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Résumé. Soit 2 la catégorie {0 ≤ 1} et S la locale de Sierpiński (telle que
Sh(S) ≃ [2,Set]). Nous démontrons que

[2,CtsLat≪] ≃ CtsLat≪Sh(S)

où CtsLat≪ est la catégorie de treillis continus avec morphismes les ho-
momorphismes de treillis qui préservent les bornes supérieures et la relation
«way below».
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1. Introduction

The aim of this short note is to prove the equivalence as stated in the Abstract.
The proof technique used is taken from [HT23a] and hinges firstly on view-
ing continuous lattices as the rounded ideals of a type of information system.
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We then rely on a description of rounded ideals in a presheaf category given
in that paper, now applied to a broader class of relations. The description
is that the poset of rounded ideals, internal to a presheaf category [Cop,Set],
can be calculated by first applying the rounded ideals functor in Set and then
applying the ‘lax-to-natural’ construction ˜(_) : [Cop,Pos] - [Cop,Pos].
To complete the proof we show that ˜(_) is full when applied to presheaves of
continuous lattices. For this to work we seem to need to reduce to the case
C = {0 ≤ 1}op, so that the presheaf category Ĉ is equivalent to sheaves over
the Sierpiński locale S.

After the main result (Harvey’s Lemma) we finish with a corollary that
has implications for the classification of locally compact locales via localic
groupoids.

An Appendix has also been included that consists of a result about su-
plattices in presheaf categories. The result should be of general interest as it
provides a new connection between presheaves of suplattices and suplattices
internal to a presheaf topos.

2. Continuous lattices via strong proximity lattices

We take the following terms as understood: poset, ideal (of a poset; i.e. a
directed lower closed subset), semilattice, continuous lattice, dcpo, suplat-
tice and way-below relation (≪). Consult for example [J82] for background
material. The information system approach to continuous posets, exempli-
fied by [V93], possibly covers the material of this section. However here we
follow the more recent exposition given in [K21] and in particular are ex-
ploiting the notion of ‘strength’ as defined in that paper. The results of this
section (indeed the whole paper) are constructive and so valid in all toposes;
in particular they will be exploited in presheaf toposes in later sections, as
we build up to the proof of the main result.

Definition 2.1. 1. A strong proximity join semilattice is a join semilattice S
together with a relation ≺⊆ S × S such that ∀a, b, c ∈ S

(i) a ≺ b if and only if there exist d ∈ S with a ≺ d and d ≺ b,
(ii) a ≤ b ≺ c implies a ≺ c, and a ≺ b ≤ c implies a ≺ c,
(iii) {d|d ≺ a} is an ideal of S,
(iv) a ≺ b implies a ≤ b; and,
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(v) (strong) if c ≺ a ∨ b then there exists a0 ≺ a and b0 ≺ b such that
c ≤ a0 ∨ b0.

2. A rounded ideal of a strong proximity join semilattice is an ideal I
such that ∀a ∈ I there exists b ∈ I such that a ≺ b. The collection of all
rounded ideals of S is written R-idl(S).

Example 2.2. For any continuous lattice A, (A,≪) is a strong proximity
join semilattice. Further A ∼= R-idl(A); in one direction the isomorphism is
a 7→ ↓↓a and directed join (i.e. I 7→

∨↑ I) is the inverse.

It is clear from the definition that strong proximity join semilattices
are the models of a geometric theory; the morphisms of the correspond-
ing category of models are join semilattice homomorphisms that preserve
≺. We denote this category ∨-SPSLat and there is a forgetful functor
U : CtsLat≪ - ∨ -SPSlat.

Proposition 2.3. For any strong proximity join semilattice S, R-idl(S)
is a continuous lattice. Define ϕ̄(I) =

⋃↑{↓S′
ϕ(a)|a ∈ I}, for each

strong proximity join semilattice homomorphism ϕ : S - S ′; then by
taking R-idl(ϕ) = ϕ̄ on morphisms we have defined a functor R-idl :
∨-SPSlat - CtsLat≪.

In the statement of the Proposition we use the notation ↓S a = {b|b ≺ a}
for any element a of a strong proximity join semilattice S.

Proof. The bottom of R-idl(S) is ↓S 0, and I ∨ J =↓ {a ∨ b|a ∈ I, b ∈ J}
(use the roundedness of I and J to check that this set, which is clearly an
ideal, is rounded). The directed union of rounded ideals is a rounded ideal
so R-idl(S) is a complete lattice. Any rounded ideal I is the directed union
of ↓S a for each a ∈ I . Therefore I ≪ J iff ∃j ∈ J such that I ⊆↓S j from
which it is clear that R-idl(S) is continuous.

