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1. Introduction

Given a category C, the nerve of C is the simplicial set N(C) whose n-
simplices are the set of n composable arrows X0 → · · · → Xn in C. It
is immediate from the definitions that the association C 7→ N(C) defines a
fully faithful functor

N :Cat→ sSet

from the category of small categories to that of simplicial sets. As elemen-
tary as this observation may be, it puts forward an amazing fact: A structured
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object (a 1-category) can be presented as a family of less structured objects
(sets, or 0-categories). Experience suggests that the latter is generally easier
to work with, and this explains the prevalence of the nerve construction in
homotopy theory.

It is natural to look for a higher-categorical analog of the nerve construc-
tion. For example, we may ask whether it is possible to present an (∞, 1)-
category as a simplicial (∞, 0)-category, or a simplicial space. The answer
is yes. Recall that ∞-categories (alias quasicateogries [12]) are a certain
class of simplicial sets modeling (∞, 1)-categories. Given an∞-category C,
its classifying diagram Cls(C) is the simplicial space (or a bisimplicial set,
to be more precise) whose nth space Cls(C)n = Cls(C)n,∗ is the maximal
sub Kan complex of Fun(∆n,C). Joyal and Tierney showed in [14] that the
association C → Cls(C) defines a fully faithful functor from the homotopy
category of∞-categories to that of simplicial spaces, thereby giving an ana-
log of the nerve construction; the essential image of this functor consists of
Rezk’s complete Segal spaces [21].

A generalization of the classifying diagram construction has proved to
be especially important in the theory of localizations of∞-categories (in the
sense of [15, Definition 2.4.2]). Given an∞-category C and a subcategory
W ⊂ C containing all objects, their classification diagram Cls(C,W) [21] is
the simplicial∞-category (hence a bisimplicial set) whose nth∞-category
is given by

Cls(C,W)n = Cls(C,W)n,∗ = Fun(∆n,C)×Cn+1 Wn+1.

For example, if W is the subcategory of equivalences of C, then Cls(C,W)
is nothing but the classifying diagram of C. Inspired by earlier works such
as [21, 6, 4], Mazel-Gee showed1 in [20] (see also [1, 3] for alternative argu-
ments and generalizations) that a functor f :C → D of∞-categories which
carries W into D≃ is a localization with respect to W if and only if the map
Cls(C,W)→ Cls(D,D≃) = Cls(D) is a weak equivalence of the complete
Segal space model structure [21, Theorem 7.2]. In other words, up to fi-
brant replacement, Cls(C,W) computes the localization of C. This is useful

1To be more precise, Mazel-Gee proved this in the case where W contains all equiva-
lences (which suffices for most applications). The general case was proved by the author in
[1].
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because in some cases, the fibrant replacement of Cls(C,W) have explicit
descriptions; see, e.g., [16].

Now recall the homotopy coherent nerve functor

Nhc:Cat∆ → sSet,

due to Cordier [7], is a right Quillen equivalence from Bergner’s model struc-
ture on the category of simplicial categories [5] to Joyal’s model structure on
the category of simplicial sets [17, §2.2.5]. Many important ∞-categories
arise as the homotopy coherent nerves of simplicial categories, so we fre-
quently want to consider bisimplicial sets of the form Cls(Nhc(C), Nhc(W)),
where C is a fibrant simplicial category and W is its simplicial subcategory
such that Nhc(W) is a subcategory of Nhc(C). However, as is anything con-
structed from homotopy coherent nerves, this bisimplicial set is somewhat
difficult to manipulate by hands. It will therefore be nice if there is an alter-
native, preferably simpler, presentation of this bisimplicial set. The goal of
this paper is to show that this is possible, at least if we consider the marked
version of classification diagrams.

