X × Y X ⊗ Y

Z
��

b

//
⊗

zz

φb
(2.1)

whereX×Y ⊗−→ X⊗Y is the universal bimorphism fromX×Y toX⊗Y .
We also call φb the unique join-preserving extension of b.

Further, due to the monoidal closedness of Sup for every object Z of
Sup the endofunctor ⊗ Z has a right adjoint functor [Z, ], where [Z, Y ]
is the complete lattice of all join-preserving maps Z → Y ordered point-
wise. Then for each join-preserving map X ⊗ Z

φ−→ Y there exists a unique
join-preserving map X

⌜φ⌝−−→ [Z, Y ] such that the following diagram is com-
mutative:

X ⊗ Z [Z, Y ]⊗ Z

Y
''

φ

//
⌜φ⌝⊗1Z

��

evY (2.2)
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where evY is the evaluation arrow — i.e. the Y -component of the counit
of the adjoint situation Z ⊗ ⊣ [Z, ]. In this context ⌜φ⌝ is called the
monoidal adjoint arrow of φ.

Since Sup has a self-duality determined by the construction of right ad-
joint maps, we introduce the following notation. The dual lattice of a com-
plete lattice X is denoted by X† and the corresponding dual order by ≤†.
Then the tensor product X ⊗ Y has the form [X, Y †]† up to an isomorphism
(cf. [4]).

A quantale is a semigroup Q in Sup — i.e. a complete lattice Q provided
with an associative, binary operation Q ⊗ Q

m−→ Q in the sense of Sup
(cf. [9, (1) on p. 170]). Then the bimorphism Q × Q

∗−→ Q determined
by m (cf. (2.1)) is a semigroup operation in Set, which is join-preserving
in each variable separately. This bimorphism ∗ is also called the quantale
multiplication of Q. The right implication ↘ and left implication ↙ of ∗ are
determined by:

α ↘ β =
∨
{ γ ∈ Q | α ∗ γ ≤ β } and β ↙ α =

∨
{ γ ∈ Q | γ ∗ α ≤ β }.

Since both types of implications are bimorphisms, they have always unique

extensions to join-preserving maps Q⊗Q†
φ↘−−→ Q† and Q† ⊗Q

φ↙−−→ Q†,
respectively. Finally, the zero element in Q coincides with the universal
lower bound ⊥ of Q.

An element α ∈ Q is left-sided (resp. right-sided) if ⊤ ∗ α ≤ α (resp.
α ∗⊤ ≤ α), where ⊤ is the universal upper bound in Q. An element of Q is
two-sided if it is left- and right-sided.

A unital quantale is a monoid in Sup (cf. [9, (1), (2) on p. 170]). The
unit 1 e−→ Q will always be identified with the corresponding element e ∈ Q.
Typical examples of a unital quantale arise from complete lattices X and are
given by the complete lattice [X,X] of all join-preserving self-maps of X
provided with the composition as quantale multiplication.

3. Survey on modules in Sup

In this section we begin with a review of some basic properties of modules
in Sup. Therefore let Q = (Q, ∗, e) be a unital quantale with unit e.

A complete lattice X provided with a left action Q ⊗ X
ℓX−−→ X of Q

on X (cf. [9, p. 174]) is called a left Q-module in Sup (cf. [4]). Hence ℓX
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can be identified with its bimorphism Q×X
⊙−→ X (cf. (2.1)) satisfying the

following additional axioms:

(L1) β ⊙ (α⊙ x) = (β ∗ α)⊙ x, α, β ∈ Q, x ∈ X ,

(L2) e⊙ x = x, x ∈ X .

Let X = (X, ℓX) and Y = (Y, ℓY ) be left Q-modules. A join-preserving
map X h−→ Y is a left Q-module morphism if h also preserves the respective
left actions — i.e. the commutativity of the following diagram holds:

Q⊗X Q⊗ Y

X Y

//
1Q⊗h

��

ℓX

��

ℓY

//
h

The complete lattice [X, Y ] of left Q-module morphisms X → Y is ordered
pointwise in the sense of Y . Hence joins in [X, Y ] are computed pointwise,
but not meets.

Obviously left Q-modules and left Q-module morphisms form a cate-
gory denoted by Modℓ(Q). Referring to [2] Modℓ(Q) is complete and co-
complete. Further, it is well known that the forgetful functor U : Modℓ(Q) →
Sup has a left adjoint functor F : Sup → Modℓ(Q) acting on objects and
morphisms as follows (cf. [9, p. 174]):

F(X) = Q⊗X and X
h−→ Y, Q⊗X

F(h)=1Q⊗h−−−−−−−→ Q⊗ Y.

If M is the monad induced by the adjoint situation F ⊣ U , then Modℓ(Q) is
isomorphic to the category of M-algebras. In particular, all finite limits in
Modℓ(Q) can be computed at the level of Sup.

Moreover, right actions X ⊗Q
rX−−→ X in Sup are defined similarly and

can again be identified with bimorphisms X ×Q
⊡−→ X satisfying now the

properties:

(R1) (x⊡ α)⊡ β = x⊡ (α ∗ β), α, β ∈ Q, x ∈ X ,

(R2) x⊡ e = x, x ∈ X .
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The respective results corresponding to the previous ones of left Q-modules
holds also for right Q-modules. In particular, all finite limits in the category
Modr(Q) of right Q-modules are again computed at the level of Sup.

As a next step we present a fundamental relationship between left and
right Q-modules in Sup (cf. [2, Fact 1 on p. 207]).

Theorem 3.1 The self-duality of Sup determined by the construction of right
adjoint maps can be lifted to a contravariant isomorphism between the cat-
egories Modℓ(Q) and Modr(Q).

