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Résumé. Nous étendons la construction par Barwick et Haugseng d’une∞-
catégorie double de correspondances dans une ∞-catégorie C admettant les
produits fibrés à des formes plus générales : pour une large classe de pat-
rons algébriques P, nous définissons une ∞-catégorie P-monoïdale de cor-
respondances P-modelées dans C, et identifions les P-monades dedans avec
les P-objets de Segal dans C. Pour le patron cellulaire Θop, cela recouvre
une reformulation homotopique de la définition originale de Batanin des ω-
catégories faibles, et en général peut être vu comme une variante des multic-
atégories généralisées de Burroni, Hermida, Leinster et Cruttwell–Shulman.
Abstract. We extend Barwick’s and Haugseng’s construction of the double
∞-category of spans in a pullback-complete ∞-category C to more general
shapes: for a large class of algebraic patterns P, we define a P-monoidal∞-
category of P-shaped spans in C, and we identify P-monads in it with Segal
P-objects in C. For the cell pattern Θop, this recovers a homotopical refor-
mulation of Batanin’s original definition of weak ω-categories, and in general
can be seen as a variant of the generalised multicategories of Burroni, Her-
mida, Leinster and Cruttwell–Shulman.
Keywords. Segal objects, spans, double categories, weak ω-categories, mul-
ticategories.
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1. Introduction

1.1 Algebraic structures for higher categories

The various definitions of higher categories come in two families: algebraic
definitions specify the minimal amount of shape data (for ℓ-categories, an
ℓ-graph, comprised only of elementary cells) and add the structure of all the
composition operations and their higher coherences, while geometric defin-
itions start from a bigger shape containing all the possible pasting diagrams
of cells and simply impose conditions to ensure that they come from decom-
positions into compatible elementary cells.

For example, the standard definition of an internal category, in a category
C admitting finite pullbacks, is as a ∆op-shaped object X• of C — where ∆

is the category of free categories on 1-dimensional pasting diagrams, that
is sequences of composable arrows — satisfying the Segal decomposition
condition which expresses each value Xn on a pasting of n consecutive ar-
rows as X1×X0 · · ·×X0X1. This can be reinterpreted in a more algebraic way
as giving a graph X•|{[0],[1]} in C and a certain kind of algebra structure on
it, subject to the simplicial identities. To make good sense of this algebra
structure, it was noticed by [Bén67] that a graph in C is nothing but an en-
domorphism in the bicategory (or better, the double category) of spans in C,
and the required algebra structure is none other than a structure of monad on
this endomorphism.

For strict higher categories, the situation generalises directly: on the one
hand, [Joy97] introduced a category Θ of free ω-categories on ω-categorical
pasting diagrams, so that strict ω-categories in any category with fibre products
C are exactly C-valued presheaves on Θ satisfying a Segal condition. On
the other hand, [Bat98] constructed an internal (strict) ω-category in Cat

(a globular object in Cat equipped with compositions) Span∞(C) of in-
finitely iterated spans in C, so that globular monads in it are exactly strict
ω-categories internal to C.

The key insight of [Bat98] is then that, using the higher structure natur-
ally present in globular categories, one can refine the teminal globular operad
to a suitable contractible globular operad AG

∞, which contains enough coher-
ence data for AG

∞-algebras in Span∞(C) to be a good definition of weak
ω-categories in C.
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While the presence of higher cells in globular sets allows one to make
sense of AG

∞ as an algebraic resolution of the terminal globular operad,
eschewing any homotopical machinery, formulating things in a setting of
homotopy theory allows many constructions to become simpler, and more
widely applicable. Indeed, the logic of using the higher cells to tame the
infinite towers of coherences needed for a resolution only works for full ω-
categories, but breaks down if trying to define weak ℓ-categories for some
ℓ < ω. Nonetheless, [Hau21] showed that the situation for (weak) 1-categories
can be dealt with using∞-categories: category objects in an (∞,1)-category
C are identified with homotopy-coherent monads in the double (∞,1)-category
of spans in C.

In this note, we extend this result (as a direct application of Theorem 5.7)
to a characterisation of ℓ-category objects as ℓ-globular monads in ℓ-times
iterated spans, which both extends Batanin’s definition of weak ω-categories
to one for weak ℓ-categories for any ℓ ≤ω, and also simplifies it by removing
the need to resolve the terminal globular ∞-operad by a more complicated
one.

1.2 Multicategories and algebraic patterns

In order to understand how to construct categories of generalised spans, let us
switch gears to another categorical structure that can be defined in a similar
way: multicategories, or coloured operads. It was noticed by [Bur71, Her04,
Lei98] that multicategories can be defined as monads in a double category of
Kleisli M-spans, where M is the “free monoid” monad on Set, fitting in a
more general framework of T-multicategories, for a cartesian monad T, as
monads in a double category of Kleisli T-spans, whose morphisms are the
spans twisted by T on their source, and whose composition uses T’s monad
structure. In particular, Batanin’s globular operads can also be obtained in
this way.

Unfortunately, this double category of Keisli T-spans is not character-
ised by a clear universal property (see [CS10, Remark 4.2]), which makes
constructing it in the ∞-categorical world very difficult. Because of this,
we will instead use a different kind of structure to organise the generalised
spans.

To explain the idea, let us keep focusing of the example of multicategor-
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ies. An M-span from a set Y0 to a set X0 is given by a span MY0← X1→
X0, which we interpret as a multispan (as championed by [Baa19] for the
study of hyperstructures) of some arbitrary arity a + 1, one of whose legs
(the root) goes to X0 and the a others (the leaves) to Y0. To compose it with
an M-span MZ0← Y1→ Y0, one forms the M-span

MY1 ×
MY0

X1

MY1 X1

MZ0 M2Z0 MY0 X0
µ

(1)
expressing that one takes a copies of the multispan corresponding to MZ0←
Y1→ Y0 and glues their distinguished roots to the various leaves of MY0←
X1→ X0.

As is usual in operad theory, one also, instead of blowing up the situ-
ation globally, glue a single new span to one leaf of MY0 ← X1 → X0;
the composition operation defined in this way, leaf by leaf, will no longer
be a categorical composition, but indeed an operadic one. Thus, multispans
can be organised, instead of in a double category, in a categorical operad
(internal category in the category of operads).

While there are many different approaches to operadic structures in the 1-
categorical setting, in the∞-categorical one a very convenient and powerful
framework is that of the algebraic patterns of [CH21], which extract the ne-
cessary data on a category of shapes to speak of Segal decompositions (inert
morphisms from elementary objects) and keep additional algebraic opera-
tions (active morphisms): in other words, they give a geometric presentation
of ∞-operadic structure, while remembering what is the algebraic part. In
the approach that we will follow in this note, the choice of an algebraic pat-
tern will play the role of the choice of the cartesian monad T in the story
sketched above.

We will then construct in section 4, for any algebraic pattern P (satisfy-
ing the very mild condition of soundness — that will be verified in all ex-
amples we know of, in particular in section 3 for ω-categories) and any com-
plete enough (∞,1)-category C, a Segal P-object SpanP(C) in (∞,1)-Cat

47



D. KERN SEGAL OBJECTS AS MONADS IN SPANS

of P-shaped spans in C, by adapting the construction of [Hau18a] with the
ideas raised in [Str00] and expanded upon in [Web07, Example 4.8]. We will
continue in section 5 by showing the result promised above:

Theorem A. (cf. Theorem 5.7) There is an equivalence between P-monads
in the P-monoidal∞-category SpanP(C) and Segal P-objects in C.

Then, in section 6, we will spell out the meaning of this result in ex-
amples of interest, in particular (∞, ℓ)-categories.

1.3 Aknowledgements

This note was closely inspired by the ideas of [Hau18a, Hau21] and [Str00],
and would not exist without the insights developed in these works. Thanks
are also due to Damien Calaque for discussions about algebras in iterated
spans, to Hugo Pourcelot for conversations about differently-shaped spans,
and to Reuben Stern for useful comments about the interpretation of fibrous
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pointing out the necessity of soundness in lemma 4.7 and the automaticity
of global saturation, and to Jan especially sharing material on sound patterns
and a proof of global saturation. I thank the anonymous reviewer for several
corrections and improvements.
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2. Algebraic and fibrous patterns

Definition 2.1 (Algebraic pattern). An algebraic pattern is a diagram of
inclusions of (∞,1)-categories

P

Pel Pinrt Pact

(2)

where the wide sub-(∞,1)-categories (Pinrt,Pact) form an orthogonal factor-
isation system on P and Pel ⊂ Pinrt is a full sub-(∞,1)-category.
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The inert arrows (those in Pinrt) are denoted as↣ and the active ones
(those in Pact) are denoted as ⇝, while the objects in Pel are known as
elementary.
Notation 2.2. For any P ∈ P, we write Pel

P / = Pel ×Pinrt Pinrt
P / .

An (∞,1)-category C is said to be P-complete if it admits limits of dia-
grams of shape Pel

P / for any P ∈ P.

Definition 2.3 (Segal object). Let P be an algebraic pattern and C a P-
complete (∞,1)-category. A Segal P-object in C is a functor X : P→ C

such that X|Pinrt is the right Kan extension of its restriction to Pel, which
means that for any P ∈ P, the canonical arrow

X(P )→ lim
E∈Pel

P /

X(E) (3)

is an equivalence.

The full sub-(∞,1)-category of the functor (∞,1)-category
{
P,C

}
on the

Segal objects is denoted SegP(C).
Example 2.4 (Product patterns). The (∞,1)-category of algebraic patterns
admits all limits, which can be computed at the level of the underlying
(∞,1)-categories. In particular, it admits products, and these are compat-
ible with currying, in that if P and Q are two algebraic patterns and C is
P ×Q-complete, then SegQ(C) is P-complete and there is an equivalence
SegP×Q(C) ≃ SegP(SegQ(C)).
Example 2.5 (P-graphs). As observed in [CH21, beginning of §8], any al-
gebraic pattern P restricts to a pattern structure on Pinrt, whose only active
morphisms are the equivalences, and further restricts to Pel. Evidently, the
restriction–right Kan extension adjunctions along Pinrt,el = Pel ↪→ Pinrt and
Pel,el = Pel ↪→ Pel induce equivalences SegPinrt(C) ≃

{
Pel,C

}
and SegPel(C) ≃{

Pel,C
}

for any P-complete (∞,1)-category C. We will refer to (necessarily
Segal) Pel-objects as P-graph, and to the restriction of a Segal P-object to
Pel as its underlying P-graph.

When C is (∞,1)-Cat, Segal P-objects P → (∞,1)-Cat can also be
seen as categoy objects in the ∞-category SegP(∞-Grpd) of Segal P-∞-
groupoids, and as such will generally be written as X,Y , . . . , in the font re-
served for internal categories. Such an object X : P → (∞,1)-Cat can be
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recast as a cocartesian fibration X =
∫ P

X → P satisfying the Segal con-
dition for its fibres. We call such fibrations Segal P-fibrations. A certain
weakening of this notion turns out to be extremely useful, in particular to
define lax morphisms between Segal fibrations.

Definition 2.6 (Fibrous pattern). Let P be an algebraic pattern. A fibrous
P-pattern is an (∞,1)-functor f : X→ P such that:

1. for every object X ∈ X, every inert arrow i : fX → P in P admits a
f-cocartesian lift i! : X→ i!X;

2. for every P ∈ P, the commutative square

X×
P
Pact
/P limE∈Pel

P /
X×

P
Pact
/E

Pact
/P limE∈Pel

P /
Pact
/Elim

E∈PelP /
(P↣E)!

