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Introduction and summary.

Double groupoids, that is, groupoid objects in the category of groupoids,
were introduced by Ehresmann [22, 23, 24] in the late 20th century and
have since been studied by several researchers due to their connections with
various areas of mathematics. In particular, (small) double groupoids have
garnered interest in algebraic topology, largely thanks to the work of Brown,
Higgins, Porter, and others, where the connection of double groupoids with
crossed modules and a higher Seifert-van Kampen Theory has been estab-
lished (see, for example, the survey [7] and the references therein).

This is the third paper in a series exploring some purely algebraic proper-
ties of double groupoids using methods inspired by the topological context.
In [17], we addressed the homotopy types obtained from double groupoids
satisfying a quite natural filling condition. Like topological spaces, these
double groupoids have associated homotopy groups, which are defined com-
binatorially using only their algebraic structure. Thus, the notion of weak
equivalence between such double groupoids arises, and a corresponding ho-
motopy category is defined. A main result states that the homotopy category
of double groupoids with the filling property is equivalent to the homotopy
category of all topological spaces with the property that the nth homotopy
group at any base point vanishes for n ≥ 3 (that is, the category of homo-
topy 2-types). Similar to the theory of Postnikov invariants with homotopy
2-types, the paper [19] provides a precise and purely algebraic classifica-
tion for weak equivalence classes of double groupoids by three-cohomology
classes.

This work and its companion paper [18] deal with fibrations of dou-
ble groupoids, which we introduce as those double functors between dou-
ble groupoids F : A → B that always solve certain filling-lifting prob-
lems on morphisms and boxes (see Definition 2.1 for precision). For in-
stance, a double groupoid A has the filling property if and only if the dou-
ble functor A → ∗, from A to the final double groupoid ∗, is a fibration.
If A and B are 2-groupoids, regarded as double groupoids where one of
the side groupoids of morphisms is discrete, then a fibration F : A → B
in our sense is the same as a fibration of 2-groupoids in the sense of Mo-
erdijk and Svensson[33, 34], Hermida [28], Buckley [15], or Hardie, Kamps,
and Kieboom [27]. By the equivalence between crossed complexes over
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groupoids and 2-groupoids, our concept of fibration also generalizes the no-
tion of fibration of crossed modules over groupoids by Brown [6]. In par-
ticular, if both A and B are groupoids, viewed as double groupoids whose
vertical morphisms are all identities and whose boxes are all vertical identi-
ties, then a fibration F : A → B in our sense is the same as a fibration of
groupoids in the sense of Grothendieck [25] and Brown [2]. However, our
concept of fibration is more restrictive than the notion of double fibration
proposed by Cruttwell, Lambert, Pronk, and Szyld in [20].

After Section 1, where we briefly establish some notational conventions
on double groupoids, Sections 2 and 3 present the concept of fibration be-
tween double groupoids and study its basic properties, such as the change of
base property, the filling property of fibres, and the path-lifting and homotopy-
lifting properties. In Section 3, we also review several necessary definitions
and results for the fundamental groupoid and the homotopy groups of a dou-
ble groupoid. In Section 4, we show how a Mayer-Vietoris type exact se-
quence on homotopy groups arises from a change in the base of a fibration
of double groupoids. This is used in Section 5 to derive a 9-term exact
sequence on homotopy groups from a fibre sequence of double groupoids.
This section also includes additional information about this homotopy se-
quence that relates to the actions of fundamental groupoids on the homotopy
groups of fibres. In particular, we construct the fundamental crossed module
over groupoids of a fibration of double groupoids. Our results in Sections
4 and 5 are deeply inspired by those we generalize, stated by Brown in [2]
and Brown, Heath, and Kamps in [10] for groupoids, by Brown in [6] and
Howie in [29] for crossed modules over groupoids, and by Hardie, Kamps,
and Kieboom in [27] and Kamps and Porter in [30] for 2-groupoids.

Concerning the relationship between fibrations of double groupoids and
simplicial and topological fibrations, we refer the reader to the companion
paper [18].

1. Some conventions on double groupoids.

The notion of a double groupoid is well-known; in this preliminary section,
we specify some basic terminology and notational conventions. We will
work only with small double groupoids, so that in a double groupoid A we
have a set of objects (usually denoted by a, b, c, . . .), horizontal morphisms
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between them (f, g, h, . . .), vertical morphisms between them (x, y, z, . . .),
both with composition written by juxtaposition, and boxes (α, β, γ, . . .), usu-
ally depicted as

d

α

b
f
oo

c

y
OO

a

x
OO

g
oo

(1)

where the horizontal morphisms f and g are, respectively, its vertical target
and source, and the vertical morphisms y and x are its respective horizontal
target and source. The horizontal composition of boxes is denoted by the
symbol ◦h:

·
α′

·f ′
oo

α

·f
oo

7→
·

z
OO

·
g′
oo

OO

·g
oo

x
OO ·

α′◦hα
·f ′f

oo

·
z
OO

·
g′g
oo

x
OO

and the vertical composition of boxes is denoted by the symbol ◦v:

·
α

·f
oo

·
y
OO

α′
·oo

x
OO

7→

·
y′
OO

·
h
oo

x′
OO

·
α◦vα′

·f
oo

·
yy′
OO

·
xx′
OO

h
oo

Horizontal and vertical identities on objects and morphisms are respectively
denoted by Iha, Iva, I

v
f , Ihx, and Ia = Iv

Iha
= IhIva , depicted as

a

aa

a

·
Ivf

·f
oo

· ·
f
oo

·
Ihx

·

·
x
OO

·
x
OO a

Ia

a

a a

and horizontal and vertical inverses of boxes are respectively denoted by
α−h, α−v, and α−hv = (α−h)−v = (α−v)−h; that is, for α as in (1),

·
α−h

·f−1
oo ·

α−v

·g
oo ·

α−hv

·g−1
oo

·
x
OO

·
g−1
oo

y
OO

·
y−1
OO

·
f
oo

x−1

OO

·
x−1

OO

·
f−1
oo

y−1
OO
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We will frequently use the coherence theorem by Dawson and Paré [21,
Theorem 1.2], which ensures that if a compatible arrangement of boxes in
a double groupoid is composable in two different ways, the resulting pasted
boxes are equal. Throughout the paper, when we refer to an equality between
pasting diagrams of boxes in a double groupoid, we means that the resulting
pasted boxes are the same.

2. Fibrations between double groupoids.

A double functor F : A → B between double groupoids maps objects,
horizontal and vertical morphisms, and boxes in A to objects, horizontal
and vertical morphisms, and boxes in B, respectively, in such a way that it
preserves compositions and identities.

Definition 2.1. A double functor F : A → B between double groupoids is a
fibration if all lifting problems

(i)
� F //

·

· a

∃?
OO

∃?
oo

·

· Fa

x̃
OO

f̃

oo

(ii) ·
� F //∃?

·f
oo

·

OO

·oo

x
OO ·

α̃

·Ff
oo

·

OO

·
Fx

OO

oo

have solution. That is,

(i) If a is an object of A, for any horizontal (resp. vertical) morphism f̃
(resp. x̃) in B with source Fa, there is a horizontal (resp. vertical)
morphism f (resp. x) in A with source a such that Ff = f̃ (resp.
Fx = x̃).

(ii) If f is a horizontal morphism of A and x is a vertical morphism of A
whose target is the source of f , for any box α̃ of B with vertical target
Ff and horizontal source Fx, there is a box α in A with vertical target
f and horizontal source x such that Fα = α̃.
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The above fibration condition (i) means that the restrictions of F to the
respective groupoids of horizontal and vertical morphisms of A and B are
both fibrations of groupoids in the sense of Brown [2] or Grothendieck [25].
In fact, if both A and B are groupoids, considered as double groupoids with
all vertical morphisms as identities and all boxes as vertical identities, then a
fibration F : A → B in the sense of Definition 2.1 is the same as a fibration
of groupoids. Furthermore, if A and B are 2-groupoids, regarded as double
groupoids whose vertical arrows are all identities, then a fibration F : A →
B is the same as a fibration of 2-groupoids in the sense of Moerdijk and
Svensson [33, 34] (see [33, Lemma 1.7.3]) or, equivalently, a 2-fibration as
defined by Hermida [28] or Buckley [15].