Let ϕ : S - S ′ be a morphism of strong proximity join semilattices.
Certainly ϕ̄(↓S 0) ⊆↓S′

0 as i ≺S 0 implies i = 0 and ϕ(0) = 0. That
ϕ̄ preserves directed joins follows essentially by definition of union. For
preservation of binary joins by ϕ̄ it is therefore clearly sufficient to verify
ϕ̄(↓S a ∨ b) ⊆ ϕ̄(↓S a) ∨ ϕ̄(↓S b) for any pair a, b ∈ S. This amounts
to verifying that for any d ≺S′

ϕ(c), for some c with c ≺S a ∨ b, that
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d ≤ c0 ∨ c1 for some c0, c1 such that there exists a0 ≺S a and b0 ≺S b with
c0 ≺S′

ϕ(a0) and c1 ≺S′
ϕ(b0). Use c ≺S a ∨ b and the strength of the

proximity lattice S to find a0 and b0 for which then ϕ(c) ≤ ϕ(a0 ∨ b0). But
ϕ(a0 ∨ b0) = ϕ(a0)∨ ϕ(b0) so by the strength of S ′ there exists the c0 and c1
required.

To complete our check that ϕ̄ is a morphism of CtsLat≪ we must check
that it preserves ≪. For this we need to verify that if I ⊆↓S j for some
j ∈ J that ϕ̄(I) ⊆↓S j′ for some j′ ∈ ϕ̄(J). But by roundedness of J and
preservation of ≺ by ϕ, j ∈ J implies ϕ(j) ∈ ϕ̄(J) and we can see that
ϕ̄ ↓S j ⊆↓S′

ϕ(j) as ϕ preserves ≺. These last two observations combine to
show that ϕ̄ preserves ≪.

Finally, it is clear that we have defined a functor. Preservation of identity
is trivial and ψ̄ϕ̄ = ψϕ because ≺ is preserved.

Notice that the isomorphism A ∼= R-idl(A) of Example 2.2 is
natural in A; more explicitly there is a natural isomorphism R-idl ◦
U ∼= IdCtsLat≪ , though we will not notate the forgetful functor
U : CtsLat≪ - ∨ -SPSlat in what follows.

3. Background presheaf topos results

This section consists of three subsections where we recall in turn some re-
sults about constructions and characterisations of lattice theoretic properties
in presheaf toposes. The results are all effectively well known. In the first
subsection we recall the ˜(_) construction which given a presheaf of posets
returns another presheaf of posets, but on morphisms sends lax natural trans-
formations to natural transformations. Next we recall how the ˜(_) construc-
tion can be used to give an explicit description of the rounded ideal comple-
tion in a presheaf topos. Finally we recall that for any dcpo (suplattice) ho-
momorphism α : A - B in a presheaf topos Ĉ, that αa : A(a) - B(a)
is a dcpo (suplattice) homomorphism for every object a of C.

3.1 The lax-to-natural functor ˜(_)

We recall the ˜(_) construction from [HT23a], which is a lax right adjoint
to the forgetful functor that embeds [Cop,Pos] into the category with the
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same objects (presheaves of posets) but with lax natural transformations as
morphisms. We will not exploit this lax universal property here, relying
instead on [HT23a] for properties of ˜(_), but we will need to describe it
explicitly.

If F : Cop - Pos is a presheaf of posets on some category C then we
define F̃ by

F̃ (a) = {(xf ) ∈ Πf :b - aF (b)|F (g)xf ≤ xfg, ∀c g- b
f- a}.

In terms of its action on morphisms we have [F̃ (f)((xh))]g = xfg for any
f : b - a and g : c - b. If ϕ : F

≤- G is a lax natural trans-
formation (i.e. G(f)ϕb ≤ ϕaF (f) for all f : b - a of C) then we
define a natural transformation ϕ̃ : F̃ - G̃ by ϕ̃a((xf )) = (ϕb(xf )). We
know from [HT23a] that it is faithful; in fact, for any natural transformation
α : F̃ - G̃ there is a lax natural transformation ψα : F

≤- G such that
ϕ = ψϕ̃ for any lax natural transformation ϕ : F

≤- G. Further ψ(_) has
the properties that ψId = Id and ψαψβ ≤ ψαβ . The explicit formula for ψα

is ψα
a (x) = (αa((F (f)(x))f ))Ida .