(4)

is cartesian.

A morphism of fibrous P-patterns from X→ P to Y→ P is an∞-functor
X→ Y over P preserving cocartesian arrows over inert arrows of P.

Morphisms from X→ P to Y→ P are also called X-algebras in Y, and
their (∞,1)-category is denoted AlgX(Y).

Lemma 2.7 ([CH21, Lemma 9.10]). The domain of fibrous pattern f : X→
P admits a structure of algebraic pattern, where an arrow is active if it
is over an active arrow of P, inert if it is f-cocartesian and lies over an
inert arrow, and an object is elementary if it lies over an elementary of P.
In particular, Segal morphisms between (sources of) fibrous P-patterns are
exactly their morphisms of fibrous P-patterns.

If X → P and Y → P are Segal P-fibrations, with corresponding P-
monoidal (∞,1)-categories X and Y , morphisms of fibrous patterns X→ Y

can be seen as the lax morphisms X→ Y .
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Definition 2.8 (P-Monads). Let f : X → P be a fibrous P-pattern. A P-
monad in X is a morphism from the terminal (weak) Segal P-fibration P

id−−→
P to f.

In other words, a P-monad is a P-algebra in X.

Remark 2.9. When P is the algebraic pattern ∆op♮ for internal categories (re-
called in section 6.2), this recovers the usual definition of monads in double
∞-categories. More generally, for enrichable patterns, typically those de-
noted with a (−)♮ superscript in [CH21], P-monads can be thought of as a
kind of P-shaped generalisation of monads, as will be explained in examples
in section 6. On the other hand, for the associated cartesian patterns P♭, then
P♭-monads correspond rather to a kind of monoids, recovering the etymolo-
gically motivating observation of [Bén67, § (5.4.1)].

An important technical condition on algebraic patterns will be that of
soundness from [BHS22], which we will introduce with an alternative (equi-
valent) presentation due to [BS≥25] that is convenient to handle.

Construction 2.10. Let f : O → P be a morphism of algebraic patterns.
The inert factorisation (∞,1)-category of f at O ∈O and υ : fO↣ E ∈
Pel
fO/ is

F actinrt
f (O,υ)BOel

O/ ×
Pinrt
fO/

F actPinrt(υ) (5)

where F actPinrt(υ) = {υ}×Arinrt(P)

{
3,Pinrt

}
is the (∞,1)-category of factorisa-

tions of υ in Pinrt (the pullback being defined relative to the functor 2→ 3

which is the unique endpoints-preserving one, encoding composition of a
composable pair).

Definition 2.11 (Sound patterns). An algebraic pattern P is sound if for
every f : P ⇝ P ′ in Aract(P) and any h : ev0 f = P ↣ E in Pel

P / the ∞-
category F actinrt

ev0 : Aract(P)→P
(f : P ⇝ P ′,h : P ↣ E) is contractible.

One can see upon examination that the (∞,1)-category F actinrt
ev0(f ,h),

whose objects are diagram of the form

P M E,

P ′ E′

f (6)
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is equivalent to that denoted Pel
h (f ) = Pel

P ′/ ×Pinrt
P /
(Pinrt

P / )/h of [BHS22, Lemma
3.3.9. (2)], so that this definition recovers the notion of soundness from
Definition 3.3.4 of ibid.
Remark 2.12. If P is a sound algebraic pattern, fibrous P-patterns coincide
with the more familiar (as a generalisation of the ∞-operads of [Lur17])
weak Segal P-fibrations (also called P-operads) of [CH21]. In particular,
fibrous P-patterns which are also cocartesian fibrations are then the same
thing as Segal P-fibrations.

Lemma 2.13. A filtered colimit of sound algebraic patterns is sound.

Proof. Let I be a filtered (∞,1)-category and P : I → AlgPatt be a dia-
gram of algebraic patterns all of which are sound. For any pattern P, the
every ∞-category F actinrt

ev0 : Aract(P)→P
(f ,h) are pullbacks of powers of P

by finite categories, so finite weighted limits, and hence their construction
commutes with filtered colimits (in (∞,1)-Cat, and since limits and filtered
colimits of algebraic patterns are computed in (∞,1)-Cat). Since a filtered
colimit of contractible (∞,1)-categories is contractible, as all the terms PI
are sound, we do obtain that the inert factorisation∞-categories of colimI∈IPI
are contractible.

Finally, we describe a property of algebraic patterns which will be para-
mount for the construction and Segality of the categories of spans.
Notation 2.14 (Co-internalisation of a category). For any (∞,1)-category E,
we will let E−/ denote the∞-functor Eop→ (∞,1)-Cat taking an object E ∈
E to the slice EE/ and an arrow f : E → E′ to the codependent coproduct
(or, plainly, precomposition by f ) Σf = (− ◦ f ) : EE′/ → EE/ . We refer to it
as the co-internalisation of E, though it differs from the internalisation of
Eop considered in [Str00] in that the latter, defined for E admitting pushouts,
has functoriality along f given by the right-adjoint (co-base change) of Σf

— however, it is related, after passing to presheaves, to the co-internalisation
of

{
E,∞-Grpd

}
.

Recall that in [CH21, Proposition 14.16. (2)], an algebraic pattern P

is said to be saturated if the inclusion Pel ↪→ P is codense1, and under
1It is written there as Pinrt ↪→ P being codense, but the proof of Proposition 14.20

immediately confirms this as a typo. In addition, extendability is required as part of the
definition, but it is not necessary for this characterisation.
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the mild assumptions of P being slim and extendable, this is equivalent
by [CH21, Proposition 14.20] to the more convenient condition of Pel ↪→
Pinrt being codense. If the relevant limits P ≃ limE∈Pel

P /
E are co-Van Kampen

(i.e. preserved by the co-internalisation, which again, due to the functoriality
used, is different from being Van Kampen colimits in the opposite category,
and is in fact rare), taking “global sections” of the co-internalisation (Pel

P / )−/
produces for every P ∈ P an equivalence colimE∈(Pel

P / )
opPel

E/ ≃ Pel
P / which

we may thus think of as global saturation for the pattern P. As has been
observed independently by Thomas Blom and Jan Steinebrunner (who gra-
ciously provided the following proof), this weaker property turns out to be
satisfied by every algebraic pattern, regardless of saturation and preservation.

Proposition 2.15. For any (∞,1)-category E, the functor colimEop E−/ → E

induced by the projections EE/ → E is an equivalence.

Proof [Ste25]. The colimit of the co-internalisation functor colimE∈Eop EE/
can be computed in two steps: first take its lax colimit, which by [GHN17,
Corollary 7.6] is its Grothendieck construction ev0 : Ar(E)→ E of [Lur09,
Corollary 2.4.7.11], and then rectify by localising at the ev0-cartesian ar-
rows. By [Lur09, Lemma 2.4.7.5] or [RV22, Lemma 7.4.3. (iii)], these are
precisely those whose image under ev1 is an equivalence. Thus, we need
only exhibit ev1 : Ar(E)→ E as such a localisation, which it is by [Cis19,
Proposition 7.1.12] because it is a cocartesian fibration (whence smooth)
whose fibres E/E , admitting terminal objects, are contractible.

Note that, as is seen by unfolding the formulas, this is also the content
of [GHN17, Corollary 7.5].

Corollary 2.16. Any algebraic pattern P is globally saturated, that is: for
any P ∈ P the canonical map

colim
E∈(Pel

P / )
op
Pel
E/ → Pel

P / (7)

induced by the Σu for each u : P ↣ E is an equivalence.

Proof [Ste25]. All the ∞-categories appearing in the colimit can be rewrit-
ten as slices Pel

E/ ≃ (Pel
P / )E/ of Pel

P / . Therefore, we can simply apply the
preceding Proposition to E = Pel

P / .
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This argument establishing global saturation for all algebraic patterns is
somewhat inexplicit, relying on technical properties of localisation functors,
so when applying it to specific algebraic patterns it can often be instructive to
verify the reason for the property through direct examination of the pattern
so as to get a more thorough understanding of its inner workings.

Example 2.17. [Hau18a, Proposition 5.13] shows explicitly how the algeb-
raic pattern ∆op♮ for internal categories is globally saturated, in a way that
we will now generalise to internal higher categories.

3. Saturation properties of the cell category Θ

The main example of interest for applying the result on general Segal objects
we will establish in section 5 is that of (internal) ω-categories. In order to
provide a good understanding of it for readers less familiar with Joyal’s cell
category, we will here study “by hand” the global saturation — and, along
the way, saturation — of the relevant algebraic pattern.

Construction 3.1. Recall that the (non-reflexive) globe category G is gen-
erated by objects n, for all n ∈ N, and arrows i±n : n→ n+ 1, as presented in
the graph

0 1 · · · n · · · ,
i+0

i−0

i+1

i−1

i+n−1

i−n−1

i+n

i−n
(8)

with the relations i+n+1i
ε
n = i−n+1i

ε
n for any n ∈ N and any ε ∈ {+,−}. A glob-

ular object in an (∞,1)-category C is a C-valued presheaf on G. A strict
ω-category is a globular set equipped with units and composition operations
satisfying certain equations (spelled out for example in [Str00, p. 300]); such
structure is monadic over

{
Gop,Set

}
, with monad Fω.

The cell category Θ (first introduced in [Joy97]) has as objects the glob-
ular sets that are pastings of appropriately composable globes — a condition
encoded precisely as the notion of globular sums in the sense of [Ara10,
§2.1.1] or [Lou23, §1.1.2.2] — and as morphisms the morphisms of strict
ω-categories between their associated free ω-categories. A morphism f is
inert (also called an immersion) if it is the image by Fω of a morphism of
globular sets, and active if in any factorisation f = ia with i inert, i must
be an identity (by [Ara10, Proposition 3.3.11], they correspond to the maps
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also known as algebraic, or covers). By [Ber02, Lemma 1.11] or [Ara10,
Proposition 3.3.10], the classes of active and inert morphisms form a unique
factorisation system, so in particular an orthogonal one, on Θ.

Notation 3.2 (Generic n-cells). For any n ∈ N, the representable presheaf
G(−,n) is canonically endowed with a structure of strict ω-category (which
comes from viewing it as the restriction to Gop of Θ(−,n)). We denote this
ω-category Dn; it is known as the n-globe, or as the generic (or “walking”)
n-cell.

Definition 3.3. The algebraic pattern Θop♮ is the category Θop, endowed
with the inert–active factorisation system described above, and with element-
ary objects the ℓ-globes (so that Θop♮,el ≃ Gop).

It is an immediate consequence of the definition (and of the fact that all
inert maps into a globe in Θ also have to be from a globe) that Segal Θop♮-
objects are exactly what are called Θ-models in [Ber02].

Lemma 3.4 ([Ara10, Proposition 2.3.18]). The pattern Θop♮ is saturated.

Proof. This is essentially a consequence of the definition of globular sums:
any such globular set T can be written as an iterated pushout T ≃ Di1 ⨿Di′1
· · · ⨿Di′p−1

Dip , and by [Ara10, Lemme 2.3.22], the immersions Di ↣ T

featuring in this pushout define a cofinal subcategory of Θ♮,el
/T .

It follows from this that the definition of Segal Θop♮-objects in a com-
plete (∞,1)-category C coincides with that of (weak) ω-categories in C in
the sense of [Lou23], albeit without the Rezk-completeness (or univalent
completeness) condition — so that, to be more precise, they correspond to
flagged ω-categories as in [AF18].