A marked bisimplicial set is a pair (X,S) of a bisimplicial set X and
a simplicial subset S ⊂ X1 = X1,∗ which contains the image of the map
X0 → X1. Equivalently, it is a simplicial object {(X∗,n, Sn)}n≥0 in the
category of marked simplicial sets. One may argue that the natural place
where classification diagrams live is not the category of bisimplicial sets,
but the category of marked bisimplicial sets. Indeed, there is a very natural
functor

Cls+: sSet+ →
(
sSet+

)∆op

= bsSet+

from the category of marked simplicial sets to the category of marked bisim-
plicial sets, defined by (X,S) 7→ (X,S)(∆

•). (Here we wrote (X,S)∆
n

=

(X,S)(∆
n)♯ , where (∆n)♯ denotes the standard simplex ∆n with all edges

marked. It is the cotensor of (X,S) by the simplicial set ∆n with respect
to the simplicial enrichment Map♯(−,−) of [17, §3.1.3].) Unwinding the
definitions, we find that Cls(C,W) is nothing but the underlying bisimplicial
set of Cls+(C,W1).

In [1], the author showed that marked bisimplicial sets are to complete
Segal spaces what marked simplicial sets are to ∞-categories. More pre-
cisely, [1, Theorems 2.9 and 3.4] state that bsSet+ admits a model structure,
denoted by bsSet+CSS, such that:
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• The functor Cls+: sSet+ → bsSet+ is a right Quillen equivalence ,
where sSet+ carries the model structure for marked simplicial sets [18,
Proposition 3.1.3.7, Remark 3.1.4.6].2

• The forgetful functor bsSet+CSS → bsSetCSS is also a right Quillen
equivalence, where bsSetCSS denotes the category of bisimplicial sets
equipped with the model structure for complete Segal spaces.

What we will do is to construct a relatively simple marked bisimplicial set
which is weakly equivalent to Cls+(Nhc(C), Nhc(W)) in bsSet+CSS. To give
a precise statement of the main theorem, we must introduce some notation
and terminology.

Definition 1.1. Let C be a simplicial category. A simplicial subcategory
W ⊂ C is said to be wide if it satisfies the following pair of conditions:

• W contains all objects of C.

• For every pair of objects X, Y ∈ C, the simplicial subset W(X, Y ) ⊂
C(X, Y ) is a union of components of C(X, Y ).

The pair (C,W) of a simplicial category and its wide simplicial subcategory
will be called a relative simplicial category.

Definition 1.2. Let C be a simplicial category. For each n ≥ 0, we let Cn
denote the ordinary category constructed from the objects of C and the n-
simplices of the hom-simplicial sets of C. The binerve (or the levelwise
nerve) of C is the bisimplicial set Nbi(C) whose nth row Nbi(C)∗,n is the
nerve of Cn. Note that for each n ≥ 1, the nth column Nbi(C)n,∗ of Nbi(C)
is the disjoint union∐

X0,...,Xn∈C

C(Xn−1, Xn)× · · · × C(X0, X1).

If W ⊂ C is a wide simplicial subcategory, we let N+
bi(C,W) denote the

marked bisimplicial set
(
Nbi(C),

∐
X,Y ∈C W(X, Y )

)
.

2In [1], the functor Cls is denoted by N and the functor Cls+ is denoted by (t+)
!. We

changed the notation in the hope that the paper will be more readable, for we will consider
many variations of nerves in this paper.
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We can now state the main result of this paper.

Theorem 1.3 (Theorem 3.1). Let C be a fibrant simplicial category and let
W ⊂ C be a wide simplicial subcategory. There is a weak equivalence

N+
bi(C,W)→ Cls+(Nhc(C),morW0)

of bsSet+CSS which is natural in (C,W), where morW0 denotes the set of
morphisms of W0.

Notice how Theorem 1.3 simplifies the clunky marked bisimplicial set
Cls+(Nhc(C),morW0): If we want to directly work Cls+(Nhc(C),morW0),
we have to construct coherent higher homotopies governing the homotopy
coherent nerve, which is often a hard labor. In contrast, the rows of Nbi(C)
are nerves of ordinary categories, which has no higher structures.

Remark 1.4. The idea of relating the localization of a relative simplicial
category (C,W) (which corresponds to Cls+(Nhc(C),morW0)) to those of
(Cn,Wn) (which correspond to the rows of N+

bi(C,W)) is reminiscent of the
work of Dwyer and Kan: In [8], Dwyer and Kan defined the simplicial lo-
calizations of relative simplicial categories by first defining them for relative
categories, and then applying them levelwise to define them for all cases. We
can therefore interpret Theorem 1.3 as another manifestation of Dwyer and
Kan’s principle that the localization of a relative simplicial category is the
totality of the levelwise localization.