Proof. Let (X, ℓX) be a left Q-module and X† ℓ⊢X−−→ (Q⊗X)† = [Q, X†] be
the right adjoint map of its left action ℓX . Then we introduce a right action
X† ⊗Q

r
X†−−→ X† of Q on X† by:

X† ⊗Q [Q, X†]⊗Q

X†
''

r
X†

//
ℓ⊢X⊗1Q

��

ev
X†

The bimorphism X† × Q
⊡†
−−→ X† determined by rX† in the sense of (2.1)

has the form (cf. [1, Def. 5.1.2]):

x ⊡† α =
∨
{ z ∈ X | α⊙ z ≤ x }, α ∈ Q, x ∈ X. (3.1)

It is easily seen that ⊙ satisfies (L1) and (L2) if and only if ⊡† satisfies
(R1) and (R2). Further, the formation of right adjoint maps determines a
contravariant functor Γ: Modℓ(Q) → Modr(Q).
On the other hand, every right action rX on X induces a left action ℓX† on
the dual lattice X† of X as follows. First we compute the monoidal adjoint

X
⌜rX⌝−−−→ [Q, X]

of rx (cf. (2.2)). Then the left action ℓX† on X† is given by the right adjoint

map Q⊗X† ℓ
X†=(⌜rX⌝)⊢

−−−−−−−−→ X†. The bimorphism Q×X† ⊙†
−−→ X† determined

by ℓX† has the form

α ⊙† x =
∨
{ z ∈ X | z ⊡ α ≤ x }, α ∈ Q, x ∈ X, (3.2)
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where ⊡ is the bimorphism corresponding to rX . Because Γ(X†, ℓX†) =
(X, rX), Γ is a contravariant isomorphism. □

We illustrate the previous theorem by a simple example.

Example 3.2 Let Q = (Q,m, e) be a monoid in Sup (which can also be
viewed as a unital quantale). It follows from the associativity and unit axiom
of monoids that m can be read as left action of Q on Q or as right action of
Q on Q. Obviously, Q is the free left (resp. right) Q-module on a singleton.
Hence every monomorphism in Modℓ(Q) (resp. Modr(Q)) is an injective
map.
(a) If we consider m as a left action on Q, then the bimorphism correspond-
ing to the right action rQ† on Q† induced by m in the sense of Theorem 3.1
has the form (cf. (3.1)):

γ ⊡† α =
∨
{ β ∈ Q | α ∗ β ≤ γ } = α ↘ γ, α, γ ∈ Q. (3.3)

Hence the right action rQ† is uniquely determined by the right implication
of the quantale multiplication ∗. In particular, if Q† ⊗ Q

c
Q†Q−−−→ Q ⊗ Q†

is the relevant component of the symmetry in Sup, then rQ† = φ↘ ◦ cQ†Q.
Moreover, if γ ∈ Q is right-sided, then α ↘ γ is also right-sided for all
α ∈ Q. Hence, if R(Q) is the subquantale of all right-sided elements of Q,
then R(Q)† is a right Q-submodule of (Q†, rQ†). By abuse of notation we
denote the right action in R(Q)† again by rQ† .
(b) If we consider m as a right action on Q, then the left action ℓQ† on Q†

induced by m in the sense of Theorem 3.1 (cf. (3.2)) is uniquely determined
by the left implication — i.e.

α⊙† γ =
∨
{ β ∈ Q | β ∗ α ≤ γ } = γ ↙ α, α, γ ∈ Q. (3.4)

In particular, ℓQ† = φ↙ ◦ cQQ† . Moreover, if L(Q) is the subquantale of
all left-sided elements of Q, then by analogy with (a) the complete lattice
L(Q)† is a left Q-submodule of (Q†, ℓQ†). By abuse of notation we denote
the left action in L(Q)† again by ℓQ† .

It follows immediately from Theorem 3.1 and Example 3.2 that every epi-
morphism in Modℓ(Q) (resp. Modr(Q)) is surjective. Moreover, every epi-
morphism is the coequalizer of its kernel pair and every monomorphism is
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the equalizer of its cokernel pair. In particular, Modℓ(Q) (resp. Modr(Q)) is
an epi-mono-category.

With regard to Section 4 we recall that the terminal and initial objects co-
incide and form consequently the null object in Modℓ(Q) (resp. Modr(Q)).
Hence Modℓ(Q) (resp. Modr(Q)) is a pointed category and every left (resp.
right) Q-module X has a unique global point 0 → X and is represented by
the universal lower bound of X .

The next proposition is a non-commutative version of [2, Lem. 3.1.27].

Proposition 3.3 Let (X, rX) be a right Q-module, (Y, ℓY ) be a left Q-mod-
ule and (Y †, rY †) be the right Q-module induced by (Y, ℓY ) in the sense of
Theorem 3.1. Further, let ⊡ and ⊙ be the bimorphisms determined by rX
and ℓY respectively. Then a join-reversing map X

f−→ Y is a right Q-mod-
ule morphism (X, rX)

f−→ (Y †, rY †) if and only if the following equivalence
holds for all α ∈ Q, x ∈ X and y ∈ Y :

y ≤ f(x⊡ α) ⇐⇒ α⊙ y ≤ f(x).

Proof. Let (X, rX)
f−→ (Y †, rY †) be a right Q-module morphism. Then the

definition of ⊡† (cf. (3.1)) implies that the following chain of equivalences
holds:

y ≤ f(x⊡ α) ⇐⇒ y ≤ f(x) ⊡† α ⇐⇒ α⊙ y ≤ f(x).

Conversely, if we assume that y ≤ f(x⊡ α) if and only if α⊙ y ≤ f(x) for
all α ∈ Q, x ∈ X, y ∈ Y , then we obtain:

f(x⊡ α) ≤ f(x⊡ α) ⇐⇒ α⊙ f(x⊡ α) ≤ f(x)
⇐⇒ f(x⊡ α) ≤ f(x) ⊡† α.

Further, the definition of ⊡† implies that α⊙(f(x) ⊡† α) ≤ f(x). Referring
again to the previous equivalence we obtain f(x) ⊡† α ≤ f(x⊡ α). Hence
X

f−→ Y † is a right Q-module morphism and the assertion follows. □

If, in the previous proposition, we interchange right Q-modules and left
Q-modules, then we can give a respective characterization of left Q-mod-
ule morphisms.
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Proposition 3.4 Let (X, ℓX) be a left Q-module, (Y, rY ) be a right Q-mod-
ule and (Y †, ℓY †) be the left Q-module induced by (Y, rY ) in the sense of
Theorem 3.1. Further, let ⊙ and ⊡ be the bimorphisms determined by ℓX
and rY respectively. Then a join-reversing map X

f−→ Y is a left Q-mod-
ule morphism (X, ℓX)

f−→ (Y †, ℓY †) if and only if the following equivalence
holds for all α ∈ Q, x ∈ X and y ∈ Y :

y ≤ f(α⊙ x) ⇐⇒ y ⊡ α ≤ f(x).

As a second step we point out that the self-duality in Sup also permits to
associate a Q-enriched category with every right Q-module.