However, our concept of fibration between double groupoids is more
restrictive than the notion of double fibration proposed by Cruttwell, et al.
[20]. A double functor between double groupoids F : A → B is a double
fibration in the sense of [20, Definition 2.25] whenever its restriction to the
groupoids of vertical morphisms is a fibration, and every lifting problem

·
� F //∃?

·f
oo

·

OO

·oo

OO ·
α̃

·Ff
oo

·

OO

·

OO

oo

has a solution. If F is a fibration as in Definition 2.1, we can first select a
vertical morphism x with target the source of f , which is carried by F to the
vertical target of α̃ and then to find a box α in A with vertical target f and
horizontal source x such that Fα = α̃. Thus, every fibration between double
groupoids is a double fibration. However, the converse is false because, for
example, double fibration does not necessary restrict fibration between the
groupoids of horizontal morphisms.

The fibration conditions are more symmetric than they appears:

Lemma 2.2. If F : A → B is a fibration of double groupoids, then any of
the three lifting problems below has a solution.

·
� F //∃?

·oo

·

OO

·
f
oo

x
OO ·

α̃1

·oo

·

OO

·
Fx

OO

Ff
oo
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·
� F //∃?

·f
oo

·
x
OO

·oo

OO ·
α̃2

·Ff
oo

·
Fx

OO

·

OO

oo

·
� F //∃?

·oo

·
x
OO

·
f
oo

OO ·
α̃3

·oo

·
Fx

OO

·

OO

Ff
oo

Proof. Since F is a fibration, there are boxes in A

·
α1

·f
oo

·

OO

·
x−1 ,
OO

oo

· ·f−1
oo

α2

·

OO

·oo

x ,
OO · ·f−1

oo

α3

·

OO

·oo

x−1
OO

such that Fα1 = α̃−v
1 , Fα2 = α̃−h

2 , and Fα3 = α̃−hv
3 . Then, α−v

1 , α−h
2 , and

α−hv
3 are solutions to the respective lifting problems.

Let ∗ denote the final double groupoid; that is, the double groupoid with
only one object, ∗, one vertical morphism, Iv∗, one horizontal morphism, Ih∗ ,
and one box

∗ ∗
I∗

∗ ∗

If A is a double groupoid, then the double functor A → ∗ is a fibration if
and only if A has the so-called filling property: Any filling problem

· ·f
oo

∃?
·

OO

·oo

x
OO

has a solution. This filling condition on double groupoids is often assumed
in the case of double groupoids arising in different areas of mathematics,
such as in weak Hopf algebra theory or in differential geometry (see, for in-
stance, Andruskiewitsch and Natale [1] and Mackenzie [32]). It is also sat-
isfied for those double groupoids that have emerged with an interest in alge-
braic topology, mainly thanks to the work of Brown, Higgins, Spencer, et al.
(see the papers by Brown [3, 4, 7, 8] and the references given there). Thus,
the filling condition is easily proven for edge symmetric double groupoids
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(also called special double groupoids) with connections (see Brown and Hig-
gins [12], Brown and Spencer [14], Brown, Hardie, Kamps and Porter [9],
and Brown, Kamps and Porter [13]), for double groupoid objects in the cate-
gory of groups (also termed cat2-groups by Loday [31], see also Porter [35]
and Bullejos, Cegarra and Duskin [16]), or, for example, for 2-groupoids (re-
garded as double groupoids where one of the side groupoids of morphisms
is discrete (see for instance Moerdijk and Svensson [34] and Hardie, Kamps
and Kieboom [26]).

Lemma 2.2 implies the following useful result by Andruskiewitsch and
Natale [1, Lemma 1.12].

Corollary 2.3. In a double groupoid satisfying the filling condition, any of
the filling problems below has a solution:

·
∃?

·oo

·

OO

·
x ,
OO

f
oo

· ·oo

∃?
·

x
OO

·
f
oo

,OO
· ·f
oo

∃?
·

x
OO

·oo

,OO

Proposition 2.4. Let F : A → B be a fibration of double groupoids.

(i) If B has the filling property, then A also has the filling property.

(ii) If A has the filling property and F is onto on objects, then B has the
filling property.

Proof. (i) Suppose B has the filling property, and let

· ·f
oo

∃?
·

OO

·oo

x
OO

be a filling problem in A. Choose a box α̃ in B of the form

· ·Ff
oo

α̃

·

OO

·oo

Fx
OO

Then, as F is a fibration, we may choose a box α in A with vertical target f
and horizontal source x such that Fα = α̃. In particular, α solves the given
filling problem in A.
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(ii) Suppose A has the filling property, and let

· ·f̃
oo

∃?
·

OO

·oo

x̃
OO

be a filling problem in B. Since F is onto on objects, we can choose an
object a of A such that Fa is the source of x̃. Using that F is a fibration, we
can choose a vertical morphism x of A with source a such that fx = x̃, as
well as a horizontal morphism with source the target of x such that Ff = f̃ .
Since A has the filling property, we can choose a box α of A

· ·f
oo

α

·

OO

·oo

x
OO

whose respective horizontal and vertical sources are f and x. Obviously, Fα
solves the given filling problem in B.

Proposition 2.5. In a pullback square of double groupoids

B′ ×B A G′
//

F ′

��

A
F
��

B′
G

// B

if F is a fibration, then so also is F ′.

Proof. (i) By [2, Prop. 2.8], the projection F ′ restricts giving fibrations both
between the groupoids of horizontal and vertical morphisms.

(ii) Suppose given a box α′ of B′ and morphisms f and x in A as in

·
α′

·f ′
oo

·

OO

·
x′
OO

oo

· ·f
oo

·
x
OO

such that Gf ′ = Ff and Gx′ = Fx. Since F is a fibration, there is a solution
in A, say α, to the lifting problem
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·
� F //∃?

·f
oo

·

OO

·oo

x
OO ·

Gα′

·oo

·

OO

·

OO

oo

Then (α′, α) is a box in B′ ×B A satisfying that F ′(α′, α) = α′.

Let F : A → B be a fibration of double groupoids. If b is an object
of B, let Fb = F−1(b) denote the double groupoid fibre of F over b. That
is, Fb is the double subgroupoid of A with objects those a of A such that
Fa = b, vertical morphisms those vertical morphisms x of A such that
Fx = Ivb , horizontal morphisms those horizontal morphisms f of A such
that Ff = Ihb , and boxes those α of A such that Fα = Ib. For every object a
of Fb, we call the sequence

(Fb, a) ↪→ (A, a) F−→ (B, b)

a fibre sequence of double groupoids.

Proposition 2.6. In any fibre sequence as above, the double groupoid fibre
Fb has the filling property.

Proof. This follows from Proposition 2.5, since Fb occurs in the pullback
square of double groupoids

Fb
� � //

��

A
F
��

∗ b // B

3. Paths, loops, homotopies, homotopy groups.

In this section, we work under the assumption that the double groupoids
satisfy the filling condition.

Let A be a double groupoid. A path in A from an objet a to an object a′

[17, §2], denoted by
(f, x) : a↷ a′,
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is a pair of morphisms (f, x) where x is a vertical morphism from a and f is
a horizontal morphism from the target of x to a′; that is, a pair of morphisms
of the form

·f
a′ oo

a

x
OO (2)

When a′ = a, we say that (f, x) : a ↷ a is a loop with base point a. The
identity loop at an object a is the loop (Iha, I

v
a) : a↷ a, which is depicted as

a a

a

Proposition 3.1 (Path-lifting property). Let F : A → B be a fibration of
double groupoids. For every object a of A and every path (f̃ , x̃) : Fa ↷ b
in B, there exists a path (f, x) : a↷ a′ such that (Ff, Fx) = (f̃ , x̃).

Proof. Since F is a fibration, we can choose a vertical morphism in A with
source a, say x : a→ a′′, such that Fx = x̃. Since Fa′′ is the source of f̃ , we
can also choose a horizontal morphism f : a′′ → a′ in A such that Ff = f̃ .
Thus (f, x) : a↷ a′ is a path in A such that Ff = f̃ and Fx = x̃.

If (f, x), (g, y) : a ↷ a′ are two paths in A, then (f, x) is homotopic
to (g, y), denoted by (f, x) ≃ (g, y), whenever there is a box α in A of the
form

·
α

·f−1g
oo

· ·
yx−1
OO (3)

that is, whose horizontal target and vertical sources are identities, its hori-
zontal source is yx−1, and its vertical target is f−1g (see [17, §2]). We call
such a box a homotopy, and we often write α : (f, x) ≃ (g, y) whenever we
wish to display the homotopy.

