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Introduction and summary.

In this companion paper to [4], we demonstrate the relationship between fi-
brations of double groupoids and simplicial as well as topological fibrations.
We will adhere to the notation introduced in the aforementioned paper.

The construction of a topological space |A| from a double groupoid A
is well-known and proceeds as follows: the geometric realization |A| =
|diagNNA| is the space defined by first taking the double nerve, which is
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A. M. CEGARRA FIBRATIONS OF DOUBLE GROUPOIDS

a bisimplicial set, and then geometrically realizing the diagonal simplicial
set. A main result in [5] and [3] states that the functor A 7→ |A| induces an
equivalence between the homotopy category of double groupoids with the
filling condition and the category of homotopy 2-types. The homotopy dou-
ble groupoid construction X 7→ Π

(2
X , for topological spaces X , provides a

quasi-inverse functor.
Moving from double groupoids to spaces, the main result here asserts

that a double functor between double groupoids F : A → B is a fibration if
and only if the induced simplicial map diagNNF : diagNNA → diagNNB
is a Kan fibration. Hence, each fibration of double groupoids F : A → B in-
duces a Hurewicz fibration on geometric realizations |F | : |A| → |B|. Both
the Mayer-Vietoris and homotopy sequences defined by fibrations of double
groupoids in [4] provide purely algebraic descriptions of the corresponding
Mayer-Vietoris and homotopy sequences defined in the topological context
by taking geometric realizations.

Conversely, we prove that if f : X → Y is a Hurewicz fibration of
topological spaces, then the induced double functor on the homotopy double
groupoids Π

(2
f : Π

(2
X → Π

(2
Y is a fibration. For applications, we show

that both the lower end up to dimension two of the homotopy sequence and
the homotopy 2-groupoid of a Hurewicz fibration of spaces can be recovered
using a fibration of double groupoids.

1. Relationship between fibrations of double groupoids and
Moerdijk bisimplicial fibrations.

Except for explicit references, we refer to [8] for all related to (bi)simplicial
sets that we use in the paper.

For a double groupoid A, let NNA denote its double nerve; that is, the
bisimplicial set where a (p, q)-simplex is a matrix (αij) of p× q horizontally
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and vertically composable boxes of the form

apq
αp,q

ap-1q
fpq
oo · · · a1q

α1,q

a0q
f1q
oo

apq-1
↑

xpq

OO

ap-1q-1
↑

xp-1q
OO

fpq-1

oo · · · a1q
↑

x1q

OO

a0q-1
↑f1q-1

oo

x0q

OO

...
...

...
...

↑
ap1

αp,1

↑
ap-11

fp1
oo · · · ↑

a11
α1,1

↑
a01

f11
oo

ap0

xp1

OO

ap-10fp0
oo

xp-11
OO

· · · a10

x11

OO

a00

x01

OO

f10
oo

The bisimplicial face maps are the natural ones, induced by horizontal and
vertical composition of boxes in A, and the degeneracy ones by appropriate
identity boxes. We picture NNA so that the set of (p, q)-simplices is the
set in the p-th row and q-th column. Thus, its p-th column, NNAp•, is the

nerve of the “vertical” groupoid whose objects are strings · fp← · · · f1← · of p
composable horizontal arrows inA and whose arrows are length p sequences
of horizontally composable boxes

·
αp

·gp
oo

···
·

α2

·
α1

oo ·g1
oo

·

OO

·

OO

fp
oo ·

OO

·

OO

oo ·
f1
oo

OO

Analogously, the q-th column, NNA•q, is the nerve of the “horizontal” groupoid
whose objects are length q sequences of composable vertical morphisms in
A and whose arrows are sequences of q vertically composable boxes. In par-
ticular, NNA0• and NNA•0 are, respectively, the nerves of the groupoids of
vertical and horizontal morphisms of A.

Similar to the nerve functor with groupoids and simplicial sets, the dou-
ble nerve functor embeds the category of double groupoids as a full subcat-
egory into the category of bisimplicial sets.