Remark 1.5. By the works of Joyal [13] and Joyal and Tierney [14], it has
been known that Nbi(C) and Cls(Nhc(C)) are weakly equivalent in the com-
plete Segal space model structure. Theorem 1.3 may be regarded as a refine-
ment of this.

In addition to simplifying the marked classification diagrams, Theorem
1.3 also has some interesting applications. We list two of them below.

The first one exploits the connection between localizations and levelwise
localizations we observed in Remark 1.4:

Corollary 1.6 (Corollary 4.1). Let (C,W) and (C′,W′) be relative simplicial
categories, where C and C′ are fibrant. Let f :C→ C′ be a simplicial functor
which carries W into W′. Suppose that for each n ≥ 0, the functor

N(Cn)[N(Wn)
−1]→ N(C′n)[N(W′n)

−1
]
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is a categorical equivalence (i.e., a weak equivalence in the Joyal model
structure). Then so is the functor

Nhc(C)[Nhc(W)−1]→ Nhc(C
′)[Nhc(W

′)
−1
].

Corollary 1.6 is especially useful when C is equal to the ordinary cat-
egory C′0, the 0th level of C′. In this case, the corollary says that if the
functors N(C′0)[N(W′0)

−1] → N(C′n)[N(W′n)
−1] are all categorical equiva-

lences, then so is the functor

N(C′0)N [(W′0)
−1
]→ Nhc(C

′)[N(W′)
−1
].

In other words, the localization of a relative ∞-category (the right hand
side) is equivalent to a localization of an ordinary relative category (the
left hand side). This recovers an observation made by Lurie in the proof
of [18, Proposition 1.3.4.7]. We also remark that in the same part of loc.cit.,
Lurie establishes a very useful criterion for the maps N(C′0)[N(W′0)

−1] →
N(C′n)[N(W′n)

−1] to be a categorical equivalence: This happens if C′ admits
tensoring by ∆1 and W′ contains all homotpy equivalences of C′.

The second application relates the homotopy coherent nerve functor with
Segal’s classical construction of classifying spaces of simplicial categories.

Definition 1.7. [23] Let C be a simplicial category. We let B(C) denote the
diagonal of the bisimplicial set Nbi(C); it is the classifying space of C.

In [10, 2.6.1], Hinich constructed a natural transformation B → Nhc.
(In fact, there is only one such natural transformation, as we will see in
Proposition 2.1.) We then prove the following comparison result:

Corollary 1.8 (Corollary 4.3). Let C be a fibrant simplicial category. The
map

B(C)→ Nhc(C)

is a weak homotopy equivalence.

In the special case where C is a simplicial groupoid, Corollary 1.8 is a
consequence of [2, Theorem 3.6] and [9, A.5.1]. (It was also announced in
[10, Corollary 2.6.3], but its proof relies on 2.6.2 of loc. cit., which has a
gap, as pointed out in [2].) Our proof of Corollary 1.8 uses different ma-
chinery from these earlier results, and this is why we were able to relax the
hypothesis.
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Organization of the paper

In Section 2, we will construct the comparison map B → Nhc. In Section
3, we will prove the main result. Section 4 concerns the applications of the
main result.

Notation and convention

• If C is a category, its nerve will be denoted by N(C).

• By a simplicial category, we mean a category enriched over the cate-
gory of simplicial sets.

• If C is a simplicial category andX, Y ∈ C are its objects, we will write
C(X, Y ) or Map(X, Y ) for the hom-simplicial set from X to Y .

• We understand that the category Cat∆ is equipped with the Bergner
model structure [5].

• We understand that the category sSet+ is equipped with the model
structure for marked simplicial sets [18, proposition 3.1.3.7, Remark
3.1.4.6].

• If X is a bisimplicial set and n ≥ 0 is an integer, then the nth column
(resp. nth row) of X is the simplicial set Xn,∗ (resp. X∗,n). The nth
column of X is denoted by Xn.

