
Almost Cofibrations

Luciano STRAMACCIA

Résumé. Dans cet article nous étudions une généralisation de la propriété
d’extension de l’homotopie ainsi que la notion associée de almost-cofibration
pour les espaces topologiques. Après avoir présenté quelques caractéristiques
nouvelles et intéressantes de cette notion, nous montrons que tout plongement
fermé d’espaces compacts métrisables est une almost-cofibration. De plus, il
s’avère que la catégorie des espaces compacts métrisables, avec les almost-
cofibrations et les équivalences de forme forte, possède la structure d’une
catégorie de cofibrations dont la catégorie d’homotopie est sa catégorie de
forme forte.
Abstract. We study a generalization of the homotopy extension property
together with the related notion of almost-cofibration of topological spaces.
After giving some new and interesting features of such a notion we show
that every closed embedding of compact metrizable spaces is an almost-
cofibration. Moreover, it turns out that the category of compact metrizable
spaces, together with almost-cofibrations and strong shape equivalences has
the structure of a cofibration category whose homotopy category is its strong
shape category.
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Introduction

We consider a variation of the usual homotopy extension property (HEP),
called the rather weak homotopy extension property (RWHEP), that was in-
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troduced in [1], see also [8]. The maps having the RWHEP are characterized
by the fact that they are exactly those maps inducing levelwise fibrations in
the 2-category [Top,Gpd], where Top denotes the category of topological
spaces, while Gpd is the category of groupoids and their homomorphisms
(functors). In this paper we are interested in certain features of this property,
for instance, in contrast to the HEP, the RWHEP is preserved when passing
to the category of inverse systems and also passes to limits of inverse sys-
tems. A map having the RWHEP with respect to all spaces is called here an
almost-cofibration. In particular, it is proved that every closed embedding of
compact metrizable spaces is an almost-cofibration.
Almost-cofibrations and strong shape equivalences [11] give the category C
of compact metrizable spaces the structure of a cofibration category [14].
In [2] it was proved that the strong shape category of C is obtained by local-
izing at the class Σ of strong shape equivalences, that is Ssh(C) = C[Σ−1]. It
then follows that Ssh(C) actually is the homotopy category of a cofibration
category.

1. Preliminaries

A category enriched over Gpd is just a 2-category whose 2-cells are all in-
vertible. The category Top of topological spaces and continuous maps will
be considered with its enrichment over Gpd. Given two spaces X, Y, the
groupoid Gpd(X, Y ) has points the maps X → Y while a path α : f → g
is a track connecting the two maps, that is α = [H] is the relative homotopy
class of a homotopy H : X × I → Y connecting f to g. It is often called
the track groupoid of Y under X [1]. Anr will denote the full subcategory
of Top whose objects are the spaces having the homotopy type of compact
absolute neighborhood retracts for metrizable spaces (Anr-spaces).

Gpd is enriched over itself, the homotopies being the natural isomor-
phisms of functors. A homomorphism of groupoids is a homotopy equiva-
lence if and only if it is an equivalence of categories.
Every ordinary category can be considered as a category enriched over Gpd
with only identity homotopies.

Both the categories Top and Gpd are closed model categories [12], [7]
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with the following structure:

(a) Top : the weak equivalences are the homotopy equivalences, the fibra-
tions and the cofibrations are the Hurewicz fibrations and the Hurewicz
cofibrations.

(b) Gpd : the weak equivalences are the homorphisms that are equiva-
lences of categories, the cofibrations are the homomorphisms that are
injective on objects. The fibrations are the homomorphisms φ : G →
H having the following source lifting property as described by Brown
in [1]:

(1.1.1) for every x ∈ G and every path β : φ(x) → • in H , there exists
a path α : x→ • in G such that φ(α) = β.