Remark 3.5. For any ℓ ∈ N∪ {ω}, we let

Θℓ =Θ ∩ (∞, ℓ)-Cat (9)

be the ℓ-dimensional cell category used in [Rez10]; the pattern structure
of Definition 3.3 restricts to one on Θℓ

op whose Segal objects are internal
flagged ℓ-categories (and we obviously have Θω =Θ).
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There is an obvious filtration Θ1
op♮ ≃ ∆op♮ ↪→ Θ2

op♮ ↪→ Θ3
op♮ ↪→ ·· ·

and we recover Θop♮ as its colimit. In particular, since each Θℓ
op♮ for

ℓ finite is known to be sound from [BHS22, Example 3.3.18], it follows
from Lemma 2.13 that Θop♮ is sound as well.

Construction 3.6. Since the cells in a pasting diagram are unlabelled, the
standard representation of objects of Θ contains redundant information. A
more minimal presentation, suggested by [Bat98] and developed more thor-
oughly in [Ber02] and [Ara10], of these objects is as level trees, functors
from some [ℓ]op (ℓ being the categorical dimension) to ∆ whose value at the
terminal object 0 is [0]: the cells in the corresponding pasting diagram can
be all recovered as the sectors in the tree.

This description makes it easier to get a handle on the structure of these
trees and their categories of inert morphisms: for a tree T : [ℓ]op → ∆, for
k ≤ ℓ, we set |T |(k) to be the reunion, over i ∈ T (k), of the T (k + 1)i + 1,
where T (k + 1)i is the fibre of T (k + 1)→ T (k) at i (and where we decreed
T (ℓ + 1) to be [−1] = �). Note that the assignment [ℓ]op ∋ k 7→ |T |(k) is not
functorial; however G≤ℓop ∋Dk 7→ |T |(k) can be made functorial.

Remark 3.7. The objects of |T |(k) can be understood as the sectors at level k
as defined by [Ber02] (and, likewise, their ordering is the natural left-to-right
ordering of sectors in each fibre), so that |T | coincides with the globular set
denoted T ∗ in [Bat98].

In the dictionary between globular sums and trees, it is the sectors of a
tree that correspond to the cells of the corresponding globular sum.

We will now use the decompositions provided by the proof of Lemma 3.4
to understand the categories Θ♮,el

/T .

Lemma 3.8. Let T ∈Θ be any globular sum. Then Θ
♮,el
/T is equivalent to the

Grothendieck construction of the globular set |T |.

Proof. We will exhibit an explicit isomorphism between |T | and the under-
lying Θ♮-graph of the presheaf represented by T , since then its Grothendieck
construction is indeed the slice. Consider an object of Θ♮,el

/T , given by a map
Di ↣ T , i.e. an element of T (Di). Since Di is the free i-cell, this map is
uniquely characterised by a choice of an i-cell in T . In terms of the associ-
ated trees, Di is a linear tree and so such a map is characterised by a choice
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of a branch at level i and a sector around its top point. It follows from Re-
mark 3.7 that these are exactly counted by the elements of |T |(Di).

Example 3.9. For any elementary Dℓ, the category Θ
♮,el
/Dℓ

is freely generated
by the graph

⌜Cℓ⌝

⌜C−ℓ−1⌝ ⌜C+
ℓ−1⌝

⌜C−1 ⌝ ⌜C+
1 ⌝

⌜C−0 ⌝ ⌜C+
0 ⌝

...
...

(10)

where we recall that Dℓ has a unique ℓ-cell Cℓ and, for any 0 ≤ i < ℓ, two i-
cells C±i serving has source and target for the higher cells, and ⌜C±i ⌝ : Di →
Dℓ denotes the (inert) map selecting the corresponding cell. In other words,
Θ

♮,el
/Dℓ

is the free-living ℓ-iterated cospan, so that the category we are ulti-

mately interested in, Θop♮,el
Dℓ/

, which is its opposite, will be the free-living
ℓ-iterated span.

Lemma 3.10. Let T be a globular sum of the form Dm⨿Dℓ
Dn. Then Θ

♮,inrt
/T

is the strict pushout of 1-categories Θ♮,inrt
/Dm
⨿

Θ
♮,inrt
/Dℓ

Θ
♮,inrt
/Dn

Proof. Let us call Eε
i the cells of T in Dm, Fε

i those in Dn, and Cε
i those in

Dℓ, so that we have Eε
i = Cε

i = Fε
i for i < ℓ and E+

ℓ = Cℓ = F−ℓ . The matter
is then that of enumerating the cells and their relations, for which no listing
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can be as clear as simply drawing a generating graph:

Em Fn

E−m−1 E+
m−1 F−n−1 F+

n−1

E−ℓ+1 E+
ℓ+1 F−ℓ+1 F+

ℓ+1

E−ℓ Cℓ F+
ℓ

C−ℓ−1 C+
ℓ−1

C−0 C+
0 .

...
...

...
...

...
...

(11)

Since the Grothendieck construction takes colimits of presheaves (of sets) to
strict colimits of 1-categories, and our slices are categories of elements as
in Lemma 3.8, one can indeed recognise in eq. (11) a strict pushout of three
versions of eq. (10).

Proposition 3.11. The algebraic pattern Θop♮ is globally saturated.

Proof. Again, we can use the decomposition T ≃ Di1 ⨿Di′1
· · · ⨿Di′p−1

Dip

since it is cofinal, so that all we have to prove is that

Θ
♮,el
/T ≃Θ

♮,el
/Di1

⨿
Θ

♮,el
/Di′1

. . . ⨿
Θ

♮,el
/Di′p−1

Θ
♮,el
/Dip

. (12)

To compute this pushout of (∞,1)-categories, we will use the Joyal model
structure for quasicategories. Letting N•C denote the nerve of an (∞,1)-
category C, it is clear — since i′j±1 < ij for all j in the decomposition —
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that the maps of quasicategories N•Θ
♮,el
/Di′j±1

→N•Θ
♮,el
/Dij

are injective in every

degree, i.e. cofibrations in the Joyal model structure, so that the pushout will
coincide with the pushout of 1-categories. The result for this strict pushout
is then established via Lemma 3.10.

4. Generalised spans

For this section, we fix an algebraic pattern P and a P-complete (∞,1)-
category C. We will adapt to P the constructions and arguments of [Hau18a,
§5].

Recall that Ar(P) B
{
2,P

} ev0−−−→
{
1,P

}
≃ P is a cartesian fibration clas-

sifying the ∞-functor P−/ : Pop → (∞,1)-Cat. We let Arinrt(P) be the
full sub-(∞,1)-category of Ar(P) on the inert arrows — which, by the dual
of [BHS22, Proposition 2.2.2], still defines a cartesian fibration.

Our first goal is to show that Arinrt(P)
ev0−−−→ P classifies an ∞-functor

Pop→ (∞,1)-Cat whose action on objects is P 7→ Pinrt
P / .

Construction 4.1. Since the factorisation system of P is functorial, pro-
jection onto the inert part of an arrow defines a functor inrt :

{
2,P

}
→{

3,P
}
→

{
2,P

}
, which preserves the image of ev0 so defines a morphism of

categories over
{
1,P

}
(but not of cartesian fibrations over P, as it does not

preserve cartesian lifts of non-inert morphisms). We let inrt(Ar(P)) de-
note its essential image, whose objects are then the inert arrows of P while
morphisms are the squares all of whose edges are inert — so that, in partic-
ular, the fibre of ev0|inrt(Ar(P)) at P ∈ P is (Pinrt)P / = Pinrt

P / .

Lemma 4.2. Consider a commuting triangle of inert arrows below-left

Q

P

Q′

h

g

g ′

O M Q

O M ′ Q′

inrt(gf )

Σf g=gf

inrt(Σf h) h

inrt(g ′f )

Σf g ′=hgf

(13)
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defining a morphism in Pinrt
P / , and let O

f
−→ P be any arrow of P, with inert–

active factorisation of Σf h as above-right. Then inrt(Σf h) is inert.

Proof. This is a direct application of the left-cancellability property for the
left class of an orthogonal factorisation system (see for example [Lur09, Pro-
position 5.2.8.6. (4)] or [Lou23, Proposition 4.1.2.12]).

Corollary 4.3. The projection inrt(Ar(P)) → P is a cartesian fibration,
and coincides with Arinrt(P)→ P.

We thus obtain an ∞-functor Pinrt
−/ : Pop → (∞,1)-Cat (whose restric-

tion to (Pinrt)op is the co-internalisation of Pinrt).

Definition 4.4. We denote p : SpanP(C)→ P the cocartesian fibration clas-
sifying the∞-functor

{
Pinrt
−/ ,C

}
: P→ (∞,1)-Cat.

Recall that by [Bar22, Proposition 2.37], for any P ∈ P there is an al-
gebraic pattern structure on the slice PP / , where an object (resp. an arrow)
is elementary (resp. inert, resp. active) if and only if its image by ev1 is
so in P. Furthermore, by [Kos21, Proposition 2.14 and Proposition 2.4], it
restricts to an algebraic pattern structure on Pinrt

P / (which has no non-trivial
active morphisms).

Definition 4.5. We call SpanP(C) the full sub-(∞,1)-category of SpanP(C)
on the objects (P ,F : Pinrt

P / →C) such that F is a Segal Pinrt
P / -object.

Remark 4.6. An alternate construction of SpanP(C) is provided by [Kos21,
Corollary 2.16].

We let iinrt
P : Pinrt

P / → PP / denote the canonical inclusion (induced under
slicing by Pinrt ↪→ P). By [Kos21, Proposition 2.15] (which is formulated
in the case of P = ∆op♮ but only relies on the factorisation system), for any
arrow f : O → P in P, the induced ∞-functor Σf ,∗ :

{
PO/ ,C

}
→

{
PP / ,C

}
sends the image of iinrt

O,! into the image of iinrt
P ,! .

We can then let PreSpanP(C)→ P denote the Grothendieck construc-
tion of the ∞-functor

{
P−/ ,C

}
: C→ (∞,1)-Cat, and SpanP(C) is the full

sub-(∞,1)-category of PreSpanP(C) on those objects (P ,F : PP / → C)
such that F is in the image of iinrt

P ,! (so that it is determined by its restriction
Pinrt
P / →C).
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Lemma 4.7. Assume the algebraic pattern P is sound. The restricted pro-

jection p : SpanP(C) ↪→ SpanP(C)
p
−→ P is a cocartesian fibration.

Proof. As explained in the proof of [Hau18a, Corollary 5.12], since SpanP(C)
is a full sub-(∞,1)-category of SpanP(C), all we need to do is check that
if (P ,F)→ (Q,G) is a p-cocartesian morphism in SpanP(C) such that F
is Segal, then G is Segal as well. Note also that such a cocartesian morph-
ism consists of an arrow f : P → Q in P with G ≃ Σf ,∗F = F ◦ (Σf ): in
other words, we must show that Segal objects are preserved by composition
with codependent coproduct. That is, if F : Pinrt

P / → C satisfies the Segal
condition, then for every g : Q↣Q′ we must have

F
(
inrt(P

f
−→Q

g
↣Q′)

) ≃−→ lim
(Q

hg
↣E)∈(Pinrt

Q/ )
el
g/

F
(
inrt(P

f
−→Q

hg
↣ E)

)
. (14)

By the functoriality of the construction Σ(−),∗ and the fact that active and
inert morphisms for a factorisation system, we only need to check the com-
parison in the cases where f is either purely inert or purely active. If f
is inert, then inrt acts as the identity on the composition, and the functor
Σf ,∗ is even iso-Segal (since both (Pinrt

Q/ )
el
g/ and (Pinrt

P / )
el
gf / are then equivalent

to Pel
Q′/ thanks to all maps being inert), which is strictly stronger than pre-

serving Segal objects. The case of f being active is where the soundness
assumption comes into play.