There is a closed model structure in the category of bisimplicial sets,
the so-called Moerdijk structure [12], [8, Chap. IV, §3.3], in which a fi-
bration is a bisimplicial map f : X → Y which induces a Kan fibration
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diagf : diagX → diagY between the associated diagonal simplicial sets.
The following theorem generalizes to double groupoids the fact proven by
Moerdijk and Svensson for 2-groupoids in [13, Proposition 2.1 (ii)].

Theorem 1.1. A double functor between double groupoids F : A → B is a
fibration if and only if the induced simplicial map

diagNNF : diagNNA → diagNNB

is a fibration of simplicial sets.

Proof. (i)⇒ (ii): We must prove that every lifting-extension problem

Λn
k� _

��

// diagNNA
diagNNF

��

∆n //

?
::

diagNNB

has a solution. For n ≥ 3, this is a direct consequence Lemma 8 of [5],
namely: If G is a double groupoid and n ≥ 3, then every extension problem

Λn
k

//
� _

��

diagNNG

∆n

?
99

has a solution and it is unique.
For n = 2 and k = 0, let us consider the lifting-extension problem

Λ2
0� _

��

(−,α1,α2)
// diagNNA

diagNNF

��

∆2

(
β22 β12

β21 β11

)
//

(
α22 α12

α21 α11

)
?

55

diagNNB

(1)

Then, α1 and α2 are boxes of A of the form

·
α1

·oo

·

OO

af1
oo

x1

OO ·
α2

·oo

·

OO

af2
oo

x2

OO
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for some horizontal morphisms f1 and f2 and some vertical morphisms x1

and x2, all with the same domain, say a, such that

·

Fα1 = Fα2 = β11.and
β22

·oo

β12

·oo

·

OO

β21

·oo

OO

β11

·oo

y02

OO

·

OO

·g20
oo

OO

·g10
oo

y01

OO

In particular, Fx1 = y02 y01, Ff1 = g20 g10, Fx2 = y01, and Ff2 = g10.
Since F is a fibration, we can choose boxes σ and τ in A of the form

·
σ

·oo

a

x1

OO

·
f−1
2

oo

OO ·
τ

a
f1
oo

·

OO

·oo

x−1
2

OO

such that

·

Fσ = and
·

Fτ = β-v
21

·g20
oo

β-v
11

·g10
oo

·

OO

·oo

OO

·oo

y−1
01

OOβ-h
12

·
g−1
12oo

·
y02

OO

β-h
11

·oo

OO

·
y01

OO

·
g−1
10

oo

OO

The boxes α1, α2, σ, and τ fit together defining a 2-simplex
(
α22 α12

α21 α11

)
of

diagNNA, in which
·

α11 = α2

·oo

·

OO

a
oo

x2

OO

f2
oo

·
α21 = τ -v

·oo

α-h
2

·oo

·

OO

af1
oo

OO

·
f−1
2

oo

OO

·

α12 =
σ-h

·oo

·

OO

α-v
2

a
oo

x1

OO

·

OO

·oo

x−1
2

OO

·

α22 =

α1

·oo

σ

·oo

·

OO

τ

a
oo

OO

α-hv
2

·oo

OO

·

OO

·oo

OO

·oo

OO

This solves the lifting-extension problem (1) since, on the one hand, α11 =
α2 and
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·

= = α1

·
α22

·oo

α12

·oo

·

OO

α21

·oo

OO

α11

·oo

OO

·

OO

·oo

OO

·oo

OO

α1

·oo

σ

·oo

σ-h

·oo

·

OO

τ

a

α-hv
2

oo

OO

·oo

OO

α-v
2

a
oo

OO

·

OO

τ -v

·oo

OO

α-h
2

·oo

OO

α2

·oo

OO

·

OO

a
oo

OO

·oo

OO

a
oo

OO

and, on the other hand, Fα11 = Fα2 = β11,
·

Fα12 = = β12,

·
Fα21 = = β21,β21

·oo

β11

·oo

β-h
11

·oo

·

OO

·oo

OO

·oo

OO

·oo

OO

β12

·oo

·

OO

β11

·oo

OO

·

OO

β-v
11

·oo

OO

·

OO

·

OO

oo

and ·

Fα22 = = β22.