Proposition 3.2 (Path homotopy-lifting property). Let F : A → B be a
fibration of double groupoids. Suppose (g, y) : a ↷ a′ is a path in A,
(f̃ , x̃) : Fa ↷ Fa′ is a path in B, and α̃ : (f̃ , x̃) ≃ (Fg, Fy) is a homotopy
in B. Then, there is a path (f, x) : a ↷ a′ in A such that (Ff, Fx) = (f̃ , x̃)
and there is a homotopy α : (f, x) ≃ (g, y) such that Fα = α̃.
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Proof. Using the filling property, we can select a box β̃ in B of the form

Fa′

β̃

·
f̃
oo

·

z̃

OO

Fa

x̃

OO

h̃

oo

and construct the box γ̃ of B by

Fa′

Fa′

γ̃

·
Fg
oo

=
·

z̃
OO

Fa
h̃

oo

Fy
OO

β̃

·
f̃
oo

α̃

·
f̃−1 Fg
oo

·

Ih

·

Fy x̃−1
OO

·

z̃

OO

Fa

x̃
OO

h̃

oo Fa

x̃
OO

Since F is a fibration, we can choose a box γ in A of the form

a′

γ

·
g
oo

·

z
OO

a
h
oo

y
OO

such that Fγ = γ̃, and then (since Fz = z̃ and Fh = h̃) we can also choose
a box β of the form

a′

β

·
f
oo

·

z
OO

a
h
oo

x
OO

such that Fβ = β̃. Then (f, x) : a ↷ a′ is a path in A satisfying that
(Ff, Fx) = (f̃ , x̃). Furthermore, if α : (f, x) ≃ (g, y) is the homotopy
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defined by

·

·
α

·f−1g
oo

=
· ·

yx−1
OO

β-h

·f−1
oo

γ

·g
oo

·
x

OO

Ih

·
z

OO

h−1
oo ·

y

OO

h
oo

·
x−1

OO

·
x−1

OO

then,

·

·

Fα =

β̃-h

·f̃−1
oo

γ̃

·g̃
oo

=·
x̃

OO

Ih

·
z̃

OO

h̃−1

oo ·
ỹ

OO

h̃

oo

·
x̃−1

OO

·
x̃−1

OO

β̃-h

·

β̃

f̃−1
oo ·f̃

oo

α̃

·f̃−1Fy
oo

= α̃.

· ·
Fy x̃−1

OO

·

x̃

OO

·h̃−1
oo

z̃

OO

·h̃oo

x̃

OO

·
x̃

OO

Ih

·
x̃−1

OO

·
x̃−1

OO

Ih

For every pair of objects a and a′ of a double groupoid A, by [17, Lemma
2.1], homotopy is an equivalence relation on the set of paths in A from a to
a′, and we write [f, x] to denote the homotopy class of a path (f, x) : a↷ a′

in A. These homotopy classes of paths are the morphisms

[f, x] : a→ a′

of the fundamental groupoid of the double groupoid, which is denoted by

ΠA.

The composition of two morphisms [f, x] : a → a′ and [g, y] : a′ → a′′ in
ΠA is defined as follows: By the filling condition, we can select a box θ in
A whose horizontal target is y and whose vertical source is f . Thus, we have
a diagram in A of the form

a′′ ·
g
oo

θ

·
f ′
oo

a′

y
OO

·
y′
OO

f
oo

a

x

OO

(4)
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and we define the composite

[g, y] · [f, x] = [gf ′, y′x] : a↷ a′′. (5)

By [17, Lemma 2.2], this composition is well-defined, that is, it does not
depend on the representative paths or on the selection made of the box θ in
(4). By [17, Theorem 2.3], with this composition, ΠA is actually a groupoid.
The identity of an object a is the morphism represented by the identity loop
at a,

[Iha, I
v
a] : a→ a.

The inverse in ΠA of a morphism [f, x] : a → a′ represented by a path
(f, x) : a↷ a′ is the morphism

[f, x]−1 = [f ′, x′] : a′ → a

represented by the path (f ′, x′) : a′ ↷ a defined by the vertical target and
the horizontal source of a (any) box γ in A whose horizontal target is x−1

and whose vertical source is f−1, that is, of the form

a

γ

·
f ′
oo

·
x−1

OO

a′
f−1
oo

x′
OO

The set π0A [19, §3,1], of path-connected classes of objects of a double
groupoid A, is

π0A = π0(ΠA),

the set of iso-classes of objects of its fundamental groupoid.
The group π1(A, a) [19, §3,2], of homotopy classes of loops in A based

at a, is
π1(A, a) = AutΠA(a),

the group of automorphisms of a in the fundamental groupoid ΠA.
The abelian group

π2(A, a)
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[19, §3,3] consists of all boxes of A whose horizontal source and target are
both Iva, the vertical identity of a, and whose vertical source and target are
both Iha, the horizontal identity of a; that is, of the form

a

σ

a

a a

By the Eckman-Hilton argument, the interchange law on A implies that
the operations ◦h and ◦v on π2(A, a) coincide and are commutative. Thus,
π2(A, a) is an abelian group with addition

σ + τ = σ ◦h τ = σ ◦v τ,

zero 0 = Ia, and opposites −σ = σ−v = σ−h.
Every double functor F : A → B induces a functor between the funda-

mental groupoids
F∗ : ΠA → ΠB,

which carries a morphism [f, x] : a→ a′ to the morphism

F∗[f, x] = [Ff, Fx] : Fa→ Fa′.

Hence, for every object a of A, F induces a pointed map

F∗ : π0(A, [a]) → π0(B, [Fa])

and a homomorphism of groups

F∗ : π1(A, a) → π1(B, Fa).

Clearly, there is also an induced homomorphism

F∗ : π2(A, a) → π2(B, Fa)

given by
a

σ

a

7→
a a

Fa

Fσ

Fa

Fa Fa
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4. The Mayer-Vietoris sequence.

Throughout this section, we consider a pullback square of double groupoids

B′×B A G′
//

F ′
��

A
F
��

B′ G // B

(6)

where F is a fibration and both B and B′ have the filling property. By Propo-
sition 2.5 F ′ is a fibration and, by Proposition 2.4, both A and B′×BA have
the filling property.

Moreover, we fix an object (b′, a) of B′×BA, so that b′ is an object of B′

a is an object of A such that Gb′ = Fa, and let b = Fa.

Theorem 4.1 (Mayer-Vietoris sequence). There is an exact sequence of ho-
momorphisms of groups and pointed maps

π2
(
B′×BA, (b′, a)

) (F ′∗,G′∗) // π2(B′, b′)×π2(A, a)
−G∗+F∗ //0 → π2(B, b)

∂2

rr

π1
(
B′×BA, (b′, a)

)
//(F ′∗,G′∗) π1(B′, b′)×π1(A, a)

G−1
∗ ·F∗

// π1(B, b)
∂1

rr

π0
(
B′×BA, [b′, a]

)
//(F ′∗,G′∗) (π0B′×π0Bπ0A, ([b′], [a])) → 1

Furthermore, [f̃1, x̃1], [f̃2, x̃2] ∈ π1(B, b) satisfy ∂1[f̃1, x̃2] = ∂1[f̃2, f̃2] if and
only if there are [f ′, x′] ∈ π1(B′, b′) and [f, x] ∈ π1(A, a) such that

[f̃2, x̃2] = G∗[f
′, x′]−1 · [f̃1, x̃1] · F∗[f, x].

The meaning of the maps in the sequence is clarified in the proof pro-
vided in the following subsections 4.1, 4.2, and 4.3.

If the pullback square (6) is a pullback of groupoids, regarded as double
groupoids where the vertical morphisms are all identities and the boxes are
all vertical identities, then the Mayer-Vietoris sequence in Theorem 4.1 spe-
cializes to the Mayer-Vietoris sequence of Brown, Heath, and Kamps [10,
Theorem 2.2] (see also [5, 10.7.6]).
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4.1 The connecting homomorphism ∂2 : π2(B, b)→π1
(
B′×B A, (b′, a)

)
.

Let β ∈ π2(B, b). Since F is a fibration, the lifting problem

a
� F //∃?

·oo

a a

OO b

β

b

b b

has solution. Thus, we can choose a box αβ in A of the form

a

αβ

·
fβ
oo

a a

xβ
OO (7)

such that Fαβ = β. Since Ffβ = Ihb = GIhb′ and Fxβ = Ivb = GIvb′ , we have
that (

(Ihb′ , fβ), (I
v
b′ , xβ)

)
: (b′, a) ↷ (b′, a) (8)

is a loop in the double groupoid B′×BA.

