\ CAHIERS DE TOPOLOGIE ET o
A0 ~) GEOMETRIE DIFFERENTIELLE ~ VOLUME LXVI-4 (2025) € ey
Y, CATEGORIQUES &%

FIBRATIONS OF DOUBLE
GROUPOIDS, II: CONNECTIONS TO
SIMPLICIAL SETS AND
TOPOLOGICAL SPACES.

Antonio M. CEGARRA

Résumé. Dans ce deuxieme article d’une série en deux parties sur les fibra-
tions de groupoides doubles, nous explorons la relation entre les fibrations de
groupoides doubles et les fibrations de Moerdijk d’ensembles bisimpliciaux
ainsi que les fibrations de Hurewicz d’espaces topologiques.

Abstract. In this second paper of a two-part series on double groupoid fi-
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both (Moerdijk) fibrations of bisimplicial sets and (Hurewicz) fibrations of
topological spaces.
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Introduction and summary.

In this companion paper to [4], we demonstrate the relationship between fi-
brations of double groupoids and simplicial as well as topological fibrations.
We will adhere to the notation introduced in the aforementioned paper.

The construction of a topological space |.A| from a double groupoid A
is well-known and proceeds as follows: the geometric realization |A| =
|diagNN.A| is the space defined by first taking the double nerve, which is
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a bisimplicial set, and then geometrically realizing the diagonal simplicial
set. A main result in [5] and [3] states that the functor A — |.A| induces an
equivalence between the homotopy category of double groupoids with the
filling condition and the category of homotopy 2-types. The homotopy dou-
ble groupoid construction X — 11X, for topological spaces X, provides a
quasi-inverse functor.

Moving from double groupoids to spaces, the main result here asserts
that a double functor between double groupoids F' : A — B is a fibration if
and only if the induced simplicial map diagNNF : diagNNA — diagNNB
is a Kan fibration. Hence, each fibration of double groupoids F': A — B in-
duces a Hurewicz fibration on geometric realizations |F'| : |A| — |B|. Both
the Mayer-Vietoris and homotopy sequences defined by fibrations of double
groupoids in [4] provide purely algebraic descriptions of the corresponding
Mayer-Vietoris and homotopy sequences defined in the topological context
by taking geometric realizations.

Conversely, we prove that if f : X — Y is a Hurewicz fibration of
topological spaces, then the induced double functor on the homotopy double
groupoids mn” I 11”X — M"Y is a fibration. For applications, we show
that both the lower end up to dimension two of the homotopy sequence and
the homotopy 2-groupoid of a Hurewicz fibration of spaces can be recovered
using a fibration of double groupoids.

1. Relationship between fibrations of double groupoids and
Moerdijk bisimplicial fibrations.

Except for explicit references, we refer to [8] for all related to (bi)simplicial
sets that we use in the paper.

For a double groupoid A, let NN.A denote its double nerve; that is, the
bisimplicial set where a (p, ¢)-simplex is a matrix (c;;) of p x ¢ horizontally
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and vertically composable boxes of the form

qu flq
(pq * Ap-1q T (1q 3 Qoq
quT Qp,q Tmp-lq a:qu Ql,q Tqu
Apg-1 % Ap-1g-1 T A1g G~ A0g-1
) T ) T
T fr1 T T o fuu 71
Ap1 < Qp-11 s 11 < Qo1
xplT Qp,1 Tv’cp—ll I11T Qag,1 Ta:m
QApo —— Q. e a1 ——a
p0 <5 Ap-10 10 €5 oo

The bisimplicial face maps are the natural ones, induced by horizontal and
vertical composition of boxes in .4, and the degeneracy ones by appropriate
identity boxes. We picture NN.A so that the set of (p, ¢)-simplices is the
set in the p-th row and g¢-th column. Thus, its p-th column, NNA,,, is the

nerve of the “vertical” groupoid whose objects are strings - f%p o of P
composable horizontal arrows in .4 and whose arrows are length p sequences
of horizontally composable boxes

9p g1
,,,,,,,,,, (_(_
Tool o fan
<_ 4444444444 .
fp fl

Analogously, the ¢g-th column, NN.A4,,, is the nerve of the “horizontal” groupoid
whose objects are length ¢ sequences of composable vertical morphisms in
A and whose arrows are sequences of ¢ vertically composable boxes. In par-
ticular, NN 4y, and NN .4, are, respectively, the nerves of the groupoids of
vertical and horizontal morphisms of .A.