Write P Mhg E
inrt(hgf )

the inert-active factorisation of the com-

position hgf : P ⇝Q↣ E, for any Q↣ E in (Pinrt
Q/ )

el
g/ given by h : Q′↣ E.

Then, since F is Segal, the right-hand side limit in eq. (14) becomes a double
limit

lim
(Q

hg
↣E)∈(Pinrt

Q/ )
el
g/

lim
(Mhg↣E′)∈(Pinrt

P / )
el
Mhg /

F(P ↣Mhg↣ E′), (15)

summarised by the dashed arrows in the diagram

P Mg Mhg E′,

Q Q′ E

f

inrt(h)

g h

(16)
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where the inert transport arrow inrt(h) comes from lemma 4.2. In particu-
lar, we can see that (Pinrt

Q/ )
el
g/ ≃ Pel

Q′/ and (Pinrt
P / )

el
Mhg /
≃ Pel

Mhg /
.

Then, as explained in [BHS22, Observation 3.3.6], soundness of P al-
lows this double limit to be computed as a limit over (Mg↣ E′) ∈ Pel

Mg /
. But

this is precisely what we obtain from the Segal decomposition for F(P ↣
Mg) in the left-hand side term of eq. (14).

Proposition 4.8. Let P be a sound algebraic pattern. The cocartesian fibra-
tion p : SpanP(C)→ P is a Segal fibration, that is the∞-functor SpanP(C) : P→
(∞,1)-Cat it classifies defines a P-monoidal (∞,1)-category.

Proof. To make the definition explicit, we need to show that for any P ∈ P,

SegPinrt
P /
(C)→ lim

E∈Pel
P /

SegPinrt
E/
(C) (17)

is an equivalence. Since Pinrt
P / only has inert morphisms, the right Kan exten-

sion∞-functor

SegPel
P /
(C) ≃

{
Pel
P / ,C

}
→ SegPinrt

P /
(C) (18)

is an equivalence. Similarly, every factor SegPinrt
E/
(C) in eq. (17) is equivalent

to
{
Pel
E/ ,C

}
, and so the map of eq. (17) takes the form{

Pel
P / ,C

}
→ lim

E∈Pel
P /

{
Pel
E/ ,C

}
. (19)

By the property of global saturation from corollary 2.16, and since enriched
homs (or cotensors) send colimits in the first variable to limits, this map is
an equivalence.

5. P-Monads in P-spans

This section will follow very closely the structure of [Hau21, §3].

Lemma 5.1. The ∞-functor Arinrt(P)
ev1−−−→ P admits a right adjoint right

inverse.
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Proof. The functor ⌜1⌝ : 1 → 2 has a retraction 2
!2−→ 1, which upgrades

in fact to a left adjoint left inverse: we clearly have !2 ◦ ⌜1⌝ =!1 = id1,
while there is a (unique, since 2 is posetal) natural transformation id2 ⇒
⌜1⌝◦!2 = const1, and it is easily checked (by unicity of !) that these two
transformations satisfy the triangle identities.

Now note that ev1 : Ar(P) =
{
2,P

}
→

{
1,P

}
is exactly given by

{
⌜1⌝,P

}
,

and so, as powering with P is (∞,2)-functorial (that is, as an ∞-functor{
(−),P

}
: (∞,1)-Cat

op → (∞,1)-Cat, it is (∞,1)-Cat-linear, and so up-
grades to an (∞,2)-functor), it has a right adjoint right inverse given by{
!2,P

}
. The latter ∞-functor can be described very explicitly: it maps an

object P ∈ P to its identity arrow idP ∈Ar(P).
In particular, it factors through Arinrt(P) — as identity arrows are inert

— and since this sub-(∞,1)-category of Ar(P) is full, the astriction of
{
!2,P

}
to it furnishes the desired right adjoint right inverse to Arinrt(P)

ev1−−−→ P.

Given its description, we will denote ⌜id⌝ : P→ Arinrt(P) the right ad-
joint right inverse to ev1. The unit will simply be known as η : idArinrt(P)⇒
⌜id⌝ ◦ ev1; its component at (P ↣Q) ∈Arinrt(P) is the square

η(P↣Q) :
P Q

Q Q.

(20)

Proposition 5.2. The ∞-functor Arinrt(P)
ev1−−−→ P exhibits P as the local-

isation of Arinrt(P) at the set I of ev0-cartesian morphisms lying over inert
arrows of P.

Proof. Let W be the set of morphisms in Arinrt(P) inverted by ev1; by [Lur09,
Corollary 2.4.7.11 and Lemma 2.4.7.] (cf. also [BHS22, Proposition 2.2.2.(2)]),
W consists exactly of the ev0-cartesian morphisms, so that we do have
I ⊂W. If (f ,g) : (P ↣ Q)→ (P ′↣ Q′) is a morphism in Arinrt(P) lifting
f : P → P ′ in P, it is in W if and only if g : Q → Q′ is an equivalence so
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that we have a commutative square

(P ↣Q) (P ′↣Q′)

(Q =Q) (Q′ =Q′)

(f ,g)

≃

(21)

in which the two vertical morphisms are in I. Any∞-functor from Arinrt(P)
to some (∞,1)-category C inverting the morphisms in I will then send the
square of eq. (21) to a square whose veritcal arrows (in addition to the lower
horizontal one) are equivalences, whence its upper horizontal is one as well
since equivalences always satisfy the 2-of-3 property. This means that such
an ∞-functor automatically inverts all the morphisms in W, and we only
need to show that ev1 is a localisation, along W. This follows readily from
the fact that it has a right adjoint right inverse (in fact it is equivalent to it),
but in our specific situation it can be seen in a more explicit way.

Let C be again any (∞,1)-category and let us consider the comparison
∞-functor

{
ev1,C

}
:
{
P,C

}
→

{
Arinrt(P),C

}
(W)

, where the target denotes

the full sub-(∞,1)-category of
{
Arinrt(P),C

}
on the ∞-functors inverting

the morphisms in W (through which
{
ev1,C

}
does factor by definition of

W). The crux of the matter is that the components of the unit transformation
η all belong to I — as can be seen in eq. (20) — and so a fortiori to W.
Hence, the adjunction

{
ev1,C

}
⊣
{
⌜id⌝,C

}
restricts on

{
Arinrt(P),C

}
(W)

to an
equivalence (as its counit was already an identity, and its unit becomes one
after this restriction), which means that ev1 is a localisation along W.

Construction 5.3. Let f : X → P be an ∞-functor such that X admits f-
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cocartesian lifts of inert morphisms. Consider the solid pullback

Arinrt(P) X×
P
Arinrt(P)

Arinrt(P) X×
P
Arinrt(P)

P X

ev0

f∗ ev0

ev∗0f
⌜id⌝◦ev1

id

η

ev0

ev0 η

ev∗0f

f∗ ev0

⌞
f∗ id=id

η!

f

(22)
which is a (strongly) commutative diagram in the (∞,2)-category (∞,1)-Cat.
Adding ⌜id⌝ ◦ ev1, represented as a dashed arrow, the induced back-left tri-
angle does not commute; however, adding as well the unit cell η and its
whiskering ev0η : ev0 = ev0◦ idArinrt(P)⇒ ev0◦⌜id⌝ ◦ ev1 we obtain a “2-
commutative” pasting diagram.

Now as f admits cocartesian lifts of inert arrows so does its base-change
ev∗0f (since cocartesian lifts are stable by pullback, by the co-dual of [RV22,
Proposition 5.2.4]), and so, using the formulation of cocartesian lifts from [RV22,
Definition 5.4.2], the transformation η(ev0f∗), whose components are inert,

admits an ev0f∗-cocartesian dotted lift idX×PArinrt(P)
η!
=⇒ (idX×PArinrt(P))η C

fη(⌜id⌝ ◦ ev1).
We can finally define

f∗ ev1B (f∗ ev0) ◦fη(⌜id⌝ ◦ ev1). (23)

Explicitly, f∗ ev1 sends an object (X,ȷ : fX ↣ Q) ∈ X ×P Arinrt(P) to

(XQ,Q = Q) where X
ȷ!−→ XQ is a cocartesian lift of ȷ. By construction

it comes equipped with a natural transformation that we will call f∗α B
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(f∗ ev0)η! : f∗ ev0⇒ f∗ ev1, sitting in the diagram

P X×PP ≃ X

Arinrt(P) X×
P
Arinrt(P)

P X

f∗ idP=idX

ev1

ev0
α

f∗ ev0
f∗α

⌞

f∗ ev1

f

(24)

whose front and back squares are cartesian, but whose top square is not —
and where the natural transformation α comes from cotensoring with P the
canonical 2-cell ⌜0 < 1⌝ : ⌜0⌝ ⇒ ⌜1⌝ : 1 → 2 (in particular, it is easily
checked that the adjunction !2 ⊣ ⌜1⌝ lives under 1 so that ev1 ⊣ ⌜id⌝ lives
over P). Conjecturally, the right face of eq. (24) could be seen in terms of the
(∞,3)-topos of (∞,2)-categories as the strong base change, along f admit-
ting enough cocartesian lifts, between fibrational lax slice (∞,2)-categories,
justifying our notation, though since the conditions for its construction are
rather specific we will not pursue this point of view in further generality.

Lemma 5.4. The∞-functor f∗ ev1 admits a right adjoint right inverse.

Proof. Note that in addition to being a right adjoint right inverse to ev1, the
map ⌜id⌝ is also a left adjoint right inverse to ev0. We will denote the counit
of this adjunction κ. Since the identity unit exhibits ev0◦⌜id⌝ = idP, the
∞-functor ⌜id⌝ lifts strongly to f∗⌜id⌝ : X→ X×PArinrt(P): the equivalent
of eq. (24) with ev1 replaced by ⌜id⌝ (and α replaced by the identity unit,
mutatis mutandis) is a strongly commutative diagram, and fully cartesian.
We claim that f∗⌜id⌝ is the sought-after right adjoint right inverse to f∗ ev1.

To see this, we will show that the transformation η! constructed in eq. (22)
works as a unit with identity counit; it requires first identifying its target
fη(⌜id⌝ ◦ ev1) as f∗⌜id⌝ ◦f∗ ev1. This is in fact trivial, because the trans-
formations η! : id⇒ fη(⌜id⌝◦ev1) and (f∗⌜id⌝)(f∗ ev0)η! : id⇒ f∗⌜id⌝◦
f∗ ev1 are both f-cocartesian lifts of η : id⇒ ⌜id⌝ ◦ ev1, but there is an-
other interesting way of seeing it, that we detail in the next paragraph.