Lemma 4.2. If the choice of αβ in (7) is changed, then the loop (8) is
changed to a homotopic loop in B′×BA.

Proof. Suppose any other box in A

a ·
f ′
oo

α′

a a

x′
OO

such that Fα′ = β. We define a homotopy α : (fβ, xβ) ≃ (f ′, x′) in A by

·

·

α

·
f−1
β f ′
oo

=

· ·

x′x−1
β

OO
α-h
β

a

f−1
β
oo

α′

·
f ′
oo

a

xβ

OO

Ih

a a

x′

OO

·

x−1
β

OO

·

x−1
β

OO

Since
b

Fα =
β−h

b

β

b

= Ib = GIb′b

Ib

b b

b b
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(Ib′ , α) :
(
(Ihb′ , fβ), (I

v
b′ , xβ)

)
≃

(
(Ihb′ , f

′), (Ivb′ , x
′)
)

is a homotopy in the pull-
back double groupoid B′×BA.

Definition 4.3. The map ∂2 : π2(B, b) → π1(B′×BA, a′) is given, on every
β ∈ π2(B, b), by

∂2β = [(Ihb′ , fβ), (I
v
b′ , xβ)] : (b

′, a) → (b′, a),

where (fβ, xβ) : a ↷ a is the loop of A given by the vertical target fβ and
the horizontal source xβ of a (any) box αβ , as in (7), such that Fαβ = β.

Let us stress that, by Lemma 4.2, ∂2 is a well-defined map.

Proposition 4.4. ∂2 : π2(B, b) → π1(B′×BA, (b′, a)) is a homomorphism of
groups.

Proof. Suppose β, γ ∈ π2(B, b). Let

a ·
fβ
oo

αβ

a a

xβ
OO a ·

fγ
oo

αγ

a a

xγ
OO

be boxes of A such that Fαβ = β and Fαγ = γ. Since F is a fibration,
Fxβ = Ivb , and Ffγ = Ihb , we can choose a box θ in A of the form

· ·f ′
oo

θ

a

xβ
OO

·
fγ
oo

x′
OO

such that Fθ = Ib. Hence Fθ = GIb′ and the diagram in B′×BA

(b′,a) (b′,·)
(Ih

b′ ,fβ)oo

(Ib′ ,θ)

(b′,·)
(Ih

b′ ,f
′)

oo

(b′,a)

(Iv
b′ ,xβ)

OO

(b′,·)
(Ih

b′ ,fγ)
oo

(Iv
b′ ,x

′)

OO

(b′,a)

(Iv
b′ ,xγ)

OO
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tell us that, in the group π1(B′×BA, (b′, a)),

∂2β · ∂2γ = [(Ihb′ , fβ), (I
v
b′ , xβ)] · [(Ihb′ , fγ), (Ivb′ , xγ)]

= [(Ihb′ , fβf
′), (Ivb′ , x

′xγ)].

Now, we have the box αβ+γ of A defined by

a

a

αβ+γ

·
fβf

′
oo

=

a a

x′xγ

OO
αβ

·
fβ
oo

θ

·
f ′
oo

a

αγ

a

OO

·

x′
OO

fγ
oo

a a

xγ
OO

which satisfies that

b

F (αβ+γ) =
β

b

Ib

b

= β + γ.b b

γ

b

b b

Hence, by Lemma 4.2, ∂2(β + γ) = [(Ihb′ , fβf
′), (Ivb′ , x

′xγ)] = ∂2β · ∂2γ.

4.2 The connecting map ∂1 : π1(B, b) → π0(B′×BA, [b′, a]).

Let (f̃ , x̃) : b↷ b be a loop in B based at b

b ·
f̃
oo

b

x̃
OO

By Proposition 3.1, we can choose a path (f, x) : a↷ af̃,x̃ in A

af̃,x̃ ·
f
oo

a

x
OO (9)

such that (Ff, Fx) = (f̃ , x̃). Since Faf̃,x̃ = b, the pair (b′, af̃,x̃) is an object
of the pullback double groupoid B′×BA.
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Lemma 4.5. (i) If the choice of (f, x) in (9) is changed, then (b′, af̃,x̃) is
changed to a path-connected object in B′×BA.

(ii) If (g̃, ỹ) : b ↷ b is a loop in B homotopic to (f̃ , x̃), then a suitable
selection of the lifting path of (g̃, ỹ) leaves the object af̃,x̃ unaltered.

Proof. (i) Suppose (g, y) : a ↷ a1 other path in A such that (Fg, Fy) =
(f̃ , x̃). Since Fy = x̃ = Fx and F is a fibration, we can choose a box α in
A as in the diagram

a1 ·
g
oo

α

·
hoo

a

y
OO

·

x−1

OO

af̃ ,x̃

z

OO

f−1
oo

such that Fα = Ih
f̃−1 . Since F (gh) = Fg Fh = f̃ f̃−1 = Ihb = G(Ihb′)

and Fz = Ivb = G(Ivb′), the path
(
(Ihb′ , gh), (I

v
b′ , z)

)
: (b′, af̃,x̃) ↷ (b′, a1)

belongs to the pullback double groupoid B′×BA, so that [b′, af,x] = [b′, a1]
in π0(B′×BA).

(ii) If (g̃, ỹ) : b ↷ b is a loop homotopic to (f̃ , x̃) in B, by Proposi-
tion 3.2, there is a path (g, y) : a ↷ af̃,x̃, homotopic to (f, x), such that
(Fg, Fy) = (g̃, ỹ). Choosing this lifting path, we have ag̃,ỹ = af̃,x̃.

Definition 4.6. The map ∂1 : π1(B, b) → π0
(
B′×BA, [b′, a]

)
is given, for

every loop (f̃ , x̃) : b↷ b of B, by

∂1[f̃ , x̃] = [b′, af̃,x̃]

where af̃,x̃ is the end of a (any) path (f, x) : a ↷ af̃,x̃ in A, as in (9), such
that (Ff, Fx) = (f̃ , x̃).

Remark that, by Lemma 4.2, ∂1 is a well-defined map. Moreover, since
(F Iha, F I

v
a) = (Ihb , I

v
b ), we have ∂1[Ihb , I

v
b ] = [b′, a], that is, ∂1 is a pointed map.

4.3 The exactness of the Mayer-Vietoris sequence.

Proposition 4.7. The sequence of group homomorphisms below is exact.

0 → π2
(
B′ ×B A, (b′, a)

)(F ′
∗,G

′
∗)// π2(B′, b′)× π2(A, a)

F∗−G∗// π2(B, b)
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Proof. Exactness of the sequence above means that the homomorphisms F ′
∗

and G′
∗ induce an isomorphism

π2
(
B′×BA, (b′, a)

) ∼= π2(A, a)×π2(B,b) π2(B′, b′),

which follows directly from the definition of π2.

Proposition 4.8. The following sequence of group homomorphisms is exact.

π2(B′, b′)×π2(A, a)
F∗−G∗// π2(B, b)

∂2 // π1
(
B′×BA, (b′, a)

)
Proof. If σ is an element of the group π2(A, a), then we can choose the box
αFσ = σ in (7). Hence, ∂2(Fσ) = [(Ihb′ , I

h
a), (I

h
b′ , I

h
a)] = [Ih(b′,a), I

v
(b′,a)]. So

ImF∗ ⊆ Ker∂2. Let β′ be an element of the group π2(B′, b′). For any chosen
box in A as in (7)

a ·
f
oo

α

a a

x
OO

such that Fα = Gβ′, the box of B′×BA

(b′,a)

(β′,α)

(b′,·)
(Ih

b′ ,f)oo

(b′,a) (b′,a)

(Iv
b′ ,x)

OO

is a homotopy (β′, α) : (Ih(b′,a), I
v
(b′,a)) ≃

(
(Ihb′ , f), (I

v
b′ , x)

)
. Hence,

∂2(Gβ
′) = [(Ihb′ , f), (I

v
b′ , x)] = [Ih(b′,a), I

v
(b′,a)].