For the convenience of the reader we review the details of this construc-
tion. By analogy with the situation in Modℓ(Q) we first compute the right
adjoint map

X† r⊢X−−→ (X ⊗Q)† = [X,Q†]

of the right action X ⊗ Q
rX−−→ X , and in a second step we construct a

join-preserving map X† ⊗X
φ−→ Q† by applying the evaluation arrow:

X† ⊗X [X,Q†]⊗X

Q†
''

φ

//
r⊢X⊗1X

��

ev
Q†

The bimorphism X† × X
homX−−−→ Q† determined by φ (cf. (2.1)) has the

form:

homX(x, y) =
∨
{α ∈ Q | y ⊡ α ≤ x }, x, y ∈ X. (3.5)

If we now consider homX as Q-valued map defined on the cartesian product
X × X in Set and fix the given order on X , then we can reformulate the
lattice-theoretic properties of homX as follows:

The map homX is meet-preserving in the first variable and
join-reversing in the second variable. (3.6)
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Further, we conclude from (R1) and (R2) that homX is a Q-valued hom-
object assignment — i.e. the Q-enriched composition law and the existence
of Q-enriched identities

homX(x, y)∗homX(z, x) ≤ homX(z, y) and e ≤ homX(x, x), x, y ∈ X,

hold in the framework given by the monoidal biclosed category determined
by Q (cf. [5]).

As a consequence of this construction we now show that homX gives rise
to specific module morphisms in Sup, which will play a significant role in
Section 4.

For this purpose, let us consider the given right action rX on X and the
right action rQ† on Q† induced by the left action on Q (cf. Example 3.2 (a)).
If we fix the first variable in homX , then it follows immediately from Propo-
sition 3.3, (3.5) and (R1) that

(X, rX)
homX(x, )−−−−−−−→ (Q†, rQ†)

is a right Q-module morphism for all x ∈ X .
On the other hand, if we fix the second variable in homX , then we con-

sider the respective left actions ℓX† and ℓQ† on X† and Q† induced by the
respective right actions on X and on Q (cf. Example 3.2 (b)) in the sense of
Theorem 3.1. Now we refer to (3.2) and obtain:

β ≤ homX(γ ⊙† x, y) ⇐⇒ y ⊡ β ≤ γ ⊙† x

⇐⇒ (y ⊡ β)⊡ γ ≤ x

⇐⇒ β ∗ γ ≤ homX(x, y).

Hence Proposition 3.4 implies that (X†, ℓX†)
homX( ,y)−−−−−−−→ (Q†, ℓQ†) is a left

Q-module morphism for all y ∈ X .
We can summarize the previous observations in the following formulae:

homX(α⊙† x, y) = homX(x, y) ↙ α and
homX(x, y ⊡ α) = α ↘ homX(x, y).

(3.7)

Finally, it can be shown that the Q-enriched category (X, homX) is skele-
tal and cocomplete. In this context we recall that Modr(Q) is isomorphic to
the category of cocomplete and skeletal Q-enriched categories — a result,
which has been established by I. Stubbe in 2006 in the more general context
of quantaloid-enriched categories (cf. [11] and [2, Sect. 3.3.3]).
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4. The weak subobject classifier axiom

In this section we present a weakening of the subobject classifier axiom and
explore its first categorical consequences. As a motivating example we re-
veal the special role of categories of modules in Sup.

Definition 4.1 Let C be a finitely complete category with terminal object T .

Further, let Ω be an object of C and T t
Ω be a global point of Ω.

(a) A monomorphism U
ψ

X is called (t,Ω)-classifiable if there exists a
morphism X

φ−→ Ω such that

U T

X Ω

��

��

ψ

//
!U

��

��

t

//
φ

(4.1)

is a pullback square. In particular, φ is said to be a classifying morphism of

the monomorphism U
ψ
X .

(b) The pair (t,Ω) is called a weak subobject classifier if the following con-
ditions are satisfied:

(WS1) If X is an object of C, then every global point T X of X is
(t,Ω)-classifiable.

(WS2) If a monomorphism U
ψ
X is (t,Ω)-classifiable, then it is uniquely

(t,Ω)-classifiable — i.e. φ in the pullback (4.1) is uniquely deter-
mined by ψ.

Obviously every (t,Ω)-classifiable monomorphism is an equalizer (cf.
[12, Prop. 14.3]).

Further, it follows immediately from the previous definition that every
weak subobject classifier is unique up to an isomorphism. Hence the ex-
istence of a weak subobject classifier is an invariant of a finitely complete
category. In this context we introduce the following terminology:
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The morphism t is called the arrow true. Further, a morphism φ with
codomain Ω is a called a characteristic morphism. If φ is uniquely deter-

mined by a monomorphism U
ψ

X in the sense of the pullback in (4.1),
then we write χψ instead of φ.

In particular we have the following:

Theorem 4.2 Let Q = (Q, ∗, e) be a unital quantale with unit e. Then
the right Q-module (R(Q)†, rQ†) (cf. Example 3.2 (a)) is the weak subobject
classifier in Modr(Q), and the arrow true is represented by the universal
lower bound of R(Q)†.

Proof. First we notice that the universal lower bound in R(Q)† is the uni-
versal upper bound ⊤ in Q.
(a) Let (X, rX) be a right Q-module and ⊥ be the universal lower bound of
X . Further, let homX be the hom-object assignment of the Q-enriched cate-
gory (X, homX) associated with (X, rX) (cf. Section 3). Since homX(⊥, y)
is right-sided for all y ∈ X (cf. (3.5)), the range of homX(⊥, ) is contained
in R(Q), and consequently

(X, rX)
homX(⊥, )−−−−−−−→ (R(Q)†, rQ†)

is a right Q-module morphism. The right Q-submodule determined by the
pullback of the arrow true 0

t−→ Q† along homX(⊥, ) is given by

{ y ∈ X | homX(⊥, y) = ⊤} = {⊥}.

Hence (WS1) is satisfied.
(b) Let (X, rX)

φ−→ (R(Q)†, rQ†) be a right Q-module morphism and U be
the right Q-submodule of (X, rX) determined by the pullback of the arrow
true along φ — i.e.