Since the unit of the adjunction ⌜id⌝ ⊣ ev0 is an equivalence, the tri-
angle identities imply that the whiskering κ⌜id⌝ is the identity transforma-
tion of ⌜id⌝ , and also κ⌜id⌝ev1 ≃ id⌜id⌝ev1 . There are now two things we
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can do: since idfη(⌜id⌝ev1) is a cocartesian lift of id⌜id⌝ev1 , the transforma-
tion idfη(⌜id⌝ev1) factors through a unique lift fη(κ⌜id⌝ev1) of κ⌜id⌝ev1,
which because of the factorisation has to be an identity. At the same time,
one can take a cocartesian lift of κ⌜id⌝ev1, which is easily seen to coin-
cide with fη(κ⌜id⌝ev1); as a cocartesian lift of an identity, it is, again, an
identity. We thus have an equivalence

(f∗⌜id⌝) ◦ (f∗ ev1) = (f∗⌜id⌝) ◦ (f∗ ev0) ◦fη(⌜id⌝ ◦ ev1)
≃−−−−−−−−−−−→

fη(κ⌜id⌝ev1)
fη(⌜id⌝ ◦ ev1),

(25)

expressing the decomposition we needed.
Furthermore, constructing the equivalent of eq. (22) but with ev1◦⌜id⌝

in place of idP (so with structure map to P given by idP instead of ev0), and

with the identity counit ε : ev1◦⌜id⌝
=
=⇒ idP instead of η, we obtain, after

strongly pulling back ev1◦⌜id⌝, an f-cocartesian transformation

ε! : f
∗(ev1◦⌜id⌝)⇒ (f∗(ev1◦⌜id⌝))ε = idX , (26)

which as a cocartesian lift of ε which is an identity, is itself an equivalence.
Finally, the fact that f∗η B η! and ε! satisfy the triangle identities is a

consequence of the triangle identities for η and ε, to which is applied the
same reasoning we used to obtain eq. (25).

It is worthwhile to note that the component of f∗η : id ⇒ f∗⌜id⌝ ◦
f∗ ev1 at an object (X,fX

ȷ
↣Q) ∈ X×PArinrt(P) is

f∗η(X,fX↣Q) :

X,

fX

Q


(X,ȷ)

(X,idQ)

X,

Q

Q

 . (27)

Proposition 5.5. Let f : X → P be an ∞-functor such that X admits f-
cocartesian lifts of inert morphisms. The∞-functor f∗ ev1 : X×PArinrt(P)→
X exhibits X as the localisation of X×PArinrt(P) at the set IX of morphisms
(X; (f(X)↣Q))→ (X ′; (f(X ′)↣Q′)) such that
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• X→ X ′ is f-cocartesian and

• (f(X)↣Q)→ (f(X ′)↣Q′) is ev0-cartesian and ev0-over an inert
arrow.

Proof. The proof follows the lines of that of Proposition 5.2. Let WX be the
class of morphisms inverted by f∗ ev1. A morphism of X ×P Arinrt(P), of
the form (ξ,θ) where ξ : X→ Y in X and θ sits is a commutative square

fX fX ′

Q Q′

ȷ

fξ

ȷ′

θ

(28)

in P, is in WX if and only if θ is an equivalence Q ≃Q′, so that it induces a
commutative square

(X,fX↣Q) (X ′,fX ′↣Q′)

(XQ,f(XQ) =Q) (X ′Q′ ,f(X
′
Q′ =Q′))

(ξ,θ)

ȷ! ȷ′!

(ȷ!ξ,θ)

(29)

where X
ȷ!−→ XQ and X ′

ȷ′!−→ X ′Q′ are cocartesian lifts of ȷ and ȷ′, and ȷ!ξ is
the arrow XQ → X ′Q′ uniquely induced by cartesianity, which is invertible
since it lifts the isomorphism Q ≃ Q′. The vertical morphisms are in IX by
construction, so it follows from the 2-of-3 property of equivalences that any
∞-functor that inverts the morphisms in IX will invert the morphisms in WX,
and that the localisations along IX and WX coincide.

But again, it can be seen in eq. (27) that the components of f∗η are in IX
whence in WX, so f∗ ev1 is indeed a localisation along WX.

From now on, we assume that P is a sound pattern, and we let C be a
P-complete (∞,1)-category.

Corollary 5.6. Let f : X → P be an ∞-functor such that X admits f-
cocartesian lifts of inert morphisms. There is a fully faithful ∞-functor{
X,C

}
↪→

{
X,SpanP(C)

}
/P

whose essential image is spanned by the ∞-
functors preserving cocartesian morphisms over inert morphisms of P.
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Proof. Direct application of [GHN17, Proposition 7.3] shows that for any
(∞,1)-category X over P there is an equivalence{

X,SpanP(C)
}
/P
≃
{
X×PArinrt(P),C

}
, (30)

in which an ∞-functor S : X → SpanP(C) over P (so mapping X ∈ X to
S(X) : Pinrt

fX/ →C) corresponds to S̃ : X×PArinrt(P)→C mapping

(X,fX↣Q) 7→S(X)(fX↣Q). (31)

In addition, by the description of p-cocartesian morphisms in SpanP(C)
provided by [Lur09, Corollary 3.2.2.13], one sees that an∞-functor S : X→
SpanP(C) takes an arrow ξ : X → X ′ to a cocartesian arrow in SpanP(C)
if and only if the corresponding S̃ takes all morphisms (ξ,θ) where θ is
ev0-cartesian in Arinrt(P) to equivalences in C.

By Proposition 5.5,
{
X,C

}
identifies as the full sub-(∞,1)-category of{

X×PArinrt(P),C
}

on those∞-functors inverting all morphisms in IX. More
precisely, the equivalence of eq. (30) sits in the sequence{
X,C

}
≃
{
X×PArinrt(P),C

}
(IX)

↪→
{
X×PArinrt(P),C

}
≃
{
X,SpanP(C)

}
/P

.
(32)

One then only needs to observe that an ∞-functor S̃ ∈
{
X×PArinrt(P),C

}
,

corresponding to S ∈
{
X,SpanP(C)

}
/P

, is in
{
X×PArinrt(P),C

}
(IX)

if and

only if for any ξ : X→ X ′ in X that is f-cocartesian and any θ as in eq. (28)
that is ev0-cartesian and ev0-over an inert arrow, S̃(ξ,θ) is an equival-
ence, which is exactly the description given above of S taking f-cocartesian
morphisms f-over (since ev0(θ) = f(ξ)) an inert arrow to p-cocartesian
arrows.

We can now arrive at our main result.

Theorem 5.7. Let X → P be a fibrous P-pattern, with P sound, and C a
P-complete (∞,1)-category. There is an equivalence of (∞,1)-categories

SegX(C) ≃AlgX(SpanP(C)). (33)

In particular, taking X = P to be the terminal fibrous P-pattern, we ob-
tain theorem A.
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Proof. LetS : X→ SpanP(C) be an∞-functor over P that preserves cocartesian
morphisms over inert arrows (so corresponds to S̃ : X → C). It factors
through SpanP(C) if and only if for every X ∈ X, the Pinrt

fX/ -object S(X)
in C is Segal.

By [Bar22, Lemma 2.39], for any map of algebraic patterns O → P

and any P ∈ P, the projection O ×P PP / → P is an iso-Segal morphism.
Applying this to O = Pinrt and P = fX (for any X), we find that the above
condition is equivalent to S̃ being a Segal X-object.

6. Some examples: flavours of generalised multicategories

Remark 6.1 (Graphs and endomorphisms). Since the Segal condition for
a pattern Pel with only elementary objects and inert morphisms is trivial,
the underlying P-graph of the P-monoidal (∞,1)-category SpanP(C) is
SpanPel(C), which is directly given by the ∞-functor

{
Pel
−/ ,C

}
. Since Pel

E/ ,
for any elementary E, generally has a simple form, this will make the under-
lying P-graph of P-spans easy to describe.

Furthermore, since the “algebraic operations” in Segal P-objects come
from active morphisms, a Pel-monad carries no algebraic structure and can
simply be seen as a P-endomorphism. The statement of Theorem 5.7 thus
restricts to saying that P-endomorphisms in SpanP(C) are exactly P-graphs
in C.

6.2 Categories and multiple categories

Take P to be the pattern ∆op♮, consisting of the simplicial indexing category
∆op with its usual inert-active factorisation system (where a map [n]→ [m]
in ∆ is inert if it is a subinterval inclusion and active if it is endpoints-
preserving), and [0] and [1] as elementary objects. Its Segal objects are
internal categories.

Remark 6.2.1. Direct comparison shows that for any [n] ∈ ∆op, the category
(∆op♮)inrt

[n]/ is equivalent (in fact isomorphic) to the twisted arrow category of
n+ 1 = [n], as has been previously noticed in [Hau18a, Remark 5.4] and
implicitly used in [Kos21, Remark 2.18]: more precisely, a morphism in
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Tw(n+ 1) represented by a factorising square in n+ 1 below-left

i i′

j j ′

i≤j i′≤j ′

i′≤i

j≤j ′

[n] [n]

[j − i] ≃ {i, . . . , j} [j ′ − i′] ≃ {i′, . . . , j ′}
(34)

corresponds to the morphism in (∆op♮)inrt
[n]/ represented as the commutative

square (in ∆) above-right.
Thus for any (∞,1)-category C admitting finite fibre products, Span

∆op♮(C)
is the double (∞,1)-category of spans in C constructed in [Bar13] and [Hau18a]
(and denoted SPAN+

1 (C) there).
Now, we also note that fibrous ∆op♮-patterns are virtual double∞-categories

(also referred to as generalised non-symmetric∞-operads in [GH15]) so that
morphisms of fibrous ∆op♮-patterns correspond to “lax double functors”, and
in particular ∆op♮-monads recover the usual notion of monad in a virtual
double (∞,1)-category. In conclusion, Theorem 5.7 applied to the pattern
∆op♮ recovers the main theorem of [Hau21], that monads (or algebras) in
spans are internal categories.
Example 6.2.2. More generally, using products of algebraic patterns (cf. Ex-
ample 2.4), one sees that for any d ∈ N, the Segal ∆op♮,d-(∞,1)-category
Span

∆op♮,d (C) is the (d + 1)-uple (∞,1)-category SPAN+
d (C) of iterated

spans also constructed in [Hau18a].
We now explain how lax Segal ∆op♮,d-fibrations should be seen as virtual

(d+1)-uple∞-categories. When viewing (strong) Segal ∆op♮,d-fibrations as
(d + 1)-uple categories, one should separate the d directions coming from
∆d , which we dub the algebraic directions, from the last one coming from
straightening the cocartesian fibration, which we will know as the categor-
ical, or transversal, direction. A lax Segal ∆op♮,d-fibration X is then virtual
in all the algebraic directions: it has, for all n ≤ d, algebraic n-cells in the
usual directions for d-uple categories, and it has transversal cells from any
n-dimensional grid of n-cells to a single n-cell. We stress that, for the do-
mains of the transversal n-cells, we only require grids rather than the more
general n-uple pasting diagrams of [Rui22], as the grids are the objects of
∆d .
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Let us represent the low dimensions; for ease of viewing we shall draw
the transversal direction vertically, from top to bottom (since drawing it
transversally would hide the face with the most information in the back).