So ImG∗ ⊆ Ker∂2.
We now prove Ker∂2 ⊆ ImF∗ + ImG∗: Suppose β ∈ π2(B, b) such that

∂2β = [Ih(b′,a), I
v
(b′,a)]. As in (7), let

a

αβ

·
fβ
oo

a a

xβ
OO
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be a box of A such that Fαβ = β; so that ∂2β = [(Ihb′ , fβ), (I
v
b′ , xβ)]. There is

then a homotopy (Ih(b′,a), I
v
(b′,a)) ≃

(
(Ihb′ , fβ), (I

v
b′ , xβ)

)
; that is, a box in B′×BA

of the form

(b′,a)

(β′,α)

(b′,·)
(Ih

b′ ,fβ)oo

(b′,a) (b′,a)

(Iv
b′ ,xβ)
OO

for some boxes β′ of B′ and α of A of the form

b′

β′
b′

b′ b′

a

α

·
fβ
oo

a a

xβ
OO

satisfying that Gβ′ = Fα. Define σ = αβ ◦h α−h ∈ π2(A, a)

a

σ

a

=
a a

a

αβ

·
fβ
oo

α−h

a

f−1
β
oo

a a

OO

a

Then Fσ = Fαβ − Fα = β − Gβ′; so that β = F∗(σ) + G∗(β
′) ∈

ImF∗ + ImG∗.

Proposition 4.9. The sequence of group homomorphisms below is exact.

π2(B, b)
∂2 // π1

(
B′×BA, (b′, a)

) (F ′
∗,G

′
∗)// π1(B′, b′)×π1(A, a)

Proof. For every β ∈ π2(B, b), the box αβ in (7) is actually a homotopy in
A, αβ : (Iha, I

v
a) ≃ (fβ, xβ). Hence,

G′
∗(∂2β) = G′

∗[(I
h
b′ , fβ), (I

v
b′ , xβ)] = [fβ, xβ] = [Iha, I

v
a],

F ′
∗(∂2β) = F ′

∗[(I
h
b′ , fβ), (I

v
b′ , xβ)] = [Ihb′ , I

v
b′ ].

So Im∂2 ⊆ KerF ′
∗ ∩KerG′

∗. For the opposite inclusion, let(
(f ′, f), (x′, x)

)
: (b′, a) ↷ (b′, a)
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be a loop in B′×BA such that [f ′, x′] = [Ihb′ , I
v
b′ ] in π1(B′, b′) and [f, x] =

[Iha, I
v
a] in π1(A, a). Choose homotopies β′ : (Ihb′ , I

v
b′) ≃ (f ′, x′) in B′ and

α : (Iha, I
v
a) ≃ (f, x) in A; that is, boxes of the form

b′

β′

·
f ′
oo

b′ b′

x′
OO a

α

·
f
oo

a a

x
OO

Since Gf ′ = Ff and Gx′ = Fx, the box β = Fα ◦h Gβ′−h

b

β

b

=
b b

b

Fα

·
Ff
oo

Gβ′−h

b
Gf ′−1

oo

b b

OO

b

belongs to π2(B, b). Let

a

αβ

·
fβ
oo

a a

xβ
OO

be a box of A such that Fαβ = β, so that ∂2β = [(Ihb′ , fβ), (I
v
b′ , xβ)]. We can

construct a homotopy α1 : (fβ, xβ) ≃ (f, x) in A by

·

·
α1

·
f−1
β f
oo

=

· ·
xx−1

β

OO

α-h
β

·
f−1
β
oo

α

·f
oo

·
xβ

OO

Ih

· ·
x

OO

·
x−1
β

OO

·
x−1
β

OO

Since
b

Fα1 =
β−h

b

Fα

b

= Gβ′ ◦h Fα−h ◦h Fα = Gβ′,b

Ib

b b

b b

the pair (β′, α1) :
(
(Ihb′ , fβ), (I

v
b′ , xβ)

)
≃

(
(f ′, f), (x′, x)

)
is a loop homotopy

in B′×BA. Thus, [(f ′, f), (x′, x)] = [(Ihb′ , fβ), (I
v
b′ , xβ)] = ∂2β =∈ Im∂2.
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Proposition 4.10. The sequence

π1
(
B′ ×B A, (b′, a)

)(F ′
∗,G

′
∗)// π1(B′, b′)× π1(A, a)

G−1
∗ ·F∗
// π1(B, b),

where (F ′
∗, G

′
∗) is a homomorphism and G−1

∗ · F∗ is a pointed map, is exact.

Proof. Exactness of the sequence above means that the homomorphisms F ′
∗

and G′
∗ induce an epimorphism

π1
(
B′×BA, (b′, a)

)
↠ π1(A, a)×π1(B,b) π1(B′, b′).

To prove this, let (g, y) : a ↷ a and (f ′, x′) : b′ ↷ b′ be loops, in A and B′

respectively, such that [Fg, Fy] = [Gf ′, Gx′] in π1(B, b). By Proposition 3.2,
there is a loop (f, x) : a ↷ a in A such that [f, x] = [g, y] and (Ff, Fx) =
(Gf ′, Gx′). Then,

(
(f ′, f), (x′, x)

)
: (b′, a) ↷ (b′, a) is a loop in B′×BA and

F ′
∗[(f

′, f), (x′, x)] = [f ′, x′] and G′
∗[(f

′, f), (x′, x)] = [f, x] = [g, y].

Proposition 4.11. The following sequence of pointed maps is exact.

π1(B′, b′)×π1(A, a)
G−1

∗ ·F∗
// π1(B, b)

∂1 // π0
(
B′×BA, [b′, a]

)
Further, [f̃1, x̃1], [f̃2, x̃2] ∈ π1(B, b) satisfy ∂1[f̃1, x̃2] = ∂1[f̃2, f̃2] if and only
if there are [f ′, x′] ∈ π1(B′, b′) and [f, x] ∈ π1(A, a) such that

[f̃2, x̃2] = G∗[f
′, x′]−1 · [f̃1, x̃1] · F∗[f, x]. (10)

Proof. Given (f̃1, x̃1), (f̃2, x̃2) : b ↷ b loops in B, let us choose paths in A
(f1, x1) : a↷ a1 and (f2, x2) : a↷ a2 such that (Ff1, Fx1) = (f̃1, x̃1) and
(Ff2, Fx2) = (f̃2, x̃2); so that ∂1[f̃1, x̃1] = [b′, a1] and ∂1[f̃2, x̃2] = [b′, a2].

Suppose there are loops (f ′, x′) : b′ ↷ b′ in B′ and (f, x) : a ↷ a in A
such that (10) holds. Choose (g, y) : a2 ↷ a1 a path in A representative of
the composite morphism [f1, x1] · [f, x] · [f2, x2]−1 : a2 → a1 of ΠA. Since

[Gf ′, Gx′] = F∗[f1, x1] · F∗[f, x] · F∗[f2, x2]
−1

= F∗
(
[f1, x1] · [f, x] · [f2, x2]−1

)
= [Fg, Fy],

by Proposition 3.2, there is a path (g′, y′) : a2 ↷ a1 which is homotopic to
(g, y) and satisfies (Fg′, Fy′) = (Gf ′, Gx′). Then,(

(f ′, g′), (x′, y′)
)
: (b′, a2) ↷ (b′, a1) (11)
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is a path in B′ ×B A and therefore [b′, a1] = [b′, a2].
Conversely, assume that [b′, a1] = [b′, a2], so that there is a path in the

pullback B′×BA as (11), for some loop (f ′, x′) : b′ ↷ b′ in B′ and some path
(g′, y′) : a2 ↷ a1 in A such that (Gf ′, Gx′) = (Fg′, Fy′). The composite
morphism in ΠA

[f, x] = [f1, x1]
−1 · [g′, y′] · [f2, x2] : a→ a

is then an element of π1(A, a) = AutΠA(a) and

[f̃2, x̃2] = F∗[f2, x2] = F∗[g
′.y′]−1 · F∗[f1, x1] · F∗[f, x]

= G∗[f
′, x′]−1 · [f̃1, x̃1] · F∗[f, x].

Proposition 4.12. The following sequence of pointed maps is exact.

π1(B, b)
∂1 // π0

(
B′×BA, [b′, a]

)(F ′
∗,G

′
∗)//
(
π0B′ ×π0B π0A, ([b′], [a])

)
Proof. For every loop (f̃ , x̃) : b ↷ b in B, the path (f, x) : a → af̃,x̃ in (9)
tell us that the objects a and af̃,x̃ are path connected in A. Hence

(F ′
∗, G

′
∗)∂1[f̃ , x̃] = (F ′

∗, G
′
∗)[b

′, af̃,x̃] = ([b′], [af̃,x̃]) = ([b′], [a]).