For A a (small) category and K any 2-category, consider the functor 2-
category [A,K]. If F,G : A → K are 2-functors a 2-natural transformation
τ : F ⇒ G is a level equivalence, respectively a level fibration, level cofi-
bration, if τA : F (A) → G(A) is an equivalence, respectively a fibration,
cofibration in K, for all A ∈ A (whatever ”equivalence, fibration, cofibra-
tion” could mean).
Following [5], the functor category [A,Gpd] can be equipped with the so
called projective model structure. There the weak equivalences are the level
equivalences, the fibrations are the level fibrations and the cofibrations are
those natural transformations having the left lifting property with respect to
level trivial fibrations.

From now on we denote by C the category of compact metrizable spaces.
Moreover, by K we mean both a class of topological spaces and the full
subcategory of Top it generates.

Let us recall the following theorem ([10], I.5.2, Thm. 7 and Cor. 4) for
later use.

Theorem 1.1. Every space X ∈ C can be represented as the inverse limit of
an inverse system X = (Xλ, xλλ′ ,Λ) in Anr.

We refer to [10] for all that concerns inverse systems and the construction
of the category Pro(Top). Let us only recall that X is a contravariant functor
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X : Λ → Top, where (Λ,≤) is a cofinite, strongly directed set [4], Xλ =
X(λ) and xλλ′ = X(λ ≤ λ′).
A morphism p : X → X is a natural cone, that is a family p = {pλ : X →
Xλ |λ ∈ Λ} of maps such that xλλ′ ◦ pλ′ = pλ, for λ ≤ λ′.

2. Almost-cofibrations

For each topological space X , the representable (covariant) 2-functor

Gpd(X,−) : Top → Gpd

sends a space K to the groupoid Gpd(X,K), a map f : K → H to the
functor f ∗

K = Gpd(X, f) : Gpd(X,K) → Gpd(X,H), a 7→ f ◦ a,
and a track α = [H] : f ⇒ g : K → H to the natural isomorphism
Gpd(X,α) : Gpd(X, f) ⇒ Gpd(X, g) induced by α in the evident way.
Let f : X → Y be a map and let K ⊂ Top be a class of spaces. The natural
transformation

f ∗ = Gpd(f,−) : Gpd(Y,−) ⇒ Gpd(X,−) : K → Gpd

is a level fibration, resp. level equivalence , if f ∗
K : Gpd(Y,K) → Gpd(X,K)

is a fibration, respectively an equivalence of groupoids, for all K ∈ K.
The fact that f ∗

K is a fibration of groupoids amounts, by (1.1.1), to the fol-
lowing property

(2.1.1) for every g and H such that H ◦ e0(X) = g ◦ f , there is a
G : Y × I → K with G ◦ e0(Y ) = g and G ◦ (f × id) ≃ H . In diagram

X X × I

Y Y × I

-

-
??

e0(X)

e0(Y )

f f×id

?

@
@
@R

PPPPPPPPPPPq K

H

≃

= G

g

Such a consideration leads to the following generalization of the classical
Homotopy Extension Property (HEP):
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Definition 2.1. A map f : X → Y has the almost homotopy extension prop-
erty (RWHEP) with respect to a space K if, for every g : Y → K and
H : X × I → K such that H ◦ e0(X) = g ◦ f , there is a G : Y × I → K
with G ◦ e0(Y ) = g and G ◦ (f × 1) ≃ H .
If K ⊂ Top, f ∈ RWHEP (K) means that f has the RWHEP with re-
spect to all K ∈ K. If f ∈ RWHEP (Top), f will be called an almost-
cofibration.

Then, it is clear that

Theorem 2.2. Let f : X → Y be a map of spaces. The following are
equivalent

(a) f ∈ RWHEP (K)

(b) the homomorphism f ∗
K : Gpd(Y,K) → Gpd(X,K) is a fibration of

groupoids, for all K ∈ K.

Remark 2.3. We point out that the RWHEP was introduced by R. Brown
[1] and also that our almost-cofibrations are called rather weak cofibrations
in [8].