For d = 1, the description — of virtual double ∞-categories — is well-
known: there are objects and algebraic arrows, and in addition there are
transversal arrows between objects and transversal cells from any pasting
diagram (i.e. composable sequence) of algebraic arrows to one algebraic
arrow, drawn as 2-cells in

· · · ·

· ·.
(35)

For d = 2, we similarly have objects, two kinds of algebraic 1-arrows,
and algebraic squares or 2-arrows, and in addition transversal 1-arrows between
objects, two kinds of transversal 2-cells, corresponding to the two directions
of algebraic arrows, and finally transversal cubes or 3-cells for any grid of
composable squares, as represented in

· · · · ·

· · · · ·

· · · · · ·

· ·

(36)

where the 3-cell is not visible but fills the cube.
A ∆op♮,d-monad then consists of monads (whose structure cells are trans-

versal) in all possible algebraic directions and throughout the different di-
mensions, resembling (a less lax version of) the intermonads of [GP17,
§7.1].
Example 6.2.3. If one takes instead the pattern ∆op♭, which has the same
underlying category and factorisation system but only [1] as elementary ob-
ject — whose Segal objects are internal categories X• with trivial object
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X0 of objects, so internal associative monoids — then the monoidal (∞,1)-
category Span

∆op♭(C), for C admitting finite products (for this is what ∆op♭-
completeness means) is C itself seen with its cartesian monoidal structure.

Generalising to ∆op♭,n (whose Segal objects are n-iterated associative
monoids, so En-monoids), we have that Span

∆op♭,n(C) is C seen with its
cartesian structure as an En-monoidal structure. In this case, Theorem 5.7
simply recovers the fact that Segal ∆op♭,n-objects in a cartesian (∞,1)-category
C are n-uply commutative (meaningEn-) algebras in the cartesian monoidal
(∞,1)-category C× (i.e. En-monoids in C).

6.3 Commutative monoids

Take P to be the pattern Γ op
♭ where Γ op ≃ F in∗ is the opposite of Segal’s

category, which is equivalent to the category of pointed finite sets, with its
usual inert-active factorisation system, and ⟨1⟩ as the only elementary object.
Its Segal objects are commutative (orE∞) monoids. As explained in [CH21,
Example 14.22], this algebraic pattern is not saturated; however its global
saturation is easily seen from the fact that Γ op♭,el

⟨n⟩/ is a set of n elements.

It also follows that for any Γ op
♭-complete (i.e. admitting finite products)

(∞,1)-category C, Span
Γ op

♭(C) is again C itself equipped with its cartesian

symmetric monoidal structure. Since fibrous Γ op♭-patterns are∞-operads in
the sense of [Lur17] and Γ op

♭-monads are commutative algebras, we recover
that Segal Γ op♭-objects in C are commutative monoids in C (where it is
again understood that the term “monoid” refers to an algebra in a cartesian
monoidal∞-category).

Remark 6.3.1. For the product pattern P = Γ op
♭×∆op♮, whose Segal objects

are internal symmetric monoidal categories, we recover as SpanP(C) the
double (∞,1)-category of spans in C, endowed with its symmetric monoidal
structure coming from the cartesian product in C.

Example 6.3.2. As a further variant, one may consider the algebraic pat-
tern Γ op

♮, which is like Γ op
♭ but also has ⟨0⟩ as an additional elementary

object. Its Segal objects in a Γ op
♮-complete (∞,1)-category C are commut-

ative monoids in a slice of C, which it is convenient to interpret as families
of commutative monoids in C indexed by an object of C. In the same spirit,
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fibrous Γ op
♮-patterns are generalised ∞-operads of [Lur17], which are the

same thing as families of∞-operads.
For any object ⟨n⟩, the category Γ op

♮,el
⟨n⟩/ is

ρ1 ρ2 · · · ρn−1 ρn

(
⟨n⟩ !−→ ⟨0⟩

) (37)

where ρi : ⟨n⟩ → ⟨1⟩ sends i to 1 and all the other elements of ⟨n⟩ to 0, from
which it is seen that the pattern Γ op

♮ is globally saturated. More generally,
any inert map ⟨n⟩ → ⟨k⟩ (with necessarily k ≤ n) determines and is uniquely
determined by a k-element subset of n = ⟨n⟩\{0}, so that writing ℘(n) for the
powerset of n (equipped with its natural order), we have Γ op

♮,el
⟨n⟩/ ≃ ℘(n)op.

For example, for n = 3 the poset Γ op♮,el
⟨3⟩/ is

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

{0}

(38)

(containing copies of Γ op♮,el
⟨2⟩/ , Γ

op♮,el
⟨1⟩/ , and Γ op

♮,el
⟨0⟩/ on the left). We can thus

see that Span
Γ op

♮(C) is the family of slices of C, each equipped with its
monoidal structure given by the pullbacks in C, and Theorem 5.7 recovers
the description of Segal Γ op♮-objects given above.

6.4 Higher categories and iterated spans

We now take P to be the pattern Θℓ
op♮ of Remark 3.5, for some ℓ ∈ N∪{ω}.
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It follows from the description given in eq. (10) that Span
Θ

op
ℓ

♮(C) is a

cellular (∞,1)-category of ℓ-times iterated spans: for any k ≤ ℓ, the (∞,1)-
category of k-cells has as objects the spans between the apices of two (k−1)-
iterated spans, and as morphisms the morphisms between spans. In other
words, it is a categorical enhancement of the (∞, ℓ + 1)-category Span+ℓ (C)
of ℓ-iterated spans from [Hau18a, Definition 5.16, Remark 5.17], obtained
by discarding all the extraneous “algebraic” directions of the (ℓ+1)-uple one
as in [ibid.] but still retaining the transversal one.

Remark 6.4.1. At the level of the underlying Θop♮-graph, the fact that our
construction of the globular category of iterated spans through slices of
Θop♮,el = Gop recovers the combinatorial one given in [Bat98, Definition
3.2] was already observed in [Str00].

Example 6.4.2. For any k ≤ ℓ, we can also define the pattern (Θℓ
op)Σ

k♮ to
consist of the same structure as Θop♮ but only the globes Dn with n ≥ k as
elementaries. For example, if ℓ is finite, taking k = ℓ recovers the pattern de-
noted Θ

op
ℓ

♭
in [CH21]. Segal objects for (Θℓ

op)Σ
k♮ areEk-monoidal internal

(ℓ − k)-categories.

As noted in [CH21, Example 9.8. (iv)], fibrous Θℓ
op♮-patterns are an

∞-categorical version of the ℓ-globular multicategories or many-sorted ℓ-
globular operads of [Lei04, p. 273] and [CS10, Example 4.11], themselves a
many-sorted, or coloured, version of the ℓ-globular operads of [Bat98]. They
are similar to the fibrous ∆op♮,ℓ-patterns described in EXAMPLE 6.2.2, but
where the domain of a transversal n-cell is an n-categorical pasting diagram
instead of an n-dimensional grid (and its codomain is a single n-globe rather
than an n-cube).

Warning 6.4.3. Despite their name of “ℓ-operads” in [Bat98], fibrous ∆op♮,ℓ-
patterns should not be thought of as a kind of (∞, ℓ)-operads, meaning ∞-
operads enriched in (∞, ℓ − 1)-Cat. Indeed, as seen from the description
above, they contain more data and structure than (∞, ℓ)-operads.

Likewise, the strong Segal Θℓ
op♮-fibrations, known as “monoidal ℓ-globular

categories” in [ibid.], are really categorical (∞, ℓ)-categories. In particu-
lar, Θℓ

op♮-monads are very different from any kind of usual ℓ-categorical
monads that could be made sense of (for example following the philosophy
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of [Hau18b] identifying Segal Θℓ+1
op♮-objects with reduced categorical Θℓ

op♮-
objects) in categorical (∞, ℓ)-categories: the Θℓ

op♮-monad structure associ-
ates to any configuration of (algebraic) n-cells a transversal cell, so is really
independent of the (∞, ℓ)-categorical structure.

As such, we will only refer to Θℓ
op♮-monads as ℓ-globular monads.

We then obtain by applying Theorem 5.7 that Θℓ
op♮-monads in the cat-

egorical (∞, ℓ)-category Span
Θℓ

op♮(C) are Segal Θℓ
op♮-objects in C, or in

more evocative language:

Corollary 6.4.4. There is an equivalence of (∞,1)-categories between ℓ-
globular monads in the categorical (∞, ℓ)-category Span+ℓ (C) of ℓ-iterated
spans in C, and internal (∞, ℓ)-categories in C.

For ℓ = ω, this recovers a homotopical formulation of the definition of
weak ω-categories given by [Bat98] as well as that of [Lei04] (cf. [CL04]
for an explanation of the different definitions of ω-categories).

6.5 Multicategories and multispans

We finish by considering the algebraic pattern Ωop♮ (resp. Ωop♮
pl.) whose

Segal objects are internal coloured operads (resp. internal coloured planar
operads). Here, Ω is the dendroidal category, whose objects are rooted
trees (resp. with planar structure), henceforth referred to as dendrices to
avoid confusion with the objects of Θ, and whose morphisms express the
grafting of dendrices — in contrast with the morphisms of Θ which ex-
press the pasting of trees. The algebraic pattern structure is given by hav-
ing the inert morphisms be the sub-dendrex inclusions, the active morph-
isms the boundary-preserving maps, and the elementary objects be the co-
rollas ⋆a (determined by their arities a ∈ N) and the nodeless edge η. As
noted in [CH21, Examples 14.21], the pattern Ωop♮ is saturated because any
dendrex can be decomposed as a gluing of corollas along edges, and the
same argument shows that it is also globally saturated.

To understand the dendroidal (∞,1)-category Span
Ωop♮(C), let us first

describe its underlying categorical Ωop♮-graph Span
Ωop♮,el(C). At the level

of colours, we just have Ω
♮,el
/η = {idη}. At the level of operations, writing
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e1, . . . , ea the leaves of the corolla ⋆a and r its root, we find that Ω♮,el
/⋆a

is the
category

(η
⌜e1⌝−−−→ ⋆a) · · · (η

⌜ea⌝−−−→ ⋆a)

id⋆a

(η
⌜r⌝−−−→ ⋆a)

(39)

of (a+ 1)-ary multicospans.
The structure of category objects in multicategories (coloured non-symmetric

operads) was studied in [CGR14, Definition 3.9]. In our case, we get for
Span

Ωop♮(C) an operadic composition of multispans by fibre products along
the relevant legs, where each multispan has a distinguished root as seen
in eq. (39).

Example 6.5.1. It is also possible to replace Ωop♮ by the pattern Ξop♮ of [HRY19],
whose Segal objects are cyclic operads. We obtain for Span

Ξop♮(C) the same
structure as above, except that the (a+1)-ary spans come without a choice of
root. Note also that in Ξ, the nodeless edge η is equipped with an involution,
which for Segal objects becomes a “duality” operation on colours. In our
case, it acts as the identity.

Going further, we may also use the pattern Υ op♮ of [HRY20] (denoted U

there), whose Segal objects are modular operads. The categorical modular
∞-operad Span

Υ op♮(C) works much as Span
Ξop♮(C), but with additional

contraction operations that turn the abstract self-duality of objects into an
actual self-duality (in the usual monoidal, or rather properadic, sense).

The fibrous Ωop♮-patterns were identified in [Ber22] as “tree-hyperoperads”,
which are cumbersome to describe in detail (cf. [GK98, §4.1] or [MSS02,
Definition 5.45] for the modular generalisation, simply called hyperoperads).
Nevertheless, we still obtain from Theorem 5.7 that dendroidal monads in the
categorical∞-operad of multispans in C are internal operads in C.
Remark 6.5.2. The definition of operads, and more general multicategorical
structures, as monads in multispans is well-known: it dates to [Bur71], and
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was independently rediscovered by both [Her04] and [Lei98], and then fur-
ther systematised by [Lei04] and [CS10]. From a cartesian monad T on a
category C, one constructs a double category of Kleisli T-spans, whose ob-
jects are those of C and morphisms from C to D are spans from TC to D,
composition of spans using the monad structure.