• If C is a simplicial category, its homotopy coherent nerve Nhc(C) is
the simplicial set whose n-simplices are the simplicial functors C[∆n]→
C. Here C[∆n] denotes the simplicial category whose objects are the
integers 0, . . . , n. If 0 ≤ i ≤ j ≤ n are integers, the hom-simplicial
set C[∆n](i, j) is the nerve of the poset Pi,j = {S ⊂ {0, . . . , n} |
minS = i, maxS = j}, ordered by inclusion. The composition of
C[∆n] is induced by the operation of union.3

3It is also common to define C[∆n](i, j) to be the nerve of the opposite of Pi,j . Our
convention follows [17]. The only part that will be affected by the choice of conventions is
the proof of Proposition 2.1 and the descriptions of maps appearing in Remarks 2.4 and 2.5.

32



K. ARAKAWA LEVELWISE NERVES OF SIMPLICIAL CATEGORIES

2. The comparison map

In this section, we will construct a comparison map B(C)→ Nhc(C) (where
B is as in Definition 1.7), which will be the source of all the other com-
parison maps we consider in this note. The comparison map is obtained as
the composite of two natural transformation constructed in [10, 2.6.1], but
we give a direct approach. In fact, there is only one natural transformation
B → Nhc:

Proposition 2.1. There is a unique natural transformation B → Nhc of
functors Cat∆ → sSet.

For the proof of Proposition 2.1 and for later discussions, we introduce a
bit of notation.

Notation 2.2. Let n ≥ 0 and letK be a simplicial set. We define a simplicial
category [n]K as follows: Its objects are the integers 0, . . . , n. The hom-
simplicial sets are given by

[n]K(i, j) =

{∏
i<k≤jK if i ≤ j,

∅ if i > j.

The composition is defined by concatenation.

Remark 2.3. Let C be a simplicial category and let K be a simplicial set.
We can define an ordinary category CK as follows: The objects of CK are
the objects of C. The hom-sets are given by CK(X, Y ) = sSet(K,C(X, Y )).
For each n ≥ 0, a functor [n] → CK can be identified with a simplicial
functor [n]K → C.

Proof. For each n ≥ 0, set B[∆n] = [n]∆n . By the Yoneda lemma, the
simplicial categories {B[∆n]}n≥0 can be organized into a cosimplicial ob-
ject of Cat∆ in such a way that the functor B is naturally isomorphic to
Cat∆(B[∆•],−). It suffices to show that there is a unique morphism C[∆•]→
B[∆•] of cosimplicial simplicial categories.

We begin by showing the uniqueness. Suppose there is a map f :C[∆•]→
B[∆•] of cosimplicial simplicial categories. For each n ≥ 0, the map
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fn:C[∆
n] → B[∆n] must act on the identity maps on objects because fn

is natural in n. If 0 ≤ i ≤ j ≤ n are integers, then the map

fn:C[∆
n](i, j)→ B[∆n](i, j)

is completely determined by its values of the vertices, for both C[∆n](i, j)
and B[∆n](i, j) are nerves of posets. Since every vertex of C[∆n](i, j) is
a composition of morphisms in the image of maps C[∆1] → C[∆n], we
deduce that fn is completely determined by f1. Now there are exactly two
simplicial functors C[∆1] → B[∆1] which are bijective on objects (because
C[∆1](0, 1) = ∆0 and B[∆1](0, 1) = ∆1.) If f1 carried the unique vertex of
C[∆1](0, 1) to the vertex 1 ∈ B[∆1](0, 1), then the map

f2:C[∆
2](0, 2)→ B[∆2](0, 2)

would carry the vertices {0, 2} and {0, 1, 2} to (2, 2) and (2, 1), respectively.
But since there is no edge (2, 2) → (2, 1) in B[∆2](0, 2), this is impossi-
ble. Hence there is only a unique choice for f1, completing the proof of the
uniqueness.

For existence, define fn:C[∆n]→ B[∆n] as follows: On objects, fn acts
by the identity map. For each 0 ≤ i ≤ j ≤ n, the map C[∆n](i, j) →
B[∆n](i, j) is the nerve of the poset map Pi,j → [n]× · · · × [n]︸ ︷︷ ︸

j−i times

which as-

signs to each element {i = i0 < · · · < ik = j} ∈ Pi,j the element

(ik−1, . . . , ik−1︸ ︷︷ ︸
ik−ik−1 times

, . . . , i0, . . . , i0︸ ︷︷ ︸
i1−i0 times

) ∈ [n]× · · · × [n].