So Im∂1 ⊆ (F ′
∗, G

′
∗)

−1([b′], [a]). For the opposite inclusion, let (b′0, a0) be an
object of B′×B A such that [b′0] = [b′] in π0B′ and [a0] = [a] in π0A. Choose
paths (f ′, x′) : b′0 ↷ b′ in B′ and (f, x) : a ↷ a0 in A. Since Gb′0 = Fa0
and F is a fibration, we can select a path (f1, x1) : a0 ↷ a1 such that

(Ff1, Fx1) = (Gf ′, Gx′) : Fa0 ↷ b.

Further, because of the filling property, we can choose now a box θ in A as
in the diagram

a1 ·f1
oo

θ

·g
oo

a0

x1

OO

·
y
OO

f
oo

a

x

OO
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This way, we find the path (f1g, yx) : a ↷ a1 in A which is a lifting of the
loop (f̃ , x̃) = (F (f1g), F (yx)) : b↷ b in B. Hence ∂1[f̃ , x̃] = [b′, a1]. As(

(f ′, f1), (x
′, x1)

)
: (b′0, a0) ↷ (b′, a1)

is a path in B′×BA, [b′0, a0] = [b′, a1] in π0(B′×BA), and we finally conclude
that ∂1[f̃ , x̃] = [b′0, a0]. Thus, [b′0, a0] ∈ Im∂1, as claimed.

Proposition 4.13. The map (F ′
∗, G

′
∗) : π0(B′ ×B A) → π0B′ ×π0B π0A is

surjective.

Proof. Suppose objects a0 of A and b′0 of B′ such that [Fa0] = [Gb′0] in
π0B. Then, we can choose is a loop (f̃ , x̃) : Fa0 ↷ Gb′0 in B and, by
Proposition 3.1, we can also choose a loop (f, x) : a0 ↷ a1 in A such that
(Ff, Fx) = (f̃ , x̃). Then, since Fa1 = Gb′0, the pair (b′0, a1) is an object of
B′×BA and F ′

∗[b
′
0, a1] = [b′0], G

′
∗[b

′
0, a1] = [a1] = [a0].

5. The homotopy sequence.

Throughout this section, we consider a given fibration of double groupoids
F : A → B, assuming that B has the filling property. For an object a in A,
let b = Fa and Fb = F−1(b) be the corresponding double groupoid fibre
over b. This setup leads to the following fibre sequence of pointed double
groupoids, where Propositions 2.4 and 2.6 ensure that both A and Fb have
the filling property:

(Fb, a)
i
↪→ (A, a) F−→ (B, b) (12)

Theorem 5.1. The fibre sequence (12) gives rise to an exact sequence (of
groups and pointed sets)

0 // π2(Fb, a)
i∗ // π2(A, a)

F∗ // π2(B, b)
∂2

ss

π1(Fb, a)
i∗ // π1(A, a)

F∗ // π1(B, b)
∂1

ss

π0(Fb, [a])
i∗ // π0(A, [a])

F∗ // π0(B, [b]).

(13)
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Furthermore, [f̃1, x̃1], [f̃2, x̃2] ∈ π1(B, b) satisfy ∂1[f̃1, x̃2] = ∂1[f̃2, f̃2] if and
only if there is an [f, x] ∈ π1(A, a) such that

[f̃2, x̃2] = [f̃1, x̃1] · F∗[f, x].

Proof. This result follows from the Mayer-Vietoris sequence stated in Theo-
rem 4.1 above, because Fb appears in the pullback square of double groupoids
depicted below.

∗ ×B A i //

��

A
F
��

Fb
∼=

∗ b // B

If (Fb, a) ↪→ (A, a) F−→ (B, b) is a pointed Moerdijk fibration of 2-
groupoids, regarded as double groupoids whose vertical arrows are all iden-
tities, then the associated 9-term exact sequence (13) yields the exact se-
quence constructed by Hardie, Kamps, and Kieboom in [27]. In particular,
if F : A → B is a Grothendieck fibration of groupoids, viewed as double
groupoids whose vertical morphisms are all identities and whose boxes are
all vertical identities, then (13) specializes to the 6-term exact sequence due
to Brown [2, Theorem 4.3], [5, 7.2.9].

The following proposition provides further relevant information about
the 9-term sequence.

Proposition 5.2. (i) There is a group action of the group π1(A, a) on the
group π1(Fb, a) making the homomorphism i∗ : π1(Fb, a) → π1(A, a)
into a crossed module.

(ii) There is a canonical action of the group π1(B, b) on the set π0Fb such
that the boundary ∂1 is given by ∂1[f̃ , x̃] = [f̃ ,x̃][a].

(iii) [a], [a′] ∈ π0Fb satisfy i∗[a] = i∗[a
′] if and only if [a′] = [f̃ ,x̃][a], for

some [f̃ , x̃] ∈ π1(B, b).

Proof. In the following subsections, these issues are addressed in a more
general setting, as detailed in Theorems 5.7 and 5.9, and Proposition 5.10
below.
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If F : A → B is a fibration of 2-groupoids, viewed as double groupoids
whose vertical morphisms are all identities, and we consider the equivalence
between 2-groupoids and crossed modules over groupoids as established by
Brown and Higgins [11], then Proposition 5.2 leads to the analogous state-
ments for fibrations of crossed modules over groupoids, as demostrated by
Howie [29, Theorem 3.1] and Brown [6, Theorem 2.11].

5.1 The fundamental crossed module π1F → π1A.

We begin by fixing some notations concerning crossed modules over groupoids.
If P is a groupoid, a (left) P-group is a functor from P to the category Gr of
groups. For every P-group H : P → Gr, each morphism ϕ : a→ b in P, and
each h ∈ H(a), we denote by ϕh the value of H(ϕ) at h and call it the action
of ϕ on h. Thus, a P-group H provides groups H(a), one for each a ∈ ObP,
and action homomorphisms

H(a) → H(b), h 7→ ϕh,

one for each morphism ϕ : a → b in P, satisfying ψ(ϕh) = ψϕh and 1h = h.
For instance, let

π1P : P → Gr, a 7→ π1(P, a) = AutP(a), (14)

denote the P-group that attaches to each object a the group of its automor-
phisms in P. The action of a morphism ϕ : a → b on an automorphism
ψ : a → a is given by conjugation in P, that is, ϕψ = ϕψϕ−1. If P = G is a
group regarded as a groupoid with only one object, then π1G = G with the
action on itself by conjugation.

A morphism of P-groups µ : H → H ′ is a natural transformation, so it
consists of homomorphisms µ = µa : H(a) → H ′(a), one for each object a
of P, such that, for every ϕ : a→ b in P, µ(ϕh) = ϕµ(h).

A P-crossed module (or crossed module of groupoids over P) is a mor-
phism of P-groups

H
µ−→ π1P

such that, for every h, h′ ∈ H(a), a ∈ ObP, the equation below holds:

µ(h)h′ h = hh′. (15)
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Thus, for every object a of P, H(a)
µ→ π1(P, a) is a crossed module over the

group of automorphism of a in P.
Returning to the fibration F : A → B, for P = ΠA, the fundamental

groupoid of A, we denote the ΠA-group (14), i.e. π1(ΠA), simply by

π1A : ΠA → Gr, a 7→ π1(A, a) = AutΠA(a). (16)

The assignment a 7→ π1(FFa
, a) defines the function on objects of a functor

π1F : ΠA → Gr

whose effect on morphisms is as follows: Suppose [f, x] : a → a′ a mor-
phism in ΠA, which is represented by a path (f, x) : a ↷ a′ in A, and let
[g, y] ∈ π1(FFa

, a), represented by a loop (g, y) : a↷ a in F
Fa

. Since F is a
fibration, we can choose boxes α and β in A as in the diagram

a′ ·
f
oo

α

·
g′
oo

β

·
f ′
oo

a

x
OO

·g
oo

x′
OO

·

OO

yx−1

a′
f−1
oo

y′

OO (17)

such that Fα = IhFx and Fβ = IvFf−1 . Since Fy′ = IvFa′ and F (f g′f ′) = IhFa′ ,
the loop

(f g′f ′, y′) : a′ ↷ a′ (18)

belongs to the double groupoid fibre F
Fa′

. We define the action of the mor-
phism [f, x] : a→ a′ of ΠA on [g, y] ∈ π1(FFa

, a) by

[f,x][g, y] = [f g′f ′, y′] ∈ π1(FFa′
, a′). (19)

It follows from Lemmas 5.3, 5.4 and 5.5 below that this action is well
defined and that π1F is really a ΠA-group.