For example, taking T to be the monad F
Γ op

♭ for free monoids, a Kleisli
T-span is a multispan of arbitrary arity, and monads (in the double-categorical
sense) are coloured operads. Generally speaking, if T is the monad FP for
free Segal P-objects on P-graphs for some appropriate algebraic pattern P,
we expect that monads in Kleisli FP-spans should be fibrous P-patterns,
obtained as the Segal objects for a plus construction P+ of P (as in [Ker23,
Proposition 3.2.10]), so as P+-monads in P+-spans.

However, Kleisli F
Γ op

♭-spans and Ωop♮-spans, while both admitting a
natural interpretation as multispans, form markedly different structures. On
the one hand, Span

Ωop♮(C) is a categorical∞-operad, whose operadic com-
position is given (leg by leg) by simple pullbacks. On the other hand, Keisli
F

Γ op
♭-spans only form a double category, but its composition is more com-

plex and makes full use of the monad structure on F
Γ op

♭ . For a general
algebraic pattern P, the difference will be similar: we think of it as mov-
ing the structure from the microcosm (on the Keisli FP-spans side) to the
macrocosm (on the P+-spans side).

It is nonetheless unclear what the precise relation between the two con-
structions is, if there even is one: the Keisli-type construction can be ab-
stracted away from a span setting by using general monads acting on virtual
double categories, but it is unlikely to be able to handle non-directed struc-
tures such as the cyclic and modular∞-operads of EXAMPLE 6.5.1.

7. Conclusion: A fibrational perspective

Notation 7.1. In this section, we will identify (∞,1)-categories with internal
categories in∞-Grpd, where internal categories are by definition Segal ∆op♮-
objects satisfying Rezk’s univalence-completeness condition. It will also be
convenient to see Segal P-objects in (∞,1)-Cat — such as, in particular, the
P-(∞,1)-categories of P-spans — as internal categories in SegP(∞-Grpd).

Recall that, for any regular cardinal κ, the (∞,1)-category∞-Grpd
(κ) ⊂
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∞-Grpd is the base of the universal discrete cocartesian fibration with κ-
small fibres ∞-Grpd

(κ)
• → ∞-Grpd

(κ) in the (∞,2)-topos (∞,1)-Cat, just
as Set(κ) ⊂ Set is the universal κ-small discrete cocartesian fibration in
the (2,2)-topos Cat. In [Web07, Examples 4.7 and 4.8], it is explained
that, for an algebraic pattern Pel in which all objects are elementary and
all morphisms inert, the construction SpanPel(−) preserves classifying dis-
crete fibrations, so that the 2-topos Cat

({
Pel,Set

})
has a sufficient family

of classifying discrete cocartesian fibrations given by SpanPel(Set
(κ)
• ) →

SpanPel(Set(κ)) (where “sufficient” means that every discrete cocartesian
fibration is classified by one in the family).

In the ∞-categorical setting, the properties of universal (or “classify-
ing”) fibrations are captured by the notion of univalence, which we restate
from [GK16] (see also [Ras21b, Theorem 4.4]) in the internal setting.

Construction 7.2. Let C be a finitely complete (∞,1)-category. Recall that
a discrete cocartesian fibration in C is an internal functor f : E→ B such
that (d1,f1) : E1→ E0 ×B0 B1 is an equivalence.

Lifting the construction of [GK16, Theorem 2.10] to the cartesian closed
(∞,2)-category Cat(C), one can construct for any discrete cocartesian fibra-
tion f : E → B in C an internal category Eq/B×B(ϖ

∗
1E,ϖ

∗
2E) over B × B

(where ϖ1,ϖ2 : B ×B→ B are the two projections) characterising equival-
ences between fibres of f.

Definition 7.3 (Univalent fibration). A discrete cocartesian fibration E→ B

internal to C is univalent if B→ Eq/B×B(ϖ
∗
1E,ϖ

∗
2E) is an equivalence.

Example 7.4. It is shown in [Cis19, Proposition 5.3.13] that the universal
discrete cocartesian fibration ∞-Grpd• → ∞-Grpd (in the (∞,2)-category
(∞,1)-Cat =Cat(∞-Grpd)) is univalent.

Using this characterisation, one can show (though we omit the proof here
as this result is only used for motivation) that for any sound algebraic pattern
Pinrt all of whose morphisms are inert, the construction

SpanPinrt(−) : (∞,1)-Cat
(P-cplt)→Cat(SegPinrt(∞-Grpd)) (40)

preserves classifying discrete cocartesian fibrations:
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Proposition 7.5. Let G• → G be a univalent discrete cocartesian fibra-
tion. Then SpanPinrt(G•)→ SpanPinrt(G) is a univalent discrete cocartesian
fibration internally to SegPinrt(G).

For an algebraic pattern with non-trivial active morphisms, the situation
becomes richer and goes beyond the (∞,2)-topos theory of internal categor-
ies in presheaf (∞,1)-topoi. Indeed, Theorem 5.7 shows that, even when
restricting our attention as we are doing here from fibrous patters to Segal
fibrations, the morphisms of interest will be the lax morphisms, the maps
of underlying fibrous patterns. We will thus use a notion of lax univalence,
obtained by replacing strong morphisms by general lax morphisms of cat-
egorical Segal P-∞-groupoids in the definition of univalence for fibrations
in SegP(∞-Grpd).

Conjecture 7.6. Let G• → G be a univalent discrete cocartesian fibration.
Then SpanP(G•)→ SpanP(G) is a lax-univalent discrete cocartesian fibra-
tion internally to SegP(G).

This Conjecture states that SpanP(G•)→ SpanP(G) classifies a class
of discrete cocartesian fibrations. It remains to see that every such class is
classified by a universal fibration of this form.

Conjecture 7.7. Suppose
(
G

(κ)
• → G(κ)

)
κ∈K

is a sufficient family of uni-

valent fibrations for (∞,1)-Cat. Then
(
SpanP(G

(κ)
• )→ SpanP(G

(κ))
)
κ∈K

provides enough lax-univalent fibrations for Cat(SegP(∞-Grpd)).

Corollary 7.8. Let P be a sound algebraic pattern and X→ P be a Segal
P-fibration, and assume that Conjecture 7.6 and Conjecture 7.7 hold. Then
Segal X-objects in∞-Grpd are internal discrete cocartesian fibrations over
the straightening X of X.

Proof. The key point is that, by [GK16, Proposition 3.8], if G(κ)
• → G(κ) is

univalent then G(κ) is a full sub-(∞,1)-category of ∞-Grpd, from which it
follows that lax morphisms X→ SpanP(G

(κ)) can be seen as lax morphisms
X → SpanP(∞-Grpd). By the two conjectures, discrete cocartesian fibra-
tions over X are the same thing as lax morphisms X → SpanP(∞-Grpd)
(factoring through some SpanP(G

(κ))). At the same time, by Theorem 5.7,
the latter are the same thing as Segal X-objects in∞-Grpd (or, to be precise,
in some G(κ)), which proves the result.
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Example 7.9 (Double fibrations and Segal fibrations). For the algebraic pat-
tern, Corollary 7.8 says explicitly that discrete cocartesian fibrations of double
∞-categories correspond biunivocally to lax double∞-functors to the double
∞-category of spans (of ∞-groupoids). This is precisely an ∞-categorical
version of the main construction of [Lam21]. This use of internal discrete
fibrations is also very similar to how [Ras21a] deals with fibrations of Segal
spaces (see also [Lou23, §6.1.1] for the version for fibrations of ω-categories).

References

[AF18] David Ayala and John Francis. “Flagged higher categories”. In:
Topology and Quantum Theory in Interaction. Vol. 718. Topo-
logy and Quantum Theory in Interaction. 2018, pp. 137–174.
ISBN: 978-1-4704-4243-9. DOI: 10.1090/conm/718. arχiv:
1801.08973 [math.CT].

[Ara10] Dimitri Ara. “Sur les ∞-groupoïdes de Grothen-
dieck et une variante ∞-catégorique”. PhD thesis.
Université Paris Diderot (Paris 7), 2010. URL:
https://www.imj-prg.fr/theses/pdf/dimitri_ara.pdf.

[Baa19] Nils A. Baas. “On the mathematics of higher structures”.
In: International Journal of General Systems 48.6 (2019),
pp. 603–624. DOI: 10.1080/03081079.2019.1615906.
arχiv: 1805.11944 [math.GM].

[Bar13] Clark Barwick. “On the Q construction for exact quasicategories”
(2013). arχiv: 1301.4725 [math.KT].

[Bar22] Shaul Barkan. “Arity Approximation of ∞-Operads” (2022).
arχiv: 2207.07200 [math.AT].

[Bat98] Michael Batanin. “Monoidal Globular Categories As a Nat-
ural Environment for the Theory of Weak n-Categories”.
In: Advances in Mathematics 136 (1998), pp. 39–103. DOI:
10.1006/aima.1998.1724.

81

https://doi.org/10.1090/conm/718
https://arxiv.org/abs/1801.08973
https://www.imj-prg.fr/theses/pdf/dimitri_ara.pdf
https://doi.org/10.1080/03081079.2019.1615906
https://arxiv.org/abs/1805.11944
https://arxiv.org/abs/1301.4725
https://arxiv.org/abs/2207.07200
https://doi.org/10.1006/aima.1998.1724


D. KERN SEGAL OBJECTS AS MONADS IN SPANS

[Bén67] Jean Bénabou. “Introduction to bicategories”. In: Reports of the
Midwest Category Seminar. Vol. 47. Lecture Notes in Math-
ematics. Springer Berlin Heidelberg, 1967, pp. 1–77. DOI:
10.1007/BFb0074299.

[Ber02] Clemens Berger. “A Cellular Nerve for Higher Categories”.
In: Advances in Mathematics 169 (2002), pp. 118–175. DOI:
10.1006/aima.2001.2056.

[Ber22] Clemens Berger. “Moment categories and operads”. In:
Theory and Applications of Categories 38.39 (2022).
DOI: 10.70930/tac/6g3jhwj0. arχiv: 2102.00634
[math.CT].

[BHS22] Shaul Barkan, Rune Haugseng and Jan Steinebrunner. “En-
velopes for Algebraic Patterns”. (2022) arχiv: 2208.07183
[math.CT].

[Bur71] Albert Burroni. “T -catégories (Catégories dans un
triple)”. In: Cahiers de topologie et géométrie
différentielle 12.3 (1971), pp. 215–321. URL:
http://www.numdam.org/item/CTGDC_1971__12_3_215_0/.

[BS≥25] Shaul Barkan and Jan Steinebrunner. “Skew-Segal morphisms
and soundness”. (Forthcoming)

[CGR14] Eugenia Cheng, Nick Gurski and Emily Riehl. “Cyc-
lic multicategories, multivariable adjunctions and mates”.
In: Journal of K-Theory 13.2 (2014), pp. 337–396. DOI:
10.1017/is013012007jkt250. arχiv: 1208.4520
[math.CT].

[CH21] Hongyi Chu and Rune Haugseng. “Homotopy-coherent
algebra via Segal conditions”. In: Advances in Math-
ematics 385 (2021), p. 107733. ISSN: 0001-8708. DOI:
10.1016/j.aim.2021.107733. arχiv: 1907.03977
[math.AT].