It is easy to check that the simplicial functors {fn}n≥0 indeed define a map
of cosimplicial objects of Cat∆. The claim follows.

Remark 2.4. Recall that the diagonal of a bisimplicial set X is equal to the
coend

∫ [n]∈∆op

X∗,n × ∆n. Therefore, given a simplicial category C, the
map B(C) → Nhc(C) of Proposition 2.1 may equally well be specified by a
compatible family of maps {ϕn:N(Cn) × ∆n → Nhc(C)}n≥0. Unwinding
the definitions, the composite N(Cn) × {i} ↪→ N(Cn) × ∆n → Nhc(C) is
equal to the composite

N(Cn)
i∗−→ N(C0)→ Nhc(C),
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where the first map is the restriction along the inclusion [0] ∼= {i} ↪→ [n] and
the second map is induced by the simplicial functor C0 → C. In other words,
the map ϕn is the canonical natural transformation between n + 1 functors
N(Cn)→ Nhc(C) corresponding to the n+ 1 elements of [n].

Remark 2.5. Recall that the diagonal of a bisimplicial set X is equal to the
coend

∫ [n]∈∆op

∆n × Xn,∗. Therefore, given a simplicial category C, the
map B(C) → Nhc(C) of Proposition 2.1 may equally well be specified by a
compatible family of maps {ψn: ∆n ×Nbi(C)n → Nhc(C)}n≥0. Unwinding
the definitions, the map ψn admits the following description:

1. If n = 0, then ψn is the inclusion Nbi(C)0
∼= obC ↪→ Nhc(C).

2. Let n ≥ 1 and let σ: ∆m → Nbi(C)n be an m-simplex of Nbi(C)n, cor-
responding to a simplicial functor σ′: [n]∆m → C. Then the composite

∆n ×∆m id×σ−−−→ ∆n ×Nbi(C)n
ψn−→ Nhc(C)

is adjoint to the composite

C[∆n ×∆m]
χ−→ [n]∆m

σ′
−→ C.

Here χ is defined on objects by χ(i, j) = i. Given integers 0 ≤ i ≤
i′ ≤ n and 0 ≤ j ≤ j′ ≤ m, let P(i,j),(i′,j′) denote the poset of linearly
ordered subsets S ⊂ [n]× [m] such that minS = (i, j) and maxS =
(i′, j′). Then the simplicial set C[∆n ×∆m]((i, j), (i′, j′)) is the nerve
of P(i,j),(i′,j′), and the map C[∆n × ∆m]((i, j), (i′, j′)) → [n]∆m(i, i′)
is induced by the poset map

P(i,j),(i′,j′) →
∏
i<p≤i′

[m],

S 7→ (max{q ∈ [m] | (i′′, q) ∈ S for some i′′ < p})i<p≤i′ .

3. Main result

In this section, we state and prove the main result of this paper.
Here is the statement of the main result.
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Theorem 3.1. Let C be a fibrant simplicial category and let W ⊂ C be a
wide simplicial subcategory. The maps {ψn: ∆n × Nbi(C)n → Nhc(C)}n≥0
of Remark 2.5 induces a weak equivalence

θ:N+
bi(C,W)→ Cls+(Nhc(C),morW0)

of bsSet+CSS.

The remainder of this section is devoted to the proof of Theorem 3.1. We
begin by establishing the unmarked version of Theorem 3.1:

Proposition 3.2. Let C be a fibrant simplicial category. The maps {ψn: ∆n×
Nbi(C)n → Nhc(C)}n≥0 of Remark 2.5 induces a weak equivalence

Nbi(C)→ Cls(Nhc(C))

of bsSetCSS.