3.2 R-idl in a presheaf topos

In this subsection we recall the approach taken in [HT23a] to constructing
R-idl in a presheaf topos Ĉ = [Cop,Set]. As made clear in Section 4 of that
paper, any construction of sets of subsets, each determined by geometric
sequents, can be calculated by first applying the construction in Set at each
object (and morphism) to obtain a new presheaf, and then applying the ˜(_)
construction to that presheaf. Put another we are saying that R-idlĈ(S), as
a poset in Ĉ, is naturally isomorphic to ˜R-idl ◦ S, for any strong proximity
lattice S in the topos Ĉ. (Given that S is the model of a geometric theory in
a presheaf topos, it is the same thing as a functor Cop - ∨ -SPSLat; e.g.
D1.2.14 (i) of [J02].)

3.3 Dcpo and suplattice homomorphisms in Ĉ

Lemma 3.1. Let α : A - B be an internal dcpo (suplattice) homo-
morphism in a presheaf topos Ĉ between two internal dcpos (suplattices) A
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and B. Then αa : A(a) - B(a) is a dcpo (suplattice) homomorphism
for every object a of C. Further, if A is an internal suplattice then for any
morphism f : b - a of C A(f) is a suplattice homomorphism.

Proof. Recall that for any geometric morphism f : F - E its direct
image defines a functor f∗ : dcpoF

- dcpoE ([T04]). The tech-
niques of (i) in Lemma C1.6.9 of [J02] can then be applied to complete
the proof. To provide more detail, note that A(a) is isomorphic to γ∗(a∗A)
where γ is the unique geometric morphism Ĉ/a a- Ĉ - Set. (Here
a : Ĉ/a - Ĉ is the geometric morphism corresponding to the pullback
adjunction ΣY (a) ⊣ Y (a)∗ under Ĉ/a ≃ Ĉ/Y (a); its inverse image is logi-
cal.)

4. Main result

Lemma 4.1. (Harvey’s lemma).

[2,CtsLat≪] ≃ CtsLat≪Sh(S)

Proof. Consider

Ψ : [2,CtsLat≪] - CtsLat≪Sh(S)

F 7→ F̃

This is well defined because F ∼= R-idl ◦ F (recall our earlier comment that
R-idl ◦ U ∼= Id) and so F̃ ∼= ˜R-idl ◦ F ∼= R-idlSh(S)F , a continuous lattice
in Sh(S). It is clearly essentially surjective as any continuous lattice A in
Sh(S) has A ∼= R-idlSh(S)(A). (In fact, all this holds for any Ĉ.)

We have commented already that ˜(_) is faithful, so we just need to prove
fullness of Ψ to complete the proof. Say we have α : F̃ - G̃, a ≪
preserving internal suplattice homomorphism (in Sh(S)). Because it is ≪
preserving, its right adjoint α∗ is directed join preserving; i.e. a dcpo ho-
momorphism. Indeed, this is an equivalent characterisation of ≪ preserv-
ing for a suplattice homomorphism and we will call on this characterisation
below. By Lemma 3.1 we know that αi : F̃ (i) - G̃(i) (respectively
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(α∗)i : G̃(i) - F̃ (i)) are suplattice (respectively dcpo) homomorphisms
for i = 0, 1.

Now, the obvious choice for a natural transformation ψ : F - G such
that ψ̃ = α is ψα (described in Section 3.1). To show that this works and so
to complete the proof we must show: (a) [ψ̃α]i = αi for i = 0, 1, (b) ψα

i is a
suplattice homomorphism for i = 0, 1, (c) ψα is a natural transformation and
not just a lax natural transformation; and, (d) ψα

i preserves ≪ for i = 0, 1.
We will take each in turn but first let us note that by construction

F̃ (1) = F (1) (there is only the identity morphism away from 1). From
this it is clear α1 = ψα

1 = [ψ̃α]1 and so (a), (b) and (d) are actually im-
mediate at i = 1. The suplattice F̃ (0) is also easy to describe: it consists
of pairs (x0, x1) with xi ∈ F (i), i = 0, 1 and F (≤)(x0) ≤ x1. Further
the function F̃ (≤) : F̃ (0) - F̃ (1) is projection (x0, x1) 7→ x1; this is
just a repetition of the definition of ˜(_). Notice from this that by natural-
ity of α therefore for any (x0, x1) in F̃ (0) we have π2α0(x0, F (≤)x0) ≤
π2α0(x0, x1) = α1π2(x0, x1) = ψα

1 x1; this will be used in our verification of
(a) which is the next step.