β22

·oo

β12

·oo

β-h
12

·oo

·

OO

β21

a

β11

oo

OO

·oo

OO

β-h
11

a
oo

OO

·

OO

β-v
21

·oo

OO

β-v
11

·oo

OO

β-hv
11

·oo

OO

·

OO

a
oo

OO

·oo

OO

a
oo

OO

For n = 2, the case in which k = 2 is dual of the case k = 0 above,
and the case in which k = 1 is easier: let us consider the lifting-extension
problem

Λ2
1� _

��

(α0,−,α2)
// diagNNA

diagNNF

��

∆2

(
β22 β12

β21 β11

)
//

(
α22 α12

α21 α11

)
?

55

diagNNB

(2)

10
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Then, α0 and α2 are boxes of A of the form

·
α0

·oo

·

OO

af0
oo

x0

OO a

α2

·f2
oo

·
x2

OO

·oo

OO

for some object a, such that Fα0 = β22 and Fα2 = β11. Since F is a
fibration, we can choose boxes α12 and α21 in A of the form

·
α12

·oo

a

x0

OO

·
f2
oo

OO ·
α21

a
f0
oo

·

OO

·oo

x2

OO

such that Fα12 = β12 and Fα21 = β21. Then, the 2-simplex
(

α0 α12

α21 α2

)
of

diagNNA solves the lifting-extension problem (2).
Let us discuses finally the case in which n = 1 and k = 0 (the case k = 1

is parallel). Consider the extension-lifting problem

Λ1
0� _

��

(−,a1)
// diagNNA

diagNNF

��

∆1 β
//

α?
77

diagNNB

(3)

given by an object a1 of A and a box β of B of the form

·
β

·oo

·

OO

Fa1g
oo

y
OO

Since F is a fibration, we can first choose a vertical morphism x and a hori-
zontal morphism f , both with source a1, such that Fx = y and Ff = g, and
then to find a box α of A of the form

·
α

·oo

·

OO

a1f
oo

x
OO
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such that Fα = β. This α is a solution to the lifting-extension problem (3).
(ii)⇒ (i): To prove that F restricts to a fibration between the groupoids

of horizontal morphisms, let a be an object of A and let g : Fa → b a
horizontal morphism of B. Since diagNNF : diagNNA → diagNNB is a
fibration of simplicial sets, there is a solution, say α, to the extension-lifting
problem (3) in which a1 = a and β = Ivg . Then α is a box of A of the form

·
α

·oo

·

OO

aoo

OO

and satisfies that Fα = Ivg . In particular, if f : a → a′ is the horizontal
source of α, then Ff = g. Dually, we prove that prove that F restricts to a
fibration between the groupoids of vertical morphisms.

Suppose now the lifting problem for F

·
� F //∃?

·f
oo

·

OO

·oo

x
OO ·

β

·Ff
oo

·

OO

·
Fx

OO

oo

Since diagNNF is a fibration, there is a solution, say
(
α22 α12

α21 α11

)
, to the

extension-lifting problem (1) in which α0 = Ivf , α2 = Ihx, β22 = IvFf , β12 =

IFa, β21 = β, and β11 = IhFx. Then, the box α21 satisfies that Fα21 = β21 =
β and, since α22 = Ivf . Moreover, since α11 = Ihx, α21 is of the required form

·
α21

·f
oo

·

OO

·oo

x
OO

Theorem 1.1 above, for the double functor A → ∗, gives the following
corollary. (Cf. [5, Theorem 8].)

Corollary 1.2. A double groupoidA satisfies the filling condition if and only
if diagNNA is a Kan complex.

By [5, Theorem 9], for every object a of a double groupoid A with the
filling property, there are natural isomorphisms

πn(diagNNA, a) ∼=

{
πn(A, a) 0 ≤ n ≤ 2,

0 n ≥ 3.
(4)
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Then, for every fibration of double groupoids F : A → B where B has
the filling property and each object a of A, the 9-term exact sequence in [4,
Theorem 5.1] gives the exact sequence on homotopy groups of the induced
fibre sequence of simplicial sets

(diagNNFb, a) ↪→ (diagNNA, a) diagNNF
// (diagNNB, b),

where b = Fa and Fb is the fibre of F over b (see, e.g., [8, Lemma 7.3]).