Proof. Observe that the Reedy fibrant replacement N f
bi(C) of Nbi(C) is a

Segal space; indeed, for each n ≥ 2, the square

Nbi(C)n Nbi(C)n−1

Nbi(C)1 Nbi(C)0

induced by the inclusions [1] ∼= {n − 1 < n} ↪→ [n] ←↩ [n − 1] is homo-
topy cartesian. Therefore, by [21, Theorem 7.7], it suffices to show that the
induced map N f

bi(C) → Cls(Nhc(C)) is a Dwyer–Kan equivalence. Since
the map Nbi(C)0,0 → Cls(Nhc(C))0,0 is bijective, it suffices to show that the
square

Nbi(C)1 Cls(Nhc(C))1

Nbi(C)0 ×Nbi(C)0 Cls(Nhc(C))0 × Cls(Nhc(C))0

is homotopy cartesian. For each pair of objects X, Y ∈ C, the induced map
between the fibers of the vertical arrows over (X, Y ) can be identified with
the homotopy equivalence

C(X, Y )→ HomNhc(C)(X, Y )
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of [19, Tag 01LF] (see Remark 2.5). Hence the square is homotopy cartesian,
as required.

Before we proceed, we recall a few facts on marked bisimplicial sets.

Notation 3.3. [1, Definition 3.1] We let diag+: bsSet+ → sSet+ denote the
functor

diag+(X,S) = (diag(X), S1),

where diag(X) = {Xn,n}n≥0 denotes the diagonal of X . The functor diag+

is the left adjoint of the functor Cls+: sSet+ → bsSet+.

Theorem 3.4. There is a simplicial model structure on bsSet+, denoted by
bsSet+CSS, which has the following properties:

1. The cofibrations are the monomorphisms.

2. The fibrant objects are the marked bisimplicial sets of the form X♮ =
(X,Xhoeq), where X is a complete Segal space and Xhoeq ⊂ X1 is the
union of components spanned by homotopy equivalences of X.

Moreover, the model structure has the following additional properties:

3. If X is a complete Segal space and (A, S) is a marked bisimplicial set,
then Map

(
(A, S),X♮

)
is the component of Map(A,X) spanned by the

maps A → X which carries S into Xhoeq. Here Map(A,X) denotes
the simplicial enrichment of bsSet adapted to the complete Segal space
model structure [21, §2.3].

4. The adjunction diag+: bsSet+CSS

−→
⊥
←−

sSet+: Cls+ is a Quillen equiva-

lence.

5. The model structure bsSet+CSS is a Bousfield localization of the Reedy
model structure on bsSet+ =

(
sSet+

)∆op

.

6. The functor Cls+: sSet+ → bsSet+CSS preserves and reflects all weak
equivalences.

Proof. The first half is established in [1, Theorem 2.9]. Point (3) is proved
in [1, Remark 2.7], points (4) and (5) are proved in [1, Theorem 3.4], and
point (6) is proved in [1, Theorem 4.2].
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Notation 3.5. Let (C,W) be a relative simplicial category. We define a
marked bisimplicial set B+(C,W) by

B+(C,W) = diag+N+
bi(C,W).

We now arrive at the proof of Theorem 3.1.

Proof of Theorem 3.1. We prove the theorem in four steps.

(Step 1) Assume first that W ⊂ C is the smallest wide simplicial sub-
category containing all homotopy equivalences of C. If X is a complete
Segal space, then every morphism Nbi(C) → X of bisimplicial sets in-
duces a map N+

bi(C,W) → X♮ of marked bisimplicial sets. Indeed, we
only have to show that the induced map N(C0) → X∗,0 between the 0th
row respects the markings (because Xhoeq ⊂ X is a union of components),
which is obvious. Likewise, any map Cls(Nhc(C))→ X lifts to a morphism
Cls+(Nhc(C), Nhc(W)) → X♮. Therefore, by properties (1) through (3) of
Theorem 3.4, it suffices to show that the underlying map

Nbi(C)→ Cls(Nhc(C))

of θ is a weak equivalence of bsSetCSS. This is nothing but Proposition 3.2.

(Step 2) According to Theorem 3.4, the functor Cls+: sSet+ → bsSet+CSS is
a right Quillen equivalence and preserves all weak equivalences. Therefore,
θ is a weak equivalence of bsSet+CSS if and only if the map

B+(C,W)→ (Nhc(C),morW0)

which is adjoint to θ is a weak equivalence of sSet+.