(a) As α is an internal suplattice homomorphism we know that

F̃ (0)
α0 - G̃(0)

F̃ (1)

ΣF̃ (≤)

6

α1 - G̃(1)

ΣG̃(≤)

6

commutes where ΣF̃ (≤) ⊣ F̃ (≤) and similarly for G̃. See the proof of
Lemma C1.6.9 [J02] for details on how internal suplattices, as presheaves,
have left adjoints for their transition functions and for references to see how
internal suplattice homomorphisms must commute with these left adjoints
(or e.g. Proposition 3.7 of [T04] for effectively the same material). We can
give an explicit description of ΣF̃ (≤): it is x1 7→ (0, x1); this is clear as F̃ (≤)
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is projection. Therefore we can calculate:

α0(x0, x1) = α0((x0, F (≤)x0) ∨ (0, x1))

= α0(x0, F (≤)x0) ∨ α0ΣF̃ (≤)(x1)

= α0(x0, F (≤)x0) ∨ ΣG̃(≤)α1(x1)

= (ψα
0 x0, π2α0(x0, F (≤)x0)) ∨ (0, ψα

1 x1) by def. of ψα

= (ψα
0 x0, π2α0(x0, F (≤)x0) ∨ ψα

1 x1)

= (ψα
0 x0, ψ

α
1 x1) by an earlier remark

= [ψ̃α]0(x0, x1)

(b) By construction ψα
0 is the composite

F (0)
(Id,F (≤))- F̃ (0)

α0- G̃(0)
π1- G(0).

By noting that joins in F̃ (0) and G̃(0) are calculated pointwise it is clear that
each factor in the composite is a suplattice homomorphism, and so ψα

0 is a
suplattice homomorphism.

(c) We know ψα is lax so this part of the proof amounts to checking

ψα
1F (≤) ≤ G(≤)ψα

0 .

In (a) we established α0(x0, x1) = (ψα
0 (x0), ψ

α
1 (x1)). By uniqueness of ad-

joints we therefore know that (α∗)0(y0, y1) = ([ψα
0 ]∗(y0), [ψ

α
1 ]∗(y1)). From

the definition of ψα∗ we therefore know that ψα∗
i = [ψα

i ]∗. But ψα∗ is a lax
natural natural transformation so we know that

F (≤)ψα∗
0 ≤ ψα∗

1 G(≤).

Part (c) therefore follows by taking adjoint transpose (twice) of this last in-
equality.

(d) Apply the same reasoning as (b), but now to [ψα
0 ]∗ which we have

established is equal to ψα∗
0 . Having a right adjoint that preserves directed

joins implies preservation of ≪.

Remark 4.2. I have not been able to establish whether we must restrict to
C = {0 ≤ 1}op for the result to work. I expect so because in the proof
we are exploiting a gluing construction which is, itself, tied to having an
open/closed decomposition.
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We finish with a corollary that has implications for the classification of
locally compact locales via localic groupoids. Define CtsFrm≪ to be the
full subcategory of CtsLat≪ consisting of continuous frames; i.e. con-
tinuous lattices that are also frames. Note that the morphisms are not frame
homomorphisms; they are suplattice homomorphisms with directed join pre-
serving right adjoints.

Corollary 4.3.

[2,CtsFrm≪] ≃ CtsFrm≪
Sh(S)

Proof. A continuous lattice is always a preframe (e.g. Lemma VII 4.1 of
[J82]; but straightforward lattice theory). Therefore a continuous lattice is
a continuous frame if and only if it satisfies the distributive law. The proof
of the main lemma gives an explicit description of F̃ (i) in terms of F (i) for
i = 0, 1 and we noticed F̃ (1) = F (1). So it just needs to be checked that
assuming F (1) is distributive, F̃ (0) is distributive if and only if F (0) is. This
is immediate from the explicit description as binary meet and join in F̃ (0)
are calculated pointwise.