Let us recall the following facts:

(a) A map f : X → Y has the homotopy extension property with respect
to a class K of spaces, written f ∈ HEP(K), if : given a map g : Y →
K, K ∈ K, and a homotopyH : X×I → K starting at g◦f , there is a
homotopyG : Y ×I → K starting at g and such thatG◦(f×id) = H .
f : X → Y is a (Hurewicz) cofibration if it has the HEP with respect
to all topological spaces. This amounts to the following diagram to be
a weak pushout in Top

X X × I

Y Y × I

-

-
??

e0(X)

e0(Y )

f f×id

Here I denotes the unit interval [0, 1] and e0(X) : X → X × I is the
map e0(X)(x) = (x, 0).
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(b) given a map f : X → Y , its mapping cylinder M(f) is obtained as
the pushout

X X × I

.

Y M(f)

-

-
??

e0(X)

f

jf

πf

M(f) is then the quotient space of the disjoint union X × [0, 1] ⊔ Y
modulo the relation which identifies each point (x, 0) with f(x).

Proposition 2.4. Let f : X → Y be any map and K a class of spaces. If f ∈
HEP(K), then the functor f ∗

K = Gpd(f,K) : Gpd(Y,K) → Gpd(X,K)
is a fibration in Gpd, for all K ∈ K. In particular, every map having the
HEP(K) has also the RWHEP(K).

Proof. See ([1], 7.2.2) and Thm. 3.2.

The converse implication does not hold in general. In fact: letA = {0}∪⋃∞
n=1{

1
n
} andZ = [0, 1]×{0}∪A×[0, 1]. Let f : A→ [0, 1] be the inclusion

and let maps G : A× [0, 1] → Z, g : [0, 1] → Z be defined by the formulas
G(x, t) = (x, t) and g(y) = (y, 0) for (x, t) ∈ A × [0, 1] and y ∈ [0, 1].
Then f ∈ HEP(Anr) by the classical homotopy extension theorem, but it
is not true that f ∈ HEP(C). Indeed, a homotopy F : [0, 1] × [0, 1] → Z
such that F (x, t) = G(x, t) and F (y, 0) = g(y) for (x, t) ∈ A × [0, 1] and
y ∈ [0, 1] would be a retraction of the locally connected continuum [0, 1] to
a non-locally connected continuum Z.

Proposition 2.5. Let f : X → Y be a map of compact metrizable spaces,
then:

(1) the mapping cylinder M(f) is also a compact metrizable space.

(2) f is a cofibration if and only if f ∈ HEP(C).

Proof. (1)M(f) is compact since the category of compact spaces is closed
under finite coproducts and quotients. Since every continuous image in a
Hausdorff space of a compact metrizable space is metrizable, it suffices to
prove that M(f) is Hausdorff. Let q : X × [0, 1] ⊔ Y → M(f) be the
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quotient map and u, v ∈ M(f). If the two points are both in Y there are
disjoint open sets U ∋ u and V ∋ v in Y . Then Ũ = q(f−1(U)× [0, 1]⊔U)
and Ṽ = q(f−1(V )× [0, 1]⊔ V ) are disjoint open sets in M(f) contaning u
and v, respectively. Assume now that u ∈ X × [0, 1) and v ∈ Y : they have
disjoint open neighborhoods given by X × [0, t), t < 1, and X × [0, s) ⊔ Y
for some 0 < s < t. The case u, v ∈ X × [0, 1) is obviuos.
(2) Recall that a map is a cofibration if and only if it has the HEP with respect
to its mapping cylinder ([9], 2.10).

Proposition 2.6. Let f : X → Y be such that M(f) ∈ K. Then f ∈
RWHEP (K) if and only if f ∈ RWHEP (M(f)).

Proof. Let us consider the following diagram

X X × I

Y Y × I

-

M(f)

?

-

A
AAU

A
A
AU

?

HH
HHH

HHj
HH

HHH
HHH

HHHj

�
�
��

?

�
�

��

e0(X)

g

jf

f f×id

Hϕ

ψ

πfe0(Y )

K

From the fact that M(f) ∈ K, there is a map ϕ such that:
- ϕ ◦ e0(Y ) = jf ,
- ϕ ◦ (f × id) ≃ πf .