Similar to the nerve functor with groupoids and simplicial sets, the dou-
ble nerve functor embeds the category of double groupoids as a full subcat-
egory into the category of bisimplicial sets.

There is a closed model structure in the category of bisimplicial sets,
the so-called Moerdijk structure [12], [8, Chap. IV, §3.3], in which a fi-
bration is a bisimplicial map f : X — Y which induces a Kan fibration
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diagf : diagX — diagY between the associated diagonal simplicial sets.
The following theorem generalizes to double groupoids the fact proven by
Moerdijk and Svensson for 2-groupoids in [13, Proposition 2.1 (i1)].

Theorem 1.1. A double functor between double groupoids F : A — B is a
fibration if and only if the induced simplicial map

diagNNF' : diagNNA — diagNNB
is a fibration of simplicial sets.
Proof. (i)=- (i1): We must prove that every lifting-extension problem

A} —— diagNN.A
N

?
[ ldiagNNF

A" —— diagNNB

has a solution. For n > 3, this is a direct consequence Lemma 8 of [5],
namely: If G is a double groupoid and n > 3, then every extension problem

A} —— diagNNG
T

7.

An

has a solution and it is unique.
For n = 2 and k = 0, let us consider the lifting-extension problem

A2 ki) diagNN.A (1)
L
ey
(a21 a11) diagNNF'
S
A2 Y, diagNNB

Then, «; and «,, are boxes of A of the form

e Tm T e sz
T T

a



A. M. CEGARRA FIBRATIONS OF DOUBLE GROUPOIDS

for some horizontal morphisms f; and f, and some vertical morphisms
and x», all with the same domain, say a, such that

T B22 T B2 Tym

Fa, = and Fay = Bi.

[ oo

In particular, F'z1 = Y02 yo1, F)f1 = g20 910, F'v2 = yo1, and Ffs = gyo.
Since I is a fibration, we can choose boxes ¢ and 7 in A of the form

fi
. —.
el ot
a(j. .
f
such that
912 .
920 gio
Fo = c—+ and F71= Tﬂé\i T B Tyo_f

1

91_0
The boxes a1, as, o, and 7 fit together defining a 2-simplex (sz Zﬁ) of
diagNNA, in which

Q1] = Taz T:}cz Qg1 = TT‘VTO[;‘T
= e —
fa h Tt
.%. .%.&.
To.-h )‘\Il T aq T o T
Q2 = 44 Qo = — g
I R
.%. .%.(—.

This solves the lifting-extension problem (1) since, on the one hand, a;;; =
a9 and
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[P R [e%} o -h

>
> Q

— v ad a2
a a
and, on the other hand, Fa;; = Fag = (11,
.
B12

Foaqg = B | = 612, Foag = T B21 T B11 T Bh T: 521,
. <— . . . . .

A1
. <— .

and

B22 Bi2 n

s)
S]

Fogy =| B2 | Bu | B | = Paa.

- - -h
By | B 1

s}

a

For n = 2, the case in which k& = 2 is dual of the case k¥ = 0 above,

and the case in which £ = 1 is easier: let us consider the lifting-extension
problem

A2 (00,7 2) diagNNA 2)
(a22 alz)?
21 0411___.,,~~-"”' diagNNF
o <222 gl2>
Az 2 diagNNB

10
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Then, o and o are boxes of A of the form

. o

Ta() Tx() x2T 042T

0 .
fo

for some object a, such that Fag = 99 and Fas = [1;. Since F' is a
fibration, we can choose boxes 1, and ap; in A of the form

fo
. =,
xOT a12T TQQI /l\rQ
A .
fa

such that F'ayp = (12 and Fag; = (33;. Then, the 2-simplex (O‘O 0‘12> of

Q21 Q2
diagNNA solves the lifting-extension problem (2).
Let us discuses finally the case in whichn = 1 and k = 0 (the case k = 1
is parallel). Consider the extension-lifting problem