It is expected that we can construct a classifying localic groupoid for lo-
cally compact locales, using for example the approach of [HT23b] (or via
an explicit construction of the points of the localic groupoid via the locale
SN; G. Manuell, private communication). That is, we expect that there exists
a localic groupoid GLK such that for any locale X the category LK

∼=
Sh(X) of

locally compact locales internal to the topos Sh(X) (with isomorphisms as
morphisms) is equivalent to the category of principal GLK-bundles over X .
Now [HT23a] shows that S-homotopies between principal bundles (over the
classifying localic groupoid for compact Hausdorff locales) correspond to
locale maps between compact Hausdorff locales (and the same correspon-
dence for discrete locales is easy from the definition of presheaf topos). So it
might be hoped that the same holds for locally compact locales. The Corol-
lary rules this out: locally compact locales in Sh(S) correspond externally
to ≪ preserving suplattice homomorphisms and these do not correspond to
locale maps.
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5. Appendix: Internal suplattices

Below is a result about the relationship between [Cop,Sup] and SupĈ which
should be of general interest.

Proposition 5.1. Let C be a small cartesian category (i.e. small and finitely
complete). Then the ˜(_) construction determines a functor:

˜(_) : [Cop,Sup] - SupĈ

Proof. We split the proof into two parts:
(a) If F : Cop - Sup is a functor then F̃ is an internal suplattice in Ĉ.
(b) If ϕ : F - G is a natural transformation then ϕ̃ : F̃ - G̃ is an

internal suplattice homomorphism in Ĉ.

(a) We rely on Lemma C1.6.9 of [J02] which shows that a presheaf L :
Cop - Pos is an internal suplattice if and only if (i) L(a) is a suplattice
for every object a of C, (ii) L(f) : L(a) - L(b) has a right and left adjoint
for every morphism f : b - a; and, (iii) Beck-Chevalley holds for left
adjoints; that is, for any pullback diagram

a×d b
π2 - b

a

π1

? l
- d

k

?

in C the square

L(a×d b) �
L(π2)

L(b)

L(a)

Σπ1

?
�

L(l)
L(d)

Σk

?

commutes where Σh is the left adjoint of L(h) for any morphism h of C.
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We verify (i), (ii) and (iii) for F̃ where F : Cop - Sup.
For (i) note that if (xif )f :b - a is an indexed (i ∈ I) collection of ele-

ments of F̃ (a) then (
∨

i∈I x
i
f )f is in F̃ (a) because F (g) preserves arbitrary

joins for all g : c - b, and can readily be seen to be the join of the (xif )fs.
So F̃ (a) is a suplattice for each a. Notice that arbitrary meet is similarly
defined pointwise; i.e. (

∧
i∈I x

i
f )f is the meet of the (xif )fs.

Next (ii) is straightforward because arbitrary joins and meets are defined
pointwise so it is easy to see that they are preserved by F̃ (f) (and we know
that a monotone map between complete lattices has a right(left) adjoint iff it
preserves arbitrary joins(meets)). For example, for joins,

(F̃ (f)(
∨
i

xih))g =
∨
i

xifg = [
∨
i

F̃ (f)(xih)]g.

For (iii) by uniqueness of adjoints we only need to prove F̃ (l)Σk ≤
Σπ1F̃ (π2). Recall that quite generally if ϕ : A - B preserves arbitrary
meets then its left adjoint is given by Σϕ(b) =

∧
{a|b ≤ ϕ(a)}. So checking

(iii) amounts to checking for each n : a′ - a and each (xg)g:c - b ∈
F̃ (b) that

(
∧

{(x′r)|xg ≤ x′kg, ∀g : c - b})ln (A)

is less than or equal to

(
∧

{(ym)|xπ2t ≤ yπ1t, ∀t : c - a×d b})n (B)

Our strategy is to find for each (ym) ∈ F̃ (a) in the meet (B) an (x′r) ∈ F̃ (d)
such that xg ≤ x′kg for all g : c - b. From this we know that A ≤ x′ln
for each n : a′ - a and the check of (iii) can be completed by verifying
x′ln ≤ yn for each n : a′ - a.

Define, for r : d′ - d,

x′r = [F (πd′

2 )]∗yπ1

where πd′
2 : a ×d d

′ - d′ and we are using ϕ∗ to denote the right ad-
joint of any ϕ (and F (f), being a suplattice homomorphism, has a right
adjoint for each f ). We first check that (x′r) is in F̃ (d); that is, do we have
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F (t)x′r ≤ x′rt for every t : d′′ - d′? Because F (Ida × t)yπ1 ≤ yπ1(Ida×t)

(as (ym) ∈ F̃ (a)) this can be confirmed by verifying F (t)[F (πd′
2 )]∗yπ1 ≤

[F (πd′′
2 )]∗F (Ida × t)yπ1 . This last is easy to verify as it is equivalent

to F (πd′′
2 )F (t)[F (πd′

2 )]∗yπ1 ≤ F (Ida × t)yπ1 , tπd′′
2 = πd′

2 (Ida × t) and
F (πd′

2 )[F (π
d′
2 )]∗ ≤ Ida×dd′ .