Since the middle square is a pushout, there is a map ψ such that:
- ψ ◦ jf = g,
- ψ ◦ πf = H.

Finally: (ψ ◦ ϕ) ◦ e0(Y ) = g and (ψ ◦ ϕ) ◦ (f × id) ≃ H.

The next two propositions mark the difference between the HEP and the
RWHEP.

Proposition 2.7. Let f : X → Y . The following are equivalent
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(a) f ∈ RWHEP (K)

(b) f ∈ RWHEP (Pro(K)).

Proof. (a) ⇒ (b): let K = {Kj}J ∈ Pro(K) and let g : Y → K, H :
X × I → K be such that H ◦ eY0 = g ◦ f . Since f ∈ RWHEP (K), there
is a diagram

X X × I

Y Y × I

-

Kj

=

≃

?

-

PPPPPPPPPPPq

@
@
@R

?

?

?

e0(X)

e0(Y )

gj

Gj

f f×id

Hj

for every j ∈ J . The family of maps G = {Gj : Y × I → Kj : j ∈ J} is
a pseudo cone, that is kjj′ ◦ Gj′ ≃ Gj , for all j ≤ j′, being G ◦ e0(Y ) = g
and e0(Y ) a homotopy equivalence. Moreover G ◦ (f × id) ≃ H.
Finally, since G ◦ e0(Y ) = g is a cone, let us consider the cone

Λ : Y × I Y × IY K- - -

?

σ(Y ) e0(Y ) G

which has the properties:

• Λ ◦ e0(Y ) = g,

• Λ ◦ (f × id) ≃ H.

X X × I

Y Y × I

-

K
?

-

PPPPPPPPPPPq

@
@
@R

?

?

?

e0(X)

e0(Y )

g

Λ

≃

=

f f×id

H

The other direction is clear.
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Proposition 2.8. Let f ∈ RWHEP (K) and let K = {Kj}j∈J be an inverse
system in K with inverse limit p : K → K. Then f ∈ RWHEP (K).

Proof. Let g : Y → K, H : X × I → K be such that H ◦ e0(X) = g ◦ f
and consider the diagram

X X × I

Y Y × I

-

K

-

J
J
J
J
JĴ

-

HH
HHH

HHH
HHHHj

HHH
HHH

HHH
HHHj

�
�

�	

?

�
�

�	

e0(X)

e0(Y )

g

f f×id

Φ

γ

p

H

K

Since f ∈ RWHEP (Pro(K)) (Prop. 2.6), there is a map (cone) Φ : Y ×
I → K such that Φ ◦ e0(Y ) = p ◦ g and Φ ◦ (f × id) ≃ p ◦ H . By the
universal property of the limit, there is a unique map γ : Y × I → K with
Φ = p ◦ γ. Then p ◦ γ ◦ e0(Y ) = p ◦ g, hence γ ◦ e0(Y ) = g.
Note that:

p ◦H ◦ e0(X) = p ◦ g ◦ f = Φ ◦ e0(Y ) ◦ f =

= p ◦ γ ◦ e0(Y ) ◦ f = p ◦ γ ◦ (f × id) ◦ e0(X),

from which it follows

H ◦ e0(X) = γ ◦ (f × id) ◦ e0(X).

Finally: H ≃ γ ◦ (f × id), being e0(X) a homotopy equivalence.

Theorem 2.9. Let f : X → Y be a map of compact metrizable spaces. The
following are equivalent

(a) f ∈ RWHEP (Anr),

(b) f ∈ RWHEP (C),

(c) f is an almost-cofibration.
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Proof. (a) ⇒ (b): this follows from Thm. 1.1 and Prop. 2.7. (b) ⇒ (c):
follows from Prop. 2.5.

Our main result here is the following

Theorem 2.10. Every inclusion i : B → X of a closed set in a compact
metrizable space is an almost-cofibration.