Ay —Ce) dingNNA 3)

2
[ et JdiagNNF

AP, diagNNB
given by an object a; of A and a box (3 of B of the form
1]
: <_g Fay

Since [ is a fibration, we can first choose a vertical morphism z and a hori-
zontal morphism f, both with source a;, such that Fx = y and Ff = g, and
then to find a box « of A of the form

Taw

‘<7a1

11
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such that Fla. = (. This « is a solution to the lifting-extension problem (3).
(i) = (i): To prove that F' restricts to a fibration between the groupoids
of horizontal morphisms, let a be an object of A andlet g : Fa — ba
horizontal morphism of B. Since diagNNF' : diagNNA — diagNNB is a
fibration of simplicial sets, there is a solution, say «, to the extension-lifting
problem (3) in which a; = a and § = [7. Then « is a box of A of the form

. (— .

[

ey
and satisfies that Fa = I}. In particular, if f : @ — ' is the horizontal
source of «, then Ff = g. Dually, we prove that prove that I’ restricts to a
fibration between the groupoids of vertical morphisms.

Suppose now the lifting problem for /'
f Fy

A
e T e
[

. < 44444444 .

Since diagNNF is a fibration, there is a solution, say (O‘” a”), to the

Q21 a1
extension-lifting problem (1) in which oy = I‘JZ, oy = 12, oo = I}f, B2 =
Iz, Bo1 = B3, and By = I . Then, the box sy satisfies that Fan, = By =
[ and, since agy = I}. Moreover, since oy; = 11;, Qg1 1s of the required form

]

Theorem 1.1 above, for the double functor A — x*, gives the following
corollary. (Cf. [5, Theorem 8].)

Corollary 1.2. A double groupoid A satisfies the filling condition if and only
if diagNNA is a Kan complex.

By [5, Theorem 9], for every object a of a double groupoid A with the
filling property, there are natural isomorphisms
m(A,a) 0<n <2,

mn(diagNNA, a) = { 0 >3 4)

12
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Then, for every fibration of double groupoids F' : A — B where B has
the filling property and each object a of A, the 9-term exact sequence in [4,
Theorem 5.1] gives the exact sequence on homotopy groups of the induced
fibre sequence of simplicial sets

diagNNF
e

(diagNNF;, a) < (diagNNA, a) (diagNNB, b),

where b = Fa and F, is the fibre of F' over b (see, e.g., [8, Lemma 7.3]).

2. Relationship between fibrations of double groupoids and
topological Hurewicz fibrations.

Let A be a double groupoid. When the bisimplicial set NN A is regarded as
a simplicial object in the simplicial set category and one takes geometric re-
alizations, then one obtains a simplicial space A°® — Top, p — |NNAp7. ,
whose Segal realization is taken to be |.A|, the geometric realization of A.
As there are natural homeomorphisms [15, Lemma in page 86]

p = INNA,.|| = [diagNNA| = |p — [NNA, |,

one usually takes
|A| = |diagNNA|.

By [14], [16], and [6], the functor geometric realization | | carries fibra-
tions of simplicial sets to Hurewicz fibrations of spaces. Hence Theorem 1.1
gives the following.

Theorem 2.1. If F' : A — B is a fibration of double groupoids, then the
induced map |F| : | A| — |B| is a Hurewicz fibration.

By [5, Theorem 9], for every object a of a double groupoid .4 with the
filling property, there are natural isomorphisms

(A ,a) 0<n<2,
wn<|A\,|ar>g{ A ®)

n > 3.

13
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By [11, Corollary 11.6], the functor geometric realization A — |A],
from the category of double groupoids to the category of compactly gener-
ated Hausdorff spaces, preserves pullbacks. Then, in the situation of double
functors between double groupoids

A

|
B -8B
where Fis a fibration and both " and B have the filling property, the Mayer-

Vietoris exact sequences in [4, Theorem 4.1] give the Mayer-Vietoris exact
sequences of the pullback of spaces

B'| x5y [ Al — | A]

l o lIFI

|B'| ——— 8]

(Cf. [7, Theorem], [1, Corollary 4.2]).