For xg ≤ x′kg, given a g : c - b note that x′kg = [F (πc
2)]∗yπ1(Ida×g).

So we must but check F (πc
2)(xg) ≤ yπ1(Ida×g). This follows because

F (πc
2)(xg) ≤ xgπc

2
(as (xg) is in F̃ (b)) and xgπc

2
= xπb

2(Ida×g) ≤ yπ1(Ida×g)

where the last inequality follows as (ym) is in the meet (B).
So to complete our strategy for checking (iii) we must verify that x′ln ≤

yn for any n : a′ - a. Using that the pullback of the composite ln along
l is π1(Ida × n), where π1 : a×d a - a, the calculation is:

x′ln = [F (πa′

2 )]∗yπ1(Ida×n)

≤ [F (πa′

2 )]∗[F (n, Ida′)]∗F (n, Ida′)yπ1(Ida×n)

= [F (Ida′)]∗F (n, Ida′)yπ1(Ida×n)

≤ yn

where the last is because (ym) ∈ F̃ (a) (and, of course, n factors as π1(Ida×
n)(n, Ida′)).

(b) We prove that ϕ̃ is an internal suplattice homomorphism. This follows
provided we can verify that ϕ̃aΣF̃ (f) ≤ ΣG̃(f)ϕ̃b for all f : b - a (this
can be seen from the constructions shown in the proof of C1.6.9 of [J02];
Proposition 3.7 of [T04] also provides a route).

For each (yg) ∈ F̃ (b) we must verify

ϕ̃a(
∧

{(xr)|yg ≤ xfg, ∀g : c - b}) ≤∧
{(zt)|[ϕ̃b((yg))]g ≤ zfg, ∀g : c - b}

Given (zt) ∈ G̃(a) then it is in the meet of the right hand side iff ϕc(yg) ≤
zfg for all g : c - b. For any such (zt) define (xr) by xr = [ϕa′ ]∗(zr) for
each r : a′ - a. We check that (xr) ∈ F̃ (a); i.e. that F (d)xr ≤ xrd,
or equivalently F (d)[ϕa′ ]∗zr ≤ [ϕa′′ ]∗zrd for each d : a′′ - a′. But given
that G(d)zr ≤ zrd this will follow if F (d)[ϕa′ ]∗ ≤ [ϕa′′ ]∗G(d), which is true
as ϕ is natural.
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To complete we must verify (1) yg ≤ xfg for all g and (2) (ϕ̃a((xr)))t ≤
(zt). For (1), as ϕc(yg) ≤ zfg, yg ≤ [ϕc]∗zfg = xfg. For (2), this amounts to
checking ϕa′xr ≤ zr for each r : a′ - a which is again immediate from
the definition of (xr).

Remark 5.2. I believe that the restriction to cartesian C can be seen to be
unnecessary, using techniques from [T04]; however the proof becomes a bit
more involved.

Remark 5.3. Part (b) of the proof does not work if we only assume that
ϕ is a lax natural transformation. For example, take C = {0 ≤ 1}op. If
X, Y : {0 ≤ 1} - Set then a lax natural transformation from PX :
{0 ≤ 1} - Sup to PY : {0 ≤ 1} - Sup is the same data as a pair
of relations R(0) ⊆ X(0)× Y (0) and R(1) ⊆ X(1)× Y (1) such that

{Y (≤)j0|∃i0 ∈ I0, i0R(0)j0} ⊆ {j1|∃i′0 ∈ I0, (X(≤)i′0)R(1)j1}

for each I0 ⊆ X(0). But this is not sufficient for R to be a subfunctor of
X × Y , and so cannot correspond to an internal suplattice homomorphism
in Ĉ.

Remark 5.4. The proposition can be used to prove the main lemma (Lemma
4.1) without using information systems. For example, ↓↓ : F - idl ◦ F is
a natural transformation if F : Cop - CtsLat≪ and so ↓̃↓ is an internal

suplattice homomorphism which is a splitting for
∨̃↑ : ĩdl ◦ F - F̃ . This

shows that F̃ is an internal continuous lattice because ĩdl ◦ F ∼= idlĈF and
so we have exhibited F̃ as a dcpo retract of idlĈA for some internal poset A
of Ĉ.
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