U = {x ∈ X | φ(x) = ⊤}. (4.2)

Further, let homX be the hom-object assignment of the Q-enriched category
(X, homX) associated with (X, rX). Then y⊡ homX(x, y) ≤ x holds for all
x, y ∈ X . Since φ preserves the respective right actions and is isotone, the
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previous relation implies φ(y) ⊡† homX(x, y) ≤† φ(x), which is equivalent
to

φ(x) ≤ homX(x, y) ↘ φ(y), i.e. homX(x, y) ∗ φ(x) ≤ φ(y), x, y ∈ X,

where we have also referred to (3.3). Then φ is a cocontinuous contravariant
Q-presheaf on (X, homX) in the terminology of Q-enriched category theory
(cf. [10, Def. 3.1, p. 21 and 23]). Since Q is unital, we conclude from (4.2):∨

{ homX(x, y) | x ∈ U } ≤ φ(y), y ∈ X. (4.3)

Now we recall that φ(y) is right-sided for all y ∈ X , hence:

φ(y ⊡ φ(y)) = φ(y ⊡ φ(y)) ∗ ⊤ =
(
φ(y) ↘ φ(y)

)
∗ ⊤ = ⊤,

and so y ⊡ φ(y) ∈ U . Thus φ(y) ≤ homX(y ⊡ φ(y), y) follows, and the
inequality in (4.3) turns into an equality. In particular, the relation:

φ(y) =
∨

φ(x)=⊤
homX(x, y) ∗ ⊤ =

∨
φ(x)=⊤

homX(x⊡⊤, y) (4.4)

holds for all y ∈ X , and so (WS2) is verified. □

By analogy with Theorem 4.2 the left Q-module (L(Q†, ℓQ†) is the weak
subobject classifier in Modℓ(Q) (cf. Example 3.2 (b)). Indeed, we have only
to observe that the hom-object assignment of a left Q-module (X, ℓX) is the
hom-object assignment determined by the dual right Q-module (X†, rX†) of
(X, ℓX) — i.e.

homX(x, y) =
∨
{α ∈ Q | y ⊡† α ≤† x } =

∨
{α ∈ Q | α⊙ x ≤ y }

for each x, y ∈ X . Consequently the lattice-theoretic properties of homX

(cf. (3.6)) are read in X†.

Remark 4.3 Let (X, rX) be a right Q-module and (X, homX) be the as-
sociated Q-enriched category. Since (4.4) describes the characteristic mor-
phisms of (X, rX) in the sense of Modr(Q), it is easily seen that for every

right-sided element α ∈ Q and x ∈ X the map X
homX(x⊡α, )−−−−−−−−→ R(Q†)

is a right Q-module morphism and the characteristic morphism of the right
Q-submodule ↓(x ⊡ α) = { y ∈ X | y ≤ x ⊡ α } of X . If Q is commu-
tative, then R(Q) is the subquantale I(Q) of all two-sided elements of Q
and homX(x ⊡ α, ) is the elementary tensor x ⊗Q α of the tensor product
X⊗Q I(Q) of Q-modules, where the action on I(Q) is given by the quantale
multiplication.

48



U. HÖHLE WEAK SUBOBJECT CLASSIFIER AND MODULES

4.1 Classifiable subobjects

Let C be a finitely complete category with terminal object T provided with a
weak subobject classifier (t,Ω). We begin with the simple observation that
the identity 1X of an objectX is always (t,Ω)-classifiable. The characteristic

morphism of 1X is the composition X !X−−→ T
t
Ω and is denoted by trueX .

Further, recall that a subobject of X is an equivalence class of monomor-
phisms with codomainX . If a representing monomorphism of a subobject S
of X is (t,Ω)-classifiable, then it is easily seen that every further represent-
ing monomorphism of S is also (t,Ω)-classifiable. Hence, due to the unique
classification of (t,Ω)-classifiable monomorphisms with codomainX , every
characteristic morphism of X is uniquely determined by its corresponding
subobject — i.e. there exists a bijective map between all (t,Ω)-classifiable
subobjects of X and all charactertistic morphisms of X .

In a first step we show that the pullback of (t,Ω)-classifiable subobjects
is again (t,Ω)-classifiable. In particular, (t,Ω)-classifiable monomorphisms
are pullback stable.

Proposition 4.4 Let X
f−→ Y be a morphism and U m

Y be a (t,Ω)-clas-
sifiable monomorphism. Then the pullback V n

X of m along f is again
(t,Ω)-classifiable. In particular, if χm is the characteristic morphism of m,
then χm ◦ f is the characteristic morphism of n.

Proof. We consider the commutative diagram (cf. [12, Proof of Prop. 14.4]):

V X

U Y

T Ω

��

// //
n

��

f

��

!U

// //
m

��

χm

// //
t

Hence the result follows from the Pullback Lemma. □
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The formulation of the previous proposition can be seen as an extension
of the well known result [12, Prop. 14.4] to the area of weak subobject clas-
sifiers.

Now we show that the binary intersection of (t,Ω)-classifiable subob-
jects is again (t,Ω)-classifiable. For this purpose we will apply (WS1). By
analogy with topos theory, the characteristic morphism Ω× Ω

χ∩−−→ Ω of the

global point T
⟨t,t⟩

Ω× Ω will be referred as the conjunction in C.

Example 4.5 In Modr(Q) the conjunction χ∩ coincides with the binary
meet of right-sided elements. In fact, since the hom-object assignment of the
weak subobject classifier R(Q†, rQ†) is given by homR(Q)†(α, β) = β ↙ α,
the relation (4.4) implies: χ∩(β1, β2) = (β1 ↙ ⊤) ∧ (β2 ↙ ⊤) = β1 ∧ β2
for all β1, β2 ∈ R(Q).

Theorem 4.6 Let U1
m1

X and U2
m2

X be (t,Ω)-classifiable mono-
morphisms. Then the monomorphism V

n
X determined by the following

pullback square:
V U2

U1 X

��

��

m′
2

// //
m′

1

��

��

n

��

��

m2

// //
m1

(4.5)

is again (t,Ω)-classifiable. Moreover, if χmi
is the characteristic morphism

of Ui
mi

X (i = 1, 2) and χn is the characteristic morphism of V n
X ,

then the relation χn = χ∩ ◦ ⟨χm1 , χm2⟩ holds.