In particular, for every fibration of double groupoids F' : A — B where B
has the filling property, and every object a of A, the 9-term exact sequence
in [4, Theorem 5.1] gives the exact sequence on homotopy groups of the
induced fibre sequence

(Fis lal) = (1AL, la)) 25 (18], 1)),

where b = Fa and Fj,; = |F|~!|b| is the fibre of | '] over |b].

Transitioning now from topological spaces, every space X has an asso-
ciated homotopy double groupoid, which captures the homotopy 2-type of
the space. The data of this double groupoid, denoted by

m°x,

are as follows. (For details, see [5, §4].)
The objects of X are the paths in X, that is, the continuous maps
u: I — X, from the interval / = [0, 1] to X.

14
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The groupoid of horizontal morphisms in I1°X is the category with a
unique morphism (u’,u) : u — ' for each pair (u/, u) of paths in X such
that u/(1) = w(1). Composition is defined by (v”,u)(v/,u) = (v, u).
Similarly, the groupoid of vertical morphisms in 1°X is the category having
a unique morphism (v, u) : u — v for each pair (v,u) of paths in X such
that v(0) = u(0).

A box [] in II”X with boundary as in

v —w

CH|

u —u

is the equivalence class of a square in X of the form

a(t,0) = u(t),
a(0,t) = v(t),
a(l,t) =u' (1 —1),
alt,1) =2'(1 —t).

Two such mappings «, o are equivalent, and then represent the same box in
I1°X, whenever they are related by a homotopy relative to the sides of the
square. Horizontal and vertical composition of boxes in n°x

w' +—w
V' e— v — T (] T
@) | el e

U —u' +—u T [a]
u +—u

are defined in the traditional way by pasting squares in X along a common

15



A. M. CEGARRA FIBRATIONS OF DOUBLE GROUPOIDS

pair of sides

,UH w/

.<—. .<—/.
N)/ o w!’ of \y

v . , w . '
a \“1 y‘ «

The horizontal and vertical identity boxes

W
(]

I](ﬂuu) - TET I?u/,u) =

/

u u

are respectively defined by the squares C*, CV : I? — X given by

n o Jolt =ty <t o [ult+t) t4+t <1,
C(t’t)_{u(t—t’) t>p O = W2 —t—t) t+t >1.

For a point z € X, let ¢, : I — X denote the constant path ¢, (t) = z.
Then, the identity box of ¢, in %X is

where C,, : I? — X is the constant square C,.(¢,t') = .

Theorem 2.2. If f : X — Y is a Hurewicz fibration of spaces, then the
induced double functor f, : °X - 1% isa fibration of double groupoids.

Proof. The fact that the restrictions of f, to the groupoids of morphisms of
I1”X and 1Y are fibrations follows directly from the path-lifting property
of f.

Suppose given a lifting problem for f,

2’(—1} fuv'+— fo
ﬂal?T A
C o u u<+— fu

16
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defined by paths u, v, v" : I — X, with 4(0) = v(0) and v(1) = v'(1), and a
square 3 : I? — Y of the form

fo'

Y
fvT 5 lﬂ
b

fu

Leto/ : (0 x I)U (I x 8I) = X be the map given b
pPg y

Since f is a fibration and fo' = [3|(0xryu(rxar), the extension-lifting problem

(0x1)u(1xal)%>x

[x]———Y
has a solution, say a.. Then « is a square in X of the form

,U/

. (— .
-
which represents a box of X
v —v
T
u +—u
such that f.[a] = [fa] = [3]. O

From here on, we consider a pointed Hurewicz fibration of topological
spaces
f(Xx) = (Yyy).

17
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Let F, = f~'(y) be the fibre of f over y, so that we have the fibre sequence
of pointed spaces

(Fyx) = (X,2) 15 (Vy), ©6)

and let 7, = f.'(c,) be the double groupoid fibre of f, : n°x — 1%y
over ¢y, so that we have the fibre sequence of pointed double groupoids

(o ca) = (II°X, cp) 25 (%Y, ¢,). %)

Theorem 2.3. (i) The double groupoid F., has the filling property.
(7i) There is an injective on objects equivalence of groupoids

c:1F, ~11F,,

between the fundamental groupoid of I, and the fundamental groupoid of
Je,» which carries every point x € I, to the constant path c, and a morphism
[v] : g — x1 of I1F, to the morphism [(c,,v), (V, Coy)] : Coy — Coy Of ILF,
defined by the path

— ®)

Caq

v
(€15 0), (V, Cay)) & Cay O Coy T
C:L‘O

(1ii) There are natural isomorphisms

o (Fey s [¢2]) = mo(Fy, [2])
T (Fe,s Ca) = mi(Fy, ),
To(F,, €2) = Im(iy : mo(Fy, z) = mo(X, 2)).