Lemma 5.3. [f,x][g, y] is independent of the choices of the representative
path of [f, x] in A, of the representative loop of [g, y] in F

Fa
, and of the boxes

α and β in (17).
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Proof. Let γ : (f, x) ≃ (f1, x1) be a homotopy of paths from a to a′ in
A and let δ : (g, x) ≃ (g1, x1) be a homotopy of loops at a in the double
groupoid fibre F

Fa
. Suppose we have selected boxes α, β, α1, and β1, as in

the diagrams

a′ ·
f
oo

α

·
g′
oo

β

·
f ′
oo

a

x
OO

·g
oo

x′
OO

·

OO

yx−1

a′
f−1
oo

y′

OO a′ ·
f1
oo

α1

·
g′1oo

β1

·
f ′1oo

a

x1
OO

·g1
oo

x′1

OO

·

OO

y1x
−1
1

a′

f−1
1

oo

y′1

OO

such that Fα = IhFx, Fβ = IvFf -1 , Fα1 = IhFx1 , and Fβ1 = Iv
Ff -1

1
. Then,

we get a homotopy of loops at a′ in the double groupoid fibre F
Fa′

from
(f g′f ′, y′) to (f1 g

′
1f

′
1, y

′
1) by pasting the diagram

· ·
f ′−1

oo ·
g′−1

oo

γ

·
f−1f1
oo ·

g′1oo ·
f ′1oo

·

Ih

·

OO

x1x−1

·

x′

OO

a
g−1

oo

x

OOα-h

a

x

OO

·
g1

oo

x′1

OO

α1

· ·

OO

y1y−1δ

·

OO

yx−1 Ih

·

OO

yx−1

a′

y′

OO

·
f

oo

β-h

γ-v

·

OO

xx−1
1

oo f−1f1 ·
f−1
1oo

y′1

OO

β1

·

y′−1

OO

·

y′−1

OO

I-h

Lemma 5.4. For every pair of paths in A

(f1, x1) : a1 ↷ a2, (f2, x2) : a2 ↷ a3
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and every loop (g, y) : a1 ↷ a1 in the fibre FFa1 ,

[f2,x2]
(
[f1,x1][g, y]

)
= [f2,x2]·[f1,x1][g, y].

Proof. Let α, β, and θ be boxes of A as in the diagrams

a2 ·
f1
oo

α

·
g′
oo

β

·
f ′1oo

a1

x1
OO

·g
oo

x′1

OO

·

OO

yx−1
1

a2
f−1
1

oo

y′

OO a3 ·
f2
oo

θ

·
f ′1oo

a2

x2

OO

·

x′2

OO

f1
oo

a1

x1

OO

such that Fα = IhFx1 and Fβ = Iv
Ff−1

1

. Hence, [f1,x1][g, y] = [f1 g
′f ′

1, y
′] and

[f2, x2] · [f1, x1] = [f2f
′
1, x

′
2x1]. Since F is fibration, we can successively

choose boxes α′, θ′, and β′ in A of the form

·
α′

·g′′
oo

·
x′2

OO

·
g′
oo

x′′2

OO ·
θ′

·
f ′′1oo

·
x′′2

OO

·
f ′1

oo

x′′′2

OO ·
β′

·
f ′2oo

·
x′′′2 y

′x−1
2

OO

·
f−1
2

oo

y′′
OO

such that Fα′ = IhFx′2
, Fθ′ = θ−h, and Fβ′ = Iv

Ff−1
2

. Then, the pasting
diagram

a3 ·
f2
oo

θ

·
f ′1oo

α′
·

g′′
oo

θ′
·

f ′′1oo ·
f ′2oo

a2

x2
OO

·
f1
oo

OO

·
g′
oo

OO

·
f ′1

oo

x′′′2

OO

·

OO

y′x−1
2

a3

y′′

OO

f−1
2

oo

β′

tell us that [f2,x2]
(
[f1,x1][g, y]

)
= [f2f

′
1g

′′f ′′
1 f

′
2, y

′′], since F (θ◦hα′◦hθ′) = IhFx2
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and Fβ′ = Iv
Ff−1

2

, while the pasting diagram

a3 ·
f2
oo ·

f ′1oo

α′
·

g′′
oo

θ′
·

f ′′1oo ·
f ′2oo

·

x′2

OO

α

·oo

OO

·
f ′1

oo

x′′′2

OO

a1

x1
OO

·g
oo

OO

x′1

·

OO

yx−1
1

·
f−1
1oo

y′

OO

β

·
x′2

−1
OO

·
f ′1

−1
oo

x−1
2

OO

θ−hv

a3
f−1
2

oo

y′′

OO

β′

tell us that also [f2,x2]·[f1,x1][g, y] = [f2f
′
1g

′′f ′′
1 f

′
2, y

′′], since F (α′ ◦v α) =
IvF (x′2x1)

and F
(
(θ′ ◦v β ◦v θ−hv) ◦h β′) = IvF (f2f ′1)

−1 .

Lemma 5.5. For every pair of loops (g1, y1), (g2, y2) : a ↷ a in F
Fa

and
every path (f, x) : a↷ a′ in A,

[f,x]
(
[g1, y1] · [g2, y2]

)
= [f,x][g1, y1] · [f,x][g2, y2].

Proof. Let α1, β1, α2, and β2 be boxes of A as in the diagrams

a′ ·
f
oo

α1

·
g′1oo

β1

·
f ′1oo

a

x
OO

·g1
oo

x′1

OO

·

OO

y1x−1

a′
f−1
oo

y′1

OO a′ ·
f
oo

α2

·
g′2oo

β2

·
f ′2oo

a

x
OO

·g2
oo

x′2

OO

·

OO

y2x−1

a′
f−1
oo

y′2

OO

such that Fα1 = IhFx = Fα2 and Fβ1 = IvFf−1 = Fβ2, so that [f,x][g1, y1] =

[fg′1f
′
1, y

′
1] and [f,x][g2, y2] = [fg′2f

′
2, y

′
2], and let θ be a box in F

Fa
as in the

diagram

a ·
g1
oo

θ

·
g′′2oo

a

y1
OO

·
y′′1

OO

g2
oo

a
y2

OO
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so that, [g1, y1] · [g2, y2] = [g1g
′′
2 , y

′′
1y2] in the group π1(FFa

, a). Since F is
fibration, we can successively choose boxes α and β in A of the form

·
α

·
g′′′2oo

·
x′1

OO

·
g′′2

oo

x′′1

OO ·
β

·
f ′′2oo

·
x′′1y

′′
1 x

′
2
−1
OO

·
f ′2

oo

y′′′1

OO

such that Fα = IhFx and Fβ = IvFf−1 . Then, on the one hand, the pasting
diagram

a′ ·
f
oo

α1

·
g′1oo

α

·
g′′′2oo ·

f ′′2oo

a

x

OO

·g1
oo

OO

·
g′′2

oo

x′′1

OO

·

OO

y′′1 x
′
2
−1

β

·

y′′′1

OO

oo

·

OO

x′2y2x
−1

β2

a′
f−1
oo

y′2

OO

tell us that [f,x]
(
[g1, y1] · [g2, y2]

)
= [fg′1g

′′′
2 f

′′
2 , y

′′′
1 y

′
2], since F (α1 ◦hα) = IhFx

and F (β ◦v β2) = IvFf−1 . On the other hand, the pasting diagram

a′ ·
f
oo ·

g′1oo ·
f ′1oo ·

f ′1
−1

oo ·
g′′′2oo ·

f ′′2oo

·

OO

x′1 α

·oo

x′′1

OO

ββ−h
1

·

OO

y1 θ

·oo

y′′1

OO

a′

y′1

OO

·
f
oo

OO

x−1 α−v
2

·
g′2

oo

OO

x′2
−1

·
f ′2

oo

y′′′1

OO

a′

y′2

OO

also tell us that [f,x][g1, y1] · [f,x][g2, y2] = [fg′1g
′′′
2 f

′′
2 , y

′′′
1 y

′
2], since the pasted

box of the inner boxes belongs to F
Fa′

.