2. Relationship between fibrations of double groupoids and
topological Hurewicz fibrations.

Let A be a double groupoid. When the bisimplicial set NNA is regarded as
a simplicial object in the simplicial set category and one takes geometric re-
alizations, then one obtains a simplicial space ∆op → Top, p 7→ |NNAp,•|,
whose Segal realization is taken to be |A|, the geometric realization of A.
As there are natural homeomorphisms [15, Lemma in page 86]

|p 7→ |NNAp,∗|| ∼= |diagNNA| ∼= |p 7→ |NNA∗,p||,

one usually takes
|A| = |diagNNA|.

By [14], [16], and [6], the functor geometric realization | | carries fibra-
tions of simplicial sets to Hurewicz fibrations of spaces. Hence Theorem 1.1
gives the following.

Theorem 2.1. If F : A → B is a fibration of double groupoids, then the
induced map |F | : |A| → |B| is a Hurewicz fibration.

By [5, Theorem 9], for every object a of a double groupoid A with the
filling property, there are natural isomorphisms

πn(|A|, |a|) ∼=

{
πn(A, a) 0 ≤ n ≤ 2,

0 n ≥ 3.
(5)
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By [11, Corollary 11.6], the functor geometric realization A 7→ |A|,
from the category of double groupoids to the category of compactly gener-
ated Hausdorff spaces, preserves pullbacks. Then, in the situation of double
functors between double groupoids

A
F
��

B′ G // B

where F is a fibration and both B′ and B have the filling property, the Mayer-
Vietoris exact sequences in [4, Theorem 4.1] give the Mayer-Vietoris exact
sequences of the pullback of spaces

|B′| ×|B| |A| //

��

|A|
|F |
��

|B′| |G|
// |B|

(Cf. [7, Theorem], [1, Corollary 4.2]).
In particular, for every fibration of double groupoids F : A → B whereB

has the filling property, and every object a of A, the 9-term exact sequence
in [4, Theorem 5.1] gives the exact sequence on homotopy groups of the
induced fibre sequence

(F|b|, |a|) ↪→ (|A|, |a|) |F |−→ (|B|, |b|),

where b = Fa and F|b| = |F |−1|b| is the fibre of |F | over |b|.
Transitioning now from topological spaces, every space X has an asso-

ciated homotopy double groupoid, which captures the homotopy 2-type of
the space. The data of this double groupoid, denoted by

Π
(2

X,

are as follows. (For details, see [5, §4].)
The objects of Π

(2
X are the paths in X , that is, the continuous maps

u : I → X , from the interval I = [0, 1] to X .
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The groupoid of horizontal morphisms in Π
(2
X is the category with a

unique morphism (u′, u) : u → u′ for each pair (u′, u) of paths in X such
that u′(1) = u(1). Composition is defined by (u′′, u′)(u′, u) = (u′′, u).
Similarly, the groupoid of vertical morphisms in Π

(2
X is the category having

a unique morphism (v, u) : u → v for each pair (v, u) of paths in X such
that v(0) = u(0).

A box [α] in Π
(2
X with boundary as in

v′

[α]

voo

u′

OO

uoo

OO

is the equivalence class of a square in X of the form

·
α

·v′oo

u′
��

·
v

OO

u
// ·

that is, a map α : I2 → X , whose effect on the boundary ∂I2 is
α(t, 0) = u(t),
α(0, t) = v(t),
α(1, t) = u′(1− t),
α(t, 1) = v′(1− t).

Two such mappings α, α′ are equivalent, and then represent the same box in
Π

(2
X , whenever they are related by a homotopy relative to the sides of the

square. Horizontal and vertical composition of boxes in Π
(2
X

w′

[α′]v′′

[α′]

v′oo

[α]

voo

u′′

OO

u′oo

OO

uoo

OO

woo

v′

[α]

OO

voo

OO

u′

OO

uoo

OO

are defined in the traditional way by pasting squares in X along a common
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pair of sides

· ·v′′oo

u′′

��

α′

·
^^
v′

��
u′

·

v

OO

u
//

α

·

·
α′

α

·w′
oo

u′

��

��
v′

·

·

w

OO

u
//

AA
v

·

The horizontal and vertical identity boxes

v

[Ch]Ih(v,u) =
v

u

OO

u

OO u′

[Cv]Ih(u′,u) =
u

oo

u′ u
oo

are respectively defined by the squares Ch, Cv : I2 → X given by

Ch(t, t′) =

{
v(t′ − t) t ≤ t′,
u(t− t′) t ≥ t′.