Proof. (i) This follows from Theorem 2.2 and [4, Proposition 2.6].

(i) The objects of the double groupoid F, are the paths I — F,. We
define the functor ¢ : I1F, — ILF., on objects by x — ¢,. For any two points
T, r1 € F,, a morphism in II%, from ¢, to ¢, is the homotopy class of
a path in %, as in (8), which is determined by a path v : I — F}, such that
v(0) = x¢ and v(1) = xy. If v’ is any other path in F), from z, to x, then
[(Ca1, ), (U, €a0)] = [(Cay, V"), (V' Cqp)] in ILF, if and only if there is a box
in ., of the form

v o

[a] UT

v

18
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That is, if and only if there is a square o : I? — X of the form

v
z1 $ o

o v " 71

such that there is a homotopy fa ~ C,, rel 9/2. By Lemma 2.4 below, that
happens if and only if there is a similar square o/ : [? — F,, with the same
sides. Since this condition simply means that [v'] = [v] in the fundamental
groupoid ITF;,, we conclude with a bijection

¢ : Homnp, (79, 71) & Homnz, (Cues €ay)s [U] = [(Cay,v), (v, €0 )]-

To see that we are in presence of a functor, let v, v, : I — F,, be paths with
U1(0> = Xy, U1<1) =T = UQ(O), and ’UQ(].) = T9. Then, in H.;C;y,

[(C:EQ? ?)2), (027 6561)] ’ [(le,vl), (Ub Cxo)] = [(ng, U)? (U> cIO)]’
where v occurs in a configuration such as in

¢ ’Ugé v

f o]

Czq U1

|

Cag

012

for some square « : I? — F, with boundary as in

v2
T2 1

vToc

o v’ T1

Cxq

Hence, in I1F}, [v] = [v] - [v1].
Finally, since for any path u : I — F,, there is the horizontal morphism

(U, Czy) * Cuqry = W,

the functor c : ITF, — TLF., is actually an equivalence of categories.

19
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~

(ii7) Both the bijection o ., = o[, and the isomorphism 7 (%, , ¢;) =
71 (F,, x) are derived from part (i7) above, which has already been proven.
Let us consider the case n = 2. The abelian group ﬂg(]:cy, c;) consists of

boxes [a] in II°X of the form

Cx

Cx Cx

such that f.[a] = [C,] or, equivalently, of relative to 1> homotopy classes
of squares o : I? — X which are constant z along the four sides of the
square and such that there is a homotopy fa ~ C, relative to /2. Then,
by Lemma 2.4 below, 7 (fcy, ¢,) can be described as the set of of relative to
OI? homotopy classes of squares o : [? — X which are constant z along
the four sides of the square and such that «(7?) C F,, that is, the image of
it ma(Fy, 1) — ma(X, x). O

Lemma 24. If o : I* — X be a square in X such that «(01*) C F, and
there is a homotopy H : fa ~ C, rel OI? then there is a square o : I? —

F), such that |2 = alar2 and a homotopy H' : o ~ o rel OI* such that
FH' = H.

Proof. Leth: (0 x I?) U (I x I*) — X be the map given by

h(0,s,t) = a(s,t), h(r,0,t) =«(0,t), h(r,1,t)=a(l,t),
a a(s, 1).

—
\.CI_) ~
(=}
N~—
=
~
=
»
—_
~—
l

Since f is a fibration and fh = H|ox2)u(rxar2), the extension-lifting prob-
lem
(0x 1)U (I xdI?) " X

]x[xf—g——eY

has a solution, say H’. Now define o/ : I — X by o/(s,t) = H'(1,s,t).
Since,
fo(s,t) = fH'(1,s,t) = H(1,s,t) = Cy(s,t) = v,

o' is actually a square in the fibre F),. [

20
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If we apply Theorem 2.3 to the fibration X — *, then obtain the follow-
ing.