Proposition 5.6. There is a morphism of ΠA-groups i∗ : π1F → π1A
which, at each object a ∈ ObA, consists of the homomorphism induced
by the inclusion i∗ : π1(FFa

, a) → π1(A, a).
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Proof. We must prove that, for every path (f, x) : a ↷ a′ in A and every
loop (g, y) : a↷ a in F

Fa
, the equality

i∗
(
[f,x][g, y]

)
· [f, x] = [f, x] · i∗[g, y]

holds in the fundamental groupoid ΠA. For, let us choose boxes α and β as
in diagram (17) such that Fα = IhFx and Fβ = IvFf−1; so that [f,x][g, y] =
[f g′f ′, y′]. We have the diagrams in A

a′ ·
fg′f ′
oo

β−h

·
f ′−1

oo

a′

y′
OO

·
f
oo

x′yx−1

OO

a

x

OO

a′ ·
f
oo

α

·
g′
oo

a

x

OO

·g
oo

x′
OO

a

y
OO

The first of them tell us that

i∗
(
[f,x][g, y]

)
· [f, x] = [fg′f ′f ′−1

, x′yx−1x] = [fg′, y′x],

and the second one that also [f, x] · i∗[g, y] = [fg′, x′y].

Theorem 5.7. The morphism of ΠA-groups i∗ : π1F → π1A is a crossed
module over ΠA.

Proof. We must prove that, for every pair of loops (f, x), (g, y) : a ↷ a in
F

Fa
, the equality

i∗[f,x][g, y] · [f, x] = [f, x] · [g, y]

holds in the fundamental group π1(FFa
, a). To do that, since the double

groupoid fibre F
Fa

has the filling property, we can choose boxes α and β of
F

Fa
as in the diagram

a′ ·
f
oo

α

·
g′
oo

β

·
f ′
oo

a

x
OO

·g
oo

x′
OO

·

OO

yx−1

a′
f−1
oo

y′

OO
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Then i∗[f,x][g, y] = [f g′f ′, y′], and the diagrams in F
Fa

a′ ·
fg′f ′
oo

β−h

·
f ′−1

oo

a′

y′
OO

·
f
oo

x′yx−1

OO

a

x

OO

a′ ·
f
oo

α

·
g′
oo

a

x

OO

·g
oo

x′
OO

a

y
OO

tell us that i∗[f,x][g, y] · [f, x] = [fg′, x′y] = [f, x] · [g, y].

5.2 The ΠB -set π0F .

If P is a groupoid, a (left) P-set is a functor from P to the category Set of
sets. For every P-set H : P → Set, each morphism ϕ : a→ b in P, and each
h ∈ H(a), we denote by ϕh the value of H(ϕ) at h and call it the action of
ϕ on h. Thus, a P-set H provides of sets H(a), one for each a ∈ ObP, and
action homomorphisms

H(a) → H(b), h 7→ ϕh,

one for each morphism ϕ : a→ b in P, satisfying ψ(ϕh) = ψϕh and 1h = h.
Returning to the fibration F : A → B, the assignment b 7→ π0Fb defines

the function on objects of a functor from the fundamental groupoid of B

π0F : ΠB → Set

whose effect on morphisms is described as follows: Suppose [f̃ , x̃] : b → b′

a morphism in the fundamental groupoid ΠB of B, represented by a path
(f̃ , x̃) : b ↷ b′ in B, and let [a] ∈ π0Fb, represented by an object a of Fb.
Since F is a fibration, we can choose a path in A

(f, x) : a↷ af̃,x̃

such that (Ff, Fx) = (f̃ , x̃). Then Faf̃,x̃ = b′, so that the object af̃,x̃ belongs
to fibre double groupoid Fb′ . We define the action of the morphism [f̃ , x̃] :
b→ b′ of ΠB on [a] ∈ π0Fb by

[f̃ ,x̃][a] = [af̃,x̃] ∈ π0Fb′ . (20)

It follows from the lemma below that this action is well-defined.
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Lemma 5.8. [af̃,x̃] is independent of the choices of the representative object
a of [a] in Fb, of the representative path (f̃ , x̃) : b↷ b′ of [f̃ , x̃] in B, and of
its lifted path (f, x) : a↷ af̃,x̃ in A.

Proof. Let (h, z) : a ↷ a′ be a path in Fb and let α̃ : (f̃ , x̃) ≃ (g̃, ỹ)
be a homotopy of paths in B from b to b′. Suppose we have chosen paths
(f, x) : a ↷ af̃,x̃ and (g, y) : a′ ↷ a′g̃,ỹ in A such that (Ff, Fx) = (f̃ , x̃)
and (Fg, Fy) = (g̃, ỹ). We must prove that there is a path af̃,x̃ ↷ a′g̃,ỹ in
Fb′ . For, we can proceed as follows: By the filling property, let us choose
boxes α1 of Fb and α2 ∈ A of the form

a′

α1

·
hoo

·

z′
OO

a
h′
oo

z

OO ·
α2

af̃,x̃

f−1
oo

a

x

OO

·
f ′
oo

x′
OO

Then, since F is a fibration, we can select a box α3 in A of the form

·
α3

·f ′′
oo

·
yz′
OO

·
h′f ′
oo

x′′
OO

such that

·

Fα3 =
α̃−h

·
g̃−1f̃
oo

Fα2

b′
f̃−1
oo

·

ỹx̃−1

OO

·

b

x̃

OO

b

x̃

OO

Ihx̃

·

Fx′

OO

Ff ′
oo

This way, we have the path (gf ′′, x′′x′−1) : af̃,x̃ ↷ a′g̃,ỹ

a′g̃,ỹ ·
g
oo ·

f ′′
oo

·
x′′
OO

af̃,x̃

x′−1
OO
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which actually belongs to Fb′ , since F (gf ′′) = g̃ g̃−1 = Ihb′ and F (x′′x′−1) =
Fx′ Fx′−1 = Ivb′ .

Theorem 5.9. π0F is a ΠB-set.

Proof. We must prove that, for every pair of paths (f̃ , x̃) : b ↷ b′ and
(g̃, ỹ) : b′ ↷ b′′ in B and every object a in Fb,

[9̃,ỹ]
(
[f̃ ,x̃][a]

)
= [g̃,ỹ]·[f̃ ,x̃][a].

For, using that F is a fibration and A has the filling property, let us construct
a diagram in A of the form

a′′ ·
g
oo

θ

·
f ′
oo

a′

y
OO

·
y′
OO

f
oo

a
x

OO

such that (Ff, Fx) = (f̃ , x̃) and (Fg, Fy) = (g̃, ỹ). Thus, on the one hand,
[f̃ ,x̃][a] = [a′] and [9̃,ỹ]

(
[f̃ ,x̃][a]

)
= [a′′]. On the other hand, the induced dia-

gram in B
b′′ ·

g̃
oo

Fθ

·
Ff ′
oo

b′

ỹ
OO

·
Fy′
OO

f̃

oo

b
x̃

OO

tell us that, in the fundamental groupoid of B, [g̃, ỹ]·[f̃ , x̃] = [g̃ Ff ′, Fy′ x̃] =
[F (gf ′), F (y′x)]. So that (gf ′, y′x) : a ↷ a′′ is a lifting in A of a represen-
tative path in B of the composite morphism [g̃, ỹ] · [f̃ , x̃] : b → b′′ of ΠB.
Hence, [g̃,ỹ]·[f̃ ,x̃][a] = [a′′].

Proposition 5.10. Let b, b′ be objects of B and let

π0Fb
i∗ // π0A π0Fb′

i′∗oo

be the induced maps by the inclusions i : Fb ↪→ A and i′ : Fb′ ↪→ A. Then,
[a] ∈ π0Fb and [a′] ∈ π0Fb′ satisfy i∗[a] = i′∗[a

′] if and only if

[a′] = [f̃ ,x̃][a]

for some morphism [f̃ , x̃] : b→ b′ of ΠB.
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Proof. Suppose i∗[a] = i′∗[a
′], so that there is a path (f, x) : a ↷ a′ in A.

Then, if (f̃ , x̃) = (Ff, Fx) : b↷ b′, we have [f̃ ,x̃][a] = [a′].
Conversely, suppose (f̃ , x̃) : b↷ b′ is a path in B such that [f̃ ,x̃][a] = [a′].

If (f, x) : a ↷ a′0 is a path in A such that (Ff, Fx) = (f̃ , x̃), then we have
i∗[a] = i′∗[a

′
0] in π0A and also [a′0] = [a′] in π0Fb′ . Hence, i∗[a] = i′∗[a

′].
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