Cv(t, t′) =

{
u(t+ t′) t+ t′ ≤ 1,
u′(2− t− t′) t+ t′ ≥ 1.

For a point x ∈ X , let cx : I → X denote the constant path cx(t) = x.
Then, the identity box of cx in Π

(2
X is

cx

[Cx]Icx =
cx

cx cx

where Cx : I2 → X is the constant square Cx(t, t
′) = x.

Theorem 2.2. If f : X → Y is a Hurewicz fibration of spaces, then the
induced double functor f∗ : Π

(2
X → Π

(2
Y is a fibration of double groupoids.

Proof. The fact that the restrictions of f∗ to the groupoids of morphisms of
Π

(2
X and Π

(2
Y are fibrations follows directly from the path-lifting property

of f .
Suppose given a lifting problem for f∗

v′

[α]?

voo

� f∗ //

·

OO

uoo

OO fv′

[β]

fvoo

ū

OO

fuoo

OO

16
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defined by paths u, v, v′ : I → X , with u(0) = v(0) and v(1) = v′(1), and a
square β : I2 → Y of the form

·
β

·fv′
oo

ū
��

·
fv

OO

fu
// ·

Let α′ : (0× I) ∪ (I × ∂I)→ X be the map given by
α′(0, t) = v(t),
α(t, 0) = u(t),
α(t, 1) = v′(1− t).

Since f is a fibration and fα′ = β|(0×I)∪(I×∂I), the extension-lifting problem

(0× I) ∪ (I × ∂I)� _

in
��

α′
// X

f

��

I × I

α

77

β
// Y

has a solution, say α. Then α is a square in X of the form

·
α

·v′oo

u′
��

·
v

OO

u
// ·

which represents a box of Π(2
X

v′

[α]

voo

u′

OO

uoo

OO

such that f∗[α] = [fα] = [β].

From here on, we consider a pointed Hurewicz fibration of topological
spaces

f : (X, x)→ (Y, y).

17
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Let Fy = f−1(y) be the fibre of f over y, so that we have the fibre sequence
of pointed spaces

(Fy, x) ↪→ (X, x)
f−→ (Y, y), (6)

and let Fcy = f−1
∗ (cy) be the double groupoid fibre of f∗ : Π

(2
X → Π

(2
Y

over cy, so that we have the fibre sequence of pointed double groupoids

(Fcy , cx) ↪→ (Π
(2

X, cx)
f∗−→ (Π

(2

Y, cy). (7)

Theorem 2.3. (i) The double groupoid Fcy has the filling property.
(ii) There is an injective on objects equivalence of groupoids

c : ΠFy ≃ ΠFcy ,

between the fundamental groupoid of Fy and the fundamental groupoid of
Fcy , which carries every point x ∈ Fy to the constant path cx and a morphism
[v] : x0 → x1 of ΠFy to the morphism [(cx1 , v), (v, cx0)] : cx0 → cx1 of ΠFcy
defined by the path

cx1
((cx1 , v), (v, cx0)) : cx0 ↷ cx1

v
oo

cx0

OO
(8)

(iii) There are natural isomorphisms

π0(Fcy , [cx]) ∼= π0(Fy, [x])

π1(Fcy , cx) ∼= π1(Fy, x),

π2(Fcy , cx) ∼= Im
(
i∗ : π2(Fy, x)→ π2(X, x)

)
.

Proof. (i) This follows from Theorem 2.2 and [4, Proposition 2.6].
(ii) The objects of the double groupoid Fcy are the paths I → Fy. We

define the functor c : ΠFy → ΠFcy on objects by x 7→ cx. For any two points
x0, x1 ∈ Fy, a morphism in ΠFcy from cx0 to cx1 is the homotopy class of
a path in Fcy as in (8), which is determined by a path v : I → Fy such that
v(0) = x0 and v(1) = x1. If v′ is any other path in Fy from x0 to x1, then
[(cx1 , v), (v, cx0)] = [(cx1 , v