82

https://doi.org/10.1007/BFb0074299
https://doi.org/10.1006/aima.2001.2056
https://doi.org/10.70930/tac/6g3jhwj0
https://arxiv.org/abs/2102.00634
https://arxiv.org/abs/2102.00634
https://arxiv.org/abs/2208.07183
https://arxiv.org/abs/2208.07183
http://www.numdam.org/item/CTGDC_1971__12_3_215_0/
https://doi.org/10.1017/is013012007jkt250
https://arxiv.org/abs/1208.4520
https://arxiv.org/abs/1208.4520
https://doi.org/10.1016/j.aim.2021.107733
https://arxiv.org/abs/1907.03977
https://arxiv.org/abs/1907.03977


D. KERN SEGAL OBJECTS AS MONADS IN SPANS

[Cis19] Denis-Charles Cisinski. Higher Categories and Ho-
motopical Algebra. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2019. ISBN:
9781108588737. DOI: 10.1017/9781108588737. URL:
https://cisinski.app.uniregensburg.de/CatLR.pdf.

[CL04] Eugenia Cheng and Aaron Lauda. Higher-Dimensional
Categories: an illustrated guide book. 2004. URL:
https://eugeniacheng.com/wp-content/uploads
/2017/02/cheng-lauda-guidebook.pdf.

[CS10] Geoffrey S.H. Cruttwell and Michael A. Shulman. “A uni-
fied framework for generalized multicategories”. In: The-
ory and Applications of Categories 24.21 (2010), pp. 580–
655. DOI: 10.70930/tac/mxocppsl. arχiv: 0907.2460
[math.CT].

[GH15] David Gepner and Rune Haugseng. “Enriched ∞-categories
via non-symmetric ∞-operads”. In: Advances in Mathem-
atics 279 (2015), pp. 575–716. ISSN: 0001-8708. DOI:
10.1016/j.aim.2015.02.007. arχiv: 1312.3178
[math.AT].

[GHN17] David Gepner, Rune Haugseng and Thomas Nikolaus.
“Lax Colimits and Free Fibrations in ∞-Categories”. In:
Documenta Mathematica 22 (2017), pp. 1225–1266. DOI:
10.4171/DM/593. arχiv: 1501.02161 [math.CT].

[GK16] David Gepner and Joachim Kock. “Univalence in locally
cartesian closed ∞-categories”. In: Forum Mathematicum 29
(2016), pp. 617–652. DOI: 10.1515/forum-2015-0228.
arχiv: 1208.1749 [math.CT].

[GK98] Ezra Getzler and Mikhail M. Kapranov. “Modular op-
erads”. In: Compositio Mathematica 110.1 (1998), pp. 65–
125. ISSN: 1570-5846. DOI: 10.1023/A:1000245600345.
arχiv: dg-ga/9408003 [dg-ga].

83

https://doi.org/10.1017/9781108588737
https://cisinski.app.uniregensburg.de/CatLR.pdf
https://eugeniacheng.com/wp-content/uploads/2017/02/cheng-lauda-guidebook.pdf
https://eugeniacheng.com/wp-content/uploads/2017/02/cheng-lauda-guidebook.pdf
https://doi.org/10.70930/tac/mxocppsl
https://arxiv.org/abs/0907.2460
https://arxiv.org/abs/0907.2460
https://doi.org/10.1016/j.aim.2015.02.007
https://arxiv.org/abs/1312.3178
https://arxiv.org/abs/1312.3178
https://doi.org/10.4171/DM/593
https://arxiv.org/abs/1501.02161
https://doi.org/10.1515/forum-2015-0228
https://arxiv.org/abs/1208.1749
https://doi.org/10.1023/A:1000245600345
https://arxiv.org/abs/dg-ga/9408003


D. KERN SEGAL OBJECTS AS MONADS IN SPANS

[GP17] Marco Grandis and Robert Paré. “Intercategories: A frame-
work for three-dimensional category theory”. In: Journal
of Pure and Applied Algebra 221 (2017), pp. 999–1054.
DOI: doi.org/10.1016/j.jpaa.2016.08.002. arχiv:
1412.0212 [math.CT].

[Hau18a] Rune Haugseng. “Iterated spans and classical topological field
theories”. In: Mathematische Zeitschrift 289 (2018), pp.
1427–1488. DOI: 10.1007/s00209-017-2005-x. arχiv:
1409.0837 [math.AT].

[Hau18b] Rune Haugseng. “On the equivalence between Θn-spaces
and iterated Segal spaces”. In: Proceedings of the Amer-
ican Mathematical Society 146.4 (2018), pp. 1401–1415.
DOI: 10.1090/proc/13695. arχiv: 1604.08480
[math.AT].

[Hau21] Rune Haugseng. “Segal spaces, spans, and semicategories”.
In: Proceedings of the American Mathematical Society 149.3
(2021), pp. 961–975. DOI: 10.1090/proc/15197. arχiv:
1901.08264 [math.AT].

[Her04] Claudio Hermida. “Fibrations for abstract multicategories”. In:
Galois Theory, Hopf Algebras, and Semiabelian Categories. Vol.
43. Fields Institute Communications, 2004, pp. 281–293. URL:
http://sqig.math.ist.utl.pt/pub/HermidaC/fibmul.pdf.

[HRY19] Philip Hackney, Marcy Robertson and Donald Yau. “Higher cyc-
lic operads”. In: Algebraic & Geometric Topology 19 (2019),
pp. 863–940. DOI: 10.2140/agt.2019.19.863. arχiv:
1611.02591 [math.AT].

[HRY20] Philip Hackney, Marcy Robertson and Donald Yau. “A graph-
ical category for higher modular operads”. In: Advances in
Mathematics 365 (2020), p. 107044. ISSN: 0001-8708. DOI:
10.1016/j.aim.2020.107044. arχiv: 1906.01143
[math.AT].

84

https://doi.org/doi.org/10.1016/j.jpaa.2016.08.002
https://arxiv.org/abs/1412.0212
https://doi.org/10.1007/s00209-017-2005-x
https://arxiv.org/abs/1409.0837
https://doi.org/10.1090/proc/13695
https://arxiv.org/abs/1604.08480
https://arxiv.org/abs/1604.08480
https://doi.org/10.1090/proc/15197
https://arxiv.org/abs/1901.08264
http://sqig.math.ist.utl.pt/pub/HermidaC/fibmul.pdf
https://doi.org/10.2140/agt.2019.19.863
https://arxiv.org/abs/1611.02591
https://doi.org/10.1016/j.aim.2020.107044
https://arxiv.org/abs/1906.01143
https://arxiv.org/abs/1906.01143


D. KERN SEGAL OBJECTS AS MONADS IN SPANS

[Joy97] André Joyal. “Disks, duality and Θ-categories”. 1997. URL:
https://ncatlab.org/nlab/files/JoyalThetaCategories.pdf.

[Ker23] David Kern. “Monoidal envelopes and Grothendieck construc-
tion for dendroidal Segal objects” (2023). arχiv: 2301.10751
[math.CT].

[Kos21] Roman Kositsyn. “Completeness for monads and theories”
(2021). arχiv: 2104.00367 [math.CT].

[Lam21] Michael J. Lambert. “Discrete Double Fibrations”. In: The-
ory and Applications of Categories 37.22 (2021), pp. 671–
708. DOI: 10.70930/tac/zvxpxw4p. arχiv: 2101.06734
[math.CT].

[Lei04] Tom Leinster. Higher Operads, Higher Categories. London
Mathematical Society Lecture Note Series. Cambridge University
Press, 2004. DOI: 10.1017/CBO9780511525896. arχiv:
math/0305049 [math.CT].

[Lei98] Tom Leinster. “General Operads and Multicategories” (1998).
arχiv: math/9810053 [math.CT].

[Lou23] Félix Loubaton. “Theory and models of (∞,ω)-
categories”. PhD thesis. Laboratoire J. A. Dieud-
onné, 2023. arχiv: 2307.11931 [math.CT]. URL:
https://theses.hal.science/tel-04308414.

[Lur09] Jacob Lurie. Higher Topos Theory. Vol. 170. Annals of
Mathematics Studies. Princeton University Press, Princeton,
NJ, 2009, pp. xviii+925. ISBN: 978-0-691-14049-0. DOI:
10.1515/9781400830558.

[Lur17] Jacob Lurie. Higher Algebra. 2017. URL:
http://math.ias.edu/ lurie/papers/HA.pdf.

[MSS02] Martin Markl, Steve Shnider and Jim Stasheff. Operads in Al-
gebra, Topology and Physics. Vol. 96. Mathematical Surveys and
Monographs. 2002. DOI: 10.1090/surv/096.

85

https://ncatlab.org/nlab/files/JoyalThetaCategories.pdf
https://arxiv.org/abs/2301.10751
https://arxiv.org/abs/2301.10751
https://arxiv.org/abs/2104.00367
https://doi.org/10.70930/tac/zvxpxw4p
https://arxiv.org/abs/2101.06734
https://arxiv.org/abs/2101.06734
https://doi.org/10.1017/CBO9780511525896
https://arxiv.org/abs/math/0305049
https://arxiv.org/abs/math/9810053
https://arxiv.org/abs/2307.11931
https://theses.hal.science/tel-04308414
https://doi.org/10.1515/9781400830558
http://math.ias.edu/~lurie/papers/HA.pdf
https://doi.org/10.1090/surv/096


D. KERN SEGAL OBJECTS AS MONADS IN SPANS

[Ras21a] Nima Rasekh. “Cartesian Fibrations of Complete Segal Spaces”
(2021). arχiv: 2102.05190 [math.CT].

[Ras21b] Nima Rasekh. “Univalence in Higher Category Theory” (2021).
arχiv: 2103.12762 [math.CT].

[Rez10] Charles Rezk. “A cartesian presentation of weak n–categories”.
In: Geometry & Topology 14.1 (2010), pp. 521–571.
DOI: 10.2140/gt.2010.14.521. arχiv: 0901.3602
[math.CT].

[Rui22] Jaco Ruit. “A pasting theorem for iterated Segal spaces” (2022).
arχiv: 2210.04549 [math.CT].

[RV22] Emily Riehl and Dominic Verity. Elements of ∞-category
theory. Vol. 194. Cambridge Studies in Advanced Math-
ematics. Cambridge University Press, 2022. ISBN:
9781108936880. DOI: 10.1017/9781108936880. URL:
https://elementsbook.github.io/elements.pdf.

[Ste25] Jan Steinebrunner, personal communication, 2025.

[Str00] Ross Street. “The petit topos of globular sets”. In: Journal
of Pure and Applied Algebra 154 (2000), pp. 299–315. DOI:
10.1016/S0022-4049(99)00183-8.

[Web07] Mark Weber. “Yoneda Structures from 2-toposes”. In: Ap-
plied Categorical Structures 15 (2007), pp. 259–323. DOI:
10.1007/s10485-007-9079-2. arχiv: math/0606393
[math.CT].

David Kern
KTH Royal Institute of Technology
Department of Mathematics
SE-100 44 Stockholm (Sweden)
dkern@kth.se

86

https://arxiv.org/abs/2102.05190
https://arxiv.org/abs/2103.12762
https://doi.org/10.2140/gt.2010.14.521
https://arxiv.org/abs/0901.3602
https://arxiv.org/abs/0901.3602
https://arxiv.org/abs/2210.04549
https://doi.org/10.1017/9781108936880
https://elementsbook.github.io/elements.pdf
https://doi.org/10.1016/S0022-4049(99)00183-8
https://doi.org/10.1007/s10485-007-9079-2
https://arxiv.org/abs/math/0606393
https://arxiv.org/abs/math/0606393