Theorem 2.5. Let X be a topological space.
(1) The double groupoid 11°X has the filling property.
(17) There is an injective on objects equivalence of groupoids

c: 11X ~ I(I1°X),

between the fundamental groupoid of X and the fundamental groupoid of
11°X, which carries every point x € X to the constant path c, and a mor-
phism [u] : zg — x1 of 11X to the morphism [(cy,,u), (U, Czy)] © Coy — Cay
of I1.X defined by the path

Ces S u
((Cars ) (U, Cay)) © Coy ™ Co " T

g

(1ii) For every x € X, there are natural isomorphisms
mo(I1°X, [ea]) = mo(X, [2])
7r1(H(2X, c) =2 m(X,z),
m(I1°X, ¢;) = m(X, 7).

Lemma 2.6. Let u : I — X be a path in X with u(0) = xo and u(1) = z.
Let yo = f(zo) and y1 = f(x1), and let v : I — F,, be a loop in F,, based
at xq. Then, the action [4, (19)] of the morphism

[(Cays 1), (U, Cap)] t Copy = Coy

of TI(I1”X ) on
[(Cxo’ U)? (717 Cwo)] cm (‘Fcyovcxo)

is given by
(Corhealll(ey,,v), (v, ca)] = (a0, V'), (V' 60))] € Ta(Fey, )

wherev' : I — F,, is aloop in F,, based at xy such that, in 11.X,

21



A. M. CEGARRA FIBRATIONS OF DOUBLE GROUPOIDS

Proof. As an object of IT°X, the path v/ : [ — X with fv' = ¢,,, i.e. with

Im(v') C F,,, occurs in a diagram

Cxq

Caq
for some squares o : I? — X and 3 : I? — X of the form
u w
1 z1 S 2o
AT 4]
o ) £ —

Then, ¢’ is a path in F,, based at z; and, in ILX,

]

By Theorems 2.3 and 2.5, the 9-term exact sequence in [4, Theorem 5.1]
defined by the fibre sequence of pointed double groupoids (7),

(2 fe 2
(Fepr€z) = ("X, ;) = (IT'Y, ),
gives the 9-term exact sequence

mo(Fy, ) —— (X, x) ——=ma (Y, y)
m(Fy,z) —— m (X, 2) ——=m (Y, y)
mo(Fy, [2]) —— mo(X, [2]) —— mo (Y, [y]),

which is the bottom end up to dimension 2 of the long exact sequence on
homotopy groups defined by the fibre sequence of pointed spaces (6)

(F,,z) = (X,z) L5 (V,y).

22
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(See, for example, [17, Chap. IV, (8.6)]). Further, by the equivalence be-
tween crossed modules and cat!-groups, the fundamental crossed module in
[4, Proposition 5.2 (7)] gives Loday’s fundamental crossed module [10, 2.7]

m(Fy, ) = m(X, x).

(See [2, §2.6].) Even more, by the equivalence between crossed modules
over groupoids and 2-groupoids, we can see that the fundamental crossed
module in [4, Theorem 5.7] for the fibration f, : néx — 0 correspond,
up to equivalence, to the homotopy 2-groupoid of the fibration f : X —
Y by Kamps and Porter [9]. In effect, the fundamental H(H@X )-crossed
module of the fibration f, : 1°X — MY,

mF — 7T1(H(2X), u s (w1 (Fpa,u) — 7T1(H(2X, u)),
by the equivalence c : [I.X — H(H@X ), gives the I1.X -crossed module

cmF — c*m(H(QX), T (m(]—" Cp) — 7T1(H(2X, Cz)).

Cfe )

This, by Theorems 2.3 and 2.5 and Lemma 2.6 above, is isomorphic to the
crossed module over the fundamental groupoid I11.X,

mF —-mX, z (m(Fa,z) = m(X, 1)),

which justly defines the homotopy 2-groupoid of the fibration f : X — YV
by Kamps and Porter.
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