Proof. In the case of a weak subobject classifier axiom (cf. Definition 4.1)
we can also follow the same strategy as in topos theory. We consider the
characteristic morphisms X

χm1−−−→ Ω and X
χm2−−−→ Ω corresponding to m1
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and m2 and prove that the outer rectangle of the diagram:

V X

T Ω× Ω

T Ω

��

// //
n

��

⟨χm1 ,χm2 ⟩

��

// //
⟨t,t⟩

��

χ∩

// //
t

is a pullback square. For this purpose it is sufficient to show that the upper
square is a pullback. The commutativity of the upper square is evident. Now
let us consider a morphism Z

ℓ−→ X with ⟨t, t⟩◦!Z = ⟨χm1 , χm2⟩◦ℓ. Then the
weak subobject classifier axiom implies that there exist morphisms Z

φi−→ Ui
(i = 1, 2) such thatm1◦φ1 = ℓ = m2◦φ2. Finally, the pullback square (4.5)
guarantees the existence of Z

ψ−→ V satisfying φ1 = m′
2◦ψ and φ2 = m′

1◦ψ.
Now we observe n ◦ ψ = m1 ◦m′

2 ◦ ψ = m1 ◦ φ1 = ℓ. Hence the assertion
is verified.
Finally, the relation χn = χ∩ ◦ ⟨χm1 , χm2⟩ follows from the uniqueness of
the classification. □

Since the identity 1Ω of Ω is the characteristic morphism of the arrow
true, Theorem 4.6 implies that χ∩ is idempotent — i.e. 1Ω = χ∩ ◦ ⟨1Ω, 1Ω⟩.
Moreover, the unique classification shows that (Ω, χ∩) is a commutative
monoid in C w.r.t. the monoidal structure determined by the product in C.
In particular, the arrow true is the unit of (Ω, χ∩). Hence (Ω, χ∩) induces
a partial order on the set HOMC(X,Ω) of all characteristic morphisms of
(X, rX) by

χ1 ≤ χ2 ⇐⇒ χ1 = χ∩ ◦ ⟨χ1, χ2⟩, χ1, χ2 ∈ HOMC(X,Ω).

Obviously (HOMC(X,Ω),≤) is a semilattice. Due to the weak subobject
classifier axiom, (HOMC(X,Ω),≤) is order-isomorphic to the partially or-
dered set subcl(X) of all (t,Ω)-classifiable subobjects of X .
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If C is a complete category, then Theorem 4.6 holds also for any fam-
ily of (t,Ω)-classifiable subobjects of X . Hence in this case subcl(X) is
a complete lattice, and for any subobject with representing monomorphism
U

m
X its (t,Ω)-classifiable hull exists — i.e. there exists a (t,Ω)-classi-

fiable monomorphism Ũ
m̃

X determined by the following properties:

(CL1) There exists a (mono)morphism U
jU−−→ Ũ such that m = m̃ ◦ jU .

(CL2) For every further (t,Ω)-classifiable monomorphism V
n

X satis-

fying the condition m = n ◦ jV U with U
jV U

V there exists a

morphism Ũ
j̃V U−−→ V such that m̃ = n ◦ j̃V U holds.

Hence m̃ is uniquely determined by m up to an isomorphism.
Finally, if C is complete, then for every morphism X

f−→ Y the inverse

image functor subcl(Y )
f−1

−−→ subcl(X) has a left adjoint. It is an open ques-
tion whether f−1 has a right adjoint.

4.2 Comprehension scheme

In this subsection we do not only assume that the finitely complete category
C satisfies the weak subobject classifier axiom, but also that for every subob-
ject its (t,Ω)-classifiable hull exists. Referring to [7, 8] the question arises
to which extent the weak subobject classifier axiom is a weakening of the
comprehension principle. Following Lawvere, we understand a morphism
E

x−→ X as an element of X “defined over E” and for every monomorphism
U

m
X we say x ∈ m if there exists x̃ such that

E U

X
��

x

//
x̃

��

��

m

i.e. x = m ◦ x̃. Further, recall that trueE is the composition E !E−→ T
t

Ω,
where T is the terminal object and t is the arrow true (cf. [7]). Then the
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weak subobject classifier axiom says the following. Given any “proposi-
tional function” (i.e. characteristic morphism of X) X

χ−→ Ω there exists a
monomorphism {X|χ} with codomain X such that for any E x−→ X

x ∈ {X|χ} ⇐⇒ χ ◦ x = trueE,

and, conversely, for every monomorphism with codomain X there exists the
smallest (t,Ω)-classifiable monomorphism — i.e. its (t,Ω)-classifiable hull,
with codomain X which has a unique “characteristic function” χ. If C is
an epi-mono-category, then this relationship can be expressed by an adjoint
situation (cf. [8]) — i.e. there exists a functor F : C/X → Hom(X,Ω),
which has a right adjoint.

In fact, F acts on objects as follows. For E
p−→ X we first construct the

epi-mono-factorization

E X

U

�� ��p∗

//
p

??

??

m

and subsequently we consider the (t,Ω)-classifiable hull Ũ m̃
X of U m

X . Then F(p) is given by the characteristic morphism of Ũ m̃
X . Fur-

ther, for every morphism p1
π−→ p2 the epi-mono-factorization leads to the

following commutative diagram:

E1 U1 Ũ1

X

E2 U2 Ũ2

��

π

// //
p1∗

��

π̂

��

��

m1

// //
jU1

��

m̃1

// //
p∗2

??

??

m2

// //
jU2

OO

m̃2

Since m̃2◦jU2 ◦ π̂ = m1, we conclude from the universal property (CL2) that

there exists a morphism Ũ1

j̃
Ũ2Ũ1−−−→ Ũ2 such that m̃1 = m̃2 ◦ j̃Ũ2Ũ1

. If χi is
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the characteristic morphism of m̃i (i = 1, 2), then χ1 = χ∩(χ1, χ2) follows
— i.e. F(p1) ≤ F(p2).

On the other hand there exists a functor G : Hom(X,Ω) → C/X deter-
mined by the pullback diagram:

X Ũ

Ω T
��

χ

oooo
m̃

��

oooo
t

Since there is a natural transformation η : idC → GF with the p-component
E

ηp−→ G(F(p)) defined by ηp = jU ◦ p∗ with m̃ ◦ jU = m and p = m ◦
p∗, it is not difficult to show that G is right adjoint to F . In this sense a
“comprehension scheme” holds in C.

4.3 (t,Ω)-classifiable subobjects in Modr(Q)

Let (t,Ω) = (t, (R(Q)†, rQ†)) be the weak subobject classifier in Modr(Q)
(cf. Theorem 4.2) and (X, rX) be a right Q-module. Since in Modr(Q) the
characteristic morphism χ∩ is the binary meet in R(Q) (cf. Example 4.5),
the complete lattice HOMModr(Q)((X, rX), (R(Q)†, rQ†)) (∼= subcl(X, rX))
is the dual lattice of the complete lattice [X,R(Q)†] of all characteristic mor-
phisms of (X, rX) ordered pointwise in R(Q)†.