′), (v′, cx0)] in ΠFcy if and only if there is a box
in Fcy of the form

v

[α]

v′
oo

v v

OO

18
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That is, if and only if there is a square α : I2 → X of the form

x1

α

x0

voo

v

��
x0

v′
OO

v
//
x1

such that there is a homotopy fα ≃ Cy rel ∂I2. By Lemma 2.4 below, that
happens if and only if there is a similar square α′ : I2 → Fy with the same
sides. Since this condition simply means that [v′] = [v] in the fundamental
groupoid ΠFy, we conclude with a bijection

c : HomΠFy(x0, x1) ∼= HomΠFcy
(cx0 , cx1), [v] 7→ [(cx1 , v), (v, cx0)].

To see that we are in presence of a functor, let v1, v2 : I → Fy be paths with
v1(0) = x0, v1(1) = x1 = v2(0), and v2(1) = x2. Then, in ΠFcy ,

[(cx2 , v2), (v2, cx1)] · [(cx1 , v1), (v1, cx0)] = [(cx2 , v), (v, cx0)],

where v occurs in a configuration such as in

cx2 v2
oo

[α]

v
oo

cx1

OO

v1

OO

oo

cx0

OO

for some square α : I2 → Fy with boundary as in

x2 x1

v2oo

cx1

x0

v
OO

v1
//

α

x1

Hence, in ΠFy, [v] = [v2] · [v1].
Finally, since for any path u : I → Fy, there is the horizontal morphism

(u, cx1) : cu(1) → u,

the functor c : ΠFy → ΠFcy is actually an equivalence of categories.
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(iii) Both the bijection π0Fcy ∼= π0Fy and the isomorphism π1(Fcy , cx) ∼=
π1(Fy, x) are derived from part (ii) above, which has already been proven.
Let us consider the case n = 2. The abelian group π2(Fcy , cx) consists of
boxes [α] in Π

(2
X of the form

cx cx

cx

[α]

cx

such that f∗[α] = [Cy] or, equivalently, of relative to ∂I2 homotopy classes
of squares α : I2 → X which are constant x along the four sides of the
square and such that there is a homotopy fα ≃ Cy relative to ∂I2. Then,
by Lemma 2.4 below, π2(Fcy , cx) can be described as the set of of relative to
∂I2 homotopy classes of squares α : I2 → X which are constant x along
the four sides of the square and such that α(I2) ⊆ Fy, that is, the image of
i∗ : π2(Fy, x)→ π2(X, x).

Lemma 2.4. If α : I2 → X be a square in X such that α(∂I2) ⊆ Fy and
there is a homotopy H : fα ≃ Cy rel ∂I2, then there is a square α′ : I2 →
Fy such that α′|∂I2 = α|∂I2 and a homotopy H ′ : α ≃ α′ rel ∂I2 such that
fH ′ = H .

Proof. Let h : (0× I2) ∪ (I × ∂I2)→ X be the map given by

h(0, s, t) = α(s, t), h(r, 0, t) = α(0, t), h(r, 1, t) = α(1, t),
h(r, s, 0) = α(s, 0), h(r, s, 1) = α(s, 1).

Since f is a fibration and fh = H|(0×I2)∪(I×∂I2), the extension-lifting prob-
lem

(0× I2) ∪ (I × ∂I2)� _

in
��

h // X

f

��

I × I × I

H′

77

H
// Y

has a solution, say H ′. Now define α′ : I2 → X by α′(s, t) = H ′(1, s, t).
Since,

fα′(s, t) = fH ′(1, s, t) = H(1, s, t) = Cy(s, t) = y,

α′ is actually a square in the fibre Fy.
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If we apply Theorem 2.3 to the fibration X → ∗, then obtain the follow-
ing.

Theorem 2.5. Let X be a topological space.
(i) The double groupoid Π

(2
X has the filling property.

(ii) There is an injective on objects equivalence of groupoids

c : ΠX ≃ Π(Π
(2

X),

between the fundamental groupoid of X and the fundamental groupoid of
Π

(2
X , which carries every point x ∈ X to the constant path cx and a mor-

phism [u] : x0 → x1 of ΠX to the morphism [(cx1 , u), (u, cx0)] : cx0 → cx1

of ΠX defined by the path

cx1
((cx1 , u), (u, cx0)) : cx0 ↷ cx1

uoo

cx0

OO

(iii) For every x ∈ X , there are natural isomorphisms

π0(Π
(2

X, [cx]) ∼= π0(X, [x])

π1(Π
(2

X, cx) ∼= π1(X, x),

π2(Π
(2

X, cx) ∼= π2(X, x).