Proof. By the Borsuk’s homotopy extension theorem i : B → X has the
HEP(Anr), hence also the RWHEP(Anr). From Theorem 2.8 the assertion
follows.

3. The Homotopy Structure

Definition 3.1. [11] A map f : X → Y is a strong shape equivalence if it
fulfills the following requirements:

(ss1) for each map g : X → K, K ∈ Anr, there is a map h : Y → K such
that h ◦ f ≃ g,

(ss2) if h1, h2 : Y → K are given maps and G : X × I → K is a homotopy
G : h1 ◦ f ≃ h2 ◦ f , then there is a homotopy H : Y × I → K,
H : h1 ≃ h2, such that G and H ◦ (f × 1) are homotopic rel end
maps.

Since the homotopy H in (ss2) is uniquely determined up to homotopies
rel end maps ([3], Prop.1.2), it follows at once that f : X → Y is a strong
shape equivalence whenever the natural transformation

Gpd(f,−) : Gpd(Y,−) ⇒ Gpd(X,−) : A → Gpd

is a level equivalence, that is the functors of groupoids

Gpd(f,K) : Gpd(Y,K) → Gpd(X,K)

are all equivalences of categories, for all K ∈ Anr.
Every homotopy equivalence is a strong shape equivalence.
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Definition 3.2. [14] A cofibration category is a category E equipped with
two classes of morphisms Σ and Γ called weak equivalences and cofibra-
tions, respectively, such that the following axioms are satisfied.

(1) Weak equivalences satisfy the 2-out-of-6 property, i.e., if f, g, h are
composable morphisms of E such that both gf and hg are weak equiv-
alences, then so are f, g and h.

(2) Every isomorphism of E is an acyclic cofibration.

(3) E has an initial object, denoted 0.

(4) Every object X ∈ E is cofibrant, that is the unique morphism 0 → X
is a cofibration.

(5) (Trivial) Cofibrations are stable under pushouts along arbitrary mor-
phisms of E . A trivial cofibrations is morphisms in Σ ∩ Γ.

(6) Every morphism of E factors as a composite of a cofibration followed
by a weak equivalence.

In the category C let us denote Σ = the class of strong shape equivalences
and Γ = the class of almost-cofibrations.

Theorem 3.3. (C,Σ,Γ) is a cofibration category.

Proof. (1) Let

W YX Z- - -f g h

be morphisms of C such that both g ◦ f and h ◦ g are strong shape equiva-
lences. Then, for every K ∈ Anr, we have that in

Gpd(Z,K) Gpd(X,K)Gpd(Y,K) Gpd(W,K)- - -h∗K g∗K f∗K
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both f ∗
K ◦ g∗K and g∗K ◦ h∗K are equivalences in Gpd. Since Gpd is a model

category and every model category has the 2-out-of-6 property, the assertion
follows.
(2), (3), (4) and (6) are obvious.
(5) Let

B Y

A A
⊔
B Y

-

-
??

f

f

ii

be a pushout in C with i a (trivial) almost-cofibration. For all K ∈ C, we get
a pullback in Gpd

Gpd(A
⊔
B Y,K) Gpd(A,K)

Gpd(Y,K) Gpd(B,K)

-

-
??

f ′∗

f∗

i∗ i∗

with i∗ a (trivial) fibration in Gpd. Since (trivial) fibration are stable under
pullbacks in the model structure of Gpd, it follows that i∗ is a (trivial) fibra-
tion in Gpd, from which it follows that i is a (trivial) almost-cofibration.

The strong shape category of compact metrizable spaces is obtained for-
mally inverting the class of strong shape equivalences SSh(C) = C[Σ−1]
[2]. The previous theorem says that it can be represented as the homotopy
category of the cofibration category (C,Σ,Γ).
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[11] [S. Mardešić, 2000], Strong shape and homology, Springer Verlag.

[12] [D. Quillen, 1967], Homotopical algebra, Lectures Notes in Math. 43,
Springer Verlag.

[13] [L. Stramaccia], ‘Shape and strong shape equivalences’, Cah. Topol.
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