As a first step we give a characterization of characteristic morphisms.

Proposition 4.7 Let (X, rX) be a right Q-module and homX be the as-
sociated hom-object assignment. Then for every characteristic morphism
X

χ−→ R(Q)† there exists a unique element x ∈ X satisfying the following
conditions

x⊡⊤ = x and χ(y) = homX(x, y), y ∈ X. (4.6)

Proof. The anti-symmetry of the partial order on X implies the uniqueness
of the element x in (4.6). In order to confirm the existence of x we proceed
as follows:

x =
∨
{ z ∈ X | e ≤ χ(z) }.
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Since χ(z) is right-sided for all z ∈ X and χ itself is join-reversing, we
obtain χ(x) = ⊤. Now we observe χ(x ⊡ ⊤) = ⊤ ↘ ⊤ = ⊤ — i.e.
x ⊡ ⊤ ≤ x and consequently x ⊡ ⊤ = x. Since every right Q-module
morphism is also a Q-functor in the sense of Q-enriched category theory, the
relation homX(x, ) ≤ χ holds. On the other hand we observe e ≤ χ(y) ↘
χ(y) = χ(y ⊡ χ(y)). Hence y ⊡ χ(y) ≤ x — i.e. χ(y) ≤ homX(x, y), and
the relation (4.6) is verified. □

As an immediate corollary from Remark 4.3 and Proposition 4.7 we ob-
tain that every (t,Ω)-classifiable subobject of (X, rX) is a right Q-submod-
ule U having the following form:

∃x ∈ X with x⊡⊤ = x such that U = ↓x = { y ∈ X | y ≤ x } (4.7)

Hence, for an arbitrary right Q-submodule U of (X, rX), its (t,Ω)-classifi-
able hull Ũ is given by Ũ = ↓(

∨
U).

Remark 4.8 Let Q be an integral quantale (i.e. the unit is the universal up-
per bound of Q), then Q† is the weak subobject classifier in Modr(Q). Since
Q† is a Q-bimodule, for every right Q-module (X, rX) the complete lattice
[X,Q†] of all characteristic morphisms on X is a left Q-module with the left
action ℓ[X,Q†] determined by:

(α⊙ χ)(x) = χ(x) ↙ α, α ∈ Q, x ∈ X.

Since HOMModr(Q)((X, rX), (R(Q)†, rQ†)) = [X,R(Q)†]†, we may con-
clude from Theorem 3.1 that HOMModr(Q)((X, rX), (R(Q)†, rQ†)) is a right
Q-module and its dual right action of ℓ[X,R(Q)†] has the form:

f ⊡† α =
∧
{ g ∈ [X,R(Q)†] | f(x) ∗ α ≤ g(x) for all x ∈ X }.

Further, let us invoke again Theorem 3.1 and consider the dual left Q-module
(X†, ℓX†) of (X, rX).Then we conclude from Proposition 4.7 and (3.7) that
there exists a left Q-module isomorphism X† ηX−−→ [X,Q†] defined by:

ηX(x) = homX(x, ), x ∈ X.
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If (X, rX)
f−→ (Y, rY ) is a right Q-module morphism, then the right adjoint

left Q-module morphism (Y †, ℓY †)
f⊢−−→ (X†, ℓX†) satisfies the following

chain of equivalences for all x ∈ X and y ∈ Y :

α ≤ homX(y, f(x)) ⇐⇒ f(x)⊡ α ≤ y

⇐⇒ x⊡ α ≤ f⊢(y) ⇐⇒ α ≤ homX(f
⊢(y), x).

Hence the diagram

(Y †, ℓY †) [Y,Q†]

(X†, rX†) [X,Q†]

��

f⊢

//
ηY

��

Θf

//
ηX

is commutative, where Θf is given by Θf (χ) = χ ◦ f for all χ ∈ [Y,Q†]
(cf. Proposition 4.4). So we obtain that in the case of integral quantales the
restriction of the inverse image functor f−1 to (t,Ω)-classifiable subobjects
of (Y, rY ) is equivalent to the right adjoint left Q-module morphism f⊢ of f .

Finally, let us consider the case of arbitrary unital quantales. Then we
need some more terminology. An element x of a right Q-module (X, rX)
is well-sided if x ⊡ ⊤ = x. The set W(X) of all well-sided elements of X
is a complete sublattice of X in the sense of Sup, but not necessarily a right
Q-submodule of X . The inclusion map W(X) ↪−→ X is meet-preserving.

If (X, rX)
f−→ (Y, rY ) is a right Q-module morphism, then the right

adjoint f⊢ of f viewed as morphism in Sup factors through W(Y )† in the
following way:

W(Y )† Y †

W(X)† X†
��

f∗

� � //
ι
Y †

��

f⊢

//
ι
X†

Since in this situation W(Y )†
ηY−−→ [Y,R(Q)†] is only an order isomor-

phism (cf. Proposition 4.7), we refer to Remark 4.8 and conclude that the
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restriction of f−1 to subcl(Y, rY ) has a right adjoint functor subcl(X, rX)
∀f−−→

subcl(Y, rY ) if and only if f ∗ is meet-preserving in the respective orders of
W(Y )† and W(X)†.

As an illustration of this situation we include the following simple exam-
ple.