Lemma 2.6. Let u : I → X be a path in X with u(0) = x0 and u(1) = x1.
Let y0 = f(x0) and y1 = f(x1), and let v : I → Fy0 be a loop in Fy0 based
at x0. Then, the action [4, (19)] of the morphism

[(cx1 , u), (u, cx0)] : cx0 → cx1

of Π(Π
(2
X) on

[(cx0 , v), (v, cx0)] ∈ π1(Fcy0
, cx0)

is given by

[(cx1 ,u),(u,cx0 )][(cx0 , v), (v, cx0)] = [(cx1 , v
′), (v′, cx1)] ∈ π1(Fcy1

, cx1)

where v′ : I → Fy1 is a loop in Fy1 based at x1 such that, in ΠX ,

[v′] = [u] · [v] · [u]−1.
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Proof. As an object of Π(2
X , the path v′ : I → X with fv′ = cy1 , i.e. with

Im(v′) ⊆ Fy1 , occurs in a diagram

cx1 u
oo

[α]

w
oo

[β]

v′
oo

cx0

OO

v
oo

OO

u

OO

cx1
oo

OO

for some squares α : I2 → X and β : I2 → X of the form

x1

α

x0

uoo

x0 v
//

w
OO

x0

x1

β

x0

woo

u

��
x1

v′
OO

x1

Then, v′ is a path in Fy1 based at x1 and, in ΠX ,

[v′] = [w] · [u]−1 = ([u] · [v]) · [u]−1.

By Theorems 2.3 and 2.5, the 9-term exact sequence in [4, Theorem 5.1]
defined by the fibre sequence of pointed double groupoids (7),

(Fcy , cx) ↪→ (Π
(2

X, cx)
f∗−→ (Π

(2

Y, cy),

gives the 9-term exact sequence

π2(Fy, x) // π2(X, x) // π2(Y, y)

ss

π1(Fy, x) // π1(X, x) // π1(Y, y)

ss

π0(Fy, [x]) // π0(X, [x]) // π0(Y, [y]),

which is the bottom end up to dimension 2 of the long exact sequence on
homotopy groups defined by the fibre sequence of pointed spaces (6)

(Fy, x) ↪→ (X, x)
f−→ (Y, y).

22



A. M. CEGARRA FIBRATIONS OF DOUBLE GROUPOIDS

(See, for example, [17, Chap. IV, (8.6)]). Further, by the equivalence be-
tween crossed modules and cat1-groups, the fundamental crossed module in
[4, Proposition 5.2 (i)] gives Loday’s fundamental crossed module [10, 2.7]

π1(Fy, x)→ π1(X, x).

(See [2, §2.6].) Even more, by the equivalence between crossed modules
over groupoids and 2-groupoids, we can see that the fundamental crossed
module in [4, Theorem 5.7] for the fibration f∗ : Π

(2
X → Π

(2
Y correspond,

up to equivalence, to the homotopy 2-groupoid of the fibration f : X →
Y by Kamps and Porter [9]. In effect, the fundamental Π(Π(2

X)-crossed
module of the fibration f∗ : Π

(2
X → Π

(2
Y ,

π1F → π1(Π
(2

X), u 7→
(
π1(Ffu, u)→ π1(Π

(2

X, u)),

by the equivalence c : ΠX ↪→ Π(Π
(2
X), gives the ΠX-crossed module

c∗π1F → c∗π1(Π
(2

X), x 7→
(
π1(Fcfx , cx)→ π1(Π

(2

X, cx)).

This, by Theorems 2.3 and 2.5 and Lemma 2.6 above, is isomorphic to the
crossed module over the fundamental groupoid ΠX ,

π1F → π1X, x 7→
(
π1(Ffx, x)→ π1(X, x)),

which justly defines the homotopy 2-groupoid of the fibration f : X → Y
by Kamps and Porter.
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