(Step 3) Suppose that W contains all homotopy equivalences of C. We ob-
serve that:

• The marked edges of B+(C,W) are precisely the inverse image of
morW0 under the map B(C) → Nhc(C); this is because (C,W) is a
relative simplicial category.

• The map B(C) → Nhc(C) induces a surjection between the set of
edges; this follows by inspection.
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Since morW0 contains all equivalences ofNhc(C), the claim now follows by
combining the above observations, Steps 1 and 2, and the definition of weak
equivalences of marked simplicial sets.

(Step 4) We prove the theorem in the general case. Let W′ ⊂ C denote
the smallest wide simplicial subcategory containing W and all homotopy
equivalences of C. The mapN+

bi(C,W)→ N+
bi(C,W

′) is a weak equivalence
of bsSet+CSS, and the map (Nhc(C),morW0)→ (Nhc(C),morW′0) is a weak
equivalence of sSet+. The claim now follows from part (6) of Theorem 3.4.

Remark 3.6. Let C be a fibrant simplicial category and let W ⊂ C be a wide
simplicial subcategory. As we saw in Step 2 of the proof of Theorem 3.1,
Theorem 3.1 implies that the map

B+(C,W)→ (Nhc(C),morW0)

is a weak equivalence of marked simplicial sets. Since the geometric realiza-
tion functor models homotopy colimits in simplicial model categories ([22,
Theorem 5.2.3], [11, Lemma 15.3.9]), and since diag+: bsSet+ → sSet+ is
nothing but the geometric realization functor, we may interpret Theorem 3.1
as saying that the localization Nhc(C)[Nhc(W)−1] is a homotopy colimit of
the simplicial∞-category [n] 7→ N(Cn)[N(Wn)

−1]. This point of view was
articulated by Lurie in [18, Proposition 1.3.4.14]; in fact, Theorem 3.1 can
also be proved using Lurie’s result (and Theorem 3.4), though the proof will
be a little longer.

4. Applications

We now list two applications of Theorem 3.1.

Corollary 4.1. Let (C,W) and (C′,W′) be relative simplicial categories,
where C and C′ are fibrant. Let f :C → C′ be a simplicial functor which
carries W into W′. If for each n ≥ 0, the map

(N(Cn),morWn)→ (N(C′n),morW′n)
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is a weak equivalence of marked simplicial sets, then the map

(Nhc(C),morW0)→ (Nhc(C
′),morW′0)

is also a weak equivalence.

Proof. By hypothesis, the map N+
bi(C,W) → N+

bi(C
′,W′) induces a weak

equivalence of marked simplicial sets in each row. Thus, by part (5) of The-
orem 3.4, it is a weak equivalence of bsSet+CSS. It follows from Theorem 3.1
that the map Cls+(Nhc(C),morW0) → Cls+(Nhc(C

′),morW′0) is a weak
equivalence of bsSet+CSS. Using part (6) of Theorem 3.4, we deduce that the
map (Nhc(C),morW0)→ (Nhc(C

′),morW′0) is also a weak equivalence of
sSet+, and we are done.

Remark 4.2. We do not know if the converse of Corollary 4.1 holds. We
expect that this is false, given that the proof of the corollary relies on point
(5) of Theorem 3.4, which only gives a sufficient condition for a map of
bsSet+CSS to be a weak equivalence. However, we are not aware of explicit
counterexamples.

Corollary 4.3. Let C be a fibrant simplicial category. The map

B(C)→ Nhc(C)

of Proposition 2.1 is a weak homotopy equivalence.

Proof. By definition, every weak equivalence of marked simplicial sets in-
duces a weak homotopy equivalence between the underlying simplicial sets
[17, Proposition 3.1.3.3]. It will therefore suffice to show that the map
B+(C,C≃)→ (Nhc(C), (C

≃)0) = Nhc(C)
♮ is a weak equivalence of marked

simplicial sets, where C≃ ⊂ C denotes the smallest wide simplicial subcate-
gory containing all equivalences of C. This is immediate from Theorem 3.1
(and part (4) of Theorem 3.4).
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