Example 4.9 Let Q be a unital quantale without zero divisors. Further, let
us view Q as right Q-module w.r.t. the right quantale multiplication. Then
the complete sublattice W(Q) coincides with the subquantale R(Q) of all
right-sided elements of Q. In general R(Q) is not a right Q-submodule of
Q.
Further we fix an element α ∈ Q \ {⊥}. The left translation in Q by α —
i.e.

fα(γ) = α ∗ γ, γ ∈ Q,

is a right Q-module morphism Q
fα−−→ Q. Then the right adjoint left Q-mod-

ule morphism Q† (fα)⊢−−−→ Q† of fα has the form (fα)
⊢(γ) = α ↘ γ with

γ ∈ Q. Since Q does not have zero divisors, the relation (fα)
⊢(⊥) = ⊥ fol-

lows. Hence the restriction of (fα)⊢ to R(Q)† is meet-preserving in R(Q)†

(i.e. the restriction of the inverse image functor (fα)−1 to subcl(Q, ∗) has a
right adjoint) if and only if for all nonempty subsetsA ofR(Q) the following
relation holds:

α ↘ (
∨
A) =

∨
γ∈A

(α ↘ γ). (4.8)

There exist unital quantales without zero divisors, in which (4.8) is violated.
For example let us consider the idemptotent, non-commutative and unital
quantale Cr

4 on the 4-chain with ⊥ < a < e < ⊤, where e is the unit and a
satisfies the properties ⊤ ∗ a = ⊤ and a ∗ ⊤ = a. Then the tensor product
Cr

4 ⊗Cr
4 in the sense of quantales (cf. [2, p. 92]) is a unital quantale without

zero divisors, in which (4.8) is violated for certain non-zero elements of
Cr

4 ⊗ Cr
4 . The details are as follows. The subquantale R(Cr

4 ⊗ Cr
4) of all

right-sided elements consists of six elements:

⊥, δ = a⊗a, α = ⊤⊗a, β = a⊗⊤, γ = (⊤⊗a)∨(a⊗⊤), ⊤ = ⊤⊗⊤

with δ = α ∧ β and γ = α ∨ β. Now we consider the left translation fγ on
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Cr
4 ⊗ Cr

4 by γ. Then γ ↘ (α ∨ β) = γ ↘ γ = ⊤ and

γ ↘ α = (a⊗⊤) ↘ (⊤⊗a) = ⊥ and γ ↘ β = (⊤⊗a) ↘ (a⊗⊤) = ⊥,

hence the relation (4.8) is violated, and consequently the restriction of the
inverse image functor (fγ)−1 to subcl(C

r
4 ⊗Cr

4) does not have a right adjoint.
But on the other hand, if we consider the left translation fα on Cr

4 ⊗ Cr
4 by

α, then the relation (4.8) is satisfied and the restriction of the inverse image
functor (fα)−1 to subcl(C

r
4 ⊗ Cr

4) has a right adjoint.

4.4 The implication as truth arrow in Modr(Q)

Let Q† ×Q† π1−→ Q† be the projection onto the first coordinate. By analogy
to topos theory we consider the equalizer in Modr(Q)

U R(Q)† ×R(Q)†
π1

χ∩ (R(Q)†

and observe that the (t,Ω)-classifiable hull of U coincides with R(Q)† ×
R(Q)†. This is the motivation to avoid the direct product in Modr(Q) and
to lift the tensor product of Sup to Modr(Q) as follows. Let (X, rX) be a
right Q-module and Y be a complete lattice. Then on the tensor product
X ⊗Y we consider the right action (X ⊗Y )⊗Q

r−→ X ⊗Y determined on
elementary tensors by:

(x⊗ y)⊡ α = (x⊡ α)⊗ y, α ∈ Q, x ∈ X, y ∈ Y.

Since every tensor is a join of elementary tensors, the corresponding hom-
object assignment has the following form:

homX⊗Y (f, g) =
∧

x⊗y≤g
{α ∈ Q | y ≤ f(x⊡α) }, f, g ∈ X⊗Y. (4.9)

We apply this situation to the right Q-module Q provided with the right
multiplication as right action and the complete lattice R(Q)†. After these
preparations we now consider the following tensor:

f =
∨
{µ⊗ ν | µ ∈ Q, ν ∈ R(Q)†, µ ≤ ν },

where ≤ is the order in Q. We view f as the «tensorial» analogue of the

equalizer
π1

χ∩ .
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If µ ∈ Q, then µ ≤ µ ∗ ⊤, and for all g ∈ Q ⊗ R(Q)† the following
chain of equivalences hold:

µ⊗ (µ ∗ ⊤) ≤† g ⇐⇒ µ ∗ ⊤ ≤† g(µ) ⇐⇒ g(µ) ≤ µ ∗ ⊤.

Thus the explicit form of f is given by f(α) = α ∗ ⊤ for all α ∈ Q, and
the characteristic morphism of the (t,Ω)-classifiable subobject ↓f has the
following form:

χ(α⊗ β) = homQ⊗R(Q)†(f, α⊗ β) =
∨
{ γ ∈ Q | β ≤† f(α ∗ γ) }

=
∨
{ γ ∈ Q | α ∗ γ ∗ ⊤ ≤ β } =

∨
{ γ ∈ Q | α ∗ γ ≤ β } = α ↘ β.

Hence χ = homQ⊗R(Q)†(f, ) coincides with the join-preserving exten-

sion φ↘ of the right implication Q × R(Q)†
↘−→ R(Q)† viewed as bimor-

phism. In this sense we consider the characteristic morphism χ of ↓f as the
implication in Modr(Q).

Let c be the symmetry in Sup, and let us consider the restriction of the
quantale multiplication in its second factor to R(Q). Then the right adjoint

of the implicationR(Q)
χ⊢
−−→ [Q,R(Q)] coincides with the monoidal adjoint

of R(Q) ⊗ Q
cR(Q)Q−−−−→ Q ⊗ R(Q)

m−→ R(Q). This observation underlines
the close relationship between the implication in Modr(Q) and the given
quantale multiplication in Q.

5. Weak power object

If a symmetric and monoidal closed structure is imposed on a finitely com-
plete category C with a weak subobject classifier, then we can always have
weak power objects in the following sense. Let ⊗ be the tensor product in C,
and [X, ] be the right adjoint functor of ⊗X for every object X . Further,
let (t,Ω) be the weak subobject classifier. Now we can pull back the evalua-
tion arrow [X,Ω]⊗X evΩ−−→ Ω along the arrow true t and obtain a (t,Ω)-clas-
sifiable monomorphism ϵX

ε
[X,Ω]⊗X . Then for every (t,Ω)-classifiable

monomorphism R
r
Y ⊗X there exists a unique morphism Y

fr−→ [X,Ω]
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such that the following diagram is a pullback square:

R Y ⊗X

ϵX [X,Ω]⊗X
��

// //
r

��

fr⊗1X

// //
ε

(5.1)

Since [X,Ω] is uniquely determined up to an isomorphism by the pullback
(5.1), we also call [X,Ω] the weak power object of X and the subobject
(εX , ε) the element relation in [X,Ω]⊗X .

Let 1 be the unit object of the tensor product ⊗. Then it is not difficult to
show that the weak power object [1,Ω] is isomorphic to the weak subobject
classifier Ω.

It is also convenient to recall the concept of naming arrows in the context
of symmetric monoidal closed categories (cf. [3, page 78]). Let X

f−→ Y be
an arrow and 1⊗X ℓX−−→ X be theX-component of the natural isomorphism
1 ⊗ ℓ−→ idC. Then the monoidal adjoint ⌜f ◦ ℓX⌝ of f ◦ ℓX is called the
name of f and is denoted by ⌜f⌝.

Further, let T be the terminal object in C. If C is an epi-mono-category
and the unique arrow 1 !1−→ T is an epimorphism, then the universal quanti-
fier exists in the following sense. Let ⌜trueX⌝ be the name of trueX . Then
the commutativity of the diagram

1⊗X

T ⊗X T Ω
��

!1⊗1X

''

trueX◦ℓX

//
!T⊗X

// //
t

implies the decomposition ⌜trueX⌝ = ⌜(t◦!T⊗X)⌝◦!1. Hence the image of

⌜trueX⌝ is the global point T
⌜t◦!T⊗X⌝

[X,Ω] and is thus (t,Ω)-classifiable
according to (WS1). The characteristic morphism of the image of ⌜trueX⌝ is
the universal quantifier of X , which we denote by ∀X . Since in general the
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tensor product does not have projections, we leave the construction of the
existential quantifier as an open question.

In the following we briefly sketch the situation in the category of mod-
ules on a unital quantale Q. In order to have a symmetric monoidal closed
structure we have to assume that Q is commutative (cf. [4]). The complete
lattice [X, Y ] of all Q-module morphisms (X,⊙)

f−→ (Y,⊙) is a Q-module
provided with the pointwise defined action. Then for (x, y) ∈ X × Y the
elementary tensor x⊗Q y is determined by

x⊗Q y =
∧
{ f ∈ [X, Y †] | x⊗ y ≤ f }

where ⊗ is the tensor product in Sup. Hence the action on x ⊗Q y has the
form

α⊙ (x⊗Q y) =
∧
{ f ∈ [X, Y †] | x⊗Q y ≤ α⊙† f }, α ∈ Q,

and the well known relation (α⊙ x)⊗Q y = x⊗Q (α⊙ y) = α⊙ (x⊗Q y)
follows from Proposition 3.3. In this context, we recall that the category
Mod(Q) of Q-modules is symmetric and monoidal closed w.r.t. ⊗Q (cf. [4,
2]).

Since Q is commutative, the weak subobject classifier in Mod(Q) is
given by the dual Q-module I(Q)† of all two-sided elements of Q. Then
the weak power object of a Q-module X is the Q-module [X, I(Q)†] of
all characteristic morphisms of X . In this situation we point out that the
Q-module HOM(X, I(Q†)) coincides with the tensor product X ⊗Q I(Q).

Since, for commutative quantales, the complete sublattice W(X) of all
well-sided elements of X is a Q-submodule of X , we can express Proposi-
tion 4.7 in this context as follows. Let homX be the hom-object assignment
associated with X and W(X)† be the dual Q-module of W(X). Then there
exists a Q-module isomorphism W(X)†

ηX−−→ [X, I(Q)†] determined by

ηX(x) = homX(x, ), x ∈W(X).

Hence we can also identify W(X)† with the weak power object of X . In
particular W(X) ∼= X ⊗Q I(X).

Moreover, by abuse of notation let us denote the restriction of homX to
W(X)† × X again by homX . Since homX is a bimorphism (cf. (3.6) and
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(3.7)), the evaluation arrow [X, I†(Q)]⊗X
ev
I(Q)†−−−−→ I(Q)† is the unique ex-

tension of homX to a Q-module morphismW(X)†⊗QX
φ−→ I(Q)† making

the following diagram commutative:

W(X)† ×X W(X)† ⊗Q X

I(Q)†
$$

homX

//
⊗Q

��

φ∼=ev
I(Q)†

Hence the (t,Ω)-classifiable subobject of the element relation ϵX is given by

εX = ↓f where f =
∨
{x⊗Qy | (x, y) ∈W(X)†×X, homX(x, y) = ⊤}.

Finally, we recall that the underlying, commutative and unital quantale
Q viewed as Q-module is the unit object of Mod(Q) (cf. [4, 2]). It is easily

seen that the unique arrow Q
!Q−→ T is an epimorphism. Hence for every

Q-module the universal quantifier ∀X exists.

Proposition 5.1 Let X be a Q-module and W(X)†
ηX−−→ [X, I(Q)†] be the

isomorphism identifying characteristic morphisms with well-sided elements.
If homX is the hom-object assignment associated with X , then the universal
quantifier of X has the form:

∀X(ηX(x)) = homX(x,⊤), x ∈W(X)†.

Proof. Let us recall that the universal lower bound in [X, I(Q)†] is the con-
stant characteristic morphism of X attaining ⊤ for all x ∈ X — i.e. trueX .
Then the image of the name ⌜trueX⌝ coincides with the unique global point
T [X, I(Q)†]. In order to compute the corresponding characteristic mor-
phism of the global point T [X, I(Q)†] we have to associate the hom-
object assignment with the Q-module [X, I(Q)†]. Referring to Section 3
it is important to understand that in this context we always have to read a
Q-module as a right Q-module. Therefore, if φ, ψ ∈ [X, I(Q)†], the hom-
object assignment of [X, I(Q)†] is determined by:

hom[X,I(Q)†](φ, ψ) =
∨
{α ∈ Q | α ↘ ψ ≤† φ } =

∧
z∈X

(
φ(x) ↘ ψ(x)

)
.

62



U. HÖHLE WEAK SUBOBJECT CLASSIFIER AND MODULES

Now we choose x ∈ W(X)†. Referring to Remark 4.3 we obtain for φ =
ηX(x):

∀X(ηX(x)) =
∧
z∈X

(⊤ ↘ ηX(x)(z)) =
∧
z∈X

ηX(x)(z)

=
∧
z∈X

homX(x, z) = homX(x,⊤).

Hence the assertion is verified. □

If we understand the universal upper bound in X as true, then the univer-
sal quantifier applied to the (t,Ω)-classifiable subobject ↓x corresponding to
ηX(x) can be interpreted as the extent to which x is true.

In this sense there exists a close relationship between hom-object assign-
ments of Q-modules and truth arrows in Mod(Q).

Acknowledgement. I am very grateful to J. Gutiérrez García for his support
during the preparation